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THE ACTION SPECTRUM NEAR POSITIVE

DEFINITE INVARIANT TORI

by Patrick Bernard

Abstract. — We show that the Birkhoff normal form near a positive definite KAM
torus is given by the function α of Mather. This observation is due to Siburg [Si2],
[Si1] in dimension 2. It clarifies the link between the Birkhoff invariants and the
action spectrum near the torus. Our extension to high dimension is made possible by
a simplification of the proof given in [Si2].

Résumé (Le spectre d’action au voisinage des tores invariants à torsion définie)
On montre que la forme normale de Birkhoff au voisinage d’un tore KAM à torsion

définie est donnée par la fonction α de Mather. Cette observation est due à Siburg
[Si2], [Si1], en dimension 2. Elle clarifie le lien entre les coefficients de Birkhoff et le
spectre d’action au voisinage du tore. Notre extension à la dimension supérieure est
rendue possible par une simplification de la preuve donnée dans [Si2].

1. Introduction

Let us consider a smooth symplectic manifold (M,Ω) of dimension 2n, and
a C1 symplectic diffeomorphism φ : M → M. We are going to study the
dynamic in the neighborhood of some invariant tori of φ.
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604 BERNARD (P.)

1.1. We note T = R/Z. We use the sign + for sums in Rn or Tn, and we also
define q+v = q+v mod Zn ∈ Tn in the standard way when q ∈ Tn and v ∈ Rn.
We identify T ∗Tn, endowed with its standard symplectic structure, with the
product Tn × Rn, and use coordinates (q, p) ∈ Tn × Rn. We note Tn0 the zero
section of T ∗Tn, that is the submanifold Tn×{0} of Tn×Rn. In the following,
we say that a neighborhood of Tn0 in Tn×Rn is simple if it is fiberwise convex,
that is if its intersection with any fiber q × Rn is convex. A local chart of an
invariant torus T is a symplectic diffeomorphism from a simple neighborhood
of Tn0 onto its image inM whose restriction to Tn0 is a diffeomorphism onto T .
Given a torus T , we call simple neighborhood of T the image of a local chart.
There exist local charts of T if and only if T is Lagrangian. We identify the
vector spaces H1(Tn,R) and H1(Tn,R) with Rn.

1.2. Definition. — An invariant torus T is called a Ck positive definite quasi-
periodic invariant torus if there exists a Ck local chart τ of T , a vector ω ∈ Rn
and a positive definite matrix A such that, as p→ 0,

τ−1 ◦ φ ◦ τ(q, p) = (q + ω +Ap, p) + o(p).

1.3. It follows from the definition above that the torus T is a Lagrangian
invariant torus on which the dynamic is conjugated to a translation. In a simple
neighborhood of a quasi-periodic invariant torus T , the diffeomorphism φ is
homotopic to the identity. It is convenient to choose once and for all a simple
neighborhood U0 of T and a homotopy φt between the identity and φ|U0

. We
can assume that φt(T ) = T for each t. Let us fix a smaller simple neighborhood
U1 such that φt(x) ∈ U0 for all x ∈ U1 and t ∈ [0, 1]. A periodic orbit
X = (x0, x1, . . . , xT = x0) of φ contained in U1 has a well defined homology
[X ] ∈ H1(T ,Z). This homology is defined by extending the periodic orbit
to a periodic curve in U0 using the homotopy φt, and by identifying H1(U0,Z)
with H1(T ,Z).

1.4. Definition. — We say that the invariant torus T has a Birkhoff normal
form of order k if there exists a local chart τ of T such that

τ−1 ◦ φ ◦ τ(q, p) =
(
q + dhk(p), p

)
+ ok−1(p),

where hk : Rn → R is polynomial of degree k satisfying hk(0) = 0. Such a
polynomial is called a Birkhoff normal form of degree k near T .

Let us mention the following result which should be seen as a motivation for
the definitions above (see [La]).

