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SINGULARITIES OF 2Θ-DIVISORS IN THE JACOBIAN

by Christian Pauly & Emma Previato

Abstract. — We consider the linear system |2Θ0| of second order theta functions
over the Jacobian JC of a non-hyperelliptic curve C. A result by J. Fay says that a
divisor D ∈ |2Θ0| contains the origin O ∈ JC with multiplicity 4 if and only if D
contains the surface C − C = {O(p − q) | p, q ∈ C} ⊂ JC. In this paper we generalize
Fay’s result and some previous work by R.C. Gunning. More precisely, we describe
the relationship between divisors containing O with multiplicity 6, divisors containing
the fourfold C2 − C2 = {O(p + q − r − s) | p, q, r, s ∈ C}, and divisors singular along
C−C, using the third exterior product of the canonical space and the space of quadrics
containing the canonical curve. Moreover we show that some of these spaces are equal
to the linear span of Brill-Noether loci in the moduli space of semi-stable rank 2 vector
bundles with canonical determinant over C, which can be embedded in |2Θ0|.
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Résumé (Singularités des diviseurs 2Θ d’une jacobienne). — On considère le
système linéaire |2Θ0| des fonctions thêta d’ordre deux sur la jacobienne JC d’une
courbe non-hyperelliptique C. Un résultat de J. Fay affirme qu’un diviseur D ∈ |2Θ0|
contient l’origine O ∈ JC avec multiplicié 4 si et seulement si D contient la sur-
face C − C = {O(p − q) | p, q ∈ C} ⊂ JC. Dans cet article on généralise le résul-
tat de Fay ainsi que quelques travaux de R.C. Gunning. On décrit la relation entre
les diviseurs contenant O avec multiplicité 6, les diviseurs contenant la sous-variété
C2 − C2 = {O(p + q − r − s) | p, q, r, s ∈ C}, et les diviseurs singuliers le long de
C − C, en utilisant la troisième puissance extérieure de l’espace canonique et l’espace
des quadriques contenant la courbe canonique. De plus on montre que certains sous-
systèmes linéaires sont isomorphes aux enveloppes linéaires de lieux de Brill-Noether
dans l’espace de modules des fibrés vectoriels semi-stables de rang 2 et de déterminant
canonique, qui sont plongés dans |2Θ0|.

1. Introduction

Let C be a smooth, connected, projective non-hyperelliptic curve of
genus g ≥ 3 over the complex numbers and let Picd(C) be the connected
component of its Picard variety parametrizing degree d line bundles, for d ∈ Z.
The variety Picg−1(C) carries a naturally defined divisor, the Riemann theta
divisor Θ, whose support consists of line bundles that have nonzero global
sections. Translating Θ by a theta characteristic, we obtain a symmetric theta
divisor, denoted Θ0, on the Jacobian variety of C,

JC := Pic0(C).

Our principal objects of study are the linear systems of 2θ-divisors |2Θ0| over
JC and |2Θ| over Picg−1(C), their linear subspaces and subvarieties. One of
the features of these linear systems is the canonical duality, called Wirtinger
duality (see [21], p. 335), which we will use somewhat implicitly throughout
this paper

(1.1) w : |2Θ|∗ ∼= |2Θ0|.
Because of (1.1) we can view the Kummer variety Kum := JC/± as a

subvariety of |2Θ| and many classical aspects of its projective geometry, such
as existence of trisecants, tangent cones at its singular points [7], [13], can be
expressed in terms of 2θ-functions. The starting point of our investigations
of 2θ-divisors is the following remarkable equivalence which was observed by
J. Fay (see e.g. [26], Prop. 4.8 and [13], Cor. 1)

(1.2) mult0(D) ≥ 4 ⇐⇒ C − C ⊂ D, ∀D ∈ |2Θ0|,
where the surface C − C denotes the image of the difference map

φ1 : C × C −→ JC,

which sends a pair of points (p, q) to the line bundle O(p − q). Motivated
by (1.2) van Geemen and van der Geer [8] introduce the subseries PΓ00 ⊂
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|2Θ0| consisting of 2θ-divisors having multiplicity at least 4 at the origin and
formulate a number of Schottky-type conjectures, some of which have been
proved (see [26] and [15]).

We can reformulate (1.2) more geometrically. Let

〈C − C〉 ⊂ |2Θ|

be the linear span of the image of C − C in |2Θ| and let T0 ⊂ |2Θ| be the
embedded tangent space at the singular point O to the Kummer variety. Then
(see [9], Lemma 1.5 and [26], Prop. 4.8) these linear projective spaces coincide

T0 = 〈C − C〉.

Note that their polar space in |2Θ|∗ (∼= |2Θ0|) is PΓ00. More precisely, if we
denote by Γ0 ⊂ H0(JC,O(2Θ0)) the hyperplane of 2θ-divisors containing O,
we obtain an isomorphism by restricting divisors to C − C

(1.3) Γ0/Γ00
∼−→ Sym2H0(K).

Having the equivalence (1.2) in mind, we can ask whether there exist re-
lations between higher order derivatives of 2θ-functions at the origin O and
natural subvarieties of JC. Working in an analytic set-up, Gunning (see [13],
Section 8, [12], Section 9) establishes some linear relations between vectors
of 2θ-functions. Inspired by Gunning’s previous work, we will compare the
following subseries of PΓ00, using algebraic methods

PΓ11 =
{

D ∈ PΓ00 | C2 − C2 ⊂ D
}

,(1.4)

PΓ000 =
{

D ∈ PΓ00 | mult0(D) ≥ 6
}

.(1.5)

The fourfold C2−C2 is defined to be the image of the difference map φ2 : C2×
C2 → JC, which maps a 4-tuple (p+q, r+s) to the line bundle O(p+q−r−s)
and C2 is the second symmetric product of the curve. Moreover we will be
naturally led to consider the subseries of 2θ-divisors which are singular along
the surface C − C, i.e.,

(1.6) PΓ(2)
00 =

{

D ∈ PΓ00 | multp−q(D) ≥ 2 ∀p, q ∈ C
}

.

We observe that the subseries PΓ00, PΓ11, PΓ(2)
00 are closely related to the

geometry of the moduli space SUC(2, K) of semi-stable rank 2 vector bundles
with fixed canonical determinant. The morphism (Section 2)

D : SUC(2, K) −→ |2Θ0|, E -−→ D(E) =
{

ξ ∈ JC | h0(E ⊗ ξ) > 0
}

was recently shown [6], [9] to be an embedding. Hence we may view SUC(2, K)
as a subvariety of |2Θ0|. Of considerable interest are the Brill-Noether loci
W(n) ⊂ SUC(2, K) for n ≥ 1 defined by

W(n) =
{

[E] ∈ SUC(2, K) | h0(E) = n and E is globally generated
}

.
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These loci (more precisely their closure) have been extensively studied in con-
nection with Fano threefolds [20], [19], [18] and for their own sake [22]. A
simple argument now shows that one has the following implications

[E] ∈ W(2) (resp. W(3),W(4),W(5))

=⇒ D(E) ∈ PΓ0 (resp. PΓ00, PΓ(2)
00 , PΓ11)

We see that we obtain two filtrations which are related under the map D, one
given by the dimension of the space of sections of E ∈ SUC(2, K), the other
given by 2θ-divisors containing certain subschemes of JC. As a consequence of
our results we see that the Brill-Noether loci W(n) for n = 2, 3, 4 linearly span
the corresponding subseries. We expect this to hold for n = 5 too.

In the next two theorems we describe the first two quotients of the filtration

Γ11 ⊂ Γ(2)
00 ⊂ Γ00 ⊂ Γ0,

the last one being given in (1.3). Let 〈SingΘ〉 be the linear span of the image
of the singular locus Sing Θ ⊂ Picg−1(C) under the morphism into |2Θ0|.

Theorem 1.1. — For any non-hyperelliptic curve
1) there exists a canonical isomorphism (up to a scalar)

Γ00/Γ(2)
00

∼−→ Λ3H0(K).

2) we have an equality among subspaces of PΓ00

〈SingΘ〉 = PΓ(2)
00 .

The method used in the proof of this theorem (Section 4) has been developed
in a recent paper by van Geemen and Izadi [9] and the key point is the incidence
relations (Section 2.4) between two families of stable rank 2 vector bundles with
fixed trivial (resp. canonical) determinant. One of these families of bundles
is related to the gradient of the 2θ functions along the surface C − C, the
other family is the Brill-Noether locus W(3). In Section 2.5 we describe the
relationship between these bundles and the objects discussed in [9], which are
related to the embedded tangent space at the origin to SUC(2, K). We also
need (Section 3) some relations between vectors of second order theta functions,
which one derives from Fay’s trisecant formula and its generalizations [13].

Let I(2) (resp. I(4)) be the space of quadrics (resp. quartics) in canonical
space |K|∗ containing the canonical curve.

Theorem 1.2. — For any non-trigonal curve, there exists a canonical isomor-
phism

(1.7) Γ(2)
00 /Γ11

∼−→ Sym2I(2).
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The harder statement in Theorem 1.2 is the surjectivity of the map in (1.7).
The proof uses essentially two ideas: first, we can give an explicit basis of
quadrics in I(2) of rank less than or equal to 6 (Petri’s quadrics, Section 5.1)
and secondly, we can construct out of such a quadric a rank 2 vector bundle
in W(4). This construction [6] is recalled in Section 5.2 and generalized in
Section 8. As a corollary of Theorem 1.2 (Section 5.4), we obtain another
proof of a theorem by M. Green, saying that the projectivized tangent cones
to Θ at double its points span I(2).

The subspace Γ000 is of a different nature and rank 2 vector bundles turn
out to be of no help in studying it. We gather our results in the next theorem.

Theorem 1.3. — For any non-hyperelliptic curve, we have the following in-
clusions

(1.8) Γ11 ⊂ Γ000 ⊂ Γ(2)
00 .

The quotient of the first two spaces is isomorphic to the kernel of the multipli-
cation map m

(1.9) Γ000/Γ11
∼= ker m : Sym2I(2) −→ I(4).

The proof of Theorem 1.3 is more in the spirit of Gunning’s previous work
and uses only linear relations between vectors of second order theta functions.
The inclusions (1.8) were proposed as plausible in [13], p. 70. Except for a few
cases (Section 6.2) we are unable to deduce the dimension of Γ000 from (1.9).

In Section 7 we give the version of Theorem 1.2 for trigonal curves.
We observe that the vector bundle constructions used in the proofs of The-

orems 1.1 and 1.2 can be seen as examples of a global construction (Section 8)
which relates a bundle in W(n) to the geometry of the canonical curve.

Acknowledgements. — The authors are grateful to K. Chandler, J. Fay,
W.M. Oxbury and A. Verra for various helpful comments. We especially thank
B. van Geemen for many fruitful discussions and his constant interest in this
work.

Notation
– If X is a vector space or a vector bundle, by X∗ we denote its dual.
– K is the canonical line bundle on the curve C.
– For a vector bundle E over C, Hi(C, E) is often abbreviated by Hi(E)

and hi(E) = dimHi(C, E).
– Cn is the n-th symmetric product of the curve C.
– W r

d (C) is the subvariety of Picd(C) consisting of line bundles L such that
h0(L) > r.

– The canonical curve Ccan is the image of the embedding ϕK : C −→ |K|∗.
– The vector space I(n) is the space of forms in SymnH0(K) defining degree

n hypersurfaces in |K|∗ containing Ccan.
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– We denote by Γ∗
∗ (e.g. Γ00, Γ(2)

00 , Γ11, Γ000) a vector subspace of
H0(JC,O(2Θ0)) and by PΓ∗

∗ its projectivization, so PΓ∗
∗ ⊂ |2Θ0|.

