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INVARIANT JETS OF A SMOOTH
DYNAMICAL SYSTEM

by Sophie Lemaire

Abstract. — The local deformations of a submanifold under the effect of a smooth
dynamical system are studied with the help of Oseledets’ multiplicative ergodic the-
orem. Equivalence classes of submanifolds, called jets, are introduced in order to

describe these local deformations. They identify submanifolds having the same ap-
proximations up to some order at a given point. For every order k, a condition on the
Lyapunov exponents of the dynamical system is established insuring the convergence
of the k-jet of a submanifold evolving under the action of the dynamical system. This
condition can be satisfied even by stable dynamical systems. The limit is a k-jet which
is invariant by the dynamical system.

Résumé (Les jets invariants d’un système dynamique). — Nous étudions les dé-
formations locales d’une sous-variété évoluant sous l’action d’un système dynamique
régulier. Afin de décrire ces déformations, nous introduisons des classes d’équivalence
de sous-variétés, appelées jets, qui identifient les sous-variétés ayant les mêmes approxi-
mations en un point jusqu’à un certain ordre. Pour tout entier k, nous obtenons une
condition sur les exposants de Lyapounov du système dynamique assurant la conver-
gence des jets d’ordre k des images d’une sous-variété par le système. Cette condition
n’exclut pas les systèmes dynamiques stables. La limite obtenue est un jet d’ordre k
invariant par le système dynamique.
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Introduction

One of the basic results for smooth dynamical systems is Oseledets’ multi-
plicative ergodic theorem [11] which describes the asymptotic behaviour of a
linear system. To obtain information on a smooth nonlinear dynamical sys-
tem, (φt)t∈T (T = Z or R), defined on a smooth manifold M , one may apply
Oseledets’ theorem to a linearization of the system. Under some assumptions,
the theorem asserts that there exist reals λ1 > · · · > λr and, for almost every
point x ∈ M , a splitting of the tangent space TxM into measurable subspaces

TxM = E1(x) ⊕ · · · ⊕Er(x),

such that the nonzero vectors of a subspace Ei(x) are expanded exponentially
fast by time evolution, with λi as asymptotic rate. The real λi is called the
i-th Lyapunov exponent of the dynamical system.

Pesin theory gives a nonlinear extension of Oseledets’ theorem by defining a
nonlinear analogue of the subspace

Vi = E1 ⊕ · · · ⊕Ei

for i ∈ {1, . . . , r} such that λi > 0. It is called the unstable manifold associated
with λi and consists of the points y satisfying

lim
t→+∞

1
t
Log

(
d(φ−t(x), φ−t(y))

)
≤ −λi.

Another extension of Oseledets’ theorem can be obtained by noting that this
theorem gives information on the asymptotic behaviour of the tangent space
of a submanifold under the effect of a dynamical system. For instance, assume
that (φn)n∈Z is a smooth, reversible and ergodic dynamical system on R

N ,
satisfying Oseledets’ theorem. If V is a subspace whose dimension equals that
of Vs for some s ∈ {1, . . . , r} and such that V ∩

⊕r
i=s+1 Ei = {0} almost surely,

then the tangent space at x of the submanifold

Mn(x) = φn

(
V + φ−n(x)

)
converges in probability to Vs(x), as n tends to infinity.

It is therefore natural to look for the asymptotic behaviour of higher-order
approximations. M. Cranston and Y. Le Jan have studied the second order ap-
proximation for isotropic Brownian flows in R

N [8], [3] and for random walks
on diffeomorphisms of R

N [9], [2]. Notably, they have established in [2] that
the condition, λs+1 − 2λs < 0, implies the convergence in probability of the
second fundamental form of Mn(x) at x. Thus, the second fundamental form
of Mn(x) at x may converge even if λs < 0, that is when no unstable mani-
fold is associated with λs. For example, the Lyapunov exponents of isotropic
Brownian flows in R

d always satisfy the condition λ2 − 2λ1 < 0. The aim of
this paper is to extend Oseledets’ theorem for higher-order approximations. By
analogy to jets of maps, equivalence classes of submanifolds, also called jets,
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INVARIANT JETS OF A SMOOTH DYNAMICAL SYSTEM 381

are introduced in order to describe any order approximations of a submani-
fold at a given point. A convergence result is proved for any order jets of a
submanifold evolving under the effect of the dynamical system (φn)n∈Z. This
result for the 2-jets corresponds to the one M. Cranston and Y. Le Jan have
established for the second fundamental form. However, the study of the third
approximation reveals the specificity of the second fundamental form. Indeed,
the second fundamental form of Mn can be written as the partial sum of a
“geometric series” that converges when λs+1 − 2λs < 0. In contrast, formulas
which characterize approximations of orders greater than two cannot be used
directly; a convergence result can be proved only after reorganizing these for-
mulas. The limits of the jets are in a way invariant by the dynamical system
and vary continuously on sets defined by Y.B. Pesin [12] as it is the case for
Oseledets’ spaces Vi, i = 1, . . . , r.

These results will be proved for random dynamical systems (RDS) as they
are defined by L. Arnold in [1]. RDS cover deterministic dynamical systems
as well as important classes of random processes (random walks in a group of
transformations [5], flows generated by a random or a stochastic differential
equation [7], etc.).

The paper is organized as follows. The first Section presents the setting and
the results for any order approximations: the generalization will be proved for
a local RDS in R

N with a fixed point and the result for a general RDS on
a manifold will follow as a consequence. The first three approximations are
studied successively in Section 2, presenting the ideas and the inequalities on
which the proof of the asymptotic behaviour of any order approximations is
based. Finally, Section 3 gives the iterative process allowing to describe the
approximations for orders greater than two and to prove the convergence results
with the help of the inequalities established in Section 2.

1. A nonlinear extension of the Oseledets’ theorem

1.1. The local random dynamical system. — Let (Ω,A,P) be a prob-
ability space and let θ : Ω → Ω be an invertible transformation such that P

is θ-ergodic. Throughout the paper, one considers a C∞ local RDS on R
N

(where N is an integer greater than one) over θ which fixes 0. Such a sys-
tem can be generated by a measurable mapping φ : D → R

N where D is a
measurable subset of Ω× R

N with the following properties: for all ω ∈ Ω,

(i) D(ω) :=
{
x ∈ R

N such that (ω, x) ∈ D
}

is an open neighbourhood of 0
in R

N ,

(ii) φ(ω) : D(ω) → R
N is a C∞ diffeomorphism onto its image, which fixes 0.

The set of such applications will be denoted by C.
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Applications φn for n ∈ Z are then defined by

φn =



φ(θn−1) ◦ · · · ◦ φ if n ≥ 1,
Id if n = 0,
φ−1(θn) ◦ · · · ◦ φ−1(θ−1) if n ≤ −1.

Each map φn is well-defined on a neighbourhood of 0 in R
N and is a C∞

diffeomorphism from a neighbourhood Un of 0 onto another one.
The first derivative of φ(ω) at 0, denoted by A(ω), generates a linear RDS

(An)n∈Z over θ, where An(ω) is the first derivative of φn(ω) at 0:

An =



A(θn−1) · · ·A if n ≥ 1
Id if n = 0,
A−1(θn) · · ·A−1(θ−1) = A−n(θn)−1 if n ≤ −1.

Oseledets’ theorem can be applied under the following integrability condition:

Log+ ‖A±1‖ ∈ L1(Ω,P).

It gives information about the growth rate of ‖Anv‖ for each v ∈ R
N :

Theorem 1.1 (V.I. Oseledets [11], [10]). — There exist a θ-invariant set
Ω̃ ∈ A of full measure, reals λ1 > · · · > λr and positive integers d1, . . . , dr with
d1 + · · ·+ dr = N , such that for all ω ∈ Ω̃, there is a measurable splitting of
R
N into R

N = E1(ω)⊕ · · · ⊕Er(ω), satisfying the following properties: for all
i ∈ {1, . . . , r}

• dim(Ei(ω)) = di,
• A(ω)Ei(ω) = Ei(θ(ω)),
• n−1 Log ‖An(ω)v‖ converges to λi uniformly in v ∈ Ei(ω) ∩ SN−1 as
n tends to +∞ or −∞

For i ∈ {1, . . . , r}, the integer di is called the multiplicity of the i-th Lya-
punov exponent λi.

1.2. A random family of submanifolds. — Fix s ∈ {1, . . . , r}. Denote
the subspace

⊕s
i=1Ei by Es and its dimension by d, i.e. d =

∑s
i=1 di. The

restriction of an application ξ ∈ C to R
d defines a parametrization of a random

family of d-dimensional submanifolds of R
N passing through 0: for all ω ∈ Ω,

there exists an open neighbourhood, W (ω), of 0 in R
N , such that

Vn(ω) = ξ(ω)
(
Un(ω) ∩W (ω) ∩ R

d
)

is a d-dimensional submanifold of R
N .

By applying the RDS (φn) between times −n and 0, one defines a random
family of d-dimensional submanifolds of R

N passing through 0, denoted by Vn:

Vn := φn

(
θ−n)(Vn(θ−n)

)
.
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INVARIANT JETS OF A SMOOTH DYNAMICAL SYSTEM 383

The aim of this paper is to study the asymptotic behaviour of the approxima-
tions of the sequence (Vn)n at 0.

1.3. Description of any order approximations of a submanifold. —
With the help of local parametrizations, equivalence classes of submanifolds will
be introduced in order to describe all submanifolds having the same contacts up
to some order at 0 (proofs of the statements are developed in the Appendix A).

1.3.1. Jets of maps. — For two Euclidean spaces E and F , let C∞
0 (E,F )

denote the class of C∞ maps defined on a neighbourhood of 0 in E with values
in F and let C∞

0,0(E,F ) denote the subclass of maps in C∞
0 (E,F ) that fix 0.

Definition 1.2. — Let k ∈ N
∗. Two maps f, g ∈ C∞

0 (E,F ) are said to “have
a contact of order at least k at 0” if f(0) = g(0) and if for all j ∈ {1, . . . , k},
Djf(0) = Djg(0).

This relation is an equivalence relation on C∞
0 (E,F ). The equivalence class

of a function f at 0 is denoted by jk0 (f) and called the “k-jet of f at 0”. For
a subclass F of C∞

0 (E,F ), Jk
0 (F) will be the set of k-jets at 0 of applications

of F . The space Jk
0 (F) is endowed with the distance dk defined by

dk
(
jk0 (f), j

k
0 (g)

)
= max

(
‖f(0)− g(0)‖, ‖Dif(0)−Dig(0)‖, i ∈ {1, . . . , k}

)
for every f, g ∈ F .

1.3.2. Parametrizations
Definition 1.3. — Let S be a d-dimensional C∞ submanifold of R

N , let x
in R

N and let E be a d-dimensional subspace of R
N . A map f ∈ C∞

0 (E,RN )
is called a “parametrization of S at x” if

(i) f is an homeomorphism from a neighbourhood U of 0 in E onto its image;
(ii) Df(0) is injective;
(iii) f(0) = x;
(iv) f(U) = V ∩ S where V is a neighbourhood of 0 in R

N .

The set of maps in C∞
0 (E,RN ) satisfying properties (i) and (ii) are called

embeddings and thus will be denoted by Emb∞
0 (E,RN ) and the subset of maps

which also satisfy (iii) will be denoted by Emb∞
0,x(E,RN ).

Remark 1.4. — To shorthand the notations, R
d will denote the vector sub-

space R
d × {0}N−d of R

N for every d ∈ {1, . . . , N}.

1.3.3. Contacts of a submanifold at 0. — Using jets of parametrizations, one
may define jets for smooth submanifolds of R

N :

Definition 1.5. — Let k be a positive integer. Two C∞ submanifolds S1
and S2 of R

N passing through 0 have a “contact of order at least k at 0” if
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there exist d ∈ {1, . . . , N} and two parametrizations f1, f2 ∈ Emb∞
0,0(R

d,RN)
of S1 and S2 at 0 such that jk0 (f1) = jk0 (f2).

This relation defines an equivalence relation on the set of C∞ submanifolds
of R

N passing through 0 (see Lemma A.5). The equivalence class of a C∞

submanifold S will be denoted by jk0 (S) and called the “k-jet of S at 0”. The
set of all k-jets at 0 of C∞ submanifolds of R

N will be denoted by J k
0 (RN ).

If S is a C∞ submanifold of R
N passing through 0 and h ∈ Emb∞

0,0(R
N ,RN),

then the k-jet of h(S) at 0 depends uniquely on jk0 (h) and jk0 (S). Thus one can
define an operator ∗ on Jk

0 (Emb∞
0,0(R

N ,RN)) × J k
0 (RN ) by setting

jk0 (f)∗j
k
0 (S) = jk0

(
f(S)

)
for any f ∈ Emb∞

0,0(R
N ,RN ) and for any C∞ submanifold S passing through 0.

Consider now a sequence (Sn)n of d-dimensional C∞ submanifolds of R
N

passing through 0.

Definition 1.6. — The sequence of k-jets of Sn at 0 is said to converge to
the k-jet of a submanifold S at 0, if there exist a sequence of parametrizations
fn ∈ Emb∞

0,0(R
d,RN ) of Sn at 0 and a parametrization f ∈ Emb∞

0,0(R
d,RN)

of S at 0 such that (jk0 (fn))n converges to jk0 (f).

In Section A.3, it is shown that this definition is consistent and is equivalent
to the convergence in a complete metric space.

1.4. Statements of results

1.4.1. The asymptotic behaviour of the jets of the submanifolds Vn at 0. —
The description of the asymptotic behaviour of (jk0 (Vn))n will use an auxiliary
sequence of submanifolds (Un)n tangent to Es at 0 and defined as follows:

∀n ∈ N, Un := φn(θ−n)
(
Un(θ−n) ∩ Es(θ−n)

)
Theorem 1.7. — Let k be an integer greater than one. Assume that
Log+ ‖A±1‖ and Log+ ‖Djφ(0)‖ for all j ∈ {2, . . . , k}, lie in L1(Ω,P).

• If λs+1−kλs < 0, then the sequence (jk0 (Un))n converges P-almost surely.
The limit is a k-jet denoted by S(k), which is “invariant by the RDS”
in the sense that jk0 (φ)∗S(k) = S(k)(θ) P-almost surely. A description of
the limits S(j) for j ∈ {1, . . . , k} can be obtained iteratively (see Proposi-
tion 3.8).

• If λs+1 − kλs < 0 and Dξ(0)(Rd) ∩
⊕r

i=s+1 Ei = {0} P-almost surely,
then the sequence (jk0 (Vn))n converges to S(k) in probability.

Remark 1.8. — When k = 1, the assumption λs+1 − kλs < 0 is satisfied.
Theorem 1.7 asserts that the tangent space T0Vn converges in probability to Es.
As a consequence of Oseledets’ theorem, one can get a more precise statement:

tome 129 – 2001 – n
o
3



INVARIANT JETS OF A SMOOTH DYNAMICAL SYSTEM 385

let Π and Πn for every n ∈ N be the orthogonal projection onto Es and T0Vn

respectively.

• If Dξ(0)(Rd) ∩
⊕r

i=s+1 Ei = {0} P-almost surely, then for all ε > 0, the
sequence (e−n(λs+1−λs+ε)‖Πn −Π‖)n converges to 0 in probability.

A proof of this last statement will be presented in Section 2.1. Let us note
that V ∩

⊕r
i=s+1 Ei = {0} P-almost surely for almost every subspace V in

the d-Grassmannian Gd(RN ), with respect to any diffuse probability measure
on Gd(RN ).

Remark 1.9. — For k = 2, Theorem 1.7 gives the same statement as the one
proposed by M. Cranston and Y. Le Jan [2]. The limit S(2) is the set of C∞

submanifolds passing through 0, whose tangent space at 0 is Es and whose
second fundamental form at 0 is defined by the following series:

∞∑
j=1

(I−Π)Aj−1(θ−(j−1))D2φ(θ−j)(0)(A−jΠ, A−jΠ).

Remark 1.10. — The proof of Theorem 1.7 for any order k uses the following
fact: to establish the convergence of the k-jets of a sequence (Sn) of submani-
folds at 0, it suffices to prove that the derivatives up to order k of a particular
parametrization at 0 of these submanifolds, called “the orthogonal parametriza-
tion”, converge (definition and properties of orthogonal parametrizations are
presented in the appendix A, Sections A.2 and A.3). The proof of the conver-
gence of the derivatives of an orthogonal parametrization of Un and Vn at 0
is based on an expansion of the derivatives with the help of diagrams (see
Section 3). The aim of the development is to express the derivatives as a com-
bination of terms that converge under the assumptions of Theorem 1.7. The
study of the third derivative shows that such a development is not simply given
by derivation, but that the terms obtained by derivation have to be rearranged.

Remark 1.11. — The limits S(j) for j ∈ {1, . . . , k}, are invariant by the RDS
since Un+1 = φ(θ−1)(Un(θ−1)) for all n ∈ N and the composition of two k-jets
defines a continuous map (Lemma A.1).

As θ preserves the measure P, information on the asymptotic jets at 0 of the
submanifolds Vn(θn) = φn(Vn) can be deduced from Theorem 1.7:

Corollary 1.12. — Let k be an integer greater than one. Assume
that Log+ ‖A±1‖ ∈ L1(Ω,P) and that Log+ ‖Djφ(0)‖ ∈ L1(Ω,P) for all
j ∈ {2, . . . , k}. If λs+1 − kλs < 0 and Dξ(0)(Rd) ∩

⊕r
i=s+1 Ei = {0} P-almost

surely, then the k-jet of φn(Vn) at 0 converges in law to S(k).
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1.4.2. Jets of the unstable manifolds. — When λs ≥ 0, the assumption on the
Lyapunov exponents, λs+1 − kλs < 0, is satisfied for every positive integer k.
With the help of Pesin theory [12], [13], one may give a geometric interpretation
of the limits S(k):

Corollary 1.13. — Assume that for all k ∈ N
∗, Log+ ‖Dkφ±1(0)‖ belongs

to L1(Ω,P). If λs > 0, then S(k) is P-almost surely the k-jet at 0 of the local
unstable manifolds tangent to Es at 0.

Proof. — The construction of the local stable and unstable manifolds for
smooth random dynamical systems, follows from Theorem 5.1 of [14]. For the
unstable manifolds at 0, the statement is the following:

Theorem 1.14 (D. Ruelle, 1979). — Assume that for all k ∈ N,

Log+ ‖Dkφ±1(0)‖ ∈ L1(Ω,P).