1.5. Proposition. — Let φ be a smooth symplectomorphism onM, and let T
be a smooth invariant torus. Assume that the dynamic on T is conjugated to a
Diophantine translation, and that T is Lagrangian (this hypothesis is automatic
if Ω is exact). Then T admits Birkhoff normal forms to all orders.
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1.6. The restriction of Ω to U0 is exact. A local Liouville form is a one form λ
on U0 such that dλ = Ω. There exists a local Liouville form λ whose restriction
to T is zero. All the Liouville forms with this property differ by the differential
of a function f which is null on T . If λ is such a Liouville form, there exists a
unique function g on U0 such that dg = φ∗λ − λ and g|T = 0. If λ′ = λ + df
is another Liouville form with the same property, then the associated function
is g′ = g + f ◦ φ− f .

1.7. Let X = (x0, x1, . . . , xT = x0) be a periodic orbit. We define its action

A(X) =

T∑

i=1

g(xi),

it is easy to see that this sum does not depend of the choice of the Liouville
form λ whose restriction to T is zero used to define g.

1.8. A periodic orbit X contained in the simple neighborhood U1, see 1.3, has
a period T (X) ∈ Z, an homology (or rotation number) [X ] ∈ H1(T ,Z) and an
action A(X). For each simple neighborhood U contained in U1, let us define
the labelled U -action spectrum as the set

AU =
{(
A(X), T (X), [X ]

)}
⊂ R× Z×H1(T ,Z),

where X ranges over periodic orbits contained in U . For each cohomology class
c ∈ H1(T ,R), define

αU (c) = sup
(a,T,w)∈AU

cw − a
T
·

1.9. Theorem. — Let us consider a C1 symplectic diffeomorphism φ and a C1

positive definite quasi-periodic invariant torus T . Let us fix a homotpy between
φ and the identity in a simple neighborhood U0 of T . For each sufficiently small
simple neighborhood U , the function αU is finite and convex in a neighborhood
of 0. The germ at c = 0 ∈ H1(T ,R) of the function αU does not depend on U .

We call α this common germ. We have defined a germ of function

α : H1(T ,R) −→ R,

which is a symplectic invariant and depends only on the local labelled action
spectrum. Let us call it the averaged energy. This function has been intro-
duced and studied via a slightly different definition by Mather in [Ma], where
Theorem 1.9 is already present. We shall present a simple and self contained
proof of this result. Note that the finiteness of α(0) is already a non trivial
fact which implies the existence of periodic orbits in any neighborhood of T .
Our main point here is the relation between the action spectrum, the averaged
energy α and the Birkhoff normal forms.
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606 BERNARD (P.)

1.10. Theorem. — In the setting of Theorem 1.9, assume in addition that the
torus T has a Birkhoff normal form hk of order k. We have

α = hk ◦ τ∗ + ok

where τ∗ : H1(T ,R) −→ H1(Tn0 ,R) = Rn is the mapping associated to τ .

1.11. The function α depends on the choice of the homotopy between the
identity and φ. If another homotopy had been chosen, the associated function
α̃ would satisfy

α̃(c) = α(c) + 〈ξ, c〉
for some ξ ∈ H1(T ,Z).

1.12. As a consequence of Theorem 1.10, we obtain a unicity result for Birkhoff
normal forms of positive definite tori. Once a homotopy to the identity has
been chosen, the normal form is well defined as a polynomial on H1(T ,R).
As a consequence, when seen as a polynomial on Rn, the Birkhoff normal form
is well defined only up to the action of Gln(Z).

1.13. It is a straightforward consequence of Theorem 1.10 that the Birkhoff
normal form of order k, provided it exists, depends only on the local labelled
action spectrum. Recall Proposition 1.5.

1.14. We discuss some sufficient conditions for a quasi-periodic invariant torus
to be positive definite in Section 2. We then clarify some conventions concerning
the choice of the homotopy φt and of the rotation vector ω in Section 3. The
remaining of the paper is devoted to the proof of the two theorems above.