– Given a subspace PV ⊂ |2Θ|, we denote by PV ⊥ ⊂ |2Θ0| the image under
the Wirtinger duality (1.1) of its annihilator.

– If E is a semi-stable vector bundle, then [E] denotes its S-equivalence
class.

2. Rank 2 vector bundles

In this section we recall some facts on the geometry of the projective spaces
|2Θ0| and |2Θ| and on extensions of line bundles. We use these results on
extensions to construct in Section 2.2 and 2.3 two families of semi-stable rank 2
bundles over C. Their incidence relations (Proposition 2.8) are key to the proof
of Theorem 1.1 (Section 4).

2.1. Preliminaries on extension spaces. — Let SUC(2,O) (resp.
SUC(2, K)) be the moduli space of semi-stable rank 2 vector bundles over C
with fixed trivial (resp. canonical) determinant. It can be shown ([3], Prop. 2.5)
that the Kummer maps given by the linear system |2Θ0| over JC (resp. |2Θ|
over Picg−1(C)) can be factorized through the moduli space SUC(2,O) (resp.
SUC(2, K)). This gives the two following commutative diagrams

(2.1)

JC
Kum−−−−→ |2Θ0|∗





$
i





$

w

SUC(2,O) D−−−−→ |2Θ|

Picg−1(C) Kum−−−−→ |2Θ|∗




$
i





$

w

SUC(2, K) D−−−−→ |2Θ0|.

The vertical morphisms i map JC (resp. Picg−1(C)) to the semi-stable bound-
ary of the moduli space SUC(2,O) (resp. SUC(2, K)), i(ξ) = [ξ ⊕ ξ−1] (resp.
i(ξ) = [ξ ⊕Kξ−1]). The rightmost morphism D maps E with canonical deter-
minant to the divisor D(E), with set-theoretical support

(2.2) D(E) =
{

ξ ∈ JC | h0(E ⊗ ξ) > 0
}

.

The definition of D(E) for E with trivial determinant is obtained by replacing
JC by Picg−1(C). The composite map w ◦ Kum = D ◦ i in the rightmost
diagram (2.1) is the translation morphism

ι : Picg−1(C) −→ |2Θ0|
ξ -−→ Θξ + ΘKξ−1 ,

where the divisor Θξ ⊂ JC is obtained by translating the Riemann theta divisor
Θ by −ξ. Dually, the map ι : JC −→ |2Θ| sends α to Θα + Θα−1 . Note that
the symmetric theta divisor Θ0 depends on the choice of a theta characteristic.
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Recently it has been shown that the morphism D is an embedding for any
non-hyperelliptic curve ([9], Theorem 1). Therefore we may view the varieties
Kum and SUC(2,O) as subvarieties of |2Θ|

Kum ⊂ SUC(2,O) ⊂ |2Θ| = P
2g−1.

In this paper all subvarieties of JC will be studied in |2Θ| via the Kummer
map and we often identify semi-stable vector bundles with their image in |2Θ|.

2.1.1. Extensions of degree 1 line bundles. — Let x ∈ Pic1(C). The g-
dimensional projective space P(x) := |Kx2|∗ = PH1(C, x−2) parametrizes
isomorphism classes of extensions

(2.3) 0 → x−1 −→ E −→ x → 0

and the composite of the classifying map ψ : P(x) → SUC(2,O) followed by
the embedding D : SUC(2,O) → |2Θ| is linear and injective ([4], Lemme 3.6).
The linear system |Kx2| can be used to map the curve C into P(x)

ϕ = ϕKx2 : C −→ P(x).

The following lemma describes the incidence relations between the extension
spaces P(x), which we view as subspaces of |2Θ|.

Lemma 2.1. — Let x, y ∈ Pic1(C). If x ⊗ y = O(p + q), the intersection
P(x) ∩ P(y) is the common secant line pq of the two images of the curve C in
either P(x) or P(y).

Proof. — The proof is similar to the proof of [22], Prop. 1.2, which is a dual
version of this lemma.

It is shown in [4], Lemme 3.6, that a point in P(x) represents a stable bundle
precisely away from Cx := ϕ(C), while the image of a point p ∈ C represents
the S-equivalence class [x(−p) ⊕ x−1(p)] = i(x(−p)). The Abel-Jacobi map
tx : C → JC defined by p -→ x(−p) therefore fits in the following commutative
diagram

(2.4)

C
tx−−−−→ JC





$

ϕ





$
i

P(x) ψ−−−−→ SUC(2,O).

Lemma 2.2. — One has:
(i) If h0(x2) = 0, then the curve Cx is smooth.
(ii) If h0(x2) = 1 and x2 = O(u + v) with u 2= v, then Cx has a unique

double point ϕ(u) = ϕ(v) with different tangent directions.
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456 PAULY (C.) & PREVIATO (E.)

Proof. — This is an elementary computation involving the Riemann-Roch the-
orem.

2.1.2. Extensions of degree 2 line bundles. — Given x ∈ Pic2(C), the (g + 2)-
dimensional projective space P(x) := |Kx2|∗ = PH1(C, x−2) parametrizes as
in Section 2.1.1 isomorphism classes of extensions (2.3) and the composite of
the classifying map ψ : P(x) → SUC(2,O) followed by the embedding D :
SUC(2,O) → |2Θ| is given by the complete system of quadrics through the
embedded curve ϕKx2 : C ↪→ P(x) (see [5], Theorem 1 and p. 451–452, also [9],
Section 5). Thus this composite map is defined away from the curve C. Note
that a secant line pq to the curve C ⊂ P(x) is contracted by ψ to

[

x(−p− q)⊕ x−1(p + q)
]

∈ SUC(2,O) ⊂ |2Θ|.

2.2. The bundles E(p, q, r)
Definition 2.3. — We say that three points p, q, r are collinear if they are
collinear as points on the canonical curve Ccan.

Given non-collinear points p, q, r ∈ C, we consider the line bundle

(2.5) x = O(p + q − r) ∈ Pic1(C).

We see that if h0(x2) = 1, then either ϕ(p) is smooth or u 2= v (notation
as in Lemma 2.2). Indeed, if ϕ(p) is a singular point, then p coincides with
either u or v and, since C is non-hyperelliptic, we see that u 2= v. Hence, by
Lemma 2.2, for any p ∈ C we can consider the embedded tangent line Tp(Cx)
to the curve Cx ⊂ P(x) at the point ϕ(p) ∈ Cx. If ϕ(p) is singular, Tp(Cx)
is the tangent direction associated to p.

We recall (1.3) that the subspace T0 ⊂ |2Θ| equals the span of the image
under the Kummer map of the surface C−C ⊂ JC in |2Θ|. Since the composite
map D ◦ ψ : P(x) → |2Θ| is a linear embedding, we may view Tp(Cx) as a line
in |2Θ|.

Lemma 2.4. — For any distinct points p, q, r, we have

Tp(Cx) ⊂ T0 ⇐⇒ p, q, r are collinear.

Proof. — First we observe that the image of the point p under the Abel-Jacobi
map tx(p) = O(q − r) lies on the surface C − C ⊂ JC. We can identify the
projectivized tangent space to JC at the point tx(p) = O(q− r) with canonical
space, i.e., we have an isomorphism

(2.6) PTq−rJC ∼= |K|∗.
It is well-known that the projectivized tangent space to the Abel-Jacobi curve
tx(C) ⊂ JC at the point tx(p) corresponds to the point p ∈ |K|∗ via (2.6)
and the projectivized tangent space to the surface C − C at the point tx(p)
corresponds to the secant line qr ⊂ |K|∗ via (2.6). Since the Kummer map is

tome 129 – 2001 – no 3



SINGULARITIES OF 2Θ-DIVISORS 457

an embedding locally near the point O(q − r) and since the diagram (2.4) is
commutative, we see that if p ∈ qr, then Tp(Cx) is contained in the embedded
tangent space at the point Kum(q − r) to the Kummer image of C −C, which
is obviously contained in the span 〈C − C〉 = T0.

Conversely, by [14], Théorème A, we know that the projectivized tangent
spaces to divisors in PΓ00 = T⊥

0 at the point O(q − r) cut out, via (2.6), the
secant line qr ⊂ |K|∗. Therefore, if Tp(Cx) ⊂ T0, the projectivized tangent line
at the point tx(p) to the Abel-Jacobi curve tx(C) is forced to lie on qr, hence
p ∈ qr.

We now introduce the line bundles

(2.7) y = O(p + r − q), z = O(q + r − p).

Since x⊗ y = O(2p), we see from Lemma 2.1 that

(2.8) Tp(Cx) = Tp(Cy) = P(x) ∩ P(y).

Any bundle whose extension class lies in (2.8) contains the line bundles x−1

and y−1. Similarly by Lemma 2.1, we see that

Tq(Cx) = Tq(Cz) = P(x) ∩ P(z), Tr(Cz) = Tr(Cy) = P(z) ∩ P(y).

By the Riemann-Roch theorem we have

(2.9) h0
(

Kx2(−2p− 2q)
)

= h0
(

K(−2r)
)

= g − 2,

hence the two tangent lines Tp(Cx) and Tq(Cx) are contained in a projective
plane and are distinct. So they intersect in a unique point Tp(Cx) ∩ Tq(Cx).
Repeating this argument with the remaining pairs of tangent lines in P(y) and
P(z), we deduce that there exists a unique semi-stable extension class ε(p, q, r)
in the triple intersection of the three distinct tangent lines. In other words

(2.10) ε(p, q, r) := P(x) ∩ P(y) ∩ P(z).

It also follows from Lemma 2.1 and the description (2.8) of the tangent lines
that the 3 tangent lines cannot be coplanar. We abuse notation to also denote
by ε(p, q, r) the corresponding point in |2Θ|.

Lemma 2.5. — For any distinct non-collinear points p, q, r, the point
ε(p, q, r) /∈ T0.

Proof. — By Lemma 2.4 the lines Tp(Cx) and Tq(Cx) are not contained in T0,
so their intersection point Tp(Cx) ∩ Tq(Cx) = ε(p, q, r) /∈ T0.

Lemma 2.6. — One has:
(i) If C is trigonal with trigonal series g1

3 and p, q, r are three distinct ram-
ification points of the trigonal pencil C → P1, then ε(p, q, r) = [L⊕ L−1], with
L = g1

3(−p− q − r).
(ii) Otherwise the extension class ε(p, q, r) is stable.
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Proof. — This is a straight-forward consequence of the fact that ε(p, q, r)
represents a semi-stable vector bundle which contains the three line bundles
x−1, y−1, z−1 and of Proposition 1.1 (see [16]).

In case (ii) we define E(p, q, r) to be the unique stable bundle represented
by ε(p, q, r), in case (i) we put E(p, q, r) = L⊕ L−1.

2.3. The bundles EW . — In this section we introduce the second family
of stable rank 2 vector bundles (see [9], Section 4). Let Gr(3, H0(K)) be the
Grassmannian of 3-planes in H0(K) and W(3) the locus of stable bundles E
in SUC(2, K) that are generated by global sections and for which h0(E) = 3.
We will define a rational map

Gr
(

3, H0(K)
) β−→ W(3).

