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DIFFERENTIAL GALOIS THEORY FOR AN
EXPONENTIAL EXTENSION OF C((z))

by Magali Bouffet

Abstract. — In this paper we study the formal differential Galois group of linear
differential equations with coefficients in an extension of C((z)) by an exponential of
integral. We use results of factorization of differential operators with coefficients in
such a field to give explicit generators of the Galois group. We show that we have very
similar results to the case of C((z)).

Résumé (Théorie de Galois différentielle). — On étudie le groupe de Galois diffé-
rentiel formel d’équations différentielles linéaires dont les coefficients sont dans une
extension exponentielle de C((z)). On utilise des résultats de factorisation d’opérateurs
différentiels à coefficients dans un tel corps pour expliciter des générateurs du groupe
de Galois. On obtient des résultats très similaires au cas du corps C((z)).

1. Introduction

The motivation of this work is to write a local differential Galois theory for
linear differential equations with coefficients admitting essential singularities.
The aim is to generalize the case of differential equations having germs of
meromorphic functions as coefficients. We only treat here the formal case, and
work with the field K = C((z)) of formal power series. It is a natural idea to
add to this field exponential functions, as these ones are the new functions that
appear to build solutions of equations with coefficients in K.
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588 BOUFFET (M.)

Let’s first fix some notations. We endow the field K with the derivation

δ = −z2 d
dz

·

We set
X = e1/z and L = C

(
(z)

)(
(X)

)
.

We extend the derivation δ to L by δ(X) = X . We also endow the field K
with the z-adic valuation vz and the field L with the X-adic valuation vX . We
notice that this field is complete with respect to this valuation. We want to
study linear differential equations with coefficients in L from the differential
Galois theory viewpoint. In particular we want to determine the structure of
the differential Galois group. For this we proceed like for the field K and we
obtain very similar results. Let’s recall the well-known results for the field K.

Definition 1.1. — We call a universal differential extension of a differential
field k a k-algebra R satisfying the following conditions:

• the derivation defined on k extends to R;
• R is simple (i.e. R has no non-trivial differential ideal);
• every homogeneous linear differential equation with coefficients in k has

all its solutions in R;
• R is minimal, that is R is generated over k by all the solutions (and their

derivatives) of homogeneous linear differential equations with coefficients in k.

For any differential field such an extension exists and is unique up to dif-
ferential isomorphism. In the case of K, we can explicitly write the universal
differential extension. It is given by the following symbols:

R = C
(
(z)

)[
{zm}m∈C, {e(p)}p∈P , "

]

where P =
⋃

n≥1 z−1/nC[z−1/n], and the following relations:

za+b = zazb, e(p1 + p2) = e(p1)e(p2)

and za = za ∈ C((z)) for a ∈ Z. The derivation on R is given by

(za)′ = aza,
(
e(p)

)′ = pe(p), "′ = 1.

(We also write ′ the derivation zd/dz on C((z))).
We can interpret the preceding symbols as functions, which makes sense on

suitable sectors. The symbol za can be interpreted as the function ea log(z), " as
a logarithm function and e(p) as the function exp(

∫
p/zdz).

Once we have the universal differential extension of K we define K-
differential automorphisms of R as follows:

• the formal monodromy γ is defined by

γ(za) = e2iπaza, γ(") = " + 2iπ, γ
(
e(p)

)
= e

(
γ(p)

)
;
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DIFFERENTIAL GALOIS THEORY 589

• the exponential torus is defined by: for all h ∈ Hom(P , C∗), σh is given by

σh(za) = za, σh(") = ", σh

(
e(p)

)
= h(p)e(p).

Then the exponential torus and the formal monodromy generate the differ-
ential Galois group of the extension R/C((z)) as a pro-algebraic group.

We show in this paper that we have the same kind of result for the field L.
We give an explicit description of the universal differential extension of L and
we give topological generators of the differential Galois group as a pro-algebraic
group.

The first thing to do is then to determine all the solutions of homogeneous
linear differential equations with coefficients in L. For this we show that it
suffices to solve order 1 homogeneous and non-homogeneous equations with
coefficients in the algebraic closure of L. Let’s write

K̂∞ =
⋃

n≥1

C
(
(z1/n)

)
.

Then K̂∞ is the algebraic closure of K. The algebraic closure of L is

L̂∞ =
⋃

m≥1,n≥1

C
(
(z1/n)

)(
(X1/m)

)
.