There exist a θ-invariant set Ω′′ ∈ A of full measure, measurable functions
β > α > 0 and γ > 1 on Ω′′ and a sequence (+p)p of positive integers that
converges to infinity such that:

(i) if λ is a positive real distinct from the Lyapunov exponents, then for all
ω ∈ Ω′′,

Vu,λ(ω, α) =
{
y ∈ B̄(0, α(ω)), ∀n ∈ N, ‖φ−n(ω)(y)‖ ≤ β(ω)e−nλ

}
is a C∞ submanifold of B̄(0, α(ω)), tangent at 0 to the subspace

V u,λ(ω) =
{
v ∈ R

N , lim
n→+∞

1
n

Log
∥∥D0φ−n(ω)v

∥∥ ≤ −λ
}
;

(ii) if y, z ∈ Vu,λ(ω, α) then for all n ∈ N,∥∥φ−n(ω)(y) − φ−n(ω)(z)
∥∥ ≤ γ(ω)‖y − z‖;

(iii) for all p ∈ N, Vu,λ(ω, α) ⊂ φ�p

(
θ−�pω)(Vu,λ(θ−�p(ω), α)

)
.

Let λ ∈ ]λs+1, λs[ be a positive real. By property (iii), the k-jets
at 0 of the local unstable manifold Vu,λ(ω, α) and of the submanifolds
φ�p(θ−�pω)(Vu,λ(θ−�pω, α)) coincide for every p ∈ N and k ∈ N

∗. By The-
orem 1.7, for every k ∈ N

∗, the k-jet of φ�p(θ
−�pω)(Vu,λ(θ−�pω, α)) at 0

converges in probability to S(k)(ω), as p tends to infinity. Therefore, for every
k ∈ N

∗ the k-jet of Vu,λ(ω, α) at 0 is P-almost surely equal to S(k)(ω).

1.4.3. The case of a random dynamical system on a manifold. — Let
(M, 〈· , ·〉x, x ∈ M) be a C∞ Riemannian manifold of dimension N . One may
rewrite Theorem 1.7 in order to describe the asymptotic local deformations
of a random family of submanifolds of M under the action of a smooth RDS.
Let (ϕn)n∈Z be a smooth ergodic RDS on M . It is equivalent to consider a
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INVARIANT JETS OF A SMOOTH DYNAMICAL SYSTEM 387

probability space (Ω,A,P), an invertible transformation θ : Ω → Ω such that
P is θ-ergodic, a C∞ diffeomorphism of M denoted by ϕ and to set

ϕn =



ϕ(θn−1) ◦ · · · ◦ ϕ if n ≥ 1,
Id if n = 0,
ϕ−1(θn) ◦ · · · ◦ ϕ−1(θ−1) if n ≤ −1

One will assume that the RDS (ϕn)n∈Z, has the following properties:

• there exists a probability measure µ, on Ω × M with marginal
P on Ω, which is invariant and ergodic for the skew product θ̃:
(ω, x) �→ (θω, ϕ(ω)(x));

• Log+ ‖Txϕ(ω)±1‖x belongs to L1(Ω ×M,µ).

Thus by Oseledets’ theorem, there exist a θ̃-invariant set Ω̃ of full µ-measure,
reals λ1 > · · · > λr and positive integers d1, . . . , dr with d1 + · · ·+ dr = N ,
such that for all (ω, x) ∈ Ω̃, there is a measurable splitting of TxM into TxM =
E1(ω, x)⊕· · ·⊕Er(ω, x), satisfying the following properties: for all i ∈ {1, . . . , r}

• dim(Ei(ω, x)) = di;

• Txϕ(ω)Ei(ω, x) = Ei(θ̃(ω, x));

•
(
n−1 Log ‖Txϕn(ω)v‖x

)
converges to λi uniformly for v in Ei(ω, x) such

that ‖v‖x = 1, as n tends to +∞ or −∞
1.4.3.1. Contacts of a submanifold of M . — The jets of maps between two
C∞ manifolds Σ and Σ̃ are defined by taking local charts:

Definition 1.15. — Let f1, f2 be C∞ applications mapping Σ into Σ̃, let x
be a point of Σ and let k ∈ N

∗. Assume that f1(x) = f2(x). “f1 and f2 have
a contact of order at least k at x” if for any chart (ζ, U) of Σ at x and for any
chart (ζ̃, Ũ) of Σ̃ at f1(x), jk0 (ζ̃ ◦ f1 ◦ ζ−1) = jk0 (ζ̃ ◦ f2 ◦ ζ−1).

The equivalence classes for this equivalence relation are also called the k-jets
at x. One proceeds similarily to define jets of a C∞ submanifold of M :

Definition 1.16. — Let k ∈ N
∗ and let S and S̃ be two C∞ submanifolds of

M passing through a point x. “S and S̃ have a contact of order at least k at x”
if for every chart (ζ, U) of M at x, ζ(S ∩ U) and ζ(S̃ ∩ U) have a contact of
order at least k at 0.

The relation “having a contact of order at least k at x” is an equivalence
relation on the set of C∞ submanifolds of M passing through x. The class
of a submanifold S of M for this relation will be called “the k-jet at x of S”
and denoted by jkx(S). The set of k-jets of all C∞ submanifolds of M will be
denoted by J k(M) and the set of k-jets at x by J k

x (M).
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Actually, if there exists a chart (ζ, U) of M at x such that ζ(S ∩ U) and
ζ(S̃ ∩ U) have a contact of order at least k at 0, then it is also true for any
other chart of M at x (see Lemma A.10).

One can define an operator ∗ on Jk(Diff∞(M)) × J k(M) by setting

jkx(f)∗j
k
x(S) = jkf(x)

(
f(S)

)
if f ∈ Diff∞(M), x ∈ M and S is a C∞ submanifold of M passing through x.

It remains to define the convergence in J k(M). In the case M = R
N , the

natural way to define the convergence is to use parametrizations:

Definition 1.17. — For every n ∈ N, let Sn be a d-dimensional submanifold
of R

N passing through a point xn. “The sequence (jkxn
(Sn))n converges to the k-

jet of a submanifold S at a point x”if there exists a sequence of parametrizations
fn ∈ Emb∞

0,xn
(Rd,RN ) of Sn at xn and a parametrization f ∈ Emb∞

0,x(R
d,RN)

of S at x such that (jk0 (fn))n converges to jk0 (f).

As usual this definition can be extended in the case of any manifold M by
introducing charts:

Definition 1.18. — Let (xn) be a sequence of points of M , let x ∈ M and
let Sn, for n ∈ N, denote a C∞ submanifold of M passing through xn. “The
k-jet of Sn at xn is said to converge to the k-jet of a submanifold S at x as n
tends to +∞” if (xn)n converges to x and if, for every chart (ζ, U) of M at x,
the sequence (jkζ(xn)

(ζ(Sn ∩ U)))n converges to jk0 (ζ(S ∩ U)).

Actually, it suffices to verify the criteria for one chart to prove the conver-
gence (see Lemma A.13).

1.4.3.2. Existence of the invariant jets. — Let C(M) denote the set of random
parametrizations of M , that is the set of measurable maps ζ : D̃ → M where
D̃ is a measurable subset of Ω×M × R

N such that, for all (ω, x) ∈ Ω×M :

• D̃(ω, x) := {z ∈ R
N , (ω, x, z) ∈ D̃} is an open neighbourhood of 0 in R

N ;
• ζ(ω, x) : D̃(ω, x) �→ M is a C∞ diffeomorphism onto its image satisfying
ζ(ω, x)(0) = x.

Without loss of generality, one may consider a random parametrization
ζ ∈ C(M) of M such that for all (ω, x) ∈ Ω × M , Dζ(ω, x)(0) is an isometry
from the Euclidean space (RN , 〈·, ·〉), onto (TxM, 〈·, ·〉x). The subset of C(M),
which consists of applications having this property, will be denoted by C1(M).

Let ξ ∈ C(M). For every n ∈ N
∗, there exists a neighbourhood Un of 0 in

R
N , such that ϕn ◦ ξ is a C∞ diffeomorphism from Un onto its image. For

(ω, x) ∈ Ω ×M , ξ(ω, x)(Un(ω, x) ∩ R
d) is a C∞ d-dimensional submanifold of
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M passing through x. Applying the RDS (ϕn) between times −n and 0, gives
a d-dimensional submanifold of M passing through x, denoted by Vn,ξ(ω, x):

Vn,ξ(ω, x) := ϕn(θ−nω) ◦ ξ
(
θ̃−n(ω, x)

)(
Un(θ̃−n(ω, x)) ∩ R

d
)
.

For ζ ∈ C(M), the map Φζ , defined by ζ−1(θ̃) ◦ ϕ ◦ ζ, belongs to C and gen-
erates a local RDS (Φn,ζ)n∈Z over θ̃. Its Lyapunov exponents are λ1, . . . , λr
and Oseledets’ spaces denoted by Eζ,i, i ∈ {1, . . . , r} satisfy the equalities
Eζ,i = D0ζ(Ei) for all i ∈ {1, . . . , r}. Applying Theorem 1.7 to the probability
space (Ω ×M,A ⊗ B(M), µ), endowed with the transformation θ̃, and to the
local RDS (Φn,ζ)n∈Z, gives asymptotic results for the jets of the submanifolds
Vn,ξ(ω, x) at x:

Corollary 1.19. — Let k ∈ N
∗ and let ξ ∈ C(M). Assume that

Log+ ‖Txϕ(ω)±1‖ ∈ L1
(
Ω×M,A⊗ B(M), µ

)
and that there exists ζ ∈ C1(M) such that Log+ ‖DjΦζ(0)‖ ∈ L1(Ω×M,µ) for
all j ∈ {2, . . . , k}.

If λs+1 − kλs < 0 and Dξ(0)(Rd) ∩
⊕r

i=s+1 Ei = {0} µ-almost surely, then
the sequence (jkx(Vn,ξ(ω, x)))n converges in probability. The limit denoted by
S(k) does not depend on ξ and is invariant by the RDS i.e. for µ-almost every
(ω, x) ∈ Ω×M ,

jkx
(
ϕ(ω)

)
∗ S(k)(ω, x) = S(k)

(
θ(ω), ϕ(ω)(x)

)
.

1.4.3.3. Continuity of the invariant jets. — Let us introduce the subsets de-
fined by Pesin [12] on which the Oseledets’ subspaces are continuous. For ε > 0,
R > 0 and ω ∈ Ω, let ΛR,ε(ω) denote the set of points x in M satisfying the
following properties:

• (ω, x) ∈ Ω̃;

• for every n ∈ Z, m ∈ Z, i ∈ {1, . . . , r} and v ∈ Ei(θ̃m(ω, x));∥∥Tϕn(θ̃m(ω, x))v
∥∥
ϕm+n(ω)(x)

≤ Renλi+(|n|+|m|)ε‖v‖ϕm(ω)(x);(1)

∥∥Tϕn(θ̃m(ω, x))v
∥∥
ϕm+n(ω)(x)

≥ R−1enλi−(|n|+|m|)ε‖v‖ϕm(ω)(x);(2)

• if I and J are two nonempty disjoint subsets of {1, . . . , r} then, for every
m ∈ Z, the sinus of the angle γ(EI(θ̃m(ω, x)), EJ (θ̃m(ω, x))) between the
vector spaces

EI

(
θ̃m(ω, x)

)
=

⊕
i∈I

Ei

(
θ̃m(ω, x)

)
and EJ

(
θ̃m(ω, x)

)
=

⊕
i∈J

Ei

(
θ̃m(ω, x)

)
is greater than R−1e−|m|ε.
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Let us note that for µ-almost every (ω, x) ∈ Ω × M , there exists R ∈ N
∗

such that x ∈ ΛR,ε(ω). These subsets are not invariant by the RDS (ϕn)n but
have the following properties:

Proposition 1.20. — Let 0 < ε < 1
4 min(λi−λi+1, i ∈ {1, . . . , r}) and R > 0.

For every ω ∈ Ω,
• ΛR,ε(ω) is a closed subset of M ;
• there exists a real T > R such that ϕ(ω)(ΛR,ε(ω)) ⊂ ΛT,ε(θ(ω));
• The union Λε(ω) =

⋃
R>0 ΛR,ε(ω) is invariant by the RDS, i.e.

ϕ(ω)(Λε(ω)) = Λε(θ(ω));
• x �→ Ei(ω, x) is continuous in the subset ΛR,ε(ω).

The proof of Proposition 1.20 is the same as Pesin’s proof of Theorem 1.3.1
in [12]. A continuity result for the invariant k-jet S(k)(ω, .) on ΛR,ε(ω) can
be deduced by taking a particular parametrization ζ ∈ C1(M); ζ will be the
composition of the C∞ exponential map associated to the C∞ Riemannian
metric of M (denoted by Exp) and a global trivialization of the tangent bundle
TM which is isometric on the fibers. Before stating the continuity result, let us
introduce a notation: Φ will denote the map ϕ lifted by the exponential map
to TM ; for (ω, x) ∈ Ω×M ,

Φ(ω, x) := Exp−1
ϕ(ω)(x) ◦ϕ(ω) ◦ Expx

(there exists a measurable positive function δ such that, for each (ω, x) ∈ Ω×M ,
Φ(ω, x) is well-defined on the δ(ω, x)-open ball of TxM centered at 0 and is
a C∞ diffeomorphism onto its image).

Corollary 1.21. — Let us assume that∫
Ω×M

Log+
∥∥(Txϕ(ω))±1

∥∥dµ(ω, x) and

∫
Ω

Log+ sup
x∈M

∥∥DjΦ(ω, x)(0)
∥∥dP(ω),

are finite for every j ∈ {2, . . . , k}. Let s ∈ {1, . . . , r} and let d denote the
dimension of the subspace Es :=

⊕s
i=1Ei.

If λs+1 − kλs < 0, then there exists a random k-jet of d-dimensional sub-
manifolds of M at x denoted by S(k)(ω, x) such that:

• S(k) is invariant by the RDS (ϕn)n∈Z;
• For P-almost every ω ∈ Ω, x �→ S(k)(ω, x) is continuous in ΛR,ε(ω), R
and ε being positive numbers such that

ε <

{
min

(
1
20λs,

1
4 (λi − λi+1), i ∈ {1, . . . , r − 1}

)
if λs > 0,

min
(

1
20k (kλs − λs+1), 14 (λi − λi+1), i ∈ {1, . . . , r − 1}

)
if λs ≤ 0.

The proof of Corollary 1.21 is postponed until Appendix B because it will
take up some details of the proof of Theorem 1.7.
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2. The first three approximations

2.1. Convergence of the tangent space of Vn at 0 toward Es. — Let
Π and Πn denote the orthogonal projections onto Es and T0Vn respectively.
The purpose of the subsection is to establish a lower bound for the convergence
speed of Πn to Π as n tends to +∞ (Proposition 2.1). This lower bound will
be useful in the study of the asymptotic behaviour of any order approximations
of Vn at 0.

Proposition 2.1. — Let ε > 0. If Dξ(0)(Rd) ∩
⊕r

i=s+1 Ei = {0} P-almost
surely, then the sequence(

max
k,�∈{0,...,n}

e−n(λs+1−λs+ε)−k(λs+ε)−�(−λs+1+ε)
∥∥A−�(Πn −Π)Ak(θ−k)

∥∥)
n

converges in probability to zero.

The proof of Proposition 2.1 uses two consequences of Oseledets’ theorem.
First:

Lemma 2.2. — Let i ∈ {1, . . . , r}. The sequence (n−1 Log ‖An(θ−n)|Ei(θ−n)‖)n
converges P-almost surely to λi.

Proof. — The sequence (Log ‖An(θ−n)|Ei(θ−n)‖)n is subadditive since
An(θ−n)Ei(θ−n) = Ei for all i ∈ {1, . . . , r} and n ∈ N. Thus, one may
apply Kingman’s subadditive ergodic Theorem [6]:

Theorem 2.3 (J.F. Kingman, 1968). — Let (X,A,m) be a probability space,
let T : X → X be a measurable transformation such that m is T -invariant and
let (fn)n≥1 be a sequence of measurable functions from X to R ∪ {−∞} such
that

(i) f+1 ∈ L1(X,A,m);
(ii) (fn)n≥1 is subadditive, i.e. for all n,m ≥ 1, fn+m ≤ fn + fm(T n).
There exists a measurable function, f : X → R ∪ {−∞}, T -invariant satis-

fying:
• f+ ∈ L1(X,m);
• lim

n→+∞
n−1fn = f m-almost surely;

• lim
n→+∞

n−1
∫
fn(x)dm(x) = infn n−1

∫
fn(x)dm(x) =

∫
f(x)dm(x).

The sequence (n−1 Log ‖An(θ−n)|Ei(θ−n)‖)n≥1 has a P-almost surely limit
as n tends to +∞. Since P is θ-invariant, its limit is almost surely equal to the
limit of the sequence (n−1 Log ‖An|Ei

‖), i.e. λi.

The second result required states that the angle between two subspaces Ei

and Ej in Oseledets’ splitting does not decrease exponentially fast to zero (see
for example, [1] for a proof):
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Lemma 2.4. — For every i ∈ {1, . . . , r}, let πi denote the projection onto Ei

along
⊕

j �=i Ej. Then

lim
n→+∞

1
n

Log
∥∥πi(θ−n)

∥∥ = 0 P-almost surely.

Let us now return to the convergence of the tangent space of Vn at 0 to Es

and prove a preliminary result:

Lemma 2.5. — Let ε > 0.

1) Let k ∈ {1, . . . , s}. The sequence
(
e−n(λs+1−λk+ε)‖(Πn − Π)|Ek

‖
)
n
con-

verges to zero in probability.
2) The sequence (e−n(λs+1−λs+ε)‖Πn−Π‖)n converges to zero in probability.
3) Let + ∈ {s+ 1, . . . , d} and k ∈ {1, . . . , d}. The sequence(

e−n(λ�−max(λk,λs)+ε)‖π�(Πn −Π)|Ek
‖
)
n

converges to zero in probability.

Proof. — To prove Lemma 2.5, fix a random basis (u1, . . . , ud) of Dξ(0)(Rd).
The following notations will be used:

• for a random vector v and n ∈ N, set v(n) = An(θ−n)v(θ−n);

• for d random vectors (v1, . . . , vd), for any i ∈ {1, . . . , d} set

v = v1 ∧ · · · ∧ vd and v∧i = v1 ∧ · · · ∧ vi−1 ∧ vi+1 ∧ · · · ∧ vd.

1) Let k ∈ {1, . . . , s} and let e(ω) be a unit vector of Ek(ω). It follows from
the equality (Π −Πn)e = (I−Πn)e that∥∥e ∧ u(n)

∥∥ =
∥∥(I−Πn)e ∧ u(n)

∥∥ =
∥∥(I−Πn)e

∥∥ ·
∥∥u(n)∥∥.