For a generic 3-plane W ⊂ H0(K), it can be shown that the multiplication
map

(2.11) W ⊗H0(K) −→ H0(K2)

is surjective. Its kernel is Λ2W . Then the dual E∗
W of the bundle β(W ) = EW

is defined by the exact sequence

(2.12) 0 → E∗
W −→ W ⊗OC

ev−→ K → 0

where the last map is the evaluation map of global sections. Note that (2.11)
surjective is equivalent to EW ∈ W(3). Conversely, we can associate to a
bundle E ∈ W(3) a 3-plane WE , i.e., we have an inverse map

W(3) α−→ Gr
(

3, H0(K)
)

.

To define α(E) = WE , we consider the exact sequence which we obtain from
the evaluation map of global sections of E

0 → K−1 i−→ H0(E)⊗OC
ev−→ E → 0

Then the dualized exact sequence induces an injective linear map on global
sections

H0(i∗) : H0(E)∗ −→ H0(K)
and we let WE = im H0(i∗). Moreover, under the natural duality H0(E)∗ ∼=
Λ2H0(E), the space WE coincides with the image of the exterior product
map Λ2H0(E) → H0(K).

Remark 2.7. — Since EW is generated by global sections we can define a map

C −→ PH0(EW ) = P
2,

p -−→ sp := ker
(

H0(EW ) ev−→ EW |p
)

which associates to a point p the unique global section sp of EW vanishing at p.
This map coincides with the canonical map ϕK : C ↪→ |K|∗ followed by the
projection with center PW⊥ ⊂ |K|∗.
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2.4. Incidence relations. — In the previous sections we have constructed
two families of bundles, i.e., E(p, q, r) (Section 2.2) and EW (Section 2.3). Each
gives 2θ-divisors under the D-maps in the dual spaces (1.1) |2Θ| and |2Θ0|. We
will denote by HW ∈ |2Θ|∗ the hyperplane in |2Θ| corresponding under (1.1)
to D(EW ) ∈ |2Θ0| and by p∧ q ∧ r ∈ PΛ3H0(K)∗ (resp. PΛ3W ∈ PΛ3H0(K))
the Plücker image of the linear 3-plane in H0(K)∗ spanned by the 3 points
p, q, r ∈ Ccan (resp. the 3-plane W in H0(K)). Let P(Λ3W )⊥ ∈ PΛ3H0(K)∗
be the annihilator of the point PΛ3W .

Proposition 2.8. — For any distinct non-collinear points p, q, r and any 3-
plane W ⊂ H0(K) such that h0(EW ) = 3, we have the following equivalence

ε(p, q, r) ∈ HW ⇐⇒ p ∧ q ∧ r ∈ P(Λ3W )⊥.

Proof. — We write E = E(p, q, r) and take x as in (2.5). By [4], Lemme 2.3 the
first condition is equivalent to h0(EW ⊗E) > 0. Using Remark 2.7, we see that
the second condition is equivalent to the three sections sp, sq, sr ∈ PH0(EW ) =
P2 being collinear.

We tensor the exact sequence (2.3) with EW and take cohomology

(2.13) 0 → H0(EW⊗x−1) → H0(EW⊗E) → H0(EW⊗x)
δ(ε)−→H1(EW⊗x−1).

Let us first consider the case when h0(EW⊗x−1) > 0. Then h0(EW⊗E) > 0,
and after tensoring the defining exact sequence of the bundle EW (2.12) by
Kx−1, taking cohomology and using the fact that E∗

W ⊗K = EW , we obtain

(2.14) H0(EW ⊗ x−1) = ker
(

W ⊗H0(Kx−1) ev−→ H0(K2x−1)
)

.

For dimension reasons, we have

H0(Kx−1) = H0
(

K(−p− q)
)

.

Since h0(EW ) = 3, we have (see Section 2.3)

ker (W ⊗H0(K) ev−→ H0(K2)) = Λ2W.

Hence the kernel of the map (2.14) equals Λ2W∩(W⊗H0(K(−p−q))), which is
zero if dim W ∩H0(K(−p−q)) = 1. Hence dim W ∩H0(K(−p−q)) ≥ 2, which
implies that dim W ∩H0(K(−p− q − r)) ≥ 1. This last equality means that
the center PW⊥ ⊂ |K|∗ of the projection |K|∗ → PH0(EW ) = P2 intersects
the 2-plane spanned by p, q, r in |K|∗. So we are done.

Now we can assume that h0(EW ⊗ x−1) = h1(EW ⊗ x) = 0, or equivalently
by Riemann-Roch h0(EW ⊗x) = 2. We are going to choose a basis {s, t} of the
2-dimensional space H0(EW ⊗ x). Let σ be a global section of the line bundle
O(p + q) and let s̄p (resp. s̄q, s̄r) be generators of the one-dimensional vector
space H0(EW (−p)) (resp. H0(EW (−q)), H0(EW (−r))). Then multiplication
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by σ maps injectively H0(EW ) into H0(EW (p+ q)), which is 4-dimensional, as
can be seen by taking cohomology of the exact sequence

0 → EW ⊗ x −→ EW (p + q) −→ EW |r → 0.

Similarly H0(EW ⊗x) can be seen as a subspace of H0(EW (p+ q)). These two
subspaces intersect in a line, generated by the section σ ·s̄r . We choose s = σ ·s̄r

and t any section in H0(EW ⊗x) with t /∈ H0(EW ). Then the exterior product
s̄p ∧ t is a section of H0(K(q − r)), which for dimension reasons is equal to
H0(K(−r)), so s̄p∧ t vanishes at q. Similarly s̄q ∧ t vanishes at p. We also note
that s̄r ∧ t ∈ H0(K(p + q − 2r)). Next we observe that the coboundary map
δ(ε) (2.13), which depends on the extension class ε = ε(p, q, r) ∈ P(x) of the
bundle E, is skew-symmetric (see e.g. [17], Rem. V.8, note that Serre duality
gives an isomorphism H1(EW ⊗ x−1) ∼= H0(EW ⊗ x)∗). Therefore we have

h0(EW ⊗ E) > 0 ⇐⇒ det(δ(ε)) = 0

⇐⇒ s ∧ t ∈ Hε ⊂ H0(Kx2)
(2.15)

where Hε is the hyperplane in H0(Kx2) defined by the extension class ε ∈
P(x) = |Kx2|∗. By definition Hε is the linear span of the two subspaces
H0(Kx2(−2p)) and H0(Kx2(−2q)), from which it easily follows that

Hε ∩H0
(

Kx2(−p− q)
)

= H0
(

Kx2(−2p− 2q)
)

.

Note that, by Lemma 2.4, H0(Kx2(−p − q)) is not contained in Hε. Since
s ∧ t = σ · (s̄r ∧ t), this equality shows that the last condition of (2.15) is
equivalent to

s̄r ∧ t ∈ H0
(

Kx2(−2p− 2q)
)

= H0
(

K(−2r)
)

⇐⇒ s̄r ∧ t vanishes at p and q.

Since t /∈ H0(EW ) we can assume e.g. that t(q) 2= 0. Suppose now that
(s̄r ∧ t)(q) = 0. Since we always have (s̄p ∧ t)(q) = 0, we see that the three
vectors s̄r(q), s̄p(q) and t(q) are proportional in the fibre EW (p + q)|q = EW |q.
This implies that the three sections sp, sq, sr cannot be linearly independent
(otherwise they would generate EW at q). Conversely if sp, sq, sr are linearly
dependent, one easily shows by the same argument that s̄r ∧ t vanishes at p
and q, and we are done.

Remark 2.9. — The incidence relations were first proved in [9], Prop. 6.5, for
slightly different objects (see Section 2.5). Working with the bundles E(p, q, r)
instead of the projective spaces P4

p,q,r simplifies the proof somewhat.

2.5. The bundles E(p, q, r) and the tangent space to SUC(2, O) at
the origin. — In this section we will show how the bundles E(p, q, r) are
related to the projective spaces P4

p,q,r introduced by van Geemen and Izadi to
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study the tangent space to the moduli SUC(2,O) at the origin. However these
facts will not be used in this paper.

Consider the projection P with center T0

(2.16) P : |2Θ| −→ |2Θ|T0 .

Here |2Θ|T0 denotes the quotient space |2Θ|/T0. For any non-collinear points
p, q, r, we have ε(p, q, r) /∈ T0 by Lemma 2.5, hence P(ε(p, q, r)) ∈ |2Θ|T0. In [9],
Section 6 the authors associate to the same data a 4-dimensional projective
space P4

p,q,r ⊂ |2Θ| as follows.

Let ζ = O(p + q) ∈ Pic2(C) and consider in the extension space P(ζ)
(see 2.1.2) the 3-dimensional subspace 〈2p + 2q + r〉 spanned by the embedded
tangent lines at p and q to C ↪→ P(ζ) and the point r. Then the restricted
linear system of quadrics through C determines a rational map

ψ : 〈2p + 2q + r〉 −→ |2Θ|.

The image of ψ is a cubic threefold in P4
p,q,r ⊂ |2Θ| which is singular

at the origin D([O ⊕ O]) of the moduli space SUC(2,O). Furthermore
dim T0 ∩ P4

p,q,r = 3, hence the projective space P4
p,q,r is contracted by the

projection P to a point in |2Θ|T0.

Lemma 2.10. — For any distinct non-collinear points p, q, r

P
(

ε(p, q, r)
)

= P(P4
p,q,r) ∈ |2Θ|T0 .

Proof. — We just need to show that there exists an extension class η ∈ 〈2p +
2q + r〉 ⊂ P(ζ) such that its associated vector bundle E(η) satisfies the relation

D
(

E(η)
)

= ε(p, q, r) modulo T0.

We recall that E(p, q, r) has been characterized by the fact that it contains
the three line bundles x−1, y−1, z−1. We also recall (see [16], Prop. 1.1) that a
bundle E(η) fitting in the sequence

0 → ζ−1 −→ E(η) −→ ζ → 0

contains ζ(−2q−r) = z−1 if and only if η ∈ 〈2q+r〉, the 2-dimensional subspace
spanned by the point r and the embedded tangent line at q. Similarly E(η)
contains ζ(−2p− r) = y−1 if and only if η ∈ 〈2p + r〉. Therefore we may take
η ∈ 〈2q + r〉∩ 〈2p+ r〉 2= ∅, so that E(η) contains y−1 and z−1. Such extension
classes η are parametrized by P(y) ∩ P(z), which is the tangent line Tr(Cz) =
Tr(Cy) at the point Kum(O(p − q)) ∈ T0. So P ◦D(E(η)) = P(ε(p, q, r)) for
any such η, and we are done.
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3. Gunning’s results on second order theta functions

Before we are going to prove Theorem 1.1, we will need some informa-
tion on the upper bound of the dimension of the span of the set of points
P(ε(p, q, r)) ∈ |2Θ|T0 when p, q, r are allowed to vary on the curve. This result
(Corollary 3.2) will be deduced from Gunning’s work, which we recall for the
reader’s convenience. We also include (Proposition 3.3) some identities which
we will use in Section 6 to prove Theorem 1.3. In this section we recall some
classical theory of theta functions seen as holomorphic quasi-periodic functions
on Cg, as well as some results by Gunning on the gradient and Hessian of 2θ-
functions along the surface C −C. We refer to Fay’s book [7] and to [13] for a
detailed exposition.