1.15. We work in coordinates Tn × Rn, and first introduce the generating
function of our diffeomorphism in Section 4. This generating function is used
to define a new action, which is closely connected to the action defined in 1.7
above. In Section 5, we define a new averaged energy using the new action.
The links between this new averaged energy and the Birkhoof normal forms
are easily established using a property of monotony. This observation is our
first improvement compared with the proof of [Si2]. We are then reduced to
observe that the two averaged energies coincide. One of the important points
is that the germ of the averaged energy is local, i.e. depends only of the germ
of φ along the invariant torus. A similar property was proved in [Si2] using
the existence of KAM circles around the elliptic fixed point. It is our second
improvement to give a purely variational proof independent of KAM theory.
This allows to extend the result to higher dimension where KAM tori do not
confine the dynamic. The main step is the existence of a family of periodic
orbits near the invariant torus. This property is proved in Section 6. Note that
the convexity of the averaged action α is a direct consequence of its definition
as a supremum of linear functions.
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2. Positive definite KAM tori

The definition of a positive definite quasi-periodic invariant torus given in 1.2
is not intrinsic and requires some comments. Let us consider a smooth sym-
plectic diffeomorphism φ and a smooth invariant torus T . We assume that the
induced dynamic φ|T is conjugated to a Diophantine translation. In addition,
we assume that the torus T is Lagrangian. This hypothesis is automatic if
the symplectic form Ω is exact, in view of the following remark of M. Herman
(see [He]):

2.1. Let φ be a diffeomorphism of an exact symplectic manifold (M,Ω = dλ).
Let T be an invariant torus with an ergodic linear induced dynamic. Then the
torus T is Lagrangian. To see this, let us consider an embedding η : Tn →M
of image T and such that R = η−1

|T ◦φ ◦ η is a Diophantine translation. Calling

µ = η∗λ the restriction of the Liouville form, we have d(R∗µ − µ) = 0. Now
writing µ = a(q)dq, we obtain that a ◦ R = a, this implies that a is constant
since R is an ergodic translation. As a consequence, dµ = 0, which means
that T is Lagrangian since dµ = η∗Ω.

2.2. Since T is Lagrangian, there exist local charts, this results from a cele-
brated theorem of Weinstein, see for exemple [DS]. Let τ be a local chart of T
such that τ−1 ◦ φ|T ◦ τ|Tn0 is a translation. Then there exist a vector ω ∈ Rn
and a smooth function A : Tn −→ Sn of symmetric matrices such that

τ−1 ◦ φ ◦ τ(q, p) =
(
q + ω +A(q)p, p

)
+ o(p).

In order to see this, note that τ−1 ◦ φ ◦ τ(q, p) = (q+ω+A(q)p,B(q)p) + o(p),
with two function A,B : Tn → Mn of matrices. It is then straightforward to
check that this mapping is symplectic if and only if B(q) = Id and A(q) is
symmetric for each q.

2.3. It is known that there exists a new chart τ̃ such that

τ̃−1 ◦ φ ◦ τ̃ (q, p) = (q + ω +Ap, p) + o(p).

where the matrix A is the average

A =

∫

Tn
A(q)

with respect to the Haar measure. The chart τ̃ is obtained by composing τ with
an averaging transformation. More precisely, let us consider the time-1 flow ψ
of the Hamiltonian H(q, p) = 1

2 〈a(q)p, p〉, where a(q) is a smooth function of
symmetric matrices. We have

ψ(q, p) =
(
q + a(q)p, p

)
+ o(p).
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A calculation shows that the chart τ̃ = τ ◦ψ has the desired property provided
that a(q) solves the equation

a(q)− a(q + ω) = A(q)−A.
It is known that this equation has a smooth solution if ω is Diophantine and if
A =

∫
A(q).

2.4. Lemma. — The torus T is positive definite if and only if the averaged
matrix A is positive definite in any local chart τ such that τ−1 ◦ φ|T ◦ τ|Tn0 is a
translation.