(The previous valuations and derivations extend to these fields). We notice that
the field of constants of L̂∞ as well as the one of all intermediate differential
fields is C.

We need the following result of factorization that can be found in [1]:

Theorem. — Let P ∈ L̂∞[δ] a non constant differential operator. Then P
can be factored in product of order 1 operators in the ring L̂∞[δ].

A right factor immediately gives a formal solution by solving an equation
of the type δ(y) = ay. We show by analyzing this factorization that either
the factors “commute” in a certain sense, either some order 1 non-homogeneous
equations appear.

2. Formal classification of differential equations

We want to determine the solutions of all linear differential equations with
coefficients in L, but we are interested only in “new” solutions that are not
already in L̂∞. Thus we start by classifying order 1 equations over L̂∞.

2.1. Order 1 equations
Homogeneous equations. — We want to classify equations of the type
δ(y) = ay, with a ∈ L̂∞.
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590 BOUFFET (M.)

Definition 2.1.1. — The equations δ(y) = ay and δ(y) = by, with a, b ∈ L̂∞,
are said to be equivalent over L̂∞ if there exists f ∈ L̂∞\{0} such that
b − a = δ(f)/f . (The solutions of δ(y) = ay are then the solutions of δ(y) = by
multiplied by f.)

To classify the order 1 homogeneous equations we have to determine the set

Log =
{
δ(f)/f, f ∈ L̂∞

}

to study the quotient L̂∞/Log. Some computations show that

Log =
{
λ + µz +

∑
r>0 αrz1+r/n +

∑
r>0 βrXr/m;

n, m ≥ 1,λ, µ ∈ Q,αr ∈ C, p ≥ 1,βr ∈ C((z1/p))
}

.

Let M be a Q-vector space such that M ⊕ Q = C. We set:

Q =
⋃

m≥1,n≥1

X−1/mC
(
(z1/n)

)
[X−1/m],

P =
{ ⋃

n≥1

z−1/nC[z−1/n]
}
∪

⋃

n≥1

{ n−1∑

r=1

αrz
r/n, αr ∈ C

}
.

Then M ⊕Mz⊕P⊕Q classifies the order 1 homogeneous linear differential
equations with coefficients in L̂∞. We study each of these sets to define symbolic
solutions. We have the following symbols:

{Xm}m∈M , {zm}m∈M ,
{
e(p)

}
p∈P ,

{
g(q)

}
q∈Q.

The solutions of the equation

δ(y) = (m + m̃z + p + q)y

are given by
y = aXmzm̃e(p)g(g),

with a ∈ C, and those of the equivalent equations by fy, with f ∈ L̂∞\{0}.
We observe that these symbols are algebraically independent over L̂∞.
As for the symbols defined to solve equations over the field K these symbols

can be interpreted as functions, which makes sense on suitable sectors. The
symbols Xm and zm can be interpreted as the function em log(X) and em log(z),
the symbols e(p) as the functions exp(

∫
−p/z2dz) and the symbols g(q) as

the functions exp(
∫
−q/z2dz). The symbols e(p) correspond to the symbols

we recalled in the introduction for the field K. (We wrote them e(p) with
p ∈

⋃
n≥1 z−1/nC[z−1/n] with the derivation zd/dz. The second set comes

from this change of derivation. We do not obtain the function e1/z as it is
already in the base field.) The symbols g(q) are exponentials of “second level”.
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DIFFERENTIAL GALOIS THEORY 591

Non homogeneous equations. — We want to classify equations of the type
δ(y) = a, with a ∈ L̂∞.

Definition 2.1.2. — The equations δ(y) = a and δ(y) = b , with a, b ∈ L̂∞,
are said to be equivalent over L̂∞ if there exists f ∈ L̂∞ such that b−a = δ(f).
(The solutions of δ(y) = a are then the solutions of δ(y) = b added to f .)

We have to determine the set L̂∞/Der, where

Der =
{
δ(f), f ∈ L̂∞

}
.

Some computations show that the order 1 non-homogeneous equations are clas-
sified by

L̂∞/Der = {αz, α ∈ C}.
Thus we only have one equation to study. Let’s look at δ(y) = −z. We set " the
symbol solution of this equation. Then the solutions of all equivalent equations
are given by " + g, g ∈ L̂∞. The set of solutions of all the equations δ(y) = f ,
with f ∈ L̂∞, is {α" + g,α ∈ C, g ∈ L̂∞}.