Let C be the universal covering space of the curve C. We choose a base point
z0 ∈ C and a symplectic set of generators of H1(C, Z) and call the corresponding
canonical basis of Abelian differentials ω1, . . . , ωg ∈ H0(C, K); these can be
thought of as holomorphic differential 1-forms on C invariant under the group Γ
of covering tranformations acting on C. We construct from these data the period
matrix Ω. The associated Abelian integrals

wj(z) =
∫ z

z0

ωj

are holomorphic functions on C and are the coordinate functions for a map
w : C −→ Cg. Let Λ be the lattice in Cg defined by the period matrix Ω,
then JC = Cg/Λ and we have a commutative diagram

C w−−−−→ Cg





$

π





$

C/Γ = C
tx−−−−→ JC

The horizontal map tx is the Abel-Jacobi map (see 2.1.1) with the line bundle
x = O(p) and p = π(z0). The vertical arrows are quotient maps of the group
actions of Γ (acting on C) and Λ (acting on Cg). Sections of the line bun-
dle O(2Θ0) over JC correspond to the classical second order theta functions.
A basis of the space H0(JC,O(2Θ0)) is given by the holomorphic functions
on Cg

(3.1) θ2
[ν

0

]

(w, Ω) = θ
[ν

0

]

(2w, 2Ω) for ν ∈
(1

2
Z/Z

)g
,

where the right-hand side is obtained from the first order theta function with
characteristics

[ν
0

]

θ
[ν

0

]

(w, Ω) =
∑

n∈Zg

exp 2πi
[1
2

t(n + ν)Ω(n + ν) + (n + ν)w
]

.
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The functions (3.1) are the coordinate functions of a holomorphic map

θ2 : Cg −→ C2g

w -−→
(

. . . , θ2
[ν
0

]

(w, Ω), . . .
)

.
(3.2)

Using this basis, we identify (via Wirtinger duality (1.1)) P(C2g
) = |2Θ|, so that

the map (3.2) coincides (take the quotient by the lattice Λ) with the Kummer
map JC → |2Θ|.

Next we introduce the prime form (see [13, formula (22)]) q(z1, z2), which
is a holomorphic function on C × C with a simple zero along the subvariety
z1 = Tz2 for all covering transformations T and vanishing nowhere else. More-
over, q(z1, z2) = −q(z2, z1). Alternatively the function q is, up to a multiplica-
tive constant, the pull-back to C ×C of the unique global section having as zero
scheme the diagonal in C × C.

We use canonical coordinates on the universal covering C (see Section 6 [13])
and we denote by w′

j the derivative of the holomorphic function wj with respect
to the canonical coordinates. To a point a ∈ C we associate the differential
operator

Da =
g

∑

j=1

w′
j(a)

∂

∂wj
·

This operator corresponds, up to multiplication by a scalar, to the unique
translation-invariant vector field over JC, which has as tangent vector at the
origin O ∈ JC the tangent direction at O to the curve C, where C is embedded
in JC by q -→ O(q − p) with p = π(a) ∈ C.

Gunning (see [13], formulae (41), (42), (44)) introduces for a1, a2, a3, a4 ∈ C
the following vectors in H0(2Θ)/T0 = C2g

/T0.

ξ(a1, a2, a3) = q(a2, a3)−2PDa1θ2
(

w(a2 − a3)
)

,(3.3)

σ(a1; a2, a3; a4) =
[ ∂

∂a1
log

q(a1, a2)
q(a1, a3)

]

· ξ(a2, a3, a4),(3.4)

τ(a1, a2; a3, a4) = q(a3, a4)−2PDa1Da2θ2(w(a3 − a4))(3.5)

Abusing the notation we also denote by T0 the vector subspace of H0(2Θ)
corresponding to T0 ⊂ |2Θ| and by P the linear projection map C2g → C2g

/T0

(2.16). Then ξ (resp. τ) defines a holomorphic function on C3 (resp. C4) with
values in C2g

/T0 and σ defines a meromorphic function on C4 which has as
singularities at most simple poles along the loci a1 = Ta2 and a1 = Ta3 for
all covering transformations T ∈ Γ. The functions ξ, σ, τ have the following
symmetry properties: ξ is skew-symmetric in a1, a2, a3 (see [13], Cor. 4), σ is
symmetric in a2, a3 and τ is symmetric in a1, a2 and in a3, a4. Given four points
a1, a2, a3, a4 ∈ C we will let σijk* = σ(ai; aj , ak; a*), τijk* = τ(ai, aj ; ak, a*) and
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qij = q(ai, aj) where i, j, k, 4 are four indices such that {i, j, k, 4} = {1, 2, 3, 4}.
Then the following statements hold:

Theorem 3.1 (see [13], Theorem 3). — There exist vectors ξjkl ∈ C2g
/T0

which are skew-symmetric in their indices j, k, 4 and such that

ξ(a1, a2, a3) =
∑

j,k,*

ξjk*w
′
j(a1)w′

k(a2)w′
*(a3).

Corollary 3.2. — The dimension of the linear span in C2g
/T0 of the vectors

ξ(a1, a2, a3) for ai varying in C is at most
(g
3

)

.

Proposition 3.3 (see [13], Cor. 5). — For any points a1, a2, a3, a4 ∈ C
1) 1

2PDa1Da2Da3Da4θ2(0) = τ1234 + τ1324 + τ2314−2σ1234−2σ2134−2σ3124;

2) 1
2τ1324 + 1

2τ1423 =
( q12q34
q13q14q23q24

)2Pθ2(w(a1 + a2 − a3 − a4)) + σ1342 −
σ3241 − σ4231

4. Proof of Theorem 1.1

We consider the rational map

ρ : C3 −→ |2Θ|T0 ,

(p, q, r) -−→ P
(

ε(p, q, r)
)

.

By Lemma 2.5 the rational map ρ is defined on the set of triples of non-collinear
points. We will denote by T ⊂ |2Θ| the inverse image under the projection P
(2.16) of the span in |2Θ|T0 of the image ρ(C3). Obviously we have an inclusion
T0 ⊂ T. We claim that

T
⊥ = PΓ(2)

00 ,

which we can see as follows. Consider a hyperplane in |2Θ| which contains T0

and the point ε(p, q, r) for non-collinear points p, q, r. Since the point ε(p, q, r)
lies on the embedded tangent line Tp(Cx) at the point Kum(q−r) ∈ T0 = 〈C−
C〉 to the Abel curve Cx, we see that such a hyperplane is equivalent via (1.1)
to a 2θ-function f whose derivative at Kum(q − r) vanishes in the direction of
the tangent line Tp(Cx), i.e., with abuse of notation Dpf(q− r) = 0. Now if we
vary the point p on the curve, keeping q and r fixed, we see that a hyperplane
containing T determines a 2θ-divisor which is singular at O(q−r) since the set of
tangent directions (the canonical curve) spans the full tangent space at O(q−r)
to the Jacobian. Next, if we vary q, r, we see that T⊥ = PΓ(2)

00 . Finally we see
from the preceding description and the definition of the vectors ξ (3.3) that
the point P(ε(p, q, r)) ∈ |2Θ|T0 corresponds to the vector ξ(p̃, q̃, r̃) ∈ C2g

/T0, if
p̃, q̃, r̃ ∈ C are lying over the points p, q, r.
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The rest of the argument goes as in [9], Section 6. We therefore just sketch
their proof: the rational map ρ factorizes as follows

C3
ρ−→ T/T0





$
π

/




γ

Gr
(

3, H0(K)∗
) Pl−→ P

(

Λ3H0(K)∗
)

,

(4.1)

where π(p, q, r) is the linear 3-plane in H0(K)∗ spanned by the 3 points p, q, r
and Pl is the Plücker embedding. We recall that p ∧ q ∧ r denotes the Plücker
image in P(Λ3H0(K)∗) of the 3-plane π(p, q, r). By the incidence relations
(Proposition 2.8) the support of the pull-back ρ∗HW equals the set

{

(p, q, r) ∈ C3 | p ∧ q ∧ r ∈ P(Λ3W )⊥
}

.

More precisely, we have an equality ρ∗HW = (Pl ◦ π)∗P(Λ3W )⊥ as divisors
on C3. Hence we deduce the factorization and the injectivity of the linear
map γ. Since dim(T/T0) ≤

(

g
3

)

− 1 by Corollary 3.2, the map γ is an isomor-
phism

γ : PΛ3H0(K)∗ ∼−→ T/T0.

Since T⊥ = PΓ(2)
00 and T⊥

0 = PΓ00, we have (T/T0)∗ ∼= P(Γ00/Γ(2)
00 ). So we

obtain Theorem 1.1, 1), by taking the dual of the isomorphism γ.

To prove Theorem 1.1, 2), we note that we have an inclusion 〈SingΘ〉 ⊂
PΓ(2)

00 : by Riemann’s singularity theorem, for ξ ∈ Sing Θ, h0(ξ) ≥ 2, which
implies that h0(ξ(p − q)) ≥ 1 and similarly h0(Kξ−1(p − q)) ≥ 1. So we
see that

∀p, q ∈ C, O(p− q) ∈ Θξ ∩ΘKξ−1 ⊂ Sing (Θξ + ΘKξ−1),

i.e., the divisor Θξ + ΘKξ−1 is singular along C − C. Since both spaces have
the same dimension (for the computation of dim〈SingΘ〉 see [9], Section 7), we
obtain equality.

Remark 4.1. — It follows from Lemma 2.10 and [9], Cor. 6.10 that the sub-
space T ⊂ |2Θ| coincides with the embedded tangent space to SUC(2,O) at
the origin. So we obtain three descriptions of a subseries of |2Θ0|

〈SingΘ〉 = PΓ(2)
00 = T

⊥.

5. Quadrics on canonical space

5.1. Petri’s quadrics. — We will denote by Q̃ the polarized form of a
quadric Q on canonical space |K|∗, i.e., Q̃ is the symmetric bilinear form such
that Q̃(v, v) = Q(v), for all v ∈ H0(K).
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Lemma 5.1. — There exists an open set Ω ⊂ Cg−2 of ordered (g − 2)-tuples
(p1, . . . , pg−2) with the following property: given (p1, . . . , pg−2) ∈ Ω, if a quadric
Q ∈ I(2) is such that

Q̃(pi, pj) = 0, ∀i, j ∈ {1, . . . , g − 2},

then Q is identically zero.

Proof. — By the general position theorem (see [1], p. 109), we know that a
general hyperplane H ⊂ |K|∗ meets C in 2g − 2 points any g − 1 of which are
linearly independent. We consider such an H and g − 1 independent points
q1, . . . , qg−1 in H and suppose that the g − 2 points p1, . . . , pg−2 are taken
among the g − 1 residual points of H ∩C, i.e.,

H ∩C =
{

p1, . . . , pg−2, q1, . . . , qg−1, qg

}

.

We denote by Ω the open set of (g − 2)-tuples (p1, . . . , pg−2) which can be
realized in this way.

Now suppose that Q̃(pi, pj) = 0, ∀i, j ∈ {1, . . . , g − 2}, i.e., Q contains the
linear subspace Π spanned by the pi’s. Since Π is a hyperplane in H , any line
qiqj , for 1 ≤ i < j ≤ g intersects Π. So qiqj is entirely contained in Q, since
it meets Q in at least three points. Hence we obtain that Q̃(qi, qj) = 0, for all
i, j ∈ {1, . . . , g}, i.e., Q contains the hyperplane H . But since Q contains C,
it cannot be the union of two hyperplanes, hence Q is identically zero.