First let us bound ‖e∧ u(n)‖. For a family of indexes (i1, . . . , id) ∈ {1, . . . , r}d,
the p-vector e ∧ (πi1 ∧ · · · ∧ πid)(u

(n)) is equal to zero except when, for every
j ∈ {1, . . . , r}, the number qj of projections in a subspace Ej is smaller than dj
(the dimension of Ej) and when the number of projections on the subspace Ek

is smaller than dk − 1. If these two conditions are satisfied, then
r∑

j=1

qjλj ≤
s∑

i=1

diλi + λs+1 − λk

and ∥∥e ∧ (πi1 ∧ · · · ∧ πid)(u
(n))

∥∥
=

∥∥e ∧ ∧dAn(θ−n)(πi1 (θ
−n) ∧ · · · ∧ πid(θ

−n))(u(θ−n))
∥∥

≤
∥∥∧dAn(θ−n)|(Ei1∧···∧Eid

)(θ−n)

∥∥ ·
∥∥πi1(θ−n)‖ · · · ‖πid(θ−n)

∥∥.
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By Oseledets’ theorem, for all ε > 0, there exists a P-almost surely finite
random variable Cε, such that for all n ∈ N,∥∥∧dAn(θ−n)|(Ei1∧···∧Eid

)(θ−n)

∥∥ ≤ Cεen(Σ
r

j=1qjλj+ε).

Moreover, for all i ∈ {1, . . . , r},

lim
n→+∞

1
n

Log(‖πi(θ−n)‖) = 0

P-almost surely. Thus, for all ε > 0, there exists a P-almost surely finite random
variable Cε, such that for all n ∈ N,

(3)
∥∥e ∧ u(n)

∥∥ ≤ Cε exp
(
n
( s∑

j=1

djλj + λs+1 − λk + ε
))

.

Consider now ‖u(n)‖−1. Let πs denote the projection onto Es along
⊕r

i=s+1 Ei.
As the dimension of ∧dEs is equal to 1,∥∥u(n)∥∥−1 =

∥∥∧dAn(θ−n)u(θ−n)
∥∥−1

≤
∥∥∧dπs

∥∥ ·
∥∥∧dAn(θ−n) ∧d πs(θ−n)(u(θ−n))

∥∥−1

≤
∥∥∧dπs

∥∥ ·
∥∥∧dAn(θ−n)|∧dEs(θ−n)

∥∥−1·
∥∥∧dπs(θ−n)(u(θ−n))

∥∥−1
.

By Oseledets’ theorem,

lim
n→+∞

1
n

Log
∥∥∧dAn(θ−n)|∧dEs(θ−n)

∥∥ =
s∑

j=1

djλj

P-almost surely. Thus, for all ε > 0, there exists a P-almost surely finite random
variable Cε such that for all n ∈ N,∥∥u(n)∥∥−1 ≤ Cεen(−Σs

i=1λidi+ε) ·
∥∥∧dπs(θ−n)u(θ−n)

∥∥−1
.

By assumption, Dξ(0)(Rd) ∩
⊕r

i=s+1Ei = {0} P-almost surely. Thus
∧dπs(u)  = 0 P-almost surely and the sequence (e−nε‖ ∧d πs(θ−n)u(θ−n)‖−1)
converges to zero in probability. Therefore for all ε > 0, there exists a sequence
of random variables (Cε,n)n that converges to zero in probability, such that for
all n ∈ N,

(4) ‖u(n)‖−1 ≤ Cε,nen(−Σs

i=1λidi+ε).

In conclusion, for all ε > 0 there exists a sequence of random variables (Cε,n)n
that converges to zero in probability, such that for all n ∈ N,∥∥(Π −Πn)|Ek

∥∥ ≤ Cε,nen(λs+1−λk+3ε).

2) Fix 0 < ε < λs − λs+1 and 0 < δ < 1. For n ∈ N, set

An,δ =
{
ω ∈ Ω such that e−n(λs+1−λs+ε)‖(I−Πn)Π‖ > δ

}
.
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The first point of Lemma 2.5 states that P(An,δ) converges to zero as n tends
to +∞. On the other hand, Theorem A.4 established by T. Kato implies that
if ω  ∈ An,δ, then∥∥Πn(ω)−Π(ω)

∥∥ =
∥∥(I−Πn(ω))Π(ω)

∥∥ ≤ δen(λs+1−λs+ε).

Thus, the sequence
(
‖Πn−Π‖e−n(λs+1−λs+ε)

)
n

converges to zero in probability.

3) Let + ∈ {s + 1, . . . , d}, k ∈ {1, . . . , d} and let e be a unit vector of Ek.
Then π�(Πn−Π)(e) is equal to π�Πn(e). The decomposition of the vector Πn(e)
on the basis (u(n)i )1≤i≤d gives:

Πn(e) =
d∑

i=1

(−1)i+1u
(n)
i

〈
e ∧ u(n)∧i, u(n)

〉
·
∥∥u(n)∥∥−2

.

By Oseledets’ theorem, for every ε > 0, there exists a P-almost surely finite
random variable Cε, such that for all n ∈ N,∥∥π�(u(n)i )

∥∥ =
∥∥An(θ−n)π�(θ−n)(ui(θ−n))

∥∥ ≤ Cεen(λ�+ε).

A proof similar to the one used for upper bound (3) shows that

(5)
∥∥e ∧ u(n)∧i

∥∥ ≤ Cε exp
(
n
( s∑

j=1

λjdj −max(λk, λs) + ε
))

.

It follows from inequalities (4) and (5) that for all ε > 0, there exists a sequence
of random variables (Cε,n)n which converges in probability to zero, such that
for all n ∈ N, ‖π�Πn(e)‖ ≤ Cε,nen(λ�−max(λk,λs)+ε).

Let us derive Proposition 2.1 from Lemma 2.5:

Proof of Proposition 2.1. — Let k, + ∈ {1, . . . , n}. It suffices to decompose
A−�(Πn−Π)Ak(θ−k) using the projectors π1, . . . , πr and to apply Lemmas 2.4,
2.5 and Oseledets’ theorem to each term of the decomposition:

• If i, j ∈ {1, . . . , s}, then∥∥A−�πi(Πn −Π)πjAk(θ−k)
∥∥

≤
∥∥A−�|Ei

∥∥ ·
∥∥πi∥∥ ·

∥∥(Πn −Π)|Ej

∥∥ ·
∥∥Ak(θ−k)|Ej(θ−k)

∥∥ ·
∥∥πj(θ−k)

∥∥
≤ Cε,ne�(−λi+ε)+n(λs+1−λj+ε)+k(λj+ε)

It follows from i, j ≤ s and k ≤ n that λj(k − n) ≤ λs(k − n) and
−λi ≤ −λs. Thus∥∥A−�πi(Πn −Π)πjAk(θ−k)

∥∥ ≤ Cε,ne�(−λs+ε)+n(λs+1−λs+ε)+k(λs+ε).
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• If i ∈ {1, . . . , s} and j ∈ {s+ 1, . . . , r}, then∥∥A−�πi(Πn −Π)πjAk(θ−k)
∥∥

≤
∥∥A−�|Ei

∥∥ ·
∥∥πi∥∥ ·

∥∥Πn −Π
∥∥ ·

∥∥Ak(θ−k)|Ej(θ−k)

∥∥ ·
∥∥πj(θ−k)

∥∥
≤ Cε,ne�(−λi+ε)+n(λs+1−λs+ε)+k(λj+ε)

≤ Cε,ne�(−λs+ε)+n(λs+1−λs+ε)+k(λs+1+ε).

• If i ∈ {s+ 1, . . . , r} and j ∈ {1, . . . , r}, then∥∥A−�πi(Πn −Π)πjAk(θ−k)
∥∥

≤
∥∥A−�|Ei

∥∥ ·
∥∥πi(Πn −Π)|Ej

∥∥ ·
∥∥Ak(θ−k)|Ej(θ−k)

∥∥ ·
∥∥πj(θ−k)

∥∥
≤ Cε,ne�(−λi+ε)+n(λi−max(λj ,λs)+ε)+k(λj+ε).

As +, k ≤ n, (n− +)λi ≤ (n− +)λs+1 and
< if j ≤ s, then −nmax(λj , λs) + λjk = (k − n)λj ≤ (k − n)λs.
< if j ≥ s+ 1, then −nmax(λj , λs) + λjk ≤ −nλs + kλs+1.

Thus∥∥A−�πi(Πn −Π)πjAk(θ−k)
∥∥ ≤ Cε,ne�(−λs+1+ε)+n(λs+1−λs+ε)+k(λs+ε).

Therefore, for all n ∈ N and k, + ∈ {0, . . . , n},∥∥A−�(Πn −Π)Ak(θ−k)
∥∥ ≤ Cε,ne�(−λs+1+ε)+n(λs+1−λs+ε)+k(λs+ε).

2.2. Asymptotic behaviour of the second order approximation. —
This section presents a proof of the announced results for the second order
approximation of Vn at 0. Let

• υn denote the restriction of φn(θ−n) to Es(θ−n) ∩ Un(θ−n) and
• γn denote the restriction of φn(θ−n) ◦ ξ(θ−n) to W (θ−n) ∩ Un(θ−n).
The orthogonal normalizations of υn and γn at 0 designate the parametriza-

tions of Un and Vn at 0 defined in a neighbourhood of 0 by

Υn := υn ◦ (Π ◦ υn)−1 ◦ Π and Γn := γn ◦ (Πn ◦ γn)−1 ◦ Πn.

According to Lemma A.9, a sufficient condition for the k-jets of Un (Vn resp.)
to converge at 0 is that the sequence (DjΥn(0))n ((DjΓn(0))n resp.) converges
for all j ∈ {1, . . . , k}. Thus, to prove the convergence results for the 2-jets of Un

and Vn at 0, it remains to establish the following proposition:

Proposition 2.6. — Assume that Log+(‖A±1‖) and Log+(‖D2φ(0)‖) belong
to L1(Ω,A,P).

• If λs+1 − 2λs < 0, then (D2Υn(0))n converges P-almost surely to

S(2) =
∞∑
k=1

(I−Π)Ak−1(θ−(k−1))D2φ(θ−k)(A−kΠ, A−kΠ).
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• If λs+1 − 2λs < 0 and Dξ(0)(Rd) ∩
⊕r

i=s+1 Ei = {0} P-almost surely,
then (D2Γn(0))n converges in probability to S(2).

The following proof of Proposition 2.6 is an adaptation of M. Cranston and
Y. Le Jan’s proof [2] to the general case of random dynamical systems. It
proceeds in three steps:

• computation of an expression of the second order derivatives of Υn

and Γn;
• proof of the convergence of (D2Υn(0))n, when λs+1 − 2λs < 0;
• proof of the convergence to zero in probability of (D2Υn(0)−D2Γn(0))n,

when λs+1 − 2λs < 0 and Dξ(0)(Rd)∩
⊕r

i=s+1 Ei = {0} P-almost surely.

2.2.1. Expression of the second order derivative. — More generally, given an
integer n ∈ N

∗, applications ϕi : Ω → Diff∞
0 (RN ) for i ∈ {1, . . . , n} and

a d-dimensional subspace Wn of R
N , one may consider the restriction ψn of

ϕ1◦· · ·◦ϕn to a neighbourhood W̃n of 0 in Wn and its orthogonal normalization

Ψn := ψn ◦ (pn ◦ ψn)−1 ◦ pn,
defined on a neighbourhood Ũn of 0 in R

N , where pn designates the orthogonal
projection of R

N onto Im(Dψn(0)).
These maps will be used in two cases:

Case 1 : ϕi = φ(θ−i) for i ∈ {1, . . . , n} and Wn = Es(θ−n). In this case,
Ψn = Υn.

Case 2 : ϕi = φ(θ−i) for i ∈ {1, . . . , n− 1}, ϕn = ξ(θ−(n−1)) and Wn = R
d.

Then Ψn = Γn−1.

To shorthand the notations, set:

• ϕj,k =

{
ϕj ◦ · · · ◦ ϕk if 0 ≤ j ≤ k ≤ n− 1,
Id if j = k + 1;

• ψn,‖ = pn ◦ ψn;
• B(k) = Dkφ(0) and ξ(k) = Dkξ(0)(Dξ−1(0))⊗k for every k ∈ N \ {0, 1}.
For z ∈ Ũn

DΨn(z) = Dψn

(
ψ−1
n,‖ ◦ pn(z)

)
Dψ−1

n,‖

(
pn(z)

)
pn,

D2Ψn(z) = D2ψn

(
ψ−1
n,‖ ◦ pn(z)

)(
Dψ−1

n,‖(pn(z))pn, Dψ−1
n,‖(pn(z))pn

)
+Dψn(ψ−1

n,‖ ◦ pn(z))D2ψ−1
n,‖(pn(z))(pn, pn).

The formula

D2ψ−1
n,‖(z) = −Dψ−1

n,‖(z)D
2ψn,‖

(
ψ−1
n,‖(z)

)(
Dψ−1

n,‖(z), Dψ−1
n,‖(z)

)
implies that

(6) D2Ψn(z) = κn(z)D2ψn

(
ψ−1
n,‖ ◦ pn(z)

)(
Dψ−1

n,‖(pn(z))pn, Dψ−1
n,‖(pn(z))pn

)
,
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where κn(z) = I −Dψn(ψ−1
n,‖ ◦ pn(z))Dψ−1

n,‖(pn(z))pn. For z ∈ W̃n, the expres-
sion of D2ψn(z) in terms of the derivatives of the applications ϕj is

D2ψn(z) =
n∑

k=1

Dϕ1,k−1

(
ϕk,n(z)

)
D2ϕk

(
ϕk+1,n(z)

)(
Dϕk+1,n(z), Dϕk+1,n(z)

)
.

As pn is the orthogonal projection onto Im(Dψn(0)),

κn(0) = I−Dψn(0)Dψ−1
n,‖(0)pn = I−pn,

Dϕk+1,n(0)Dψ−1
n,‖(0)pn = Dϕ−1

1,k(0)pn.

Therefore,

D2Ψn(0) = κn

n∑
k=1

Dϕ1,k−1(0)D2ϕk(0)
(
Dϕ−1

1,k(0)pn, Dϕ−1
1,k(0)pn

)
.

In Case 1, the result is:

D2Υn(0) =
n∑

k=1

(I−Π)Ak−1(θ−(k−1))B(2)(θ−k)(A−kΠ, A−kΠ).

In Case 2, the result is:

D2Γn(0) =
n∑

k=1

(I−Πn)Ak−1(θ−(k−1))B(2)(θ−k)(A−kΠn, A−kΠn)

+(I−Πn)An(θ−n)ξ(2)(θ−n)(A−nΠn, A−nΠn).

2.2.2. Convergence of (D2Υn(0))n. — Let us now assume that Log+ ‖B(2)‖ ∈
L1(Ω,P). This assumption ensures that the sequence (‖B(2)(θ−n)‖)n does not
grow exponentially fast to infinity:

Lemma 2.7. — Let (Ω,A,P) be a probability space endowed with a transfor-
mation T : Ω → Ω such that P is T -invariant. Consider a nonnegative random
variable Y defined on (Ω,A,P). If Log+(Y ) ∈ L1(Ω,P) then for all ε > 0,
supn≥0{Y (T n)e−nε} is P-almost surely finite.

For all n ∈ N, D2Υn(0) is the sum of the first n terms of the series:
∞∑
k=1

(I−Π)Ak−1(θ−(k−1))B(2)(θ−k)(A−kΠ, A−kΠ).

To prove the convergence of (D2Υn(0))n, it is sufficient to show that this series
is P-almost surely bounded by a convergent geometric series.

Let ε > 0. The norm of the k-th term of the series is bounded above by∥∥(I−Π)Ak−1(θ−(k−1))B(2)(θ−k)(A−kΠ, A−kΠ)
∥∥

≤
∥∥(I−Π)Ak−1(θ−(k−1))

∥∥·∥∥B(2)(θ−k)‖ · ‖A−kΠ
∥∥2.
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By Lemma 2.7, supn∈N e−nε‖B(2)(θ−n)‖ is P-almost surely finite. By Oseledets’
theorem, supn∈N e−n(−λs+ε)‖A−nΠ‖ is P-almost surely finite. Thus, it remains
to bound the first term ‖(I−Π)Ak−1(θ−(k−1))‖:

Lemma 2.8. — For every ε > 0, supn≥0 e−n(λs+1+ε)‖(I−Π)An(θ−n)‖ is P-
almost surely finite.

Proof. — For each i ∈ {1, . . . , r} and n ∈ N, the projection πi onto Ei along⊕
j �=i Ej satisfies

πi ◦An(θ−n) = An(θ−n) ◦ πi(θ−n).

Therefore,

∥∥(I−Π)An(θ−n)
∥∥ =

∥∥(I−Π)An(θ−n)(I−πs)(θ−n)
∥∥

≤
∥∥An(θ−n)|⊕r

i=s+1Ei(θ−n)‖ · ‖(I−πs)(θ−n)
∥∥.

By Lemmas 2.4 and 2.2,

sup
n∈N

e−
1
2nε

∥∥I−πs(θ−n)
∥∥ and sup

n∈N

e−n(λs+1+
1
2 ε)

∥∥An(θ−n)|⊕r
i=s+1Ei(θ−n)

∥∥
are P-almost surely finite.

It follows that there exists a P-almost surely finite variable Cε, such that for
all k ∈ N:

∥∥(I−Π)Ak−1(θ−(k−1))B(2)(θ−k)(A−kΠ, A−kΠ)
∥∥ ≤ Cεek(λs+1−2λs+ε).

Therefore, if λs+1 − 2λs < 0, then the series

∞∑
k=1

(I−Π)Ak−1(θ−(k−1))B(2)(θ−k)(A−kΠ, A−kΠ)

is a P-almost surely convergent series. This ends the proof of the asymptotic
behaviour of (D2Υn(0))n.