The symbol " can be interpreted as a logarithm function and we notice that
it is algebraically independent over L̂∞ with the other symbols.

2.2. Differential operators and differential modules. — Let’s write
D = L̂∞[δ]. Let A ∈ Hom((L̂∞)n, (L̂∞)n). We define the differential module
MA associated to the system δ(Y ) = AY by the formulas

δ(ei) = −
∑

j

aijej ,

where (e1, . . . , en) is the standard basis of (L̂∞)n. To a differential operator
P = δn + an−1δn−1 + · · · + a0 we associate a differential system δ(Y ) = AY
with

A =





0 1 0 · · · 0

0 0 1
. . .

...
...

. . . . . . 0
0 · · · · · · 0 1

−a0 −a1 · · · · · · −an−1




.

The module MA is called the differential module associated to the opera-
tor P . The modules MA and (D/DP )∗ are isomorphic, where (D/DP )∗ =
Hom((D/DP ), L̂∞) is the dual of (D/DP ).

The two differential systems δ(Y ) = A1Y and δ(Y ) = A2Y are said equiva-
lent over L̂∞ if there exists U ∈ Gl((L̂∞)n, (L̂∞)n) such that

A1 = U−1δ(U) + U−1A2U.
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592 BOUFFET (M.)

This means equivalently that the associated differential modules are isomorphic.
In the case of order 1 differential equations we obtain:

(δ(y) + ay = 0 equi∼ δ(y) + by = 0) ⇐⇒ b − a ∈ Log

⇐⇒ D/D(δ + a) iso∼ D/D(δ + b).

Definition 2.2.1. — An operator P ∈ D is said reducible over L̂∞ if it can
be written P = P1P2 with the orders of P1 and P2 strictly less to the order
of P . It is said irreducible otherwise.

The theorem of factorization recalled in the introduction shows that the
operators irreducible over D are those of order 1.

Proposition 2.2.2. — The operator P ∈ D is reducible over L̂∞ if and only
if the D-module D/DP contains a proper submodule. (The D-module D/DP is
then said reducible, and irreducible otherwise.)

The irreducible D-modules are those of dimension 1.

Definition 2.2.3. — A D-module M is said decomposable if there exists
two submodules M1 and M2 different from M and non-zero such that
M = M1 ⊕M2. Otherwise M is said indecomposable. (An operator is said
decomposable if the D-module D/DP is decomposable.)

In the next subsection we determine the indecomposable D -modules (or
operators).

2.3. Formal classification. — We recalled in the introduction that any non
constant monic P ∈ D can be written

P = (δ + x1) · · · (δ + xn),

with xi ∈ L̂∞. Let’s study now the uniqueness of this factorization.

Definition 2.3.1. — An element a ∈ L̂∞ is said non regular is it satisfies one
of the following conditions:

• vX(a) < 0;
• vX(a) = 0 and ∀q ∈ Q, vz(a0 + q) < 1;
• vX(a) = 0, ∃ q ∈ Q, vz(a0 + q) = 1 and ∀r ∈ Q, (a0 + q)1 + r += 0.

The following results are shown in [2]:
• If a is non regular, then for any b ∈ L̂∞ the equation δ(u)+au = b admits

a unique solution u in L̂∞.
• If a is non regular, then the equation u2 + δ(u) + au = −δ(a) admits

a solution u in L̂∞ with u regular. (If δ(a) is non zero then this solution is
unique.)
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These results are proved looking at the valuations of the different terms
appearing in the equation.

We notice that the set of regular elements corresponds to the set Log defined
in Section 2.1. In particular a, b regular ⇒ a + b regular.

Proposition 2.3.2. — Let P ∈ D of order n ≥ 1. Let (δ + x1) · · · (δ + xn)
and (δ + y1) · · · (δ + yn) be two factorizations of P in the ring D. Then there
exists a permutation σ of {1, . . . , n} such that xi − yσ(i) is a regular element
for every i.

Proof. — We saw in the previous subsection that the element xi − yσ(i) is
regular if and only if the two D-modules D/D(δ + xi) and D/D(δ + yσi) are
isomorphic. Let’s consider the Jordan-Hölder sequence of D/DP :

D/DP ⊃ D(δ + xn)/DP ⊃ · · · ⊃ D(δ + x2) · · · (δ + xn)/DP ⊃ {0}.