From now on we fix a (g − 2)-tuple (p1, . . . , pg−2) ∈ Ω. By the preceding
Lemma 5.1, the

(g−2
2

)

hyperplanes (for 1 ≤ i < j ≤ g − 2)

Hij =
{

Q ∈ I(2) | Q̃(pi, pj) = 0
}

are linearly independent in I(2)∗, hence they form a basis of I(2)∗. Let us
denote by {Qij} the corresponding dual basis. The quadrics Qij ∈ I(2) are
characterized by the properties

Q̃ij(pα, pβ) = 0, if {i, j} 2= {α, β},

Q̃ij(pi, pj) 2= 0.
(5.1)

This basis of quadrics has been used by K. Petri [23] (see also [1], p. 123–135)
in his work on the syzygies of the canonical curve. He defines them in a slightly
different way:

Choose two additional general points pg−1, pg. For each i, 1 ≤ i ≤ g, pick a
generator ωi of the one-dimensional space

(5.2) H0
(

K
(

−
g

∑

j=1,j '=i

pj

))

= Cωi.
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Up to a constant the ωi’s form a dual basis to the points pi ∈ |K|∗. Then
there are constants (see [1], p. 130) λsij , µsij , bij ∈ C such that, if we let

(5.3) ηij =
g−2
∑

s=1

λsijωs, νij =
g−2
∑

s=1

µsijωs,

the quadratic polynomials

(5.4) Rij = ωiωj − ηijωg−1 − νijωg − bijωg−1ωg

all vanish on C. Moreover the Rij ’s form a basis of I(2) and, obviously, the
rank of the quadric Rij is less than or equal to 6.

Lemma 5.2. — For each 1 ≤ i < j ≤ g − 2, the quadrics Rij satisfy the
conditions (5.1), hence Rij = Qij.

Proof. — This follows immediately from the definition (5.2) of the ωi’s.

Proposition 5.3. — For C neither trigonal nor a smooth plane quintic and
for a general (g−2)-tuple (p1, . . . , pg−2) ∈ Ω, the quadrics Qij have the following
properties

(i) Sing Qij ∩ C = ∅,(5.5)

(ii) rk Qij = 5 or 6.(5.6)

Proof. — We fix two indices i, j. First we observe that the singular locus
Sing Qij is the annihilator of the linear space

(5.7) 〈ωi, ωj, ωg−1, ωg, ηij , νij〉 ⊂ |K|.

Hence C ∩ Sing Qij is the base locus of this linear subsystem. In particular
C ∩ Sing Qij is contained in the base locus of 〈ωi, ωj, ωg−1, ωg〉, which, by
construction, consists of the g − 4 points (we delete the i-th and j-th point)

(5.8) p1, . . . , p̂i, . . . , p̂j , . . . , pg−2.

We will denote by Dij the degree g − 4 divisor with support (5.8) and by
D̄ij the linear span of Dij in |K|∗. Suppose now that there exists a (g − 2)-
uple (p1, . . . , pg−2) such that (i) holds, then, since (i) is an open condition, (i)
holds for a general (g − 2)-tuple. Therefore we will assume that (i) does not
hold for any (g − 2)-tuple in Ω, i.e., for all (p1, . . . , pg−2) ∈ Ω, there exists
α ∈ {1, . . . , g− 2}, α 2= i, j, with pα ∈ Sing Qij . But, since Ω is irreducible and
since the quadric Qij does not depend on the order of the g − 4 points (5.8),
pα ∈ Sing Qij implies that all g − 4 points (5.8) are in Sing Qij . Hence

(5.9) D̄ij ⊂ Sing Qij

and therefore rk Qij ≤ 4. Since ωi, ωj, ωg−1, ωg are linearly independent, we
have rk Qij = 4. Hence the inclusion (5.9) is an equality (same dimension).
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Consider now the two rulings of the rank 4 quadric Qij (see e.g. [2], p. 157):
they cut out on the curve two pencils of divisors

P
1 ⊂ |L|, P

1 ⊂ |M |,

such that L, M are line bundles satisfying

(5.10) L⊗M = K(−Dij).

Therefore for general Dij , we have constructed a pair (L, M) ∈ W 1
d (C)×W 1

d′ (C)
satisfying (5.10) with d+d′ = deg K(−Dij) = g +2. By Mumford’s refinement
of Martens’ Theorem (see [1], p. 192–193), if C is neither trigonal, bi-elliptic,
nor a smooth plane quintic, then dim W 1

d (C) ≤ d− 4 for 4 ≤ d ≤ g − 2. Hence

dimW 1
d (C) ×W 1

d′(C) ≤ (d− 4) + (d′ − 4) = g − 6 < g − 4,

which contradicts relation (5.10).
In order to prove (i) we need to show that the case C bi-elliptic also leads

to a contradiction. Let π : C → E be a degree 2 mapping onto an elliptic
curve E. Then by [1], p. 269, exercise E1, the chords pq with p + q = π∗e for
some e ∈ E all pass through a common point a /∈ C. In particular a lies on
a chord through all points pα ∈ Sing Qij , hence a ∈ Qij . Since C ⊂ |K|∗ is
non-degenerate, a ∈ Sing Qij and for general (p1, . . . , pg−2) ∈ Ω

a /∈ D̄ij ,

hence rk Qij ≤ 3, a contradiction.

It remains to show that (ii) holds. We observe that

rk Qij = 4 ⇐⇒ ηij , νij ∈ 〈ωi, ωj〉
⇐⇒ Sing Qij = D̄ij

and we conclude as before.

Remark 5.4. — If C is trigonal or a smooth plane quintic, then for all (g−2)-
tuples (p1, . . . , pg−2) ∈ Ω we have

Sing Qij ∩ C = Dij and rk Qij = 4.

We can give a more precise description of the quadrics Qij in both cases: it
will be enough to exhibit a set of quadrics satisfying the characterizing proper-
ties (5.1).

1) C is trigonal. —Let |g1
3 | be the trigonal pencil and consider the complete

linear series of degree g − 1
ξ = g1

3 + Dij ,
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where Dij is as in the proof of Proposition 5.3. Then define Qξ to be the cone
with vertex D̄ij = Pg−5 over the smooth quadric |ξ|∗ × |Kξ−1|∗ = P1 × P1 ⊂
P3 = |K(−Dij)|∗

(5.11)

Qξ ⊂ |K|∗




$





$
pr

P1 × P1 m−→ P3,

where pr is the linear projection with center D̄ij and m is the Segre map. From
this description it is clear that the rank 4 quadric Qξ satisfies (5.1).

2) C is a smooth plane quintic (g = 6). —Let |g2
5| be the associated degree

5 linear series. We can write Dij = pk + p* for some indices k, 4 and, as in the
trigonal case, we consider the quadric Qξ defined by the diagram (5.11) with

ξ = g2
5(−pk) and Kξ−1 = g2

5(−p*)

Again we easily check that Qξ satisfies (5.1).

5.2. Rank 6 quadrics and rank 2 vector bundles. — In this section we
recall a construction [6] relating rank 6 quadrics and rank 2 vector bundles.
We consider a rank 2 bundle E and a subspace V ⊂ H0(E) which satisfy the
conditions:

(5.12) detE = K, dimV = 4, V generates E.

We can associate to such a bundle the following commutative diagram

(5.13)

C
γ−−−−→ Gr(2, V ∗)





$

ϕK





$

|K|∗ λ∗
−−−−→ P(∧2V ∗) = P5,

where γ is the morphism (well-defined since we have a surjection OC⊗V → E)

(5.14) γ : p -−→ E∗
p ⊂ V ∗

and λ the map defined by taking the exterior product of global sections of E

(5.15) λ : ∧2V −→ H0(∧2E) = H0(K).

The Grassmannian Gr(2, V ∗) embedded in P5 by the Plücker embedding is a
smooth quadric. We define Q(E,V ) to be the inverse image of this quadric:

(5.16) Q(E,V ) = (λ∗)−1
(

Gr(2, V ∗)
)

.

Then rk Q(E,V ) ≤ 6 and Q(E,V ) ∈ |I(2)|. If h0(E) = 4, then V = H0(E) and
we denote the quadric Q(E,V ) simply by QE. We have the following lemmas.
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Lemma 5.5. — For any pair (E, V ) satisfying conditions (5.12), let Q̃(E,V ) be
the polar form of the quadric Q(E,V ). Then

∀p, q ∈ C, p 2= q, Q̃(E,V )(p, q) = 0 ⇐⇒ V ∩H0
(

E(−p− q)
)

2= {0}.

Proof. — We consider the dual Grassmannian Gr(2, V ). Now Q̃(E,V )(p, q) = 0
means that the line joining the two points corresponding to the two subspaces
H0(E(−p)) ∩ V and H0(E(−q)) ∩ V is contained in Gr(2, V ). But this is
equivalent to H0(E(−p)) ∩H0(E(−q)) ∩ V 2= {0} and we are done.

Lemma 5.6. — For any pair (E, V ) satisfying conditions (5.12), we have

rk Q(E,V ) ≤ 4 ⇐⇒ E contains a line subbundle L with dimH0(L) ∩ V = 2.

Proof. — This is essentially Proposition 1.11 of [6]. Note that if E is generated
by V , then dimH0(L) ∩ V ≤ 2.

Remark 5.7. — We see that the definition (5.16) of the quadric Q(E,V ) makes
sense even if the bundle E is not generated by global sections in V at a finite
number of points. We easily see that E is not generated by V at the point p
if and only if p ∈ P ker λ∗ ⊂ Sing Q(E,V ). Moreover, if rk Q(E,V ) ≥ 5, then we
have an equality P ker λ∗ = Sing Q(E,V ) (see [6], (1.9)).

The above described construction which associates to the pair (E, V ) the
quadric Q(E,V ) ∈ I(2) admits an inverse construction, i.e., we can recover a
bundle E from a general rank 6 quadric: consider a quadric Q ∈ I(2) satisfying

(5.17) r = rk Q = 5 or 6, Sing Q ∩ C = ∅.

We project away from Sing Q

δ : Q −→ P
r−1.

If r = 6, the image δ(Q) is a smooth quadric in P5 and can be realized as a
Grassmannian Gr(2, 4). If r = 5, δ(Q) is a linear section of Gr(2, 4) ⊂ P5. We
consider the exact sequence over Gr(2, 4)

0 −→ U −→ O4
Gr −→ Ū −→ 0,

where U (resp. Ū) is the universal subbundle (resp. quotient bundle). Since
Sing Q ∩ C = ∅, the restriction of δ to the curve C is everywhere defined and
we can consider the two pairs (let g = δ|C)

(5.18) (g∗U∗, g∗H0(U∗)), (g∗Ū , g∗H0(Ū)),

which satisfy conditions (5.12). The following proposition is proved in [6]
(Prop. 1.18 and 1.19)

Proposition 5.8. — The pairs (5.18) are the only pairs defining the
quadric Q. If rk Q = 5 then they are isomorphic.
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Lemma 5.9. — Consider a bundle E with h0(E) = 4 and satisfying (5.12).
If rk QE = 5 or 6, then E is stable

Proof. — Suppose that there exists a destabilizing subbundle L ⊂ E, with
deg L ≥ g − 1. By Lemma 5.6 we have h0(L) ≤ 1 and by Riemann-Roch,
h0(KL−1) ≤ h0(L). But then h0(E) ≤ h0(L)+h0(KL−1) ≤ 2, a contradiction.