2.2.3. Convergence of (D2Γn(0)−D2Υn(0)) toward 0. — Let n be an integer.
The difference between D2Γn(0) and D2Υn(0) can be decomposed into six
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terms:

D2Γn(0)−D2Υn(0)

=
n∑

k=1

(I−Π)Ak−1(θ−(k−1))B(2)(θ−k)(A−k(Πn −Π), A−k(Πn −Π))

+2
n∑

k=1

(I−Π)Ak−1(θ−(k−1))B(2)(θ−k)(A−k(Πn −Π), A−kΠ)

+
n∑

k=1

(Π − Πn)Ak−1(θ−(k−1))B(2)(θ−k)(A−kΠ, A−kΠ)

+2
n∑

k=1

(Π −Πn)Ak−1(θ−(k−1))B(2)(θ−k)(A−k(Πn −Π), A−kΠ)

+
n∑

k=1

(Π − Πn)Ak−1(θ−(k−1))B(2)(θ−k)(A−k(Πn −Π), A−k(Πn −Π))

+(I−Πn)An(θ−n)ξ(2)(θ−n)(A−nΠn, A−nΠn)

It follows from Proposition 2.1, Lemmas 2.8 and 2.7 that if λs+1 − 2λs < 0,
then each of those six terms converges toward zero in probability. Indeed, fix
0 < ε < 1

10 (3λs − λs+1) and let (Cε,n)n denote a sequence of random variables
that converges to zero in probability:

1) The sequences( n∑
k=1

∥∥(I−Π)Ak−1(θ−(k−1))
∥∥ ·

∥∥B(2)(θ−k)
∥∥ ·

∥∥A−k(Πn −Π)
∥∥2)

and( n∑
k=1

∥∥(Π −Πn)Ak−1(θ−(k−1))
∥∥ ·

∥∥B(2)(θ−k)
∥∥ ·

∥∥A−k(Πn −Π)
∥∥ ·

∥∥A−kΠ
∥∥)

are bounded above by (Cn,εe2n(λs+1−λs+ε)
∑n

k=1 ek(−λs+1+ε)).
2) The sequences( n∑

k=1

∥∥(I−Π)Ak−1(θ−(k−1))
∥∥ ·

∥∥B(2)(θ−k)
∥∥ · ‖A−k(Πn −Π)

∥∥ ·
∥∥A−kΠ

∥∥)
and ( n∑

k=1

∥∥(Π −Πn)Ak−1(θ−(k−1))
∥∥ ·

∥∥B(2)(θ−k)
∥∥A−kΠ

∥∥2)
are bounded above by (Cn,εen(λs+1−λs+ε)

∑n
k=1 ek(−λs+4ε)).
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3) The sequence( n∑
k=1

∥∥(Π −Πn)Ak−1(θ−(k−1))
∥∥ ·

∥∥B(2)(θ−k)‖A−k(Πn −Π)
∥∥2)

is bounded above by (Cn,εe3n(λs+1−λs+ε)
∑n

k=1 ek(λs−2λs+1+4ε)).
4) As ∥∥(I−Π)An(θ−n)ξ(2)(θ−n)(A−nΠ, A−nΠ)

∥∥
≤ 8‖D2ξ(θ−n)(0)‖ · ‖Dξ(θ−n)−1(0)‖2

×max
(
‖(I−Π)An(θ−n)‖, ‖(Πn −Π)An(θ−n)‖

)
×max

(
‖A−nΠ‖ · ‖A−n(Πn −Π)‖

)2
,

the sixth term can be bounded above by Cε,n exp(n(λs+1 − 2λs + 4ε)).

2.3. Description of the third order approximation. — By differenti-
ating several times the expression of D2Ψn (Eq. 6), one obtains formulas for
higher derivatives of Ψn as linear combinations of partial sums. But these
formulas cannot be used directly, since some of those partial sums do not con-
verge when λs+1−kλs < 0. A study of the third derivative of Ψn will illustrate
the “summation process” used to transform expressions of the derivatives in a
combination of partial sums which converge when λs+1 − kλs < 0.

2.3.1. Expression of the third order derivative of Ψn. — Let us return to the
second order derivative of Ψn. For z ∈ R

N sufficiently near 0,

D2Ψn(z) = κn(z)D2ψn

(
ψ−1
n,‖ ◦ pn(z)

)(
Dψ−1

n,‖(pn(z))pn, Dψ−1
n,‖(pn(z))pn

)
.

With the following notations

aj,k,n(z) := Dϕj,k

(
ϕk+1,n ◦ ψ−1

n,‖ ◦ pn(z)
)

for 1 ≤ j, k ≤ n,

b
(m)
k,n (z) := Dmϕk

(
ϕk+1,n ◦ ψ−1

n,‖ ◦ pn(z)
)

for 0 ≤ k ≤ n and m ∈ N \ {0, 1},

en(z) := Dψ−1
n,‖

(
pn(z)

)
pn and κn(z) := I−a1,n(z)en(z),

the expression of D2Ψn(z) is

D2Ψn(z) =
n∑

k=1

κn(z)a1,k−1,n(z)b
(2)
k,n(z)

(
ak+1,n,n(z)en(z), ak+1,n,n(z)en(z)

)
.

Before computing the derivative of z �→ D2Ψn(z)(. , .) on a neighbourhood of 0,
let us begin with the derivatives of the elementary applications:

• the derivative of z �→ aj,k,n(z)(.) is

(7) Daj,k(.) =
k∑

�=j

aj,�−1,nb
(2)
�,n

(
a�,k,n(.

)
, a�+1,n,nen),
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• the derivative of z �→ b
(m)
k,n (z)(.) is

(8) Db
(m)
k (.) = b

(m+1)
k,n (ak+1,n,nen, .),

• the derivative of z �→ en(z) is

Den = −Dψ−1
n,‖(pn)D

2ψn,‖

(
ψ−1
n,‖(pn)pn, ψ

−1
n,‖(pn)pn

)
(9)

= −
n∑

k=1

ena1,k−1,nb
(2)
k,n(ak+1,n,nen, ak+1,n,nen).

As a consequence,

(10) Dκn(.) = −
n∑

�=1

κna1,�−1,nb
(2)
�,n

(
a�+1,n,nen, a�+1,n,nen(.)

)
.

Let us now compute D3Ψn:

D3Ψn =
n∑

k=1

D(κn)
(
a1,k−1,nb

(2)
k,n(ak+1,n,nen, ak+1,n,nen)

)

+
n∑

k=1

κnD(a1,k−1,n)
(
b
(2)
k,n(ak+1,n,nen, ak+1,n,nen)

)

+
n∑

k=1

κna1,k−1,nD(b(2)k,n)(ak+1,n,nen, ak+1,n,nen)

+2
n∑

k=1

κna1,k−1,nb
(2)
k,n

(
D(ak+1,n,nen), ak+1,n,nen

)
.

Therefore,

(11) D3Ψn =
n∑

k=1

I1k,n + 3
n∑

k=1

k−1∑
�=1

I2�,k,n − 3
n∑

k=1

n∑
�=1

I3�,k,n

where

I1k,n := κna1,k−1,nb
(3)
k,n(ak+1,n,nen)⊗3,

I2�,k,n := κna1,�−1,nb
(2)
�,n

(
a�+1,k−1,nb

(2)
k,n(ak+1,n,nen)⊗2, a�+1,n,nen

)
,

I3�,k,n := κna1,�−1,nb
(2)
�,n

(
a�+1,n,nena1,k−1,nb

(2)
k,n(ak+1,n,nen)⊗2, a�+1,n,nen

)
.

The convergence at 0 of the last two terms cannot be established separately.
Let us slightly modify expression (11) by introducing a new map ãj,k,n, which
is equal to aj,k,n − aj,n,nena1,k,n for 1 < j ≤ k ≤ n. At 0,

ãj,k,n(0) = Dϕj,k(0) −Dϕj,n(0)Dψ−1
n,‖(0)pnDϕ1,k(0)

= Dϕ−1
1,j−1(0)(I−pn)Dϕ1,k(0).
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Using the applications ãj,k,n gives

(12) D3Ψn =
n∑

k=1

I1k,n + 3
n∑

k=1

k−1∑
�=1

I2
′

�,k,n − 3
n∑

k=1

n∑
�=k

I3�,k,n

with

I2
′

�,k,n := κna1,�−1,nb
(2)
�,n

(
ã�+1,k−1,nb

(2)
k,n(ak+1,n,nen)⊗2, a�+1,n,nen

)
.

The convergence of (D3Ψn(0))n will be the result of the convergence of the
three sums in (12).

2.3.2. Convergence of (D3Υn(0))n. — Let us now assume that Log+ ‖B(j)‖ ∈
L1(Ω,P) for j ∈ {2, 3}. As for the second order approximation, the convergence
of the sequences (D3Υn(0))n and (D3Γn(0)−D3Υn(0))n are successively stud-
ied.

The expression of D3Υn(0) is

(13) D3Υn(0) =
n∑

k=1

J1
k + 3

n∑
k=1

k−1∑
�=1

J2′

�,k − 3
n∑

k=1

n∑
�=k

J3
�,k

where

J1
k := (I−Π)Ak−1(θ−(k−1))B(3)(θ−k)(A−kΠ)⊗3,

J2′

�,k := (I−Π)A�−1(θ−(�−1))

B(2)(θ−�)
(
ã�+1,k−1,n(0)

)
B(2)

(
θ−k)((A−kΠ)⊗2, A−�Π

)
,

J3
�,k := (I−Π)A�−1(θ−(�−1))B(2)(θ−�)

(
A−�ΠAk−1(θ−(k−1)

)
B(2)(θ−k)((A−kΠ)⊗2, A−�Π).

To shorthand the notations, let Ã�,k denote ã�+1,k,n(0) in Case 1; namely,

Ã�,k = A−�(I−Π)Ak(θ−k).

To bound the general terms of the three sums in (13), it remains to establish
upper bounds for ‖Ã�,k‖ if + < k and for ‖A−�ΠAk(θ−k)‖ if + ≥ k. A bound for
‖Ã�,k‖ can be deduced from the following corollary of the subadditive ergodic
theorem established by D. Ruelle [15, p. 288]:

Theorem 2.9 (D. Ruelle, 1982). — Let (Ω,A,P) be a probability space, let
T : Ω → Ω be a measurable map preserving P and let (Xn)n≥1 be a sequence
of measurable functions from Ω into R ∪ {−∞}, such that X+

1 ∈ L1(Ω,P) and
(Xn)n≥1 is subadditive. Let X : Ω → R ∪ {−∞} denote a T -invariant applica-
tion such that X+ ∈ L1(Ω,P) and limn→∞

1
nXn = X P-almost everywhere (the

existence of such an application follows from the subadditive ergodic theorem).
If Y ≥ X is a T -invariant measurable finite-valued application, then for every
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ε > 0, there exists a measurable finite-valued function Kε : Ω → R, such that
for almost every ω ∈ Ω and 0 < m ≤ n,

Xn−m

(
Tm(ω)

)
≤ (n−m)Y (ω) + nε+ Kε(ω).

Lemma 2.10. — For every ε > 0, there exists a P-almost surely random vari-
able Cε, such that for all 0 < i < j

‖Ãi,j‖ ≤ Cεe(j−i)λs+1+(i+j)ε.

Proof. — Let ε > 0. As Aj(θ−j)Es(θ−j) = Es for every j ∈ N, one obtains

Ãi,j = A−i(I−Π)Aj(θ−j)(I−πs(θ−j))

= Aj−i(θ−j)
(
I−πs(θ−j)

)
−A−iΠAj(θ−j)

(
I−πs(θ−j)

)
.

Consider the first term. Theorem 2.9 (applied to the subadditive sequence
(Log ‖An(θ−n)|⊕r

i=s+1Ei(θ−n)‖)n) and Lemma 2.4 insure that there exists a P-
almost surely random variable Cε, such that for all 0 < i < j,∥∥Aj−i(θ−j)(I−πs(θ−j))

∥∥ ≤
∥∥Aj−i(θ−j)|⊕r

k=s+1Ek(θ−j)‖ · ‖(I−πs(θ−j))
∥∥

≤ Cεe(j−i)λs+1+jε.

The second term can be bounded as follows:∥∥A−iΠAj(θ−j)(I−πs(θ−j))
∥∥

≤ ‖A−i|Es‖ ·
∥∥Aj(θ−j)|⊕r

k=s+1Ek(θ−j)

∥∥ ·
∥∥(I−πs(θ−j))

∥∥.
Thus there exists a P-almost surely random variable Cε such that for every
0 < i < j, ‖A−iΠAj(θ−j)(I−πs(θ−j))‖ ≤ Cεej(λs+1+ε)+i(−λs+ε).

The following lemma presents an upper bound of ‖A−�ΠAk(θ−k)‖ for every
0 ≤ k ≤ +:

Lemma 2.11. — For every ε > 0, there exists a P-almost surely finite random
variable Cε such that for all 0 ≤ k ≤ +,∥∥A−�ΠAk(θ−k)

∥∥ ≤ Cεe(k−�)λs+(k+�)ε.

Proof. — Let ε > 0 and k, + ∈ N. A decomposition of A−�ΠAk(θ−k) with
respect to Oseledets’ splitting gives

A−�ΠAk(θ−k) =
s∑

i=1

A−�πiAk(θ−k) +A−�Π(I−πs)Ak(θ−k).

For every i ∈ {1, . . . , s},∥∥A−�πiAk(θ−k)
∥∥ ≤

∥∥A−�|Ei

∥∥ ·
∥∥πi∥∥ ·

∥∥Ak(θ−k)|Ei(θ−k)

∥∥ ·
∥∥πi(θ−k)

∥∥
≤ Cεe�(−λi+ε)+k(λi+ε).
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If 0 ≤ k ≤ +, then for i ∈ {1, . . . , s}, (k − +)λi ≤ (k − +)λs, whence∥∥A−�πiAk(θ−k)
∥∥ ≤ Cεe(k−�)λs+(l+k)ε.

Moreover, for all +, k ∈ N,∥∥A−�Π(I−πs)Ak(θ−k)
∥∥ ≤

∥∥A−�|Es

∥∥ ·
∥∥Ak(θ−k)|⊕r

i=s+1Ei(θ−k)

∥∥ ·
∥∥I−πs(θ−k)

∥∥
≤ Cεe�(−λs+ε)+k(λs+1+ε).

Therefore, for all 0 ≤ k ≤ +, ‖A−�ΠAk(θ−k)‖ ≤ Cεe(k−�)λs+(k+�)ε.

Inequalities given by Oseledets’ theorem and Lemmas 2.7, 2.8, 2.10 and 2.11
lead to the following bounds:

‖J1
i ‖ ≤ Cεei(λs+1−3λs+4ε) for all i ∈ N

∗,

‖J2′

i,j‖ ≤ Cεej(λs+1−2λs+3ε)ei(−λs+4ε) for all 1 ≤ i < j,

‖J3
i,j‖ ≤ Cεej(−λs+4ε)ei(λs+1−2λs+4ε) for all 1 ≤ j ≤ i.

It turns out that the sequences

( n∑
i=1

‖J1
i ‖

)
n
,

( ∑
1≤i<j≤n

‖J2′

i,j‖
)
n
,

( ∑
1≤j≤i≤n

‖J3
i,j‖

)
n

converge P-almost surely, if λs+1 − 3λs < 0:

Proposition 2.12. — If Log+ ‖A±1‖, Log+ ‖B(2)‖ and Log+ ‖B(3)‖ lie in
L1(Ω,P) and if λs+1−3λs < 0, then (D3Υn(0))n≥0 converges P-almost surely to

S(3) :=
+∞∑
i=1

J1
i + 3

∑
1≤i<j

J2′

i,j − 3
∑

1≤j≤i

J3
i,j .

2.3.3. Convergence of (D3Γn(0) − D3Υn(0))n to zero. — The expression of
D3Γn(0) is

D3Γn(0) =
n∑

k=1

I1k,n+1 + 3
n∑

k=1

k−1∑
�=1

I2
′

�,k,n+1 − 3
n∑

k=1

n∑
�=k

I3�,k,n+1

+I1n+1,n+1 + 3
n∑

�=1

I2
′

�,n+1,n+1 − 3
n∑

k=1

I3n+1,k,n+1 − 3I3n+1,n+1,n+1
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where, for 1 ≤ +, k ≤ n

I1k,n+1 = (I−Πn)Ak−1(θ−(k−1))B(3)(θ−k)(A−kΠn)⊗3

I2
′

�,k,n+1 = (I−Πn)A�−1(θ−(�−1))B(2)(θ−�)(ã�,k−1,n+1(0)

B(2)(θ−k)
(
(A−kΠn)⊗2, A−�Πn

)
,

I3�,k,n+1 = (I−Πn)A�−1(θ−(�−1))B(2)(θ−�)
(
A−�ΠnAk−1(θ−(k−1)

)
B(2)(θ−k)

(
(A−kΠn)⊗2, A−�Πn

)
I1n+1,n+1 = (I−Πn)An(θ−n)ξ(3)(θ−n)(A−nΠn)⊗3

I2
′

�,n+1,n+1 = (I−Πn)A�−1(θ−(�−1))B(2)(θ−�)(ã�,n+1,n+1(0)

ξ(2)(θ−n)
(
(A−nΠn)⊗2, A−�Πn

)
I3n+1,k,n+1 = (I−Πn)An(θ−n)ξ(2)(θ−n)A−nΠnAk−1(θ−(k−1))

B(2)(θ−k)
(
(A−kΠn)⊗2, A−nΠn

)
I3n+1,n+1,n+1 = (I−Πn)An(θ−n)ξ(2)(θ−n)(A−nΠnAn(θ−n)

ξ(2)(θ−n)
(
(A−nΠn)⊗2, A−nΠn

)
.

As for the convergence of the second derivative of Γn at 0, one may prove that
if λs+1 − 3λs < 0 then

• the sequences( n∑
k=1

I1k,n+1

)
n
,

( ∑
1≤�<k≤n

I2
′

�,k,n+1

)
n
,

( ∑
1≤k≤�≤n

I3�,k,n+1

)
n

converge respectively in probability to the sums
∞∑
k=1

J1
k ,

∑
1≤l<k

J2′

�,k,
∑

1≤k≤l

J3
�,k;

• each term which derives from the nonlinear part of the initial parametriza-
tion ξ, that is

I1n+1,n+1,

n∑
�=1

I2
′

�,n+1,n+1,

n∑
k=1

I3n+1,k,n+1 or I3n+1,n+1,n+1

converges to 0 in probability.

3. Proof of Theorem 1.7 for approximations of all orders

As for the second and third approximations, the description of higher ap-
proximations proceeds in three steps:
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• firstly, computation of an expression of the derivatives of Ψn using the
summation process introduced for the description of the third derivative;

• secondly, proof of the P-almost surely convergence of (DkΥn(0))n when
λs+1 − kλs < 0. It will follow from the convergence of all sums in the
expression of the derivatives of Ψn at 0;

• finally, proof of the convergence of (DkΥn(0)−DkΓn(0))n to zero in prob-
ability if λs+1 − kλs < 0 and if Dξ(0)(Rd) ∩

⊕r
i=s+1 Ei = {0} P-almost

surely.

The upper bounds, required in these last two steps, have already been es-
tablished in Section 2: Lemmas 2.2, 2.7, 2.8, 2.10, 2.11 and Proposition 2.1.

3.1. Expression of the derivatives of Ψn . — The derivatives of Ψn will
be expressed with the aid of the applications ai,j,n, ãi,j,n, en, κn and b

(m)
k,n ,

where the integers i, j, k,m satisfy 1 ≤ j ≤ i ≤ n, 1 ≤ k ≤ n and m ≥ 2. The
structure of the terms of the derivatives of Ψn built with these four applications
will be described with the help of diagrams. Let us begin with some general
definitions about diagrams.