We set M0 = D/DP , M1 = D(δ + xn)/DP, . . . ,Mn = {0}. Each quotient
Mi/Mi+1 is isomorphic to D/D(δ+xn−i) and each of these differential modules
is simple. The Jordan-Hölder theorem tells that if we have another sequence up
to a permutation the quotients are isomorphic. This gives the permutation σ
required.

Let’s study now the decomposition of the D-module D/DP .
First we notice that if xi−xj is regular then the factors (δ+xi) and (δ+xj)

“commute”, that is they commute up to a regular element. We can write

(δ + xi)(δ + xj) = (δ + xj + A)(δ + xi − A)

with A regular. To find A one has to solve the following equation

A2 + δ(A) + (xj − xi)A = −δ(xj − xi).

Since A is regular the two factorizations are different. We can make the factors
commute this way. Hence we put together the factors whose difference is a
regular element, in making them commute with the factors with which they
have a non regular element as difference. Thus we can write:

P = (δ + x1) · · · (δ + xi1 ) · · · (δ + xip+1) · · · (δ + xip+1),

with the following properties: for all j, 0 ≤ j ≤ p, we write Ij the integer
interval [xij+1, . . . , xij+1 ], then if k, " are in the same interval Ij the element
xk−x# is regular, and if k, " are in two different intervals Ij the element xk −x#

is non regular. The different blocks corresponding to the intervals Ij commute
and this leads to the following decomposition:

D/DP
iso∼ D/D(δ + x1) · · · (δ + xi1 ) ⊕ · · ·⊕D/D(δ + xip+1) · · · (δ + xip+1).

We now have to study the case where xi − xj is a regular element.
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594 BOUFFET (M.)

Remark 2.3.3. — Even if we don’t have yet the complete description of the
D-module D/DP we can draw some conclusions about the solutions of the
differential equation P (y) = 0. The preceding decomposition tells us that to
solve the equation P (y) = 0 one has to solve equations of the type

δ(y) + xiy = 0 and (δ + x#) · · · (δ + xk)(y) = 0,

where in this case xj − xi is a regular element for all i, j. (This gives the
solutions modulo the equivalence relation defined in Section 2.2.) Since xj −xi

is regular the equations δ(y)+xiy = 0 and δ(y)+xjy = 0 are equivalent over L̂∞

and their solutions differ by multiplication by an element of L̂∞. Then we can
solve by the constant variation method and we have to solve equations of the
type δ(y) = xiy and δr(λ) = f with f ∈ L̂∞. From the classification of non
homogeneous order 1 equations we know that if f ∈ Der the equation δ(λ) = f
admits a solution in L̂∞, otherwise we obtain the symbol ". When iterating
the operation we obtain as solutions polynomials in " with coefficients in L̂∞
of degree at most r. Thus the solutions of the equation P (y) = 0 are in the
ring L̂∞[", {solutions of δ(y)+ay = 0}a∈L̂∞

]. If P is of order n the polynomials
in " are of degree at most n − 1.

Definition 2.3.4. — Let a ∈ L̂∞ be a regular element. There exists f ∈ L̂∞
such that a = δ(f)/f . The element a is said regular non rigid if f ∈ Der. It is
said regular rigid otherwise.

The element f is unique up to multiplication by a constant which does not
change the fact of being in Der or not.

Example 2.3.5. — It is difficult to give an explicit description of the regular
rigid elements but the following elements

a = −z + hot(z) + hot(X) and a = −1 − αzX + hot(X)

with α ∈ C\{0} are regular rigid.

Proposition 2.3.6. — Let a ∈ L̂∞ regular. Then we have:

a is non rigid ⇐⇒ the equation δ(y) + ay = 1 admits a solution in L̂∞.

Proof. — Let a regular non rigid. Since a is regular the equation δ(y)+ay = 0
admits a solution ya in L̂∞. We set y = λya and we solve δ(y) + ay = 1 that
is δ(λ) = y−1

a . We have −a = δ(ya)/ya hence a = δ(y−1
a )/y−1

a . Since a is non
rigid y−1

a ∈ Der and the equation δ(λ) = y−1
a admits a solution in L̂∞.

Conversely assume that δ(y) + ay = 1 admits a solution yb in L̂∞. Since a
is regular the equation δ(y) + ay = 0 admits a solution ya in L̂∞ and yb − ya

is also a solution of the equation δ(y) + ay = 1. We write yb − ya = (yc − 1)ya

with yc = yby−1
a ∈ L̂∞ . Then δ(yc) = y−1

a hence y−1
a ∈ Der and a is non

rigid.
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Proposition 2.3.7. — Let P = (δ + x1)(δ + x2) ∈ D with x2 − x1 regular,
then:

x2 − x1 is non rigid ⇐⇒ D/DP
iso∼ D/D(δ + x1) ⊕D/D(δ + x2),

x2 − x1is rigid ⇐⇒ D/DP is indecomposable
⇐⇒ D/DP

iso∼ D/D(δ + x2 + z)(δ + x2).