Proof. — It is clear in view of the remarks above that T is positive definite if
the averaged matrix A is positive definite in any local chart. Conversely, let
us consider a positive definite torus T and let τ be the local chart given by
Definition 1.2. Let τ ′ be another local chart such that τ ′−1 ◦ φ|T ◦ τ ′|Tn0 is a

translation, and let τ̃ ′ be the associated chart given by averaging. We have

τ̃ ′−1 ◦ φ ◦ τ̃ ′(q, p) = (q + ω′ +A′p, p) + o(p),

where A′ is a symmetric matrix. The matrix A′ is positive definite because
there exists a matrix a ∈ Gln(R) such that A′ = taAa. This is the result of
a simple computation based on the fact that the differential of τ−1τ̃ ′ at any
point of the torus can be written in block forms as

(ta−1 ba
0 a

)

where b is a symmetric matrix.

3. Rotation vector

We now discuss some questions of definiteness about the rotation vector of
quasi-periodic tori. Let us consider a positive definite quasi-periodic invariant
torus T , let τ : V0 −→M be a local chart as given by Definition 1.2, and let U0

be its image. Assume that a homotopy φt of mappings from U0 toM has been
chosen such that φ0 = Id and φ1 = φ, and that it satisfies φt(T ) = T for
each t. Consider a simple neighborhood U1 such that φt(U1) ⊂ U0 for each t.

3.1. The rotation vector of φ|T is an element ξ of H1(T ,R) defined as follows.
Since φ|T is conjugated to a translation, there exists a sequence Tn of integers
such that

ψn = (φ|T )Tn −→ Id.

Let us fix a point x ∈ T , and let D be a simply connected neighborhood of x.
When n is large enough, the point ψn(x) is in D. There is a path between x
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and ψn(x) given by the homotopy φt. We can close this path by a path in U .
The homology wn ∈ H1(T ,Z) of the obtained loop is well-defined and we set

ξ = lim
wn
Tn
·

Let η : Tn → T be a diffeomorphism. Identifying H1(Tn,R) with Rn, we have

η−1 ◦ φ|T ◦ η(q) = q + η−1
∗ (ξ).

3.2. The vector ω in Definition 1.2 is defined only modulo Zn. We shall assume
for definiteness that the following compatibility condition holds between the
choice of the homotopy φt (and hence of the rotation vector ξ) and the choice
of the rotation vector ω:

ξ = τ∗(ω),

where ω is seen as an element of H1(Tn0 ,R) = Rn.

3.3. Let Q(q, p) : Tn × Rn → Tn be the first component of τ−1 ◦ φ ◦ τ(q, p).
Let V (q, p) : Tn × Rn → Rn be the unique continuous function such that
V (q, 0) = ω and Q(q, p) = q + V (q, p). Let us consider a periodic orbit
X = (x0, x1, . . . , xT = x0) of φ contained in U1, and set (qi, pi) = τ−1(xi).
Assuming that the homotopy φt and the rotation vector ω satisfy the compat-
ibility condition 3.2, we have

[X ] = τ∗
( T−1∑

i=0

V (qi, pi)
)
.

This can be seen by considering the unique lifting Ft of τ−1 ◦ φt|U0
◦ τ to the

universal cover Ṽ0 ⊂ Rn×Rn of V0 satisfying F0 = Id. Let us note F = F1 the
lifting of τ−1 ◦ φ|U0

◦ τ obtained in this way. We have

F (q, p) =
(
q + V (q mod Zn, p), .

)
,

and the homology of X is clearly τ∗(q̃T − q̃0), where (q̃i, p̃i) = F i(q̃0, p̃0) is a
lifting of (qi, pi).