3.1.1. Diagrams. — A diagram consists of a finite set X whose elements
are called “nodes” and a finite number of subsets E1, . . . , Er of X × X
whose elements are called “links”. Such a diagram will be denoted by
D = (X,E1, . . . , Er). Let E denote the set of all links of D. A node y ∈ X
is called a “descendant” of a node x ∈ X , if there exists a path in E going
from x to y, i.e. a finite number of nodes x = x1, . . . , xr = y such that for all
i ∈ {1, . . . , r − 1}, (xi, xi+1) ∈ E. If (x, y) ∈ E, then y is called a son of x
and x is a “predecessor” of y. A node that has no predecessor is called a “root”.
A node that has no son is called a “leaf” or a “terminal node”, otherwise it is
called an “interior node”. Finally, a subset S of X is said “closed in D” if every
descendant (for the diagram D) of an element of S belongs to S.

Two diagrams D1 = (X1, E1
1 , . . . , E

1
p) and D2 = (X2, E2

1 , . . . , E
2
p) are said

equivalent if there exists a one-to-one correspondence F between X1 and X2,
such that for all i ∈ {1, . . . , p}, (u, v) ∈ E1

i if and only if (F (u), F (v)) ∈ E2
i .

Equivalent diagrams will not always be distinguished: a diagram D could just
as well represent an equivalence class of diagrams as an element of this class.

3.1.1.1. Trees. — The diagram D is called a “tree” if it has a unique root and
if for every y ∈ X \ {x}, there is exactly one path in E connecting x to y.
A node x, with the exception of the root, has a unique predecessor denoted
by p(x).

3.1.1.2. Subclass D of diagrams. — The description of the derivatives of Ψn

will only use a particular class of diagrams having four types of links, denoted
by D: D is a diagram of the subclass D if D = (X,E1, E2, I1, I2) where E1,
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E2, I1 and I2 are subsets of (X ×X) \ {(x, x), x ∈ X} satisfying the following
properties:

• T = (X,E1 ∪ E2) is a tree whose interior nodes have at least two sons
and such that (p(x), x) ∈ E2 if x is a leaf;

• I1 and I2 are transitive and asymmetric sets, I2 ⊆ I1 and if (x, y), (y, z)
are elements of I1 such that one of them belongs to I2, then (x, z) ∈ I2.

The root of T will be denoted by ρ(D), the set of interior nodes for the
diagram (X,E1 ∪ E2) by i(D).

The set
i(D)∗ := i(D) \ {ρ(D)}

can be split into two sets, i1(D) and i2(D) depending on whether the link
between a node x and its predecessor is in E1 or E2: for j ∈ {1, 2}, set

ij(D) =
{
x ∈ i(D)∗ such that (p(x), x) ∈ Ej

}
.

For u ∈ i(D), Du will be the subdiagram which is the restriction of the diagram
D to the node u and its descendants. The number of sons of u will be denoted
by mu, the number of sons of u that are interior nodes by ru, the number of
sons of u that belong to i1(D) by r

(1)
u , the number of sons of u that belong

to i2(D) by r
(2)
u and the number of sons of u that are leaves by +u.

To shorthand the notations, the following notations will be used for any
subset Y of X :

i(Y ) := Y ∩ i(D), m(Y ) :=
∑

v∈i(Y )

mv,

r(Y ) :=
∑

v∈i(Y )

rv, +(Y ) :=
∑

v∈i(Y )

+v.

r(x)(Y ) :=
∑

v∈i(Y )

r
(x)
v for x ∈ {1, 2}.

When Y = X , the following notations will be used:

|D| := |X |, m(D) := m(X), +(D) := +(X), r(D) := r(X).

It may be seen that

|D| = 1 +m(D),
∣∣i(D)

∣∣ = r(D) + 1 and
∣∣i(D)

∣∣ ≤ +(D)− 1.

3.1.1.3. Height of a node. — A diagram D = (X,E1, E2, I1, I2) ∈ D will be
endowed with a family h = (hu)u∈i(D) of integers indexed by the interior nodes
of D and satisfying hu ≤ hv if (u, v) ∈ I1 and hu < hv if (u, v) ∈ I2. The integer
hu of h will be termed the height of the node u in the labelled diagram (D;h).
The set of such families of integers will be denoted by H(D). Let

Hn(D) := H(D) ∩ {1, . . . , n}|i(D)|

for n ∈ N
∗. A diagram endowed with a family of integers belonging to Hn(D)

is said a “diagram of height at most n”.
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3.1.1.4. Graphic representation of a diagram of D. — The nodes of D will be
drawn as points such that if (x, y) ∈ E1 ∪ E2, the ordinate of the point x is
smaller than the ordinate of y. A pair (x, y) will be represented by a simple line
between x and y if (x, y) ∈ E1 and by a double line if (x, y) ∈ E2. An element
(x, y) of I1 will be drawn as an arrow from x to y, with two heads if (x, y) ∈ I2
and with one head if (x, y) ∈ I1 \ I2. Such a representation is given Figure 1.

Dρ1 Dρrρ

�ρ︷ ︸︸ ︷
. . .

. . .• •

• ρ

Figure 1. A diagram D with root ρ, ρ1, . . . , ρrρ designating the
non-terminal sons of ρ

3.1.1.5. Application associated with a diagram. — Let D = (X,E1, E2, I1, I2)
be a diagram in D endowed with a family h = (hu)u∈i(D) of heights smaller
or equal to n. With the help of the labelled diagram (D;h) one defines an
application fn(D;h) by

fn(D;h) = κna1,hρ−1,nb
(mρ)
hρ,n

(
fn,hρ(Dρ1 ;h|Dρ1

), . . . ,

fn,hρ(Dρr ;h|Dρr
)(ahρ+1,n,nen)⊗�ρ

)
where

• ρ1, . . . , ρr designate the non-terminal sons of the root ρ of D;
• the applications fn,z(Du, h|Du

) for z ∈ {1, . . . , n} are defined by induction
by

fn,z(Du;h|Du
) = ãz+1,hu−1,nb

(mu)
hu,n

(
fn,hu(Du1 ;h|Du1

), . . . ,

fn,hu(Duru
;h|Duru

), (ahu+1,n,nen)⊗�u
)

if u ∈ i2(D),

fn,z(Du;h|Du
) = az+1,n,nena1,hu−1,nb

(mu)
hu,n

(
fn,hu(Du1 ;h|Du1

), . . . ,

fn,hu(Duru
;h|Duru

), (ahu+1,n,nen)⊗�u
)

if u ∈ i1(D),

where u1, . . . , uru designate the non-terminal sons of u.
Finally, for n ∈ N and D ∈ D, let

Fn(D) :=
∑

h∈Hn(D)

fn(D;h).
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Table 1 shows how to associate elementary applications of fn(D;h) with the
different parts of the diagram D.

Node Diagram Associated application

Root ρ
ρ

with height hρ κna1,hρ−1,nb
(mρ)
hρ,n

Node u

u

∈ i1(D) with
height hu and with
predecessor p(u)

p(u)

ahp(u)+1,n,nena1,hu−1,nb
(mu)
hu,n

Node u ∈ i2(D) with
height hu and with
predecessor p(u)

ãhp(u)+1,hu−1,nb
(mu)
hu,n

Leaf u with predeces-
sor p(u)

ahp(u)+1,n,nen

u

p(u)

u

p(u)

Table 1. Elementary applications associated with the different
nodes of a diagram

3.1.1.6. Examples. — The following examples show how the notations are
used.

The second order derivative of Ψn is:

D2Ψn(z) =
n∑

k=1

κn(z)a1,k−1,n(z)b
(2)
k,n(z)

(
ak+1,n,n(z)en(z), ak+1,n,n(z)en(z)

)
Thus

(14) D2Ψn(z) =
n∑

h=1

fn(U ;h)(z) = Fn(U)(z)

where U is the diagram with two leaves represented in Figure 2.
The third order derivative of Ψn is:

D3Ψn =
n∑

k=1

κna1,k−1,nb
(3)
k,n(ak+1,n,nen)⊗3

+3
n∑

k=1

k−1∑
�=1

κna1,�−1,nb
(2)
�,n

(
ã�+1,k−1,nb

(2)
k,n(ak+1,n,nen)⊗2, a�+1,n,nen

)

−3
n∑

k=1

n∑
�=k

κna1,�−1,nb
(2)
�,n

(
a�+1,n,nena1,k−1,nb

(2)
k,n(ak+1,n,nen)⊗2, a�+1,n,nen

)
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Therefore,

(15) D3Ψn = Fn(D1) + 3Fn(D2) − 3Fn(D3)

where D1, D2 and D3 are the diagrams with three leaves represented in
Figure 2.

• • • • • • • • • • •

••

• •••
U D1 D2 D3

Figure 2. Diagrams of the second and third derivatives of Ψn

The following proposition gives an expression of the derivatives of Ψn with
the help of diagrams: the k-th derivative of Ψn can be written using only maps
associated with diagrams of D having k leaves.

Proposition 3.1. — Let k ∈ N \ {0, 1}. The k-th derivative of Ψn is a linear
combination (independent of n and of the choice of the applications ϕi) of
maps Fn(D) associated with a diagram D = (X,E1, E2, I1, I2) ∈ D having the
following properties:

(i) (X,E1 ∪ E2) is a tree having k leaves;
(ii) I1 and I2 contain pairs of interior nodes and satisfy:

< x ∈ i1(D) ⇔ (x, p(x)) ∈ I1;
< x ∈ i2(D) ⇔ (p(x), x) ∈ I2.

Expressions of the derivatives of Ψn can be computed by induction with the
following two assertions:

1) D2Ψn = Fn(U) where U ∈ D is the diagram with two leaves represented
in Figure 2.

2) The expression of DkΨn can be deduced from the expression of Dk−1Ψn

by replacing each term Fn(D) in the expression of Dk−1Ψn by:

Fn

(
t1(D; ρ(D))

)
+ Fn

(
t3(D; ρ(D))

)
− Fn

(
t4(D; ρ(D))

)
+

∑
u∈�(D)

(
Fn(t2(D;u)) − Fn(t3(D;u))

)
+

∑
u∈i1(D)

(
Fn(t1(D;u)) + Fn(t2(D;u)) − Fn(t3(D;u)) + Fn(t5(D;u))

)
+

∑
u∈i2(D)

(
Fn(t1(D;u)) + Fn(t2(D;u)) − Fn(t3(D;u)) − Fn(t4(D;u))

)
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where ti for i ∈ {1, . . . , 5} are the transformations on the equivalence
classes of diagrams represented in Figures 3 to 6.

The subset of diagrams D ∈ D having k leaves and satisfying property (ii)
is denoted by Tk.

Du1 Duru

�u︷ ︸︸ ︷
. . .

. . .• •

•u
Diagram D

Du1 Duru

�u︷ ︸︸ ︷
. . .

. . .◦ ◦ •

◦u
Diagram t1(D;u)

Du1 Duru

�u︷ ︸︸ ︷
. . .

. . .◦ ◦ •

◦
•

u

v

Diagram t3(D;u)

Du1 Duru

�u︷ ︸︸ ︷
. . .

. . .◦ ◦ •

◦
•

u

v

Diagram t4(D;u)

Figure 3. Transformations at the root u

3.1.2. Proof of Proposition 3.1. — The proof proceeds by induction on the
order of the derivative of Ψn. Formulas (14) and (15) show that the proposition
is true for k = 2 and k = 3.

Let k be an integer greater than 1. Assume that Proposition 3.1 is true for
the k-th derivative of Ψn. To prove the proposition, it suffices to show that,
if D ∈ Tk, then the derivative of the associated application Fn(D) is a linear
combination (whose coefficients do not depend on n) of terms like Fn(D̃), where
D̃ is a diagram belonging to Tk+1.

3.1.2.1. Derivatives of applications associated with a node. — The derivative
of the application Fn(D) associated with a diagram D ∈ D, can be obtained
by going all over the nodes of D and summing all the terms that arise from the
derivatives of applications associated with each node, that is:

• κna1,hu−1,nb
(mu)
hu,n

, if u is the root of the tree (X,E1 ∪ E2);

• ahp(u)+1,n,nena1,hu−1,nb
(mu)
hu,n

, if u is a node belonging to i1(D);
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412 LEMAIRE (S.)

• ãhp(u)+1,hu−1,nb
(mu)
hu,n

, if u is a node belonging to i2(D);
• ahp(u)+1,n,nen, if u is a leaf of the node p(u).

Dw1 Dwrw
u�w︷ ︸︸ ︷

. . .

. . .• • •

•w = p(u)
Diagram D

Dw1 Dwrw
u�w︷ ︸︸ ︷

. . .

. . .◦ ◦ ◦ •

•

◦
w

v

Diagram t2(D;u)

Dw1 Dwrw
u�w︷ ︸︸ ︷

. . .

. . .◦ ◦ ◦ •

•

◦
w

v

Diagram t3(D;u)

Figure 4. Transformations of the diagram D at a leaf u

The following four lemmas give the result of the derivatives of these four
types of applications. The derivatives of the elementary applications ai,j,n,
b
(m)
j,n , en and κn have been already computed (Formulas (7), (8), (9) and (10)).

Lemma 3.2. — Let j ∈ N
∗, m ∈ N \ {0, 1} and v = (v1, . . . , vm) ∈ (RN )m.

The derivative of the application z �→ κn(z)a1,j−1,n(z)b
(m)
j,n (z)(v) is

D
(
κna1,j−1,nb

(m)
j,n (v)

)
= κna1,j−1,nb

(m+1)
j,n (v, aj+1,n,nen) [1]

+
j−1∑
�=1

κna1,�−1,nb
(2)
�,n

(
ã�+1,j−1,nb

(m)
j,n (v), a�+1,n,nen

)
[3]

−
n∑

�=j

κna1,�−1,nb
(2)
�,n

(
a�+1,n,nena1,j−1,nb

(m)
j,n (v), a�+1,n,nen

)
. [4]
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Du1 Duru

�u︷ ︸︸ ︷
. . .

. . .• •

•

•

u

p(u)Diagram D

Du1 Duru

�u︷ ︸︸ ︷
. . .

. . .◦ ◦ •

◦

◦

u

p(u)

Diagram t1(D;u)

Du1 Duru

�u︷ ︸︸ ︷
. . .

. . .◦ ◦ •

◦
•

◦

u

p(u)

v

Diagram t2(D;u)

Du1 Duru

�u︷ ︸︸ ︷
. . .

. . .◦ ◦ •

◦
•

◦

u

p(u)

v

Diagram t3(D;u)

Du1 Duru

�u︷ ︸︸ ︷
. . .

. . .◦ ◦ •

◦
•

◦

u

p(u)

v

Diagram t5(D;u)

Figure 5. Transformations of the diagram D at a node u ∈ i1(D)

Lemma 3.3. — Let v ∈ R
N and j ∈ N

∗. The derivative of the application
z �→ aj,n,n(z)en(z)(v) is

D
(
aj,n,nen(v)

)
=

n∑
�=j+1

ãj,�−1,nb
(2)
�,n(a�+1,n,nen(v), a�+1,n,nen) [2]

−
j∑

�=1

aj,n,nena1,�−1,nb
(2)
�,n(a�+1,n,nen(v), a�+1,n,nen) [3]
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Du1 Duru

�u︷ ︸︸ ︷
. . .

. . .• •

•

•

u

p(u)Diagram D

Du1 Duru

�u︷ ︸︸ ︷
. . .

. . .◦ ◦ •

◦

◦

u

p(u)

Diagram t1(D;u)

Du1 Duru

�u︷ ︸︸ ︷
. . .

. . .◦ ◦ •

◦
•

◦

u

p(u)

v

Diagram t2(D;u)

Du1 Duru

�u︷ ︸︸ ︷
. . .

. . .◦ ◦ •

◦
•

◦

u

p(u)

v

Diagram t3(D;u)

Du1 Duru

�u︷ ︸︸ ︷
. . .

. . .◦ ◦ •

◦
•

◦

u

p(u)

v

Diagram t4(D;u)

Figure 6. Transformations of the diagram D at a node u ∈ i2(D)

Lemma 3.4. — Let i, j ∈ N
∗ such that i < j, m ∈ N \ {0, 1} and let v =

(v1, . . . , vm) ∈ (RN )m. The derivative of the application

z �−→ aj,n,n(z)en(z)a1,i−1,n(z)b
(m)
i,n (z)(v)

tome 129 – 2001 – n
o
3



INVARIANT JETS OF A SMOOTH DYNAMICAL SYSTEM 415

is

D(aj,n,nena1,i−1,nb
(m)
i,n (v)) = aj,n,nena1,i−1,nb

(m+1)
i,n (v, ai+1,n,nen) [1]

+
∑n

�=j ãj,�−1,nb
(2)
�,n(a�+1,n,nena1,i−1,nb

(m)
i,n (v), a�+1,n,nen) [2]

−
∑j−1

�=i aj,n,nena1,�−1,nb
(2)
�,n(a�+1,n,nena1,i−1,nb

(m)
i,n (v), a�+1,n,nen) [3]

+
∑i−1

�=1 aj,n,nena1,�−1,nb
(2)
�,n(ã�+1,i−1,nb

(m)
i,n (v), a�+1,n,nen) [5]

Proof. — For all i, j ∈ N such that 0 < i < j:

D(aj,n,nena1,i,n(u)) =
n∑

�=j

aj,�−1,nb
(2)
�,n(a�+1,n,nena1,i,n(u), a�+1,n,nen)

−
n∑

�=1

aj,n,nena1,�−1,nb
(2)
�,n(a�+1,n,nena1,i,n(u), a�+1,n,nen)

+
i∑

�=1

aj,n,nena1,�−1,nb
(2)
�,n(a�+1,i,n(u), a�+1,n,nen)

Replacing every term like ap,q,n with 1 < p ≤ q by ãp,q,n + ap,n,nena1,q,n gives:

D(aj,n,nena1,i,n(u)) =
n∑

�=j

ãj,�−1,nb
(2)
�,n(a�+1,n,nena1,i,n(u), a�+1,n,nen)

−
j−1∑

�=i+1

aj,n,nena1,�−1,nb
(2)
�,n(a�+1,n,nena1,i,n(u), a�+1,n,nen)

+
i∑

�=1

aj,n,nena1,�−1,nb
(2)
�,n(ã�+1,i,n(u), a�+1,n,nen)

Lemma 3.5. — Let i, j ∈ N
∗ such that i < j, m ∈ N \ {0, 1} and let v =

(v1, . . . , vm) ∈ (RN )m. The derivative of the application

z �−→ ãi,j−1,n(z)b
(m)
j,n (z)(v)
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is

D(ãi,j−1,nb
(m)
j,n (v)) = ãi,j−1,nb

(m+1)
j,n (v, aj+1,n,nen) [1]

+
∑j−1

�=i ãi,j−1,nb
(2)
�,n(ã�+1,j−1,nb

(m)
j,n (v), a�+1,n,nen) [2]

−
∑i−1

�=1 ai,n,nena1,�−1,nb
(2)
�,n(ã�+1,j−1,nb

(m)
j,n (v), a�+1,n,nen) [3]