Proof. — Let’s consider the following exact sequence:

0 → D/D(δ + x1)
·(δ+x2)
−−−−→ D/D(δ + x1)(δ + x2)

λ−→ D/D(δ + x2) → 0,

where ·(δ + x2) is the product by (δ + x2) to the right and λ is the quotient
application. This exact sequence splits if and only if we can solve the equa-
tion 1 + (δ + x2)B = C(δ + x1) in D, that is if we can solve the equation
δ(y) + (x2 − x1)y = 1 in L̂∞. Then from the preceding proposition we deduce
that if x2 − x1 is non rigid we have D/DP

iso∼ D/D(δ + x1) ⊕ D/D(δ + x2).
On the contrary if x2 − x1 is rigid the exact sequence does not split and the
D-module D/DP is indecomposable.

If x2−x1 is regular rigid we have x2−x1 = δ(f)/f with f ∈ L̂∞ and f /∈ Der.
Let y2 be a solution of δ(y)+x2y = 0. Then a basis of solutions of the equation
P (y) = 0 is given by (y2,λy2) with δ(λ) = f . Since f /∈ Der we can write
λ = α" + g with α ∈ C\{0}, g ∈ L̂∞ and " is the symbol defined in Section
2.1. Then a basis of solutions of P (y) = 0 can be written (y2, (α" + g)y2). Let
Q = (δ+x2 + z)(δ+x2). A basis of solutions of the equation Q(y) = 0 is given
by (y2, "y2). We can link these two basis by a change of basis with coefficients
in L̂∞ hence these two equations are equivalent over L̂∞ and the corresponding
D-modules are isomorphic.

Conclusion. — The indecomposable D-modules of dimension 2 are isomorphic
to D/D(δ + x + z)(δ + x).

Proposition 2.3.8. — Let P = (δ + x1)(δ + x2) · · · (δ + xn) ∈ D. Then:

D/DP indecomposable ⇐⇒ D/DP
iso∼ D/D(δ + x + nz) · · · (δ + x + z)(δ + x).

Proof. — We only consider the case where all the xj − xi are regular since we
have already seen that otherwise we can decompose the D-module D/DP .

We can compute the solutions of the equation P (y) = 0 as seen in Re-
mark 2.3.3. The solutions of the equations δ(y) + xiy = 0 are all equal up to
multiplication by an element of L̂∞ as the xj − xi are regular. Let y0 be a
solution of one of these equations. The solutions of the equation P (y) = 0 are
polynomials in " of degree at most n−1 where n is the order of the operator P .
The coefficients of these polynomials are of the type y0f with f ∈ L̂∞. We can
write a basis of solutions of P (y) = 0 as

BP =
(
y0f0,0, y0(f1,0 + f1,1"), . . . , y0(fn−1,0 + fn−1,1" + · · · + fn−1,n−1"

n−1)
)
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with fi,j in L̂∞. The operator P is indecomposable if and only if fn−1,n−1 += 0.
(In this case for all i, fi,i += 0.)

Indeed, if P is decomposable we can determine the solutions of P (y) = 0
by solving equations of lower degree and we do not obtain terms in "n−1.
Conversely if there is no term in "n−1 there exists an integer m < n − 1 such
that several polynomials of degree m appear. Let’s write

(ỹ0, . . . , ỹn−1) =
(
y0f0,0, . . . , y0(fn−1,0 + · · · + fn−1,n−1"

n−1)
)

and assume that ỹm and ỹm+1 are polynomials in " with the same degree. Then
there exists a change of basis with coefficients in L̂∞ that transforms BP into
(ỹ0, . . . , ỹm, fy0, . . . , ỹn−1) with f and f0,0 linearly independent over C. Then
the operator P admits several right factors and is decomposable.

The operator Q = (δ+ x + nz) · · · (δ+ x + z)(δ+ x) is indecomposable since
a basis of solutions is given by BQ = (y0,λ1y0, . . . ,λn−1y0) with δi(λi) = z and
y0 a solution of the equation δ(y)+xy = 0. Any indecomposable operator P is
equivalent to Q: since for all i, fi,i += 0 a change a basis with coefficients in L̂∞
transforms BQ into BP .