5.3. Proof of Theorem 1.2
5.3.1. The map in (1.7). — First, we prove the inclusion PΓ11 ⊂ PΓ(2)

00 . Con-
sider the line bundle O(q−r) ∈ C−C and a point p ∈ C. The Abel-Jacobi curve
tx(C) ⊂ JC, with x = O(p+q−r), is contained in the fourfold C2−C2. There-
fore a hyperplane H in |2Θ| which contains the Kummer image of C2−C2 in |2Θ|
also contains the embedded tangent line Tq−r(Cx) at the point Kum(O(q− r))
to the curve Cx ⊂ P(x) ⊂ |2Θ| for all triples of points p, q, r. Since the set
of tangent directions given by these tangent lines (keeping q, r fixed and vary-
ing p) span the projectivized tangent space PTq−rJC, we see that, varying q

and r, T ⊂ H . Since PΓ(2)
00 = T⊥, we obtain the inclusion by taking the polar

spaces.
Now we consider the difference map

γ : C4 pr−→ C2 × C2
φ2−→ JC,

where C4 is the 4-fold product of the curve and the first arrow pr is the quotient
by the transpositions (1, 2) and (3, 4) acting on C4. We denote by ∆i,j the
divisor in C4 consisting of 4-tuples having equal i-th and j-th entry. A straight-
forward computation shows that

(5.19) γ∗O(2Θ0) =
4

⊗

i=1

π∗i K(−2∆1,2−2∆3,4+2∆1,3+2∆1,4+2∆2,3+2∆2,4).

Note that the divisor ∆1,3+∆1,4+∆2,3+∆2,4 ⊂ C4 is invariant under the trans-
positions (1, 2) and (3, 4), hence comes from an irreducible divisor in C2 × C2,
which we call ∆. We also observe that the line bundle π∗1K ⊗ π∗2K(−2∆1,2)
over C2 is invariant under the natural involution, hence comes from a line
bundle M over C2 and we have a canonical isomorphism

(5.20) H0(C2,M) ∼= I(2).

With this notation we rewrite (5.19) as

(5.21) φ∗2
(

O(2Θ0)
)

= π∗1M⊗ π∗2M(2∆).

Now we want to compute the pull-back of 2θ-divisors vanishing doubly on
C − C. Let J be the sheaf of ideals defining the surface C − C ⊂ JC.

Lemma 5.10. — If C is non-trigonal, the inverse image ideal sheaf φ−1
2 J ·

OC2×C2 is the invertible sheaf OC2×C2(−∆), hence φ∗2J = OC2×C2(−∆).
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Proof. — This follows from the observation that the inverse image of C − C
under φ2 is isomorphic to the divisor ∆.

Remark 5.11. — If C is trigonal, the inverse image φ−1
2 (C − C) contains,

apart from the divisor ∆, a surface which is the image of the morphism

C × C −→ C2 × C2,

(p, q) -−→
(

g1
3(−p), g1

3(−q)
)

,

where g1
3 is the trigonal series (unique if g ≥ 5) and g1

3(−p) denotes the residual
pair of points in the divisor of g1

3 containing p. We deduce that

φ−1
2 J · OC2×C2 ⊂ OC2×C2(−∆)

and that there exists a natural map of OC2×C2-modules φ∗2J → OC2×C2(−∆).

Combining (5.21) and Lemma 5.10, we obtain a linear map induced by φ2

(5.22) φ∗2 : H0
(

JC,O(2Θ0)⊗ J 2
)

= Γ(2)
00 −→ H0(C2 × C2, π

∗
1M⊗ π∗2M).

This map is equivariant under the natural involutions of JC and C2 × C2.
Since all second order theta functions are even, the image of φ∗2 is contained in
the subspace Sym2H0(C2,M) ∼= Sym2I(2), by (5.20). To summarize, we have
shown that

Γ11 = ker
(

φ∗2 : Γ(2)
00 → Sym2I(2)

)

.

5.3.2. Surjectivity of φ∗2. — The key point of the proof is the following propo-
sition

Proposition 5.12. — We have a commutative diagram

(5.23)

W(4) D−−−−→ PΓ(2)
00





$

Q





$

φ∗
2

|I(2)| Ver−−−−→ PSym2I(2)

where the notation is as follows:
W(4) =

{

[E] ∈ SUC(2, K) | dimH0(E) = 4 and E globally generated
}

;
Q is the map described in Section 5.2;
V er is the Veronese map;
D is the map (2.2).

Proof. — Consider a bundle E ∈ W(4). By [17], Prop. V.2., we have an in-
equality

multp−q

(

D(E)
)

≥ h0
(

E(p− q)
)

≥ 2,
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hence we see that D(E) ∈ PΓ(2)
00 . To show commutativity, it is enough to check

that the zero divisors of the two sections

QE ⊗QE , φ∗2
(

D(E)
)

(regarded as sections of π∗1M⊗ π∗2M over C2 × C2 (5.22)) coincide as sets.
Hence, by Lemma 5.5 and (2.2), it is enough to show the following equivalence:
for any four distinct points p, q, r, s ∈ C

h0
(

E(−p− q)
)

> 0 or h0
(

E(−r − s)
)

> 0 ⇐⇒ h0
(

E(p + q − r − s)
)

> 0.

The⇒ implication is obvious (D(E) is symmetric). To prove the⇐ implication,
we suppose that h0(E(−p− q)) = h0(E(−r−s)) = 0. Then, by Riemann-Roch
and Serre duality, we have h0(E(p + q)) = 4. Since h0(E) = 4, we see that
all global sections of E(p + q) vanish at the points p and q. Supposing that
there exists a non-zero section ϕ of E(p + q − r − s), then ϕ vanishes at p, q,
contradicting h0(E(−r − s)) = 0, hence h0(E(p + q − r − s)) = 0.

We now assume that C is non-trigonal and consider a general (g − 2)-tuple
(p1, . . . , pg−2) ∈ Ω, general points pg−1, pg and their associated Petri quadrics
Qij for 1 ≤ i, j ≤ g−2 (Section 5.1), which form a basis of I(2). Then in order
to prove surjectivity of φ∗2, it is enough, by Proposition 5.12, to construct a set
of

(

h+1
2

)

vector bundles (with h =
(

g−2
2

)

= dim I(2)) in W(4), which generate
linearly Sym2I(2). First we suppose that C is not a smooth plane quintic. We
proceed in three steps.

Step 1. — By Proposition 5.3, the Petri quadrics Qij satisfy condi-
tions (5.17), so (Proposition 5.8) we can construct for each i, j two pairs
(see (5.18)) (E(1)

ij , V (1)) and (E(2)
ij , V (2)), which define the quadric Qij .

Lemma 5.13. — For a general (p1, . . . , pg−2) ∈ Ω, the bundles E(1)
ij , E(2)

ij are
stable, distinct and h0(E(1)

ij ) = h0(E(2)
ij ) = 4.

Proof. — We can give a different description of the bundles E(1)
ij and E(2)

ij using
extension spaces. Let D = Dij + pi, with Dij the degree g − 4 divisor with
support (5.8), and consider extensions of the form

(ε) 0 → O(D) −→ Eε −→ O(K −D) → 0.

These extensions are classified by extension classes ε ∈ |2K − 2D|∗ = Pg+2.
Since h0(D) = 1 and h0(K − D) = 3, we see that h0(Eε) = 4 if and only if
ε ∈ ker m∗ = (coker m)∗, where m is the multiplication map

m : Sym2H0(K −D) −→ H0(2K − 2D),

which is injective for general points pi. Note that dim coker m = g − 3. Fur-
thermore, consider a point pα ∈ Dij and the multiplication map (which is
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injective)

mα : H0(K −D + pj + pα)⊗H0(K −D − pj − pα) −→ H0(2K − 2D).

Then h0(Eε(−pj−pα)) > 0 iff ε ∈ kerm∗
α. We observe that the image immα ⊂

H0(2K − 2D) under the canonical surjection H0(2K − 2D) → coker m is a
1-dimensional subspace, which we denote by Zα. Consider now a hyperplane
H in cokerm, which contains the linear span of the Zα for α such that pα ∈ Dij

(we will see a posteriori that such an H is unique, for dimension reasons), so
that we obtain an extension class ε = ε(H) ∈ P(coker m)∗ ⊂ |2K − 2D|∗. By
construction, we have h0(Eε) = 4 and h0(Eε(−pα − pβ)) > 0 if {α, β} 2= {i, j},
hence, by (5.1) and Lemma 5.5, we obtain QEε = Qij , and Eε = E(1)

ij .
The other bundle E(2)

ij defining the quadric Qij is constructed in the same
way using the divisor D′ = Dij +pj (instead of D). Then we have E(1)

ij 2∼= E(2)
ij .

Indeed, an isomorphism E(1)
ij → E(2)

ij would imply the existence of a nonzero
section of Hom(O(D),O(K−D′)) = O(K−D−D′), but then the (g−2)-tuple
(p1, . . . , pg−2) is not general.

Finally, stability follows from Lemma 5.9.

We deduce from this lemma and Proposition 5.12 that Qij ⊗Qij ∈ im φ∗2.

Step 2. — Consider three distinct indices i, j, k. Then all quadrics of the
pencil

(5.24) (λQij + µQik)λ,µ∈C

have rank less than or equal to 6. This follows from expression (5.4) of Petri’s
quadrics, namely

λQij + µQik = ωi(λωj + µωk)− η̄ωg−1 − ν̄ωg − b̄ωg−1ωg,

with η̄ = ληij +µηik, ν̄ = λνij +µνik, b̄ = λbij +µbik. Now a general element of
the pencil (5.24) satisfies conditions (5.17), since these are open conditions and
are satisfied by Qij and Qik. Again by openness and Lemma 5.13, it follows
that the two bundles associated with such a general quadric have 4 sections and
are stable. Let us pick such a bundle Eijk defining the quadric λ0Qij + µ0Qik,
for λ0, µ0 2= 0. Then we have in Sym2I(2)

φ∗2D(Eijk) = λ2
0Qij ⊗Qij + µ2

0Qik ⊗Qik + 2λ0µ0Qij ⊗Qik

hence, Qij ⊗Qik ∈ im φ∗2.

Step 3. — Consider four distinct indices i, j, k, 4. Then all quadrics of the
2-dimensional family F(ij)(k*) = P1×P1 (here (λ, λ′), (µ, µ′) are a set of homo-
geneous coordinates) are given by an expression

µλQik + µλ′Qi* + µ′λQjk + µ′λ′Qj*

= (µωi + µ′ωj)(λωk + λ′ω*)− η̄ωg−1 − ν̄ωg − b̄ωg−1ωg,
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where η̄, ν̄, b̄ depend on (λ, λ′), (µ, µ′), see (5.4). The same holds for the two
families obtained by permuting indices

F(ik)(i*) : µλQij + µλ′Qi* + µ′λQjk + µ′λ′Qk*,

F(i*)(kj) : µλQik + µλ′Qij + µ′λQ*k + µ′λ′Qj*.

As in Step 2, we see that a general member of these three families satisfies
(5.17) and we can pick three stable vector bundles E(ij)(k*), E(ik)(j*), E(i*)(kj)

with four sections defining the three quadrics in these families with coordinates
(λ0, λ′0)(µ0, µ′

0) for some λ0, λ′0, µ0, µ′
0 2= 0. Now we can write in Sym2I(2)

φ∗2D(E(ij)(k*)) = 2µ0µ
′
0λ0λ

′
0(Qik ⊗Qj* + Qil ⊗Qjk) + α,

φ∗2D(E(ik)(j*)) = 2µ0µ
′
0λ0λ

′
0(Qij ⊗Qkl + Qi* ⊗Qjk) + β,

φ∗2D(E(i*)(kj)) = 2µ0µ
′
0λ0λ

′
0(Qik ⊗Qj* + Qij ⊗Qk*) + γ,

for some α, β, γ ∈ imφ∗2 (see step 1 and 2). But these linear equations immedi-
ately imply that the three symmetric tensors Qij ⊗Qk*, Qik ⊗Qj*, Qi*⊗Qjk ∈
im φ∗2 and we are done.