−
∑n

�=j ãi,�−1,nb
(2)
�,n(a�+1,n,nena1,j−1,nb

(m)
j,n (v), a�+1,n,nen) [4]

Proof. — The formulas (7), (8) and (9) of the derivatives of the elementary
applications give:

D
(
ãi,j,n(v)

)
=

j∑
�=i

ai,�−1,nb
(2)
�,n(a�+1,j,n(v), a�+1,n,nen)

−
n∑

�=i

ai,�−1,nb
(2)
�,n(a�+1,n,nena1,j,n(v), a�+1,n,nen)

+
n∑

�=1

ai,n,nena1,�−1,nb
(2)
�,n(a�+1,n,nena1,j,n(v), a�+1,n,nen)

−
j∑

�=1

ai,n,nena1,�−1,nb
(2)
�,n(a�+1,j,n(v), a�+1,n,nen)

The first two terms and the last two terms can be reorganized:

D
(
ãi,j,n(v)

)
=

j∑
�=i

ai,�−1,nb
(2)
�,n(ã�+1,j,n(v), a�+1,n,nen)

−
n∑

�=j+1

ai,�−1,nb
(2)
�,n(a�+1,n,nena1,j,n(v), a�+1,n,nen)

+
n∑

�=j+1

ai,n,nena1,�−1,nb
(2)
�,n(a�+1,n,nena1,j,n(v), a�+1,n,nen)

−
j∑

�=1

ai,n,nena1,�−1,nb
(2)
�,n(ã�+1,j,n(v), a�+1,n,nen)
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Rearranging the first term with the last term on one hand, and the second with
the third on the other hand, yields:

D
(
ãi,j,n(v)

)
=

j∑
�=i

ãi,�−1,nb
(2)
�,n(ã�+1,j,n(v), a�+1,nen)

−
i−1∑
�=1

ai,n,nena1,�−1,nb
(2)
�,n(ã�+1,j,n(v), a�+1,n,nen)

−
n∑

�=j+1

ãi,�−1,nb
(2)
�,n(a�+1,n,nena1,j,n(v), a�+1,n,nen)

3.1.2.2. Derivative of an application associated with a diagram. — Summing
the terms provided by the derivative of the application associated with each
node of a diagram D ∈ Tk, leads to the following expression of the derivative
of Fn(D):

F ′
n(D) = Fn(D(1; ρ(D))) + Fn(D(3; ρ(D))) − Fn(D(4; ρ(D)))

+
∑

u∈�(D)

(
Fn(D(2;u)) − Fn(D(3;u))

)

+
∑

u∈i1(D)

(
Fn(D(1;u)) + Fn(D(2;u)) − Fn(D(3;u)) + Fn(D(5;u))

)

+
∑

u∈i2(D)

(
Fn(D(1;u)) + Fn(D(2;u)) − Fn(D(3;u)) − Fn(D(4;u))

)

where D(i;u) for i ∈ {1, . . . , 5} designate the diagrams obtained by a trans-
formation at the node u of D. More precisely, D(i;u) is the diagram which
corresponds to the term numbered [i] in Lemmas 3.2, 3.4, 3.5 or 3.3. It is
the result of the derivative of the application associated with the node u. The
numbers are chosen in order to group the terms obtained by a given type of
transformation on the diagram D.

Remark 3.6. — For every i ∈ {1, . . . , 5}, the image of the equivalence class
of the diagram D by the transformation ti applied at the node u is equal to the
equivalence class of the diagram D(i;u).

The comparison of the new diagrams D(i;u) with the diagram D allows to
check that each diagram D(i;u) belongs to Tk+1, if D lies in Tk. This ends the
proof of Proposition 3.1.
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3.2. Convergence of the derivatives of Υn at zero. — This subsection
is devoted to studying the asymptotic behaviour of (DkΥn(0))n. The notations
are those used for the case 1 in Subsection 3.1; namely with ϕi = φ(θ−i) for
every i ∈ {1, . . . , n}. At point 0, the applications associated with diagrams do
not depend on n, thus n is omitted in the notations.

By Proposition 3.1, to prove the convergence result for (DkΥn(0))n, it suf-
fices to establish the following lemma:

Lemma 3.7. — Let k ≥ 2. Assume that Log+ ‖B(j)‖ ∈ L1(Ω,P) for each
j ∈ {1, . . . , k}. If λs+1 − kλs < 0, then the sequence (

∑
h∈Hn(D) f(D;h)(0))n

converges P-almost surely, for every D ∈ Tk.

Using Lemma 3.7 and Proposition 3.1, it is possible to compute the limit of
the sequence (DkΥn(0)):

Proposition 3.8. — Let k ≥ 2. Assume that Log+ ‖A±1‖ and Log+ ‖B(j)‖,
for j ∈ {2, . . . , k}, lie in L1(Ω,P). Furthermore, assume that λs+1 − kλs < 0.

1) The first k derivatives of Υn at 0 converge P-almost surely as n tends
to +∞.

2) Set F (D) =
∑

h∈H(D) f(D;h)(0) for D ∈
⋃k

j=2 Tj. For j ∈ {2, . . . , k},
the limit S(j) of (DjΥn(0))n can be determined by induction using the
following assertions:

• S(2) = F (U) where U is the diagram in D having two leaves
(Fig. 2);

• for j ∈ {3, . . . , k}, the expression of S(j) can be deduced from the
expression of S(j−1) by replacing each application F (D) in S(j−1)

by

F (t1(D; ρ(D))) + F (t3(D; ρ(D))) − F (t4(D; ρ(D)))

+
∑

u∈�(D)

(
F (t2(D;u)) − F (t3(D;u))

)

+
∑

u∈i1(D)

(
F (t1(D;u)) + F (t2(D;u)) − F (t3(D;u)) + F (t5(D;u))

)

+
∑

u∈i2(D)

(
F (t1(D;u)) + F (t2(D;u)) − F (t3(D;u)) − F (t4(D;u))

)

where ti for i ∈ {1, . . . , 5} are the transformations on the equiva-
lence classes of diagrams represented Figures 3 to 6.

The proof of Lemma 3.7 begins by calculating an upper bound for the norm
of the applications associated with the diagrams of D and taken at point 0.
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The upper bound follows directly from the inequalities established in Section 2
(Lemmas 2.7,2.8, 2.10 and 2.11): for all n ∈ N

∗,

∀j ∈ {1, . . . , n}, m ∈ {2, . . . , k}, ‖b(m)
j,n (0)‖ = ‖B(m)(θ−j)‖ ≤ C(m)

ε ejε,(16)

∀j, 1 ≤ j ≤ n, ‖κn(0)a1,j,n(0)‖ = ‖(I−Π)Aj(θ−j)‖ ≤ Cεej(λs+1+ε),(17)

∀j, 0 ≤ j ≤ n, ‖aj+1,n,n(0)en(0)‖ = ‖A−jΠ‖ ≤ Cεej(−λs+ε),(18)

∀i, 0 < i ≤ j ≤ n, ‖ãi+1,j,n(0)‖ = ‖Ãi,j‖ ≤ Cεe(j−i)λs+1+(j+i)ε,(19)

∀i, 0 < j ≤ i ≤ n, ‖ai+1,n,n(0)en(0)a1,j,n(0)‖ = ‖A−iΠAj(θ−j)‖
≤ Cεe(j−i)λs+(i+j)ε,(20)

where Cε and C
(m)
ε for all 2 ≤ m ≤ k, are almost surely finite random variables.

Actually, two upper bounds are given in the following lemma, the first will allow
to prove Lemma 3.7 when λs ≤ 0 and the second when λs > 0:

Lemma 3.9. — Let ε > 0 and D = (X,E1, E2, I1, I2) be a diagram in
⋃k

i=2 Ti.
1) There exists an almost surely finite random variable Cε(D), such that for

all h ∈ H(D):∥∥f(D;h)(0)
∥∥ ≤ Cε(D) exp

( ∑
u∈i(D)

huαu

)
where (αu)u∈i(D) is a family of reals defined by:

(21) αu =




−λs(+u + r
(1)
u ) + (1− r

(2)
u )λs+1 + ε(2 +mu)

if u ∈ i2(D) ∪ {ρ(D)},
λs(1 − +u − r

(1)
u )− r

(2)
u λs+1 + ε(2 +mu)

if u ∈ i1(D).

2) There exists an almost surely finite random variable Cε(D), such that for
all h ∈ H(D):∥∥f(D;h)(0)

∥∥ ≤ Cε(D) exp
( ∑

u∈i(D)

hu
(
λs(1 −mu) + ε(2 +mu)

))

Proof. — Let us begin by establishing that for every u ∈ i(D)∗ and h ∈ H(D),
the following inequality holds:∥∥fhp(u)(Du;h|Du

)(0)
∥∥ ≤ Cε(Du) exp

( ∑
v∈i(Du)

hvαv

)
(22)

exp
(
hp(u)

(
−λs1{u∈i1(D)} − λs+11{u∈i2(D)} + ε

)
+

∑
v∈i(Du)

hvαv

)

where Cε(Du) =
∏

v∈i(Du)

(
C1+�v
ε C

(mv)
ε

)
exp(−λs+1(r(Du) + 1)).
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The proof is by induction on the number of interior nodes of Du:

1) Assume that i(Du) = {u} (in this case, +u = mu). If u ∈ i1(D), then
hu ≤ hp(u) and

fhp(u)(Du;h|Du
)(0) = A−hp(u)ΠAhu−1(θ−(hu−1))B(mu)(θ−hu)

(
(A−huΠ)⊗�u

)
.

Thus, the upper bounds previously enumerated yield:∥∥fhp(u)(Du;h|Du
)(0)

∥∥
≤

∥∥A−hp(u)ΠAhu−1(θ−(hu−1))
∥∥ ·

∥∥B(mu)(θ−hu)
∥∥ · ‖A−huΠ‖�u

≤ C1+�u
ε C(mu)

ε e(hu−1−hp(u))λs+(hu−1+hp(u))εehuε+�uhu(−λs+ε)

≤ Cε(Du)ehp(u)(−λs+ε)+hu(λs(1−�u)+ε(2+�u))

If u ∈ i2(D), then

fhp(u)(Du;h|Du
)(0) = Ãhp(u),hu−1B

(mu)(θ−hu)
(
(A−huΠ)⊗�u

)
.

Thus,∥∥fhp(u)(Du;h|Du
)(0)

∥∥
≤ ‖Ãhp(u),hu−1‖ ·

∥∥B(mu)(θ−hu)
∥∥ · ‖A−huΠ‖�u

≤ C1+�u
ε C(mu)

ε e(hu−1−hp(u))λs+1+(hu−1+hp(u))εehuε+�uhu(−λs+ε)

≤ Cε(Du)ehp(u)(−λs+1+ε)+hu(λs+1−�uλs+ε(2+�u))

Therefore, the result holds if u is the unique interior node of Du.

2) Let j ≥ 1. Assume now that the result holds for interior nodes u of D
such that Du contains at most j interior nodes. Consider a node u of D such
that |i(Du)| = j + 1 and denote the non-terminal sons of u by u1, . . . , ur:

• If u ∈ i1(D), then

fhp(u)(Du;h|Du
)(0) = A−hp(u)ΠAhu−1(θ−(hu−1))

B(mu)(θ−hu)
(
fhu(Du1 ;h|Du1

)(0)

, . . . , fhu(Dur ;h|Dur
)(0), (A−huΠ)⊗�u

)
.

• If u ∈ i2(D), then

fhp(u)(Du;h|Du
)(0) = Ãhp(u),hu−1B

(mu)(θ−hu)
(
fhu(Du1 ;h|Du1

)(0)

, . . . , fhu(Dur ;h|Dur
)(0), (A−huΠ)⊗�u

)
.

As Du1 , . . . , Dur have at most j interior nodes, the induction hypothesis can
be applied to them:
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• If u ∈ i1(D), then∥∥fhp(u)(Du;h|Du
)(0)

∥∥ ≤ C1+�u
ε C(mu)

ε e(hu−1−hp(u))λs+(hu−1+hp(u))ε

ehuε+�uhu(−λs+ε)
r∏

i=1

∥∥fhu(Dui ;h|Dui
)(0)

∥∥
≤ C1+�u

ε C(mu)
ε e−λs ehp(u)(−λs+ε)+hu(λs(1−�u)+ε(2+�u))

r∏
i=1

Cε(Dui)e
hu(r

(1)
u (−λs+ε)+r(2)

u (−λs+1+ε))

exp
( ∑

v∈i(Du)\{u}
hvαv

)

≤ Cε(Du) exp
(
hp(u)(−λs + ε) +

∑
v∈i(Du)

hvαv

)
.

• If u ∈ i2(D), then∥∥fhp(u)(Du;h|Du
)(0)

∥∥ ≤ C1+�u
ε C(mu)

ε e(hu−1−hp(u))λs+1+(hu−1+hp(u))ε

ehuε+�uhu(−λs+ε)
r∏

i=1

∥∥fhu(Dui ;h|Dui
)(0)

∥∥
≤ C1+�u

ε C(mu)
ε e−λs+1 ehp(u)(−λs+1+ε)

ehu(λs+1−�uλs+ε(2+�u))
r∏

i=1

Cε(Dui)

ehu(r
(1)
u (−λs+ε)+r(2)

u (−λs+1+ε))+Σv∈i(Du)\{u}hvαv

≤ Cε(Du) exp
(
hp(u)(−λs+1 + ε) +

∑
v∈i(Du)

hvαv

)
.

This closes the induction proof of inequality (22).
Let ρ denote the root of D and ρ1, . . . , ρr the non-terminal sons of ρ. Then

f(D;h)(0) = (I−Π)Ahρ−1(θ−(hρ−1))B(mρ)(θ−hρ)(
fhρ(Dρ1 ;h|Dρ1

)(0), . . . , fhρ(Dρr ;h|Dρr
)(0), (A−hρΠ)⊗�ρ

)
.

Using that ‖(I−Π)Ahρ−1(θ−(hρ−1))‖ ≤ Cεe(hρ−1)(λs+1+ε) gives:

∥∥f(Dρ;h|Dρ
)(0)

∥∥ ≤ C1+�ρ
ε C(mρ)

ε e(hρ−1)(λs+1+ε)+hρε+�ρhρ(−λs+ε)

r∏
i=1

‖fhρ(Dρi ;h|Dρi
)(0)‖
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≤ C1+�ρ
ε C(mρ)

ε e−λs+1 ehρ(λs+1−�ρλs+ε(2+�ρ))

r∏
i=1

Cε(Dρi)e
hρ(r

(1)
ρ (−λs+ε)+r(2)

ρ (λs+1+ε))+Σv∈i(D)\{ρ}hvαv

≤ Cε(D) exp
( ∑

v∈i(D)

hvαv

)

where Cε(D) =
∏

v∈i(D)

(
C1+�v
ε C

(mv)
ε

)
exp(−r(D)λs+1).

The first upper bound is established.

To prove the second inequality, one goes back over the previous inequalities
replacing the Lyapunov exponent λs+1 by λs in the bound of ‖Ãhp(u),hu‖ (since
hu > hp(u) for u ∈ i2(D)) and in the bound of ‖(I−Π)Ahρ−1(θ−(hρ−1))‖. Thus,
the second upper bound is based on the following inequalities:∥∥f(D;h)(0)

∥∥ ≤ C1+�ρ
ε C(mρ)

ε e−λs exp
(
hρ((1 − +ρ)λs + (2 + +ρ)ε)

)
rρ∏
i=1

‖fhρ(Dρi ;h|Dρi
)(0)‖,

where ρ1, . . . , ρrρ denote the non-terminal sons of the root ρ and where for
every u ∈ i(D)∗,∥∥fhp(u)(Du;h|Du

)(0)
∥∥ ≤ C1+�u

ε C(mu)
ε e−λs exp

(
hp(u)(−λs + ε)

)
exp

(
hu(λs(1 − +u) + (2 + +u)ε)

) r∏
i=1

∥∥fhu(Dui ;h|Dui
)(0)

∥∥.

3.2.1. Case λs > 0. — Let us begin with the case λs > 0 for which the
proof of Lemma 3.7 is straightforward. The second upper bound given by
Lemma 3.9 is sufficient to prove that, for every diagram D ∈

⋃k
i=2 Ti, the

sequence
( ∑

h∈Hn(D) ‖f(D;h)(0)‖
)
n

converges P-almost surely when λs > 0:

Lemma 3.10. — Assume that λs > 0 and 0 < ε < 1
5λs. For every diagram

D ∈
⋃k

i=2 Ti, the following sum is finite:∑
h∈H(D)

exp
( ∑

u∈i(D)

hu
(
λs(1 −mu) + ε(2 +mu)

))
.

Proof. — If u ∈ i(D), then λs(1−mu)+ε(2+mu) ≤ λs(75 −
4
5mu) and mu ≥ 2.

Thus, for all u ∈ i(D), λs(1 −mu) + ε(2 +mu) ≤ − 1
5λs.
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3.2.2. Case λs ≤ 0 and λs+1 − kλs < 0. — Let us now assume that λs ≤ 0
and λs+1−kλs < 0. Using the first inequality given by Lemma 3.10, it remains
to prove that there exists ε > 0 such that for all D ∈ Tk the sequence( ∑

h∈Hn(D)

exp
( ∑

u∈i1(D)

huαu

))
n

converges, where (αu)u∈i(D) is a family of reals depending on ε, defined by (21).

The following lemma gives a simple criterion to check whether such a geo-
metric sum converges:

Lemma 3.11. — Let D = (X,E) be a diagram without cycle and let
β = (βu)u∈X be a family of reals indexed by X. For n ∈ N

∗, let Hn(D)
denote the set of families, h = (hu)u∈X , of positive integers smaller than n,
indexed by X and satisfying hu ≤ hv for all (u, v) ∈ E. Let P(D) be the set of
non-empty subsets of X, closed in D. For J ∈ P(D), let Q(J, β) denote the
set of subsets K of J such that

∑
v∈K βv = 0. There exists a constant C(β,D)

such that for all n ∈ N
∗:∑

h∈Hn(D)

exp
( ∑

u∈X
βuhu

)
≤ C(β,D)max

(
1, max

J∈P(D)

(
n|Q(J,β)| exp(n

∑
v∈J

βv)
))

In particular, a sufficient condition for the sequence( ∑
h∈Hn(D)

exp
( ∑

u∈X
βuhu

))
n

to converge is
∀J ∈ P(D),

∑
v∈J

βv < 0.

Proof. — The proof is by induction on the number of roots of the diagram D.

1) The result holds if D has one node. Indeed,

n∑
h=1

ehβ =



n if β = 0,
eβ − e(n+1)β

1 − eβ
if β  = 0.