4. The generating function and the action

In this section, we introduce the tools necessary to study the periodic orbits
of φ near T . We work in coordinates Tn × Rn.
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4.1. Let Sω be the set of functions of C2(Tn × Rn,R) with the following
properties:

– There exist real numbers b > a > 0 such that for all (q, v) ∈ Tn × Rn

a‖v − ω‖2 6 S(q, v) 6 b‖v − ω‖2.
– There exists a positive number K such that S(q, v) = a‖v − ω‖2 when
‖v‖ > K.

– The mapping (q, v) 7→ (q, ∂2S(q, v) − ∂1S(q, v)) is a diffeomorphism of
Tn × Rn. We call GS , and often G, its inverse.

4.2. It is known that to any function S ∈ Sω, we can associate the symplectic
diffeomorphism F of Tn × Rn whose graph in (Tn × Rn)2 is the image of the
embedding

Tn × Rn −→ Tn × Rn × Tn × Rn,
(q, v) 7−→

(
q, ∂2S(q, v)− ∂1S(q, v), q + v, ∂2S(q, v)

)
.

We then have

F ∗λ0 − λ0 = d(S ◦GS),

where λ0 is the canonical form pdq of T ∗Tn = Tn × Rn. The correspondence
S 7→ F between Sω and the set Pω of mappings that can be obtained this way is
bijective. We say that S is the generating function of F , or that F is generated
by S.

4.3. Remark. — It is more classical (see [DS] or [Be]) to define generating

functions S̃(x, x′) : Rn × Rn → R. Here we have used different coordinates

S̃(x, x′) = S(x mod Zn, x′ − x).

4.4. In order to work on the configuration space Tn, let us define, for each
e ∈ Rn, the function He : Tn × Tn → R by

He(q, q
′) = min

q+v=q′
S(q, v)− ev.

It is not hard to see that the function He is Lipschitz for all e (see [Be] for
example). We define the action of a configuration (q0, . . . , qT ) ∈ (Tn)T+1 by

HT
e (q0, . . . , qT ) =

T−1∑

i=0

He(qi, qi+1).

We will pay a special attention to periodic orbits, and define the space

ET =
{

(q0, . . . , qT ) ∈ (Tn)T+1 such that qT = q0

}

of T -periodic configurations.
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4.5. Definition. — An orbits segment (qi, pi) = F i(q0, p0), 0 6 i 6 T is said
e-minimal if

S
(
qi, V (qi, pi)

)
− eV (qi, pi) = He(qi, qi+1)

for each i.

4.6. Lemma. — If (q0, . . . , qT ) ∈ ET is minimizing HT
e for some e, then there

exists a sequence p0, . . . , pT = p0 such that (q0, p0), (q1, p1), . . . , (qT , pT ) is a
T -periodic orbit of F and is e-minimal.

Proof. — Let (q̄0, . . . , q̄T ) ∈ ET be a configuration minimizing HT
e . Let us

consider the set ET of sequences

(
(q0, v0), . . . , (qT , vT )

)
⊂ (Tn × Rn)T+1

such that qi+1 = qi + vi and (qT , vT ) = (q0, v0). Let us define the action Σ
on ET by

Σ
(
(q0, v0), . . . , (qT , vT )

)
=
T−1∑

i=0

S(qi, vi)− evi.

Its minimum is HT
e (q̄0, . . . , q̄T ) an there exists (v̄0, . . . , v̄T ) ∈ (Rn)T+1 such that

(q̄i, v̄i) is minimizing Σ. It is not hard to see that the sequence (q̄i, p̄i), where

p̄i = ∂2S(q̄i, v̄i)− ∂1S(q̄i, v̄i) = ∂1S(q̄i−1, v̄i−1)

is a T -periodic orbit of F and is e-minimal.