To complete the proof we need to consider the case when C is a smooth
plane quintic (g = 6). We will show that the map Q in diagram (5.23) is
dominant. By [2], Prop. 3.2, the locus of rank 4 quadrics is a cubic hypersurface
in |I(2)| = P5 and a general quadric has rank 6 (i.e., is smooth). Consider any
smooth quadric Q ∈ |I(2)| and one of the associated pairs (E, V ) defining Q
(5.18). It will be sufficient to show that h0(E) = 4, hence E ∈ W(4). By [22],
Theorem 8.1 (3), h0(E) ≥ 5 if and only if E is an extension of the form

0 → g2
5 −→ E −→ g2

5 → 0.

From this we see that if h0(E) = 5, dimV ∩ H0(g2
5) ≥ 2, hence rk Q ≤ 4 by

Lemma 5.6 and if h0(E) = 6, then E = g2
5 ⊕ g2

5 and we can also conclude
that rk Q ≤ 4, contradicting Q smooth.

5.4. A theorem by M. Green. — As a consequence of Theorems 1.1
and 1.2 we obtain a refinement (in the case of non-trigonal curves) of a theorem
by M. Green (see [10], see also [24])

Theorem 5.14. — For C non-trigonal, the image Q(Sing Θ) ⊂ |I(2)| is not
contained in a quadric.

Proof. — For all ξ ∈ Sing Θ with h0(ξ) = 2, the split bundle E = ξ ⊕Kξ−1 ∈
W(4). Then the associated quadric QE has rank less than or equal to 4 and can
be described (in the generic case when rk QE = 4) as a cone over the smooth
quadric P1 × P1 ⊂ PV ∗ = P3 (as in diagram (5.11)) where V is the image of
the injective multiplication map

H0(ξ)⊗H0(Kξ−1) −→ H0(K).
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Then QE is the projectivized tangent cone at the double point ξ ∈ Sing Θ.
Suppose now that the image under Q of Sing Θ in |I(2)| is contained in a

quadric. By Proposition 5.12 and Theorem 1.1, 2), we see that the image of φ∗2
in PSym2I(2) is contained in a hyperplane, which contradicts Theorem 1.2.

Corollary 5.15 (Green’s theorem). — For C non-trigonal, the projectivized
tangent cones to Θ at double points span I(2).

6. The space Γ000

6.1. Proof of Theorem 1.3. — In this section we regard 2θ-functions as
holomorphic functions on Cg. For the proof of Theorem 1.3 we need the fol-
lowing lemma, which we will deduce from Gunning’s results (Proposition 3.3).

Lemma 6.1. — The following statements are equivalent:
1) f ∈ Γ000;
2) for all a1, a2, a3, a4 ∈ C

(q12q34)4f
(

w(a1 + a2 − a3 − a4)
)

+ (q14q23)4f
(

w(a1 + a4 − a2 − a3)
)

+(q13q24)4f
(

w(a1 + a3 − a2 − a4)
)

= 0.

Proof. — We will derive identity (2) from Proposition 3.3. First we observe
that the left-hand side PDa1Da2Da3Da4θ2(0) of Proposition 3.3, 1) is symmet-
ric in the four variables. In particular it is symmetric in a2, a4, which leads to
the equality

τ1234 + τ2314 = τ1432 + τ4312 + 2σ1234 + 2σ2134 + 2σ3124(6.1)
−2σ1432 − 2σ4132 − 2σ3142.

Combining (6.1) and Proposition 3.3 (1) we can write
1
2
PDa1Da2Da3Da4θ2(0) = τ1324 + τ1432 + τ4312 + some σ′s.

Using Proposition 3.3, 2) and the two relations obtained from it by interchang-
ing a1 with a3 and a1 with a4, we can write
1
2
PDa1Da2Da3Da4θ2(0) =

( q12q34

q13q14q23q24

)2
Pθ2

(

w(a1 + a2 − a3 − a4)
)

+
( q32q14

q13q34q21q24

)2
Pθ2

(

w(a1 + a4 − a3 − a2)
)

+
( q24q31

q43q14q23q21

)2
Pθ2

(

w(a1 + a3 − a2 − a4)
)

−X,

where X is the following sum of σ’s

(σ1243 + σ1234 + σ1432) + (σ3142 + σ3241 + σ3214) + (σ4132 + σ4213 + σ4231).
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But the three terms within each pair of parentheses add up to zero (use the
definition of σ (3.4) and the fact that ξ is skew-symmetric in its variables),
hence X = 0. Taking duals we obtain the equivalence stated in the lemma.

We are now in a position to prove Theorem 1.3. First we show the inclusion
Γ000 ⊂ Γ(2)

00 . We fix f ∈ Γ000 and three points a2, a3, a4 ∈ C. We consider
a1 as a canonical coordinate and differentiate the vector-valued function θ2,
see (3.2), two (resp. three) times with respect to a1 and take the value at the
point a1 = a4. This way, we obtain two equations among vectors in C2g

/T0

D2
a4
θ2(w(a2 − a3)) + Da4θ2(w(a2 − a3))

[

4∂ log
q42

q43

]

= 0,

D2
a4
θ2(w(a2 − a3))

[

∂ log q42q43

]

+Da4θ2(w(a2 − a3))
[

∂2 log
q42

q43
+ 4∂ log q42q43 · ∂ log

q42

q43

]

= 0,

where ∂ means derivative with respect to the first variable of the prime form q.
Hence we obtain, for all a2, a3, a4 ∈ C, a system of two linear equations involving
the vectors D2

a4
θ2(w(a2 − a3)) and Da4θ2(w(a2 − a3)) whose determinant

∂2 log
q42

q43

is non-zero on an open subset of C3. Hence the two vectors D2
a4
θ2(w(a2 − a3))

and Da4θ2(w(a2−a3)) are zero on an open subset of C3, so they are identically
zero. This implies that f ∈ Γ(2)

00 .

The inclusion Γ11 ⊂ Γ000 and the second statement of Theorem 1.3 can
easily be deduced from the commutativity of the diagram

(6.2)
Γ(2)

00

φ∗
2−→ Sym2I(2)





$
α ↙m

I(4)

where α is the map which associates to a 2θ-function its quartic tangent cone
at the origin (i.e. the degree 4 term of the Taylor expansion at the origin), φ∗2 is
as in (5.22) and the diagonal arrow is the multiplication map m. By definition
we have

ker α = Γ000, ker φ∗2 = Γ11.

To check the commutativity of (6.2), since 〈SingΘ〉 = PΓ(2)
00 by Theorem 1.1, 2),

it is enough to check that α(D(E)) = m(φ∗2(D(E))) for the bundle E =
ξ ⊕ Kξ−1, with ξ ∈ Sing Θ and h0(ξ) = 2, i.e., that D(E) = Θξ + ΘKξ−1 .
This follows from Proposition 5.12 and the description of QE (see proof of
Theorem 5.14).
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Remark 6.2. — We don’t know how to find a general formula for dim Γ000.
In the examples that follow, we give dim Γ000 for g ≤ 7.

6.2. Examples
6.2.1. Curves of genus less than 6. — For any non-hyperelliptic curve of
genus g ≤ 5, we have

dim Γ000 = 0.

This follows from a straight-forward dimension count using Theorems 1.1, 1.2
and 1.3 and from ker m = {0}. The last equality holds because π : |K|∗ →
|I(2)|∗ = P2 is dominant. (For a trigonal genus 5 curve, we also use Proposi-
tion 7.2).

6.2.2. Curves of genus 6. — Consider first a genus 6 curve which is not trigonal
or a smooth plane quintic. In order to determine the vector space ker m of
Theorem 1.3, we consider the rational map induced by the linear system |I(2)|
on the canonical space |K|∗ = P5

π : |K|∗ −→
∣

∣I(2)
∣

∣

∗ = P
5.

Note that π is defined away from the canonical curve. We claim that π is dom-
inant, which we see as follows. By the Enriques-Petri Theorem the canonical
curve is the set-theoretic intersection of all quadrics in I(2). The four general
elements of I(2) cut out Ccan and some other curves, and a general fifth ele-
ment of I(2) does not contain any of the other curves. Thus the general fiber
of π does not contain any curve, so π is dominant.

Therefore since the image of π is not contained in a quadric, we have the
equality Γ000 = Γ11. By Theorem 8.1, 1) (see [22] and Theorem 5.1 (1) [19]),
there exists a unique stable bundle Emax ∈ SUC(2, K) with maximal number
of sections h0(Emax) = 5. Since C2 − C2 ⊂ D(Emax), we have D(Emax) ∈
PΓ11. Moreover by a dimension count using Theorems 1.1 and 1.2, we have
dim Γ11 = 1, from which we deduce that

PΓ000 = PΓ11 = D(Emax).

As a complement to the examples of Brill-Noether loci of SUC(2, K) pro-
vided in [22] we add a geometric description of the divisor D(Emax) ⊂ JC.
Let L = g1

4 be a tetragonal series on C and ϕL be the associated surjective
Abel-Jacobi map

ϕL : C6 −→ JC,

(p1, . . . , p6) -−→ K−1L(p1 + · · · + p6).

Let πL be the map induced by the base point free linear series |KL−1|
πL : C −→ |KL−1|∗ = P

2.

If C is bi-elliptic, the image is a smooth plane cubic. Otherwise (general case)
πL maps C birationally to a plane sextic.
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Proposition 6.3. — Let S ⊂ C6 be the divisor consisting of sextuples
(p1, . . . , p6) such that the points πL(pi) lie on a conic in |KL−1|∗ = P2. Then

ϕL(S) = D(Emax).

Proof. — By [19], Prop. 3.1 (see also [22], Example 3.4), we can write Emax as
an extension

(6.3) 0 → L −→ Emax −→ KL−1 → 0

By definition, we have λ ∈ D(Emax) iff h0(Emax ⊗ λ) > 0. First, we see that
if h0(Lλ) > 0 or h0(Lλ−1) > 0, then the exact sequence (6.3) implies that
λ ∈ D(Emax) (note that D(Emax) is symmetric). Therefore we can assume
that h0(Lλ) = h0(Lλ−1) = 0 or equivalently that

h0(KL−1λ) = h0(KL−1λ−1) = 1.

Writing the long exact sequence associated to (6.3), we see that

H0(Emax ⊗ λ) = ker (δ : H0
(

KL−1λ) → H1(Lλ)
)

.

Therefore h0(Emax ⊗ λ) > 0 if and only if the image of the multiplication map

H0(KL−1λ)⊗H0(KL−1λ−1) −→ H0(K2L−2)

is contained in the hyperplane Sym2H0(KL−1) ⊂ H0(K2L−2) which defines
the extension class of Emax in |K2L−2|∗ (see [22], Example 3.4). Since
h0(KL−1λ) = 1, there exists a unique sextuple (p1, . . . , p6) ∈ C6 such that
λ = ϕL((pi)). Then we deduce from the commutative diagram

C
ϕK2L−2−−−−−→ |K2L−2|∗ = P6





$

πL





$

pr

|KL−1|∗ = P2 Ver−−−−→ PSym2H0(KL−1)∗ = P5

that h0(Emax⊗λ) > 0 if and only if the six points ϕK2L−2(pi) lie on a hyperplane
in P6 which is the inverse image under the projection map pr of a hyperplane
in P5. But this last condition says that the 6 points πL(pi) lie on a conic in
|KL−1|∗. Finally, we note that if h0(Lλ−1) > 0 (⇔ h0(O(

∑

pi)) ≥ 2) then
there exists a divisor D =

∑

qi in the linear system |
∑

pi| such that the πL(qi)
lie on a conic (e.g. we can show that S is an ample divisor on C6).