Thus,
n∑

h=1

ehβ ≤ C(β,D)max(1, n1β=0 enβ)

where C(β,D) = eβ/|1− eβ |1β �=0 + 1β=0.
2) Let k ∈ N

∗. Assume that the result holds for all diagrams without cycle
and with at most k nodes. Consider a diagram D = (X,E) without cycle and
with k + 1 nodes. As D has no cycle and has a finite number of nodes, it has
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at least one terminal node. Let u denote a terminal node of D and p(u) the set
(eventually empty) of the predecessors of u:

p(u) =
{
x ∈ X, (x, u) ∈ E

}
.

The subdiagram Ď = (X̌, Ě), obtained by removing from D the node u and
every link (x, u) for x ∈ p(u), is a diagram with no cycle and with k nodes.
One may note that as u is a terminal node, {u} ∈ P(D) and that if J ∈ P(Ď),
then J ∪ {u} ∈ P(D).

Two cases will be distinguished depending on whether βu is equal to zero or
not. Set

Sn =
∑

h∈Hn(D)

exp
( ∑

v∈X
hvβv

)
.

Case βu = 0. — The sum is bounded by

Sn ≤ n
∑

h∈Hn(Ď)

exp
( ∑

v∈X̌

hvβv

)
.

Applying the induction hypothesis to the diagram Ď and the restriction of the
family β to X̌ gives:

Sn ≤ C(β|X̌ , Ď)max
(
n, max

J∈P(Ď)
n|Q(J,β)|+1 exp

(
n

∑
v∈J

βv

))
.

If J ∈ P(Ď), then J ∪ {u} ∈ P(D) and |Q(J, β)| + 1 ≤ |Q(J ∪ {u}, β)|.
Furthermore,

n = n|Q({u},β)| exp
(
n

∑
v∈{u}

βv

)
.

Therefore, the result still holds for the diagram D and the family β when
βu = 0.

Case βu  = 0.

(a) Assume first that u has no predecessor. Then

Sn ≤ (S(1)
n + S(2)

n )
eβu

|1 − eβu |
where

S(1)
n =

∑
h∈Hn(Ď)

exp
( ∑

v∈X̌

hvβv

)
and S(2)

n =
∑

h∈Hn(Ď)

exp
( ∑

v∈X̌

hvβv + nβu

)
.

By the induction hypothesis,

S(1)
n ≤ C(β|X̌ , Ď)max

(
1, max

J∈P(Ď)

(
n|Q(J,β)| exp

(
n

∑
v∈J

βv

)))
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and

S(2)
n ≤ C(β|X̌ , Ď)max

(
enβu , max

J∈P(Ď)

(
n|Q(J,β)| exp

(
n

∑
v∈J

βv + nβu

)))
.

As u has no predecessor, P(Ď) ⊂ P(D). Hence,

S(1)
n ≤ C(β|X̌ , Ď)max

(
1, max

J∈P(D)

(
n|Q(J,β)| exp

(
n

∑
v∈J

βv

)))
.

If J ∈ P(Ď) then J ∪{u} ∈ P(D) and |Q(J, β)| ≤ |Q(J ∪{u}, β)|. Furthermore
enβu = n|Q({u},β)| exp

(
n

∑
v∈{u} βv

)
. Therefore,

S(2)
n ≤ C(β|X̌ , Ď)max

(
1, max

J∈P(D)

(
n|Q(J,β)| exp

(
n

∑
v∈J

βv

)))
and the result still holds for the diagram D if u has no predecessor.

(b) Assume now that u has at least a predecessor denoted by x. Then,

Sn ≤ (S(2)
n + S(3)

n )
max(1, eβu)
|1 − eβu |

,

where
S(3)
n =

∑
h∈Hn(Ď)

exp
( ∑

v∈i(Ď)

hvβv

)
exp(hxβx).

The proof of the bound for S(2)
n does not use the fact that u has no predecessor,

thus the bound for S(2)
n still holds.

To study S
(3)
n , one applies the induction hypothesis to the diagram Ď and

the family β̃ = (β̃u)u∈X̌ , where

β̃v =
{
βx + βu if v = x
βv if v ∈ Ď \ {x}.

One has

S(3)
n ≤ C(β̃, Ď)max

(
1, max

J∈P (Ď)

(
n|Q(J,β̃)| exp

(
n

∑
v∈J

β̃v

)))
.

Let J ∈ P (Ď).
• If x  ∈ J , then J ∈ P(D) and

n|Q(J,β̃)| exp
(
n

∑
v∈J

β̃v

)
= n|Q(J,β)| exp

(
n

∑
v∈J

βv

)
.

• If x ∈ J , then
∑
v∈J

β̃v =
∑

v∈J∪{u}
βv and J ∪ {u} ∈ P(D). Furthermore,

|Q(J, β̃)| ≤ |Q(J ∪ {u}, β)|, since for K ∈ Q(J, β̃):
< if x  ∈ K, then K ∈ Q(J ∪ {u}, β);
< if x ∈ K, then K ∪ {u} ∈ Q(J ∪ {u}, β).
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Therefore,

n|Q(J,β̃)| exp
(
n

∑
v∈J

β̃v
)
≤ n|Q(J∪{u},β)| exp

(
n

∑
v∈J∪{u}

βv

)
and

S(3)
n ≤ C(β|X̌ , Ď)max

(
1, max

J∈P(D)

(
n|Q(J,β)| exp

(
n

∑
v∈J

βv

)))
.

The result is also true when u has a predecessor. This closes the proof of
Lemma 3.11.

Consider a diagram D = (X,E1, E2, I1, I2) ∈ Tk and fix a positive real ε
smaller than (kλs − λs+1)/(4k). Let α = (αu)u∈i(D) denote the family of reals
defined by:

• αu = λs(1 − +u − r
(1)
u ) − r

(2)
u λs+1 + ε(2 +mu) for u ∈ i1(D);

• αu = −λs(+u + r
(1)
u ) + λs+1(1− r

(2)
u ) + ε(2 +mu) for u ∈ i2(D)∪ {ρ(D)}.

Lemmas 3.9 and 3.11 insure that (
∑

h∈Hn(D) ‖f(D;h)(0)‖)n converges if for
all J ∈ P((X, I1)), the sum

∑
u∈J αu is negative. To shorthand the notations,

set
α(K) :=

∑
u∈i(K)

αu

for any subset K of X .
Consider a set J ∈ P((X, I1)). As the expression of αu differs depending

on whether u ∈ i1(D) or u ∈ i2(D) ∪ {ρ(D)}, it will be useful to isolate the
nodes of i1(D). Let ρ1 := ρ(D) and let ρ2, . . . , ρq denote the elements of
i1(D). For v ∈ X , let C(v) denote the subset of X which consists of v and its
descendants in the diagram (X,E2). Finally, set Ci := C(ρi) for i ∈ {1, . . . , q}.
As (X,E1∪E2) is a tree, the sets C1, . . . , Cq define a partition of X into closed
subsets in the diagram (X,E2). Thus, J is the disjoint union of the sets J ∩Cx

for x ∈ {1, . . . , q}. One has to prove that

α(J) =
q∑

x=1

α(J ∩ Cx)1J∩Cx �=∅ < 0.

As J is closed in (X, I1), a node in i2(D) whose predecessor belongs to J , is
also in J . Thus, for every x ∈ {1, . . . , q}, if v ∈ J ∩Cx then i(C(v)) ⊂ J ∩Cx.
This implies that if J ∩Cx  = ∅, then there exist sx ≥ 1 interior nodes, denoted
by vx1 , . . . , v

x
sx

, such that J ∩ Cx is equal to the disjoint union
⋃sx

j=1 i(C(vxj )).
Let us begin by computing a bound of α(C(v)) for all v ∈ i(D):

α
(
C(v)

)
= λs+1

(
|i(C(v))| − r(2)(C(v))

)
− λs

(
+(C(v)) + r(1)(C(v))

)
+ε

(
m(C(v)) + 2|i(C(v))|

)
if v ∈ i2(D) ∪

{
ρ(D)

}
,
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α
(
C(v)

)
= λs+1

(
|i(C(v))| − 1 − r(2)(C(v))

)
+ λs

(
1 − +(C(v)) − r(1)(C(v))

)
+ε

(
m(C(v)) + 2|i(C(v))|

)
if v ∈ i1(D).

As C(v) is closed in the diagram (X,E2), the number of its interior nodes
satisfies |i(C(v))| = 1 + r(2)(C(v)). Thus, if v ∈ i2(D) ∪ {ρ(D)},

α
(
C(v)

)
= λs+1 − λs

(
+(C(v)) + r(1)(C(v))

)
+ ε

(
m(C(v)) + 2|i(C(v))|

)
and if v ∈ i1(D),

α
(
C(v)

)
= λs

(
1 − +(C(v)) − r(1)(C(v))

)
+ ε

(
m(C(v)) + 2|i(C(v))|

)
.

As λs+1 < λs < 0, for all v ∈ i(D),

(23) α
(
C(v)

)
≤ λs

(
1 − +(C(v)) − r(1)(C(v))

)
+ ε

(
m(C(v)) + 2|i(C(v))|

)
.

It happens that +(C(v)) + r(1)(C(v)) > 1 for all v ∈ i(D). Indeed, let

D(v) =
(
X(v), E(v)

)
denote the subdiagram of (X,E1 ∪ E2) such that the set of nodes X(v) is the
union of C(v) and of the sons of the elements of C(v), and such that the set of
links is

E(v) = (E1 ∪ E2) ∩
(
X(v) ×X(v)

)
.

The diagram D(v) is a tree whose interior nodes have at least two sons and
whose terminal nodes are either leaves of (X,E1 ∪ E2), or elements of i1(D).
Thus, +(C(v)) + r(1)(C(v)) is the number of leaves of D(v). It is greater than
the number of interior nodes of D(v), that is greater than one.

It follows from inequality (23) that for all x ∈ {1, . . . , q},
α(J ∩ Cx) ≤ λs

(
1 − +(J ∩ Cx) − r(1)(J ∩ Cx)

)
(24)

+ε
(
m(J ∩ Cx) + 2|i(J ∩ Cx)|

)
and the upper bound is positive.

The upper bound in (24) can be improved when J ∩ Cx is a subset of
i2(D) ∪ {ρ(D)}: if J ∩ Cx  = ∅ and J ∩ Cx ⊂ i2(D) ∪ {ρ(D)}, then

α(J ∩ Cx) ≤ λs+1 − λs
(
+(J ∩ Cx) + r(1)(J ∩ Cx)

)
+ε

(
m(J ∩ Cx) + 2|i(J ∩ Cx)|

)
≤ λs+1 − λs

(
1 − +(Cx) + r(1)(Cx)

)
+ ε

(
m(Cx) + 2|i(Cx)|

)
.(25)

As the diagram (X,E1 ∪ E2) has k leaves, for every x ∈ {1, . . . , q},
r(1)(Cx) + +(Cx) ≤ k.

Indeed, suppose to the contrary that there exists i0 ∈ {1, . . . , q} such that
r(1)(Ci0) + +(Ci0) ≥ k + 1. Then

+(D) =
q∑

i=1

(
+(Ci) + r(1)(Ci)

)
− (q − 1)
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is greater than or equal to k+1+2(q−1)−(q−1) = k+q, that is contradictory
to the fact that (X,E1 ∪ E2) has k leaves.

On the other hand,

m(Cx)+2
∣∣i(Cx)

∣∣ ≤ m(D)+2
∣∣i(D)

∣∣ = 1+3
∣∣i(D)

∣∣+ +(D) ≤ 4+(D)−2 = 4k−2.

As ε is taken smaller than (kλs − λs+1)/(4k), the right term in (25) is negative.

The condition “J ∩Cx is a subset of i2(D)∪ρ(D)” is satisfied whether x = 1,
or x ∈ {2, . . . , q} and J∩Cx is strictly included in i(Cx). Thus α(J) is bounded
by

α(J) ≤
(
λs+1 − λs(+(C1) + r(1)(C1)) + ε(m(C1) + 2|i(C1)|)

)
1J∩C1 �=∅

+
q∑

x=2

(
λs+1 − λs(1 − +(Cx) − r(1)(Cx))

+ε(m(Cx) + 2|i(Cx)|)
)
1J∩Cx �∈{∅,i(Cx)}

+
q∑

x=2

(
λs(1 − +(Cx) − r(1)(Cx)) + ε(m(Cx) + 2|i(Cx)|)

)
1i(Cx)⊂J .

The following lemma describes the subsets J ∩Cx:

Lemma 3.12. — A subset J ∈ P((X, I1)) satisfies at least one of these two
assertions:

(i) J ∩ C1  = ∅;
(ii) there exists an index + ∈ {2, . . . , q} such that J ∩ C�  ∈ {∅, i(C�)}.

Proof. — Assume that for every + ∈ {2, . . . , q}, C� ∩ J  = ∅ ⇒ i(C�) ⊂ J .
One has to show that under this assumption, J ∩ C1  = ∅. Let x ∈ J . As
(X,E1 ∪ E2) is a tree with root ρ1 ∈ i(C1), there exists a path (x1, . . . , xr) in
(X,E1 ∪E2) going from ρ1 to x. Thus, to prove that C1 ∩ J  = ∅, it suffices to
establish the following property:
(I) If there exists a path in (X,E1 ∪ E2) connecting a node in i(C1) with a

node in J , then C1 ∩ J  = ∅.
This property can be proved by induction on the number of nodes lying in

i1(D) in a path that connects a node of i(C1) with a node of J .
1) Let x = (x1, . . . , xr) be a path in (X,E1 ∪ E2) such that x1 ∈ i(C1),

xr ∈ J and xi ∈ i2(D) ∪ {ρ(D)} for all i ∈ {1, . . . , r}. Then the set i(C1)
contains the path x. Therefore, C1 ∩ J  = ∅.

2) Let j ∈ N. Assume that (I) holds for every path having j nodes that be-
long to i1(D). Consider a path (x1, . . . , xr) in (X,E1∪E2) such that x1 ∈ i(C1),
xr ∈ J and such that j + 1 nodes belong to i1(D). Set

t := max
{
i ∈ {1, . . . , r} such that xi ∈ i1(D)

}
.
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If xr ∈ i(C1), then C1 ∩ J  = ∅. Otherwise, there exists + ∈ {2, . . . , q} such
that xr ∈ i(C�). In this case, C� ∩ J  = ∅ and the assumption implies that
i(C�) ⊂ J . By construction, xt ∈ i(C�) ⊂ J and xt ∈ i1(D). It follows that
(xt, xt−1) ∈ I2 ⊂ I1 and as J is closed in (X, I1), xt−1 ∈ J . Hence, the path
(x1, . . . , xt−1) in (X,E1∪E2) relates a node x1 ∈ i(C1) to a node xt−1 ∈ J and
contains j nodes that belong to i1(D). Then, the induction hypothesis implies
that C1 ∩ J  = ∅.

Lemma 3.12 and the fact that the right term of (25) is negative imply that

α(J) ≤ max
1≤j≤q

{
λs+1 − λs(+(Cj) + r(1)(Cj)) + ε(m(Cj) + 2|i(Cj)|)

+
q∑

x=2
x �=j

(
λs(1 − +(Cj) − r(1)(Cj)) + ε(m(Cj) + 2|i(Cj)|)

)}
.

As
∑q

x=1(r
(1)(Cx) + +(Cx) − 1) + 1 = q − 1 + k − q + 1 = k and

q∑
x=1

(
m(Cx) + 2|i(Cx)|

)
= m(D) + 2

∣∣i(D)
∣∣ ≤ 4k − 2,

it turns out that α(J) ≤ λs+1 − kλs + (4k − 2)ε < 0.

According to Lemma 3.11, the following lemma is established:

Lemma 3.13. — Assume that λs+1 − kλs < 0 and that λs < 0. Fix ε > 0
smaller than (kλs − λs+1)/(4k) and set

αu =

{
−λs(+u + r

(1)
u ) + (1− r

(2)
u )λs+1 + ε(2 +mu) if u ∈ i2(D) ∪ {ρ(D)},

λs(1 − +u − r
(1)
u ) − r

(2)
u λs+1 + ε(2 +mu) if u ∈ i1(D).

For every D ∈ Tk, the following sum is finite:( ∑
h∈H(D)

exp
( ∑

u∈i1(D)

huαu

))
.

3.3. Convergence of the derivatives of Γn at zero. — Let us assume
that for j ∈ {1, . . . , k}, Log+(‖B(j)‖) ∈ L1(Ω,A,P) and that

Dξ(0)(Rd) ∩
r⊕

i=s+1

Ei = {0}

P-almost surely. The aim of this subsection is to prove that, if λs+1 − kλs < 0,
then (DkΓn(0) −DkΥn(0))n converges to zero in probability.

Recall that Γn is the orthogonal normalization of ψn+1 in the Case 2, i.e.
when φn+1 is the restriction of φn(θ−n)◦ξ(θ−n) to a neighbourhood of 0 in R

d,
whereas Υn is the orthogonal normalization of ψn in the Case 1, i.e. when
φn is the restriction of φn(θ−n) to a neighbourhood of 0 in Es(θ−n). As the
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derivatives of the two applications, Υn and Γn, will be used simultaneously,
the number 1 or 2 will be added in the notations of the applications Fn(D),
fn(D;h), ai,j,n, etc. whether they are defined in the Case 1 or 2.

By Proposition 3.1, there exists a family of reals {c(D)}D∈Tk
, such that for

all n ∈ N
∗,

DkΥn(0) =
∑
D∈Tk

c(D)Fn(1;D)(0), DkΓn(0) =
∑
D∈Tk

c(D)Fn+1(2;D)(0).

Each term Fn+1(2;D)(0) can be split into the sum of two terms:

F 1
n+1(2;D)(0) :=

∑
h∈Hn(D)

fn+1(2;D;h)(0),

F 2
n+1(2;D)(0) :=

∑
h∈Hn+1(D)\Hn(D)

fn+1(2;D;h)(0).

The first term, F 1
n+1(2;D)(0) does not depend on the derivatives of ξ of or-

ders greater than 1. For every D ∈ Tk, the convergence to 0 of the sequences
(F 1

n+1(2;D)(0) − Fn(1;D)(0))n and (F 2
n+1(2;D)(0))n will be successively es-

tablished.

3.3.1. Convergence of (F 1
n+1(2;D)(0)−Fn(1;D)(0))n to 0. — For h ∈ Hn(D),

the expression of fn+1(2;D;h)(0) can be deduced from the expression of
fn(1;D;h)(0) by replacing each projector Π by a projector Πn. Thus, the
splitting of

• each vector ãi,j,n(2)(0) into the sum of the vector

ãi,j,n(2)(0) − ãi,j,n(1)(0) = A−i(Π −Πn)Aj(θ−j)

and the vector ãi,j,n(1)(0) = A−i(I−Π)Aj(θ−j),
• each projector pn(2)(0) = Πn into the sum of pn(2) − pn(1) = Πn − Π

and pn(1) = Π,

in the expression of Fn+1(2;D)(0), gives an expression of F 1
n+1(D; 2)(0) −

Fn(D; 1)(0) which is a combination (independent of n) of terms that contain
at least one operator Πn −Π. To describe these terms set:

āi,j,n(1) := A−i(Π −Πn)Aj(θ−j), āi,j(0) := A−i(I−Π)Aj(θ−j),

κ̄n(1) := Πn −Π, κ̄n(0) := I−Π,

ēn(1) := Πn −Π, ēn(0) := Π.