4.7. A digression via Legendre transformation may be useful. Let ` : Rn → R
be a strongly convex function, that is a C2 proper function with uniformly
positive definite Hessian. We define its Legendre transform `∗ : Rn → R by

`∗(p) = sup
v∈R

pv − `(v)

which is a C2 convex function. The correspondence ` 7→ `∗ is non increasing.
Here is an equivalent definition. The mapping v 7→ d`(v) is a diffeomorphism
L of Rn (we identify Rn with its dual). We have `∗(p) = pL−1(p)− `(L−1(p)).
It is well known that `∗∗ = `, and that we have

p = d`(v) ⇐⇒ v = d`∗(p),

that is, if L∗ is the diffeomorphism p 7→ d`∗(p), then L∗ = L−1. It is not hard
to see that if ` = `k + ok, then `∗ = `∗k + ok.
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4.8. If T is a positive definite KAM torus, there exists a local chart τ : V0 →
M of T and a diffeomorphism F ∈ Pω such that F|V0

◦ τ−1 = τ−1 ◦φ. In addi-
tion, if T has a Birkhoff normal form hk of order k, then we can chose F such
that its generating function S satisfies

S(q, v) = `k(v) + ok(v),

where `k is a convex function whose Legendre transform is equal to hk in a
neighborhood of 0. All this follows from the fact that the diffeomorphism F
generated by Sk(q, v) = `k(v) is (q, p) 7→ F (q, p) = (q + dhk(p), p). Note in
addition that we have `k(ω) = −hk(ω) = 0 since dhk(0) = ω.

4.9. Let U1 be the simple neighborhood defined in 1.3, and let V1 = τ−1(U1).
There is a one to one correspondence between the orbits of φ contained in U1

and the orbits of F contained in V1. Let X be a T -periodic orbit of φ in U1,
and Y the corresponding orbit of F . The actions we have defined for X and Y
are closely connected.

4.10. Lemma. — Setting e = τ∗c, we have

A(X)− c[X ] > HT
e (Y )

with equality if and only if Y is e-minimal.

Proof. — Let us note λ0 the canonical Liouville form pdq of T ∗Tn = Tn×Rn.
We can use the Liouville form λ = τ∗−1λ0 to compute the function g involved
in the action A(Y ). We have

τ∗(dg) = F ∗λ0 − λ0 = d(S ◦GS).

Hence g ◦ τ = S ◦GS . Let (qi, pi) = F i(q0, p0) be the points of the orbit Y . We
have

g ◦ τ(qi, pi) = S
(
qi, V (qi, pi)

)
and qi + V (qi, pi) = qi+1.

It follows that

A(X)− c[X ] =

T−1∑

i=0

S
(
qi, V (qi, pi)

)
− eV (qi, pi) > HT

e (q0, q1, . . . qT ) = HT
e (Y ),

with equality if and only if S(qi, V (qi, pi))−eV (qi, pi) = He(qi, qi+1) for each i.

5. The averaged energy

In the present section, we introduce the averaged energy αS associated to
a generating function S ∈ S. We prove that this function is equal to the
function αU and use it to prove the main properties of α.
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5.1. Let us define

mT (e) = min
ET

HT
e and αS(e) = − inf

T>0

(mT (e)

T

)
.

5.2. Proposition. — The correspondence S 7→ αS is non increasing.

This remark is elementary, but deserves attention as a new observation.
It enables a neat simplification of the proofs compared with [Si2]. It is a
standard in the calculus of variations to exploit the monotonicity of certain
critical levels. Here we mean that if S ′ ∈ S is another generating function such
that S′(q, v) > S(q, v) for each (q, v), then the associated functionals HT

e and

H ′Te satisfy H ′ Te (Q) > HT
e (Q) for each T , e, and Q. Hence αS

′
(e) 6 αS(e) for

each e. The proof is just a consequence of the fact that

−αS(e) = min
1

T

T−1∑

i=0

S(qi, vi)− evi,

where the minimum is taken over all integers T and all periodic sequence
(qi, vi) ∈ ET , where ET is the set defined in 4.6. The key point is that this
set does not depend on S. The links between the averaged energy and the
Birkhoff normal forms are now reduced to a straightforward computation in
the integrable case, which leads to:

5.3. Lemma. — If ` : Rn → R is a strongly convex function, and if
S(x, v) = `(v), then αS is the Legendre transform of `.