Consider now the case of a smooth plane quintic. By [22], Theorem 8.1 (3),
there exists a unique S-equivalence class εmax such that if h0(E) ≥ 5, then
[E] = εmax. In particular, εmax = [g2

5⊕ g2
5]. Moreover, using an explicit basis of

quadrics of I(2), we can show that the map π is birational (for more details see
[22], Theorem 5.5), hence kerm = {0}. As before, we deduce from Theorems 1.1
and 1.2 that

PΓ000 = PΓ11 = D(εmax) = 2Θg2
5
.
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Consider now the case of a trigonal curve. By [22], Theorem 8.1 (2), there
exists a projective line P1

bun of stable bundles E with h0(E) = 5, hence P1
bun ⊂

PΓ11. Using Proposition 7.2, we compute that dim Γ11 = 2 and (using Sec-
tion 7) that dim ker m = 1. Hence we have

P
1
bun = PΓ11, dim Γ000 = 3.

6.2.3. Curves of genus 7. — For a non-tetragonal genus 7 curve, we have
dim Γ000/Γ11 = 1 (by [20], Theorem 4.2). So we obtain dim Γ11 = 9 and
dim Γ000 = 10.

7. Trigonal curves

Let C be a trigonal curve with g ≥ 5 and let L0 be the line bundle associated
to its unique trigonal series g1

3 . By Remark 5.11, we obtain as in (5.22) a linear
map φ∗2 : Γ(2)

00 → Sym2I(2). The aim of this section is to compute the rank
of φ∗2 (cf. Section 5.3.2).

First we need to quote some results about quadrics containing a rational
normal scroll from [2], which we state here for the case of the degree g − 2
surface S ⊂ |K|∗ ruled by the pencil of trisecants to the canonical curve. For
a trigonal curve, the space I(2) and the space of quadrics IS(2) containing
the surface S are equal. Let V = H0(C, KL−1

0 ). We choose two independent
sections s0, s1 ∈ H0(L0) and consider the isomorphism β0 (resp. β1) induced
by multiplication by the section s0 (resp. s1)

β0 : V
∼−→ V0 ⊂ H0(K), β1 : V

∼−→ V1 ⊂ H0(K),

where Vi = H0(C, K−Di) and Di is the zero divisor of the section si. We then
define a linear map

β : Λ2V −→ Sym2H0(K)
by setting

(7.1) β(v ∧w) = β0(v)⊗ β1(w)− β0(w)⊗ β1(v),

which is a quadric of rank less than or equal to 4 containing S. One checks
that β(v ∧ w) does not depend on the choice of the sections s0, s1. Then
Proposition 2.14 [2] says that β induces an isomorphism

(7.2) β : Λ2V
∼−→ IS(2).

We also define a rational map

δ : W(4) −→ Gr(2, V )

as follows. Consider a semi-stable bundle E ∈ W(4) (see (5.23)). Then, by
[19], Proposition 3.1, h0(E ⊗L−1

0 ) ≥ 1. It can be shown that h0(E ⊗L−1
0 ) = 1

for a general bundle E ∈ W(4), i.e. E can be uniquely written as an extension

(7.3) 0 → L0 −→ E
π−→ KL−1

0 → 0,
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and we define δ(E) = im (H0(E)
H0(π)−→ H0(KL−1

0 ) = V ). Then we can prove
the following

Lemma 7.1. — The map Q : W(4) −→ |I(2)| defined in Section 5.2 factorizes
as follows

W(4) δ−→ Gr(2, V ) Pl−→ P(Λ2V ) β−→
∣

∣IS(2)
∣

∣ =
∣

∣I(2)
∣

∣

where Pl is the Plücker embedding of the Grassmannian.

Proof. — Consider E ∈ W(4) with h0(E⊗L−1
0 ) = 1 and identify H0(L0) with

a 2-dimensional subspace of H0(E). We choose a basis {s0, s1} of H0(L0). Let
R = β ◦ Pl ◦ δ(E) ∈ |I(2)| be the associated quadric. In order to show that
R = QE it is enough to show that their associated polar forms, which we view
as global sections of the line bundle M over C2 (see (5.20)), coincide. Hence it
is enough to show the implication

∀p, q ∈ C, p 2= q, h0
(

L0(−p− q)
)

= 0 and Q̃E(p, q) = 0 =⇒ R̃(p, q) = 0.

But by Lemma 5.5, the assumption Q̃E(p, q) = 0 means that there exists a
section a ∈ H0(E) vanishing at p and q. Since h0(L0(−p − q)) = 0, we have
a /∈ H0(L0) and we can find a section b ∈ H0(E) such that {s0, s1, a, b} is a basis
of H0(E). Then H0(π) induces a linear isomorphism Ca⊕ Cb

∼−→ δ(E) ⊂ V .
Let u, v ∈ δ(E) be the images of a, b under this isomorphism. Then we see that

β0(u) = s0 ∧ a ∈ H0(K), β0(v) = s0 ∧ b ∈ H0(K).

The same holds for β1 and s1. By (7.1) we have

2R̃(p, q) = (s0 ∧ a)(p) · (s1 ∧ b)(q) + (s0 ∧ a)(q) · (s1 ∧ b)(p)
− (s0 ∧ b)(p) · (s1 ∧ a)(q)
− (s0 ∧ b)(q) · (s1 ∧ a)(p)

and this expression, which does not depend on the choice of the basis
{s0, s1, a, b}, is obviously zero if a ∈ H0(E(−p− q)).

We consider now the commutative diagram (5.23). Lemma 7.1 implies that
the inverse image under the Veronese map of a hyperplane in Sym2I(2) contain-
ing imφ∗2 is a quadric in |I(2)| containing the Grassmannian Gr(2, V ). Moreover
any such quadric comes from an element in the annihilator (im φ∗2)⊥. Hence
we obtain an isomorphism

(7.4) IGr(2,V )(2) ∼= (im φ∗2)
⊥.

But the degree 2 part IGr(2,V )(2) of the ideal of the Grassmannian Gr(2, V )
is isomorphic to the vector space Λ4V generated by the Plücker equations
(see e.g. [19]). Hence we have shown

Proposition 7.2. — The corank of φ∗2 is
(g−2

4

)

.
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8. Concluding remarks

1. — It is natural to ask whether the three main theorems can be generalized
to analogous subseries. For this purpose, we introduce the following subspaces
of PΓ00

PΓ[n]·0 =
{

D | mult0(D) ≥ 2n
}

for n ≥ 2,

PΓdd =
{

D | Cd+1 − Cd+1 ⊂ D
}

for d ≥ 0,

PΓ(2)
dd =

{

D | multCd+1−Cd+1(D) ≥ 2
}

for d ≥ 0,

where Cd+1 − Cd+1 is the image of the difference map (d ≥ 0)

φd+1 : Cd+1 × Cd+1 −→ JC,

(D, D′) -−→ O(D −D′).

The following inclusions are obvious

(8.1) Γ(d+1)(d+1) ⊂ Γ(2)
dd ⊂ Γdd

and one might expect that the following holds (see Theorem 1.3)

(8.2) Γ(d+1)(d+1) ⊂ Γ[d+3]·0 ⊂ Γ(2)
dd ,

(8.3) Γ[d+3]·0/Γ(d+1)(d+1)
∼= ker (Sym2I(d+1)(d + 2) −→ I(2d + 4)),

where I(d+1)(d + 2) is the space of degree d + 2 polynomials vanishing at order
d + 1 along Ccan. Some previous work towards (8.2) has been done in [11].
Statement (8.3) follows from (8.2).

2. — An important ingredient of the proof of Theorem 1.1 (resp. Theorem 1.2)
is the use of rank 2 vector bundles with 3 (resp. 4) sections. The constructions
involved may be viewed as examples of a general construction. Following
Mukai [19], we associate to any E ∈ W(n) a commutative diagram (as in
(5.13)): replace V by H0(E))

(8.4)

C
γ−−−−→ Gr(2, H0(E)∗)





$

ϕK





$

|K|∗ λ∗
−−−−→ P(Λ2H0(E)∗) = P(n

2)−1

The definitions of the morphisms γ and λ∗ are as in (5.14) and (5.15).
If n is even, n = 2d + 4 for d ≥ 0, the Plücker space Λ2H0(E)∗ carries

canonically a symmetric multilinear form

P̃f (ω1, . . . , ωd+2) = ω1 ∧ · · · ∧ ωd+2 ∈ Λ2d+4H0(E)∗ ∼= C

which defines a degree d + 2 polynomial Pf ∈ Symd+2(Λ2H0(E)∗) vanishing
to order d + 1 along the Grassmannian Gr(2, H0(E)∗). Note that Pf is the
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Pfaffian if we represent ω ∈ Λ2H0(E)∗ as an n × n skew-symmetric matrix.
Therefore we can define for any E ∈ W(2d + 4) a polynomial

QE = (λ∗)−1(Pf ) ∈
∣

∣I(d+1)(d + 2)
∣

∣.

A straighforward generalization of Proposition 5.12 leads to

Proposition 8.1. — For all d ≥ 0, we have a commutative diagram

(8.5)

W(2d + 4) D−−−−→ PΓ(2)
dd





$

Q





$

φ∗
d+2

|Id+1(d + 2)| Ver−−−−→ PSym2Id+1(d + 2).

We expect that the linear maps φ∗d+2 are surjective (at least for a general
curve), i.e., that one has isomorphisms (generalizing Theorem 1.2)

Γ(2)
dd /Γ(d+1)(d+1)

∼−→ Sym2Id+1(d + 2).

Some evidence for this is given by considering the case of cubics singular along
the canonical curve (d = 1). One computes, using results proved by J. Wahl
[25], dim I2(3) =

(g−5
3

)

+
(g−7

2

)

for a general curve C.

– for g = 8 and C without g2
7 , the space I2(3) is one-dimensional, generated

by the cubic QEmax , where Emax ∈ W(6) is the unique stable bundle with
maximal number of sections.

– for g = 9 and C general, the image of the morphism W(6) → |I2(3)| = P4

is a quartic threefold with 21 singular points (i.e. the 42 g1
8 ’s modulo involution)

[18].
In both cases we immediately see that φ∗3 is surjective. For d > 1, it seems

that very little is known about the spaces |Id+1(d + 2)|.
If n is odd and n > 3, we do not have a natural equation like the Pfaffian Pf .

If n = 3, the composite λ∗ ◦ ϕK : C → P2 = P(Λ2H0(E)∗) is the morphism
described in Remark 2.7. Already for the next step in the filtration (8.1),
i.e., the quotient Γ11/Γ(2)

11 , finding an isomorphic vector space attached to the
canonical curve seems rather complicated.

3. — Finally, we note that the bundles EW , which were introduced in Sec-
tion 2.3, can be used to work out a vector-bundle theoretical proof of Welters’
Theorem [26], namely the statement that the base locus of Γ00 equals the sur-
face C − C for g ≥ 5.
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[17] Laszlo (Y.) – Un théorème de Riemann pour les diviseurs thêta sur les
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