Conclusion. — From Krull-Schmidt theorem we have a unique decomposition
in indecomposable D-modules. Hence for all P ∈ D we have:

D/DP
iso∼ D/D(δ +x1 +n1z) · · · (δ+x1)⊕ · · ·⊕D/D(δ +xr + nrz) · · · (δ +xr),

with the ni in N.

3. Normal forms and differential systems

We consider a differential system δ(Y ) = AY with A ∈ Mn(L̂). Any linear
differential equation can be written as a system (with a compagnon matrix),
and conversely the cyclic vector lemma enables us to find a compagnon matrix
(thus associated to an equation) in the conjugacy class of any system.

The preceding results for D-modules can be translated to systems. Let
A ∈ Mn(L̂). There exists a matrix T in Gln(L̂∞) such that the matrix

AT = T−1AT − T−1δ(T )

is diagonal block as follows:

A =





B1 0 · · · 0

0 B2
. . .

...
...

. . . . . . 0
0 · · · 0 Br




, with Bi =





bi z 0 · · · 0

0 bi z
. . .

...
...

. . . . . . . . . 0
...

. . . . . . bi z
0 · · · · · · 0 bi





,

or Bi = (bi) with bi ∈ L̂∞.
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We can assume that bi ∈ Q⊕P⊕M⊕Mz. We can write bi = qi+pi+mi+m̃iz
with the corresponding notations. We set:

Li =





mi 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 mi




and L̃i =





m̃i 1 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
...

. . . . . . . . . 1
0 · · · · · · 0 m̃i





.

Then there exists a matrix Qi with coefficients in Q⊕P such that a normal
form of the system δ(Y ) = BiY can be written Ni = exp(Qi)XLizL̃i where XLi

stands for exp(Li log(X)) and zL̃i stands for exp(L̃i log(z)). A normal form of
the system δ(Y ) = AT Y can then be written

N =





N1 0 · · · 0

0 N2
. . .

...
...

. . . . . . 0
0 · · · 0 Nr




= exp(Q)XLzL̃

with obvious notations and a normal form of the system δ(Y ) = AY is given
by T · N .

4. Formal differential Galois group

4.1. Universal ring. — We can now build the universal differential exten-
sion of L̂. We consider the commutative algebra generated over L̂∞ by the
previous symbols:

R0 = L̂∞
[
{Xm, zm}m∈M , {e(p)}p∈P , {g(q)}q∈Q, "

]
.

The ring L̂∞ is endowed with the derivation δ = −z2d/dz. This derivation
extends to R0 by

δ(zm) = −mzm+1, δ(Xm) = mXm, δ
(
e(p)

)
= pe(p),

δ(g(q)) = qg(q), δ(") = −z.

The ring R0 is a differential ring. Let’s consider the following ideal:

I =
〈
X0 − 1, z0 − 1,

{Xm1+m2 − Xm1Xm2, zm1+m2 − zm1zm2}m1,m2∈C,

e(0) − 1, g(0) − 1, {e(p1 + p2) − e(p1)e(p2)}p1,p2∈P ,

{g(q1 + q2) − g(q1)g(q2)}q1,q2∈Q

〉
.

Lemma 4.1.1. — The ideal I is a differential ideal of R0.
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Then we consider the quotient R = R0/I. We recall some well-known results
(see [3]) we will use in the following proofs.

Lemma 4.1.2. — Let (R, δ) be a differential ring containing Q. If R is simple
then it is an integral domain and its fraction field L has the same ring of
constants as R. (This ring is in fact a field.)

Lemma 4.1.3. — Let (R, δ) be a differential field with an algebraically closed
field of constants and (R, δ) a differential ring over K. Assume that R is simple
and finitely generated over K. Then its fraction field L has the same field of
constants as K.

Lemma 4.1.4. — The ring R = R0/I is a simple differential ring. It is an
integral domain and the field of constants of its fraction field is C.

Proof. — We have to show that R is simple, that is has no non-trivial differ-
ential ideal. Let’s consider a particular subring of R. Let m1, . . . , ms ∈ M ,
m̃1, . . . , m̃# ∈ M , q1, . . . , qt ∈ Q, p1, . . . , pr ∈ P linearly independent over Q.
We consider the subring R̃ of R generated by the Xmi, X−mi , zm̃i, z−m̃i ,
e(pi), e(−pi) and g(qi), g(−qi). We start by proving that R̃ is a simple
differential ring. Let J a differential ideal of R̃ and assume that J += 0.