5.4. Lemma. — If S = `k(v) + ok(v), with a strongly convex `k, then αS(e) =
hk(e) + ok(e), where hk is the Legendre transform of `k.

Proof. — One can chose functions `+ and `− : Rn → R such that

S−(q, x) = `−(v) 6 S(q, v) 6 `+(v) = S+(q, v)

and such that `+ − `− = ok. By Lemma 5.3, the function αS
±

is the Legendre
transform h± of `±. In view of 4.7, we have 0 6 h−−h+ 6 ok. The proposition

then follows from the fact that, by 5.2, h+ = αS
+ 6 αS 6 αS− = h−.

5.5. The proof of Theorems 1.9 and 1.10 now results from the following fact:
For each simple neighborhood U ⊂ U1 of T , we have

αS(τ∗c) = αU (c)

in a neighborhood of 0 ∈ H1(T ,R). It follows that the germ of αS does not
depend of the choice of S, that the germ of αU does not depend on U , and that
these germs are equal:

α := αS ◦ τ∗ = αU .
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5.6. In order to prove this equality, let us consider a periodic orbit X of φ
contained in U . In view of 4.9, we have A(X) − c[X ] > mT (τ∗c). Since this
holds for all periodic orbits, we conclude that, for each c ∈ H1(T ,R),

αU (c) 6 αS(τ∗c).

We will need the following non trivial proposition, proved in Section 6 for the
other inequality.

5.7. Proposition. — Let V be a simple neighborhood of Tn0 . There exists a
neighborhood C of 0 in Rn such that, for each e ∈ C, there exists a sequence Yk
of Tk-periodic e-minimal orbits of F in V such that

HTk
e (Yk)

Tk
+ αS(e) −→ 0.

5.8. Let c ∈ H1(T ,R) be such that e = τ∗c ∈ C. Let Yk be the sequence of
periodic orbits of F given by 5.7. Since Yk is e-minimal, we have equality of the
actions A(τ(Yk))− e[Yk] = HTk

e (Yk). It follows that

−αU (c) 6 A(τ(Xk))− e[Xk]

Tk
−→ −αS(e),

hence αS ◦ τ∗(c) = αS(e) 6 αU (c).

6. Localization

In this section, we prove Proposition 5.7. Let us note

H̃e = He + αS(e).

We mention that H̃T
e (Q) > 0 if Q ∈ ET .

6.1. Let us give a caracterisation of αS :

lim inf
T−→∞

(
mT
e + TαS(e)

)
= 0.

This is proved in [Be] and we shall reproduce the proof for the convenience of the
reader. Let us first assume that there exists T such that mT

e + TαS(e) = 0. Let
QT be a minimizing configuration of HT

e and n∗QT the nT -periodic configura-
tion consisting of n iterates ofQT . We haveHnT

e (n∗QT )+nTα(c) = 0 for any n,
and so lim inf(mT

e +TαS(e)) = 0. Else assume that mT
e +TαS(e) > 0 for each T .

By contradiction, let us assume in addition that lim inf mT
e + TαS(e) > 0, so

that there is a real number ` with mT
e + TαS(e) > ` > 0. Let us fix r > 0 such

that |He(x0, x) − He(x0, x
′)| 6 1

2` for each (x0, x, x
′) such that d(x, x′) 6 2r.

There is a real number p with 0 < p < 1 such that, given T points on the torus,
there is a ball of radius r containing at least pT of them. Take a minimizing
configuration QT = (qTi ) of HT

e . After permutation of the indices, there are
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K > pT points qT0 , q
T
i1
, . . . , qTiK−1

contained in a ball of radius r. The configura-

tions Qk = (qTik−1
, qTik−1+1, . . . , q

T
ik

) of length Tk = ik− ik−1 are almost periodic
and we have

HTk
e (Qk) + Tkα

S(e) > 1

2
`.