A diagram D ∈ Tk is now endowed with a family of heights h ∈ Hn(D) and
with two families of integers, denoted by

χ = (χu)u∈i(D) and τ = (τu)u∈i(D),

such that for all u ∈ i(D), χu ∈ {0, 1} and τu ∈ {0, . . . , +u}.
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It remains to define the map associated with such a labelled diagram. First,
for u ∈ i1(D) set

gn,hp(u)(Du;h|Du
;χ|Du

; τ|Du
) := A−hp(u) ēn(χu)Ahu−1(θ−(hu−1))

B(mu)(θ−hu)
(
gn,hu(Du1 ;h|Du1

;χ|Du1
; τ|Du1

), . . . ,

gn,hu(Duru
;h|Duru

;χ|Duru
; τ|Duru

),

(A−hu(Πn −Π))⊗τu , (A−huΠ)⊗(�u−τu)
)

and for u ∈ i2(D)

gn,hp(u)(Du;h|Du
;χ|Du

; τ|Du
) := āhp(u),hu−1,n(χu)

B(mu)(θ−hu)
(
gn,hu(Du1 ;h|Du1

;χ|Du1
; τ|Du1

), . . . ,

gn,hu(Duru
;h|Duru

;χ|Duru
; τ|Duru

),

(A−hu(Πn −Π))⊗τu , (A−huΠ)⊗(�u−τu)
)
,

where u1, . . . , uru designate the non-terminal sons of the node u.

The multilinear application gn(D;h;χ; τ), associated with (D;h;χ; τ) is de-
fined by

gn(D;h;χ; τ) = κ̄n(χρ)Ahρ−1(θ−(hρ−1))

B(mρ)(θ−hρ)
(
gn,hρ(Dρ1 ;h|Dρ1

;χ|Dρ1
; τ|Dρ1

), . . . ,

gn,hρ(Dρrρ
;h|Dρrρ

;χ|Dρrρ
; τ|Dρrρ

),

(A−hρ(Πn −Π))⊗τρ , (A−hρΠ)⊗(�ρ−τρ)
)
,

where ρ1, . . . , ρrρ designate the non-terminal sons of the root ρ of D.

With these notations, F 1
n+1(2;D)(0) − Fn(1;D)(0) can be expressed as

F 1
n+1(2;D) − Fn(1;D)(0) =

∑
(χ,τ)∈Q(D)

β(χ, τ)
∑

h∈Hn(D)

gn(D;h;χ; τ)

where

• (χ, τ) ∈ Q(D) if and only if χ = (χu)u∈i(D) and τ = (τu)u∈i(D) are
two families of integers indexed by the interior nodes of D, satisfying
the following properties: for all u ∈ i(D), χu ∈ {0, 1}, τu ∈ {0, . . . , +u}
and

∑
u∈i(D) (χu + τu) ≥ 1;

• β(χ, τ) =
∏

u∈i(D) C
τu

�u
for (χ, τ) ∈ Q(D).

The following lemma gives two upper bounds of the norm of the applications
gn(D;h;χ; τ):

Lemma 3.14. — Let D = (X,E1, E2, I1, I2) ∈
⋃k

i=1 Ti and (χ, τ) ∈ Q(D).
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1) For all 0 < ε < λs − λs+1, there exists a sequence of random variables
(Cn,ε)n, converging in probability to 0, such that for all n ∈ N and all
h ∈ Hn(D): ∥∥gn(D;h;χ; τ)

∥∥ ≤ Cn,ε exp
( ∑

u∈i(D)

βuhu

)

where

βu =

{
λs+1(1 − r

(2)
u ) − λs(+u + r

(1)
u ) + ε(3 + 2mu) if u ∈ i1(D),

−λs+1r
(2)
u + λs(1 − +u − r

(1)
u ) + ε(3 + 2mu) if u ∈ i2(D) ∪ {ρ(D)}.

2) For all 0 < ε < λs − λs+1, there exists a sequence of random variables
(Cn,ε)n, converging in probability to 0, such that for all n ∈ N and all
h ∈ Hn(D): :∥∥gn(D;h;χ; τ)

∥∥ ≤ Cn,ε exp
( ∑

u∈i(D)

β̃uhu

)

where β̃u = λs(1 −mu) + ε(3 + 2mu) for all u ∈ i(D).

Proof. — Set χ(D) =
∑

u∈i(D)

χu and τ(D) =
∑

u∈i(D)

τu.

In addition to the usual bounds:

∀j ∈ {1, . . . , n},m ∈ {2, . . . , k}, ‖B(m)(θ−j)‖ ≤ C(m)
ε ejε,

∀j, 1 ≤ j ≤ n, ‖κ̄n(0)Aj(θ−j)‖ = ‖(I−Π)Aj(θ−j)‖ ≤ Cεej(λs+1+ε),

∀j, 1 ≤ j ≤ n, ‖A−j ēn(0)‖ = ‖A−jΠ‖ ≤ Cεej(−λs+ε),

∀i, j, 0 < i ≤ j ≤ n,

‖āi,j,n(0)‖ = ‖A−i(I−Π)Aj(θ−j)‖ ≤ Cεe(j−i)λs+1+(j+i)ε,

∀i, j, 0 < j ≤ i ≤ n,

‖A−iēn(0)Aj(θ−j)‖ = ‖A−iΠAj(θ−j)‖ ≤ Cεe(j−i)λs+(i+j)ε,

(where Cε and C
(m)
ε for m ∈ {2, . . . , k} denote P-almost surely finite random

variables) the proof is based on the bound given by Proposition 2.1. Namely,
for every ε > 0 there exists a sequence of random variables (Cε,n)n converging
to zero in probability such that for all n ∈ N, and +, k ∈ {0, . . . , n}∥∥A−�(Πn −Π)Ak(θ−k)

∥∥ ≤ Cε,nen(λs+1−λs+ε)+k(λs+ε)+�(−λs+1+ε).

Fix 0 < ε < λs −λs+1, n ∈ N and h ∈ Hn(D). Let us begin by establishing the
following bound for the norm of the application gn,hp(u)(Du;h|Du

;χ|Du
; τ|Du

)
for all u ∈ i(D)∗:

tome 129 – 2001 – n
o
3



INVARIANT JETS OF A SMOOTH DYNAMICAL SYSTEM 433

If u ∈ i1(D), then∥∥gn,hp(u)(Du;h|Du
;χ|Du

; τ|Du
)
∥∥(26)

≤ Cχ(Du)+τ(Du)
ε,n Cε(Du) exp

(
hp(u)(−λs + 2ε)

)
exp

(
hu(−λs+1r

(2)
u + λs(1 −mu + r(2)u ) + ε(3 + 2mu))

)
.

If u ∈ i2(D), then∥∥gn,hp(u)(Du;h|Du
;χ|Du

; τ|Du
)
∥∥(27)

≤ Cχ(Du)+τ(Du)
ε,n Cε(Du) exp

(
hp(u)(−λs+1 + 2ε)

)
exp

(
hu(λs+1(1 − r(2)u ) − λs(mu − r(2)u ) + ε(3 + 2mu))

)
.

where Cε(Du) is a P-almost surely finite random variable.

Let u be a node in i1(D),∥∥gn,hp(u)(Du;h|Du
;χ|Du

; τ|Du
)
∥∥

≤
∥∥A−hp(u)(Πn −Π)Ahu−1(θ−(hu−1))

∥∥χu∥∥A−hp(u)ΠAhu−1(θ−(hu−1))
∥∥1−χu

∥∥B(mu)(θ−hu)
∥∥ ·

∥∥A−hu(Πn −Π)
∥∥τu

‖A−huΠ‖�u−τu

ru∏
i=1

∥∥gn,hu(Dui ;h|Dui
;χ|Dui

; τ|Dui
)
∥∥

where u1, . . . , uru designate the non-terminal sons of the node u.

It follows that:

‖gn,hp(u)(Du;h|Du
;χ|Du

; τ|Du
)‖

≤ Cχu+τu
ε,n C(mu)

ε C1−χu+�u−τu
ε e−λs

exp
(
(χu + τu)n(λs+1 − λs + ε)

)
exp

(
hp(u)(−λs+1χu − (1 − χu)λs + ε)

)
exp

(
hu(λs(1 − τu − +u)− λs+1τu + ε(2 + +u))

)
ru∏
i=1

‖gn,hu(Dui ;h|Dui
;χ|Dui

; τ|Dui
)‖.

As λs+1 − λs + ε < 0, and as the height of a node is lesser or equal to n,

n(λs+1 − λs + ε)χu ≤ hp(u)(λs+1 − λs + ε)χu,

n(λs+1 − λs + ε)τu ≤ hu(λs+1 − λs + ε)τu.
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Therefore,

‖gn,hp(u)(Du;h|Du
;χ|Du

; τ|Du
)‖(28)

≤ Cχu+τu
ε,n C(mu)

ε C1−χu+�u−τu
ε e−λs

ru∏
i=1

∥∥gn,hu(Dui ;h|Dui
;χ|Dui

; τ|Dui
)
∥∥ exp

(
hp(u)(−λs + 2ε)

)
exp

(
hu(λs(1 − +u)τu + ε(3 + 2+u))

)
.

Let u be a node in i2(D),∥∥gn,hp(u)(Du;h|Du
;χ|Du

; τ|Du
)
∥∥

≤ ‖A−hp(u)(Πn −Π)Ahu−1(θ−(hu−1))‖χu∥∥Ã−hp(u),hu−1

∥∥1−χu
∥∥B(mu)(θ−hu)

∥∥ ·
∥∥A−hu(Πn −Π)

∥∥τu‖A−huΠ‖�u−τu

ru∏
i=1

∥∥gn,hu(Dui ;h|Dui
;χ|Dui

; τ|Dui
)
∥∥.

Thus,∥∥gn,hp(u)(Du;h|Du
;χ|Du

; τ|Du
)
∥∥

≤ Cχu+τu
ε,n C(mu)

ε C1−χu+�u−τu
ε

exp(−χuλs − (1 − χu)λs+1 + (χu + τu)n(λs+1 − λs + ε)
)

ru∏
i=1

‖gn,hu(Dui ;h|Dui
;χ|Dui

; τ|Dui
)‖ exp

(
hp(u)(−λs+1 + ε)

)
exp

(
hu(λs(χu + τu − +u) + λs+1(1 − χu − τu) + ε(2 + +u))

)
.

Replacing n(λs+1 − λs + ε) by hu(λs+1 − λs + ε) gives:

‖gn,hp(u)(Du;h|Du
;χ|Du

; τ|Du
)‖(29)

≤ Cχu+τu
ε,n C(mu)

ε C1−χu+�u−τu
ε

exp(−χuλs − (1 − χu)λs+1)
ru∏
i=1

∥∥gn,hu(Dui ;h|Dui
;χ|Dui

; τ|Dui
)
∥∥

exp
(
hp(u)(−λs+1 + 2ε)

)
exp

(
hu(−λs+u + λs+1 + ε(3 + 2+u))

)
.

The bound of ‖gn,hp(u)(Du;h|Du
;χ|Du

; τ|Du
)‖ can be established by induction

on the number of non-terminal descendants of u, with the help of inequali-
ties (28) and (29).

Let ρ denote the root of D and r1, . . . , rρr the non-terminal sons of ρ. To
establish the first bound for g, it remains to consider the part of g depending
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on the height of the root:∥∥gn(D;h;χ; τ)
∥∥

≤
∥∥(Πn −Π)Ahρ−1(θ−(hρ−1))‖χρ‖(I−Π)Ahρ−1(θ−(hρ−1))

∥∥1−χρ∥∥B(mρ)(θ−hρ)
∥∥ ·

∥∥A−hρ(Πn −Π)
∥∥τρ

∥∥A−hρΠ
∥∥�ρ−τρ

rρ∏
i=1

∥∥gn,hρ(Dρi ;h|Dρi
;χ|Dρi

; τ|Dρi
)
∥∥

≤ Cχρ+τρ
ε,n C(mρ)

ε C1−χρ+�ρ−τρ
ε e−χρλs−(1−χρ)λs+1

rρ∏
i=1

∥∥gn,hρ(Dρi ;h|Dρi
;χ|Dρi

; τ|Dρi
)
∥∥e(χρ+τρ)n(λs+1−λs+ε)

exp
(
hρ(λs(χρ + τρ − +ρ) + λs+1(1 − χρ − τρ) + ε(2 + +ρ))

)
Therefore,∥∥gn(D;h;χ; τ)

∥∥
≤ Cχρ+τρ

ε,n C(mρ)
ε C1−χρ+�ρ−τρ

ε e−χρλs−(1−χρ)λs+1

exp
(
hρ(λs+1 − λs+ρ + ε(3 + 2+ρ))

) rρ∏
i=1

∥∥gn,hρ(Dρi ;h|Dρi
;χ|Dρi

; τ|Dρi
)
∥∥.

Inequalities (26) and (27) and the fact that (χ, τ) ∈ Q(D) provide the first
inequality for ‖gn(D;h;χ; τ)‖.

To deduce the second inequality, it suffices to note that when u ∈ i2(D), hp(u)
is smaller than hu. This allows to bound λs+1(hu − hp(u)) by λs(hu − hp(u))
for u ∈ i2(D). In this way, a unique bound of ‖gn,hp(u)(Du;h|Du

;χ|Du
; τ|Du

)‖
is obtained for all u ∈ i(D):∥∥gn,hp(u)(Du;h|Du

;χ|Du
; τ|Du

)
∥∥

≤ Cχu+τu
ε,n C(mu)

ε C1−χu+�u−τu
ε e−λs ehp(u)(−λs+2ε)

exp
(
hu(λs(1 − +u)τu + ε(3 + 2+u))

)
ru∏
i=1

∥∥gn,hu(Dui ;h|Dui
;χ|Dui

; τ|Dui
)
∥∥.

In the same way,∥∥gn(D;h;χ; τ)
∥∥ ≤ Cχρ+τρ

ε,n C(mρ)
ε C1−χρ+�ρ−τρ

ε e−χρλs−(1−χρ)λs+1

exp
(
hρ(λs(1 − +ρ) + ε(3 + 2+ρ))

)
rρ∏
i=1

‖gn,hρ(Dρi ;h|Dρi
;χ|Dρi

; τ|Dρi
)‖. �
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In Subsection 3.2, it has been shown that for a positive and small enough ε

•
∑

h∈Hn(D) exp(
∑

u∈i(D) huβ̃u) converges if λs > 0;

•
∑

h∈Hn(D) exp(
∑

u∈i(D) huβu) converges if λs ≤ 0 and λs+1 − kλs < 0.

Therefore, according to Lemma 3.14, for every D ∈ Tk and (χ, τ) ∈ Q(D),
the sequence (

∑
h∈Hn(D) gn(D;h;χ; τ))n converges to zero in probability if

λs+1 − kλs < 0 and Dξ(0)(Rd)∩
⊕r

i=s+1 Ei = {0} P-almost surely. This closes
the proof of the convergence to 0 of (F 1

n+1(2;D)(0) − Fn(1;D)(0))n for every
diagram D ∈ Tk.
3.3.2. Convergence to zero of (F 2

n+1(2;D)(0))n. — Let D ∈ Tk. To prove that
the sequence (F 2

n+1(2;D)(0))n converges to 0 in probability, let us introduce
an auxiliary sequence

F̃n+1(D) =
∑

h∈Hn+1(D)\Hn(D)

f̃n+1(D;h),

that can be deduced from the expression of F 2
n+1(2, D)(0) by replacing each

projector Πn by a projector Π:

f̃n+1(D;h) = (I−Π)Ahρ−1(θ−(hρ−1))b(mρ)
hρ

(2)(0)(
f̃n+1,hρ(Dρ1 ;h|Dρ1

), . . . , f̃n+1,hρ(Dρr ;h|Dρr
), (A−hρΠ)�ρ

)
where ρ1, . . . , ρrρ designate the non-terminal sons of the root ρ and,

• if u ∈ i1(D) then

f̃n+1,hp(u)(Du;h|Du
) = A−hp(u)ΠAhu−1(θ−(hu−1))b(mu)

hu
(2)(0)(

f̃n+1,hu(Du1 ;h|Du1
), . . . , f̃n+1,hu(Dur ;h|Dur

), (A−huΠ)⊗�u
)
.

• if u ∈ i2(D) then

f̃n+1,hp(u)(Du;h|Du
) = Ãhp(u),hu−1b

(mu)
hu

(2)(0)
(
f̃n+1,hu(Du1 ;h|Du1

)

, . . . , f̃hu(Dur ;h|Dur
), (A−huΠ)⊗�u

)
.

where u1, . . . , uru designate the non-terminal sons of the node u.

The convergence to zero of the sequences (F̃n(D))n and (F̃n(D) −
F 2
n(2;D)(0))n will be successively studied.

3.3.2.1. Convergence of (F̃n(D))n to zero. — The expressions of fn+1(1;D;h)(0)
and f̃n+1(D;h) only differ in the terms

b
(m)
n+1(i)(0) =

{
B(m)(θ−(n+1)) if i = 1,

ξ(m)(θ−n) if i = 2.

Therefore, as in Lemmas 3.9, one may assert that for all ε > 0, there exists
a P-almost surely finite random variable Cε, such that for all n ∈ N

∗ and
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h ∈ Hn(D),∥∥f̃n(D;h)
∥∥ ≤

( ∏
u∈i(D),hu=n

∥∥ξ(mu)(θ−n)
∥∥)

Cε exp
( ∑

u∈i(D)

αuhu

)
where

• αu = λs(1 −mu) + ε(2 +mu) if u ∈ i(D) and λs > 0;

• αu = −λs(+u + r
(1)
u ) + (1 − r

(2)
u )λs+1 + ε(2 + mu) if u ∈ i2(D) ∪ {ρ(D)}

and λs ≤ 0;

• αu = λs(1 − +u − r
(1)
u ) − r

(2)
u λs+1 + ε(2 +mu) if u ∈ i1(D) and λs ≤ 0.

Therefore, to prove that (F̃n+1(D))n converges to zero in probability, it
suffices to show that the sequence (

∑
h∈Hn+1(D)\Hn(D) exp(

∑
u∈i(D) αuhu))n

converges to zero.

Set J(D;u;n) := {h ∈ H(D), hu = n} for u ∈ i(D). According to Lemmas
3.10 and 3.13, whether λs > 