We call a monomial any element of the type zm̃Xme(p)g(q) with m ∈ Zm1+
· · · + Zms, m̃ ∈ Zm̃1 + · · · + Zm̃#, p ∈ Zp1 + · · · + Zpr, q ∈ Zq1 + · · · + Zqt.
We write A the set of all monomials.

Then any element of R̃ can be written
∑

a∈A,finite haa with ha ∈ L̂∞. We
notice that if a = zm̃Xme(p)g(q) then δ(a) = (−m̃z + m + p + q)a = α(a)a
with α(a) ∈ L̂∞. Assume that J contains an element with only one monomial
and let h be such an element. Then we can write h = h1zm̃Xme(p)g(q) and

(h1)−1z−m̃X−me(−p)g(−q) · h = 1 ∈ J.

Hence J = R̃. Assume now that all elements of J except 0 have at least
two monomials and let N be the minimal number of monomials that can have
a non zero element of J . Let h ∈ J with exactly N monomials and write
h =

∑N
i=1 hiai with N > 1, hi ∈ L̂∞, ai ∈ A. Up to a multiplication by an

element of R̃ we can assume that h1 = 1 and a1 = 1. Then

δ(h) =
N∑

i=2

(
δ(hi) + hiα(ai)

)
ai ∈ J.

This element has strictly less monomials than h then we have δ(h) = 0 by
minimality. Then it comes (δ(hN ) + hNα(aN ))aN = 0 and since aN += 0 we
have δ(hN ) + hNα(aN ) = 0 with hN ∈ L̂∞. This is a contradiction.
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Let’s consider now S̃ the subring of R generated by R̃ and ". Any element
of S̃ can be written h =

∑n
i=0 ri"i with ri ∈ R̃. Then

δ(h) =
n−1∑

i=0

(
δ(hi) − (i + 1)zhi+1

)
"i − δ(hn)"n.

Let’s show that S̃ is a simple differential ring. Let J be a differential ideal
of S̃, J += 0. If J contains an element of degree 0 in " then J = S̃. Hence
we assume that all the non zero elements of J have a strictly positive degree
in " and let N be the smallest possible degree. We consider all the elements
of J with degree N and we write J0 the set of the coefficients of "N of these
elements. Then J0 is a non-zero differential ideal of R̃ hence J0 = R̃. Then J
contains an element of the type

∑N
i=0 ri"i with ri ∈ R̃ and rN = 1. Then

δ(h) =
N−1∑

i=0

(
δ(ri) − (i + 1)zri+1

)
"i ∈ J..

By minimality of the degree we have δ(h) = 0 and in particular δ(rN−1) −
NzrN−1 = 0, hence δ(rN−1) = Nz with rN−1 ∈ R̃ which is a contradiction.
Hence S̃ is simple. The ring R is the union of all the rings S̃ hence it is simple.
Lemma 4.1.2 and 4.1.3 enable us to conclude.

Conclusion. — The ring R is the universal differential extension of the field
C((z))((e1/z)).

4.2. Differential Galois group. — Let’s write F the fraction field of R.
We are interested in the differential L̂-automorphisms of F . Let’s consider the
following automorphisms:

• Let h ∈ Hom(Q, C∗) a group homomorphism from (Q, +) to (C∗, .). We
define σh by

σh

(
g(q)

)
= h(q)g(q), ∀q ∈ Q,

and σh leaves L̂∞ and the other generators of R invariant. For h ∈ Hom(Q, C∗)
the σh form a group that we call the over exponential torus.

• Let h ∈ Hom(P , C∗) a group homomorphism from (P , +) to (C∗, .). We
define τh by

τh

(
e(p)

)
= h(p)e(p), ∀p ∈ P ,

and τh leaves L̂∞ and the other generators of R invariant. For h ∈ Hom(P , C∗),
the τh form a group that we call the exponential torus.