Adding these inequalities for all k we get

HT
e (Q) + TαS(e) > K 1

2
` > pT 1

2
`.

This gives

−αS(e) 6 HT
e

T
− 1

2
p`

which is in contradiction with the definition of αS .

6.2. As a consequence, there exists a sequence Y k of Tk-periodic e-minimal

orbits of F such that H̃Tk
e (Yk) → 0. In order to prove Proposition 5.7, it is

enough to see that this sequence is contained in V if e is small enough. This
results from the following:

6.3. Lemma. — There exist a positive constant δ and a neighborhood C of 0
in Rn such that, for each e ∈ C and each e-minimal T -periodic orbit X of F

not contained in V , we have H̃T
e (X) > δ.

6.4. Lemma. — There exist a positive constant δ and a neighborhood C of 0
in Rn such that, if (q, p) 6∈ V , then S(q, V (q, p))+eV (q, p) > 2δ for each e ∈ C.

Proof. — We see from 5.4 that αS(0) = 0 and (αS)′(0) = ω. Since αS is
convex, we have αS(e) > eω > −‖e‖ · ‖ω‖ hence

S
(
q, V (q, p)

)
+ eV (q, p) > a

∥∥V (q, p)− ω
∥∥2 − ‖e‖ ·

∥∥V (q, p)
∥∥+ αS(e)

> a‖V (q, p)− ω‖2 − ‖e‖ ·
∥∥V (q, p)− ω

∥∥− 2‖e‖ · ‖ω‖.
Since GS(Tn0 ) = Tn × {ω}, the norm ‖V (q, p)− ω‖ is bounded from below by
a positive constant when (q, p) 6∈ V . The proof of the lemma is now straight-
forward.

6.5. Lemma. — If C is small enough, then for each e ∈ C and each configu-

ration q1, . . . , qT (not necessarily periodic), we have H̃T
e (q1, . . . , qT ) > −δ.

Proof. — As a first step, let us prove that, given two points q, q′ ∈ Tn,
there exists an integer k and configuration x0 = q, . . . , xk = q′ such that

H̃k
e (x0, . . . , xk) 6 δ. Let us take any integer k ∈

[
‖e‖−1/2, 2‖e‖−1/2

]
(this

interval contains integers when e is small enough). Choose ∆ ∈ Rn such that
‖∆‖ 6 n/k and q′ = q + k(ω + ∆). Setting xi = q + i∆, we have

H̃e(xi, xi+1) 6 S(xi, ω + ∆) + e(ω + ∆) + αS(e) 6 nb

k2
+ ‖e‖

(
1 + 3‖ω‖

)
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616 BERNARD (P.)

when e is small enough. We have used that αS(e) 6 2‖ω‖ · ‖e‖ when e is small
enough. We obtain

H̃k
e (x1, . . . , xk) 6

(
nb+ 2

(
1 + 3‖ω‖

))√
‖e‖ 6 δ,

when e is small enough. Let us now consider a configuration q0, q1, . . . , qT .
In view of the first step just proved, we can find an integer k and a configuration

x0 = qT , x1, . . . , xk = q0 such that H̃k
e (x0, x1, . . . , xk) 6 δ. The configuration

Q = q0, . . . , qT , x1, . . . , xk

is periodic hence

0 6 H̃T+k
e (Q) 6 H̃T

e (q1, . . . , qT ) + δ

which ends the proof.

6.6. We are in a position to end the proof of Lemma 6.3 hence of Propo-
sition 5.7. Let C and δ be chosen such that Lemma 6.4 and 6.5 hold. Let
X = (qi, pi) be a T -periodic orbit of F . Assume that X is e-minimal and not
contained in V . There exists i such that (qi, pi) is not in V , and we can as-

sume that i = 0. It follows from 6.4 that H̃e(q0, q1) > 2δ. On the other hand,

Lemma 6.5 imply that H̃T−1
e (q1, . . . , qT ) > −δ, hence H̃T

e (X) > δ.
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