• We set γ̂ the formal monodromy in z automorphism defined by

γ̂(zm) = e2iπmzm, ∀m ∈ C; γ̂
(
e(p)

)
= e

(
γ̂(p)

)
, ∀p ∈ P ;

γ̂
(
g(q)

)
= g

(
γ̂(q)

)
, ∀q ∈ Q; γ̂(") = " + 2iπ

and γ̂ leaves the Xm invariant.
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• We set Γ̂ the formal monodromy in X automorphism defined by

Γ̂(Xm) = e2iπmXm, ∀m ∈ C; Γ̂(g(q)) = g
(
Γ̂(q)

)
, ∀q ∈ Q

and Γ̂ leaves ", the zm and the other generators of R invariant.
The only relations between these automorphisms are the following:
• for all h ∈ Hom(P , C∗), τh ◦ γ̂ = γ̂ ◦ τg where g = h ◦ γ̂;
• for all h ∈ Hom(Q, C∗),σh ◦ γ̂ = γ̂ ◦ σg where g = h ◦ γ̂;
• for all h ∈ Hom(Q, C∗),σh ◦ Γ̂ = Γ̂ ◦ σg where g = h ◦ Γ̂.

Proposition 4.2.1. — If f is an element of F fixed by all the preceding dif-
ferential automorphisms then f ∈ L̂.

Proof. — Let f ∈ F . We can write f = f1/f2 with f1, f2 ∈ R, f1 ∧ f2 = 1.
There exists m1, . . . , ms ∈ M , m̃1, . . . , m̃# ∈ M , q1, . . . , qt ∈ Q, p1, . . . , pr ∈ P
linearly independent over Q such that f1 and f2 are in the subring of R gener-
ated by zm̃i, z−m̃i , Xmi, X−mi , e(pi), e(−pi), g(qi), g(−q(i)) and ". We still call
a monomial an element of the type

zm̃Xme(p)g(q)

where m ∈ Zm1 + · · · + Zms, m̃ ∈ Zm̃1 + · · · + Zm̃s, p ∈ Zp1 + · · · + Zpr and
q ∈ Zq1 + · · · + Zqr.

We write A the set of all monomials and f1 =
∑n1

i=0 αi"i, f2 =
∑n2

i=0 βi"i with
αi =

∑Ni

j=1 λijaij and βi =
∑Mi

j=1 µijbij , where λij , µij ∈ L̂∞ and aij , bij ∈ A.
We assume that the Ni and Mi are minimal and that f is fixed by all the
preceding differential automorphisms.

• Let σ be an automorphism of the type σh with h ∈ Hom(Q, C∗). We write
aij = zm̃ij Xmije(pij)g(qij) and bij = zm̃′

ijXm′
ij e(p′ij)g(q′ij). Then:

σ(f1) =
n1∑

i=0

( Ni∑

j=1

h(qij)λijz
m̃ij Xmije(pij)g(qij)

)
"i,

σ(f2) =
n2∑

i=0

( Mi∑

j=1

h(q′ij)µijz
m̃′

ij Xm′
ije(p′ij)g(q′ij)

)
"i.

The hypothesis σ(f) = f can be written

σ(f1)
σ(f2)

=
f1

f2

which leads to h(qij) = h(q′k#) for all i, j, k, ", that is σ(f1) = c(h)f1 and
σ(f2) = c(h)f2 with c(h) ∈ C. In particular for f1 we have h(qij) = c(h) for
all i, j and all h ∈ Hom(Q, C∗). Hence the elements qij are all identical and
we have f1 = g(q)f̃1 with f̃1 ∈ R containing no term of the type g(q). We
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also have f2 = g(q)f̃2. Then the hypothesis f1 ∧ f2 = 1 implies g(q) = 1 that
is q = 0. Hence f1 and f2 contain no term of the type g(q).

• Considering an automorphism of the type τh the same method leads to
the fact that f1 and f2 contain no term of the type e(p).

• Considering the automorphisms γ̂ and Γ̂ we can show that f1 and f2

contain no ramified term in z and in X , as well as no ". Hence f ∈ L̂.

Conclusion. — The elements σh, τh, γ̂, Γ̂ are all differential L̂-automorphisms
of F , hence are elements of the Galois group of the extension F/L̂. Thanks
to Proposition 4.2.1 and to the Galois correspondence we conclude that the
Galois group of the extension F/L̂ is topologically generated by σh, τh, γ̂, Γ̂ as
a pro-algebraic group.

Remark 4.3. — All that has been done here with an extension of C((z))
by the exponential e1/z could have been done with any other exponential eµ

with µ ∈ C((z)).

Acknowledgments. — I am grateful to Bernard Malgrange for numerous im-
provements in all this text.

BIBLIOGRAPHY

[1] Bouffet (M.) – Un lemme de Hensel pour les opérateurs différentiels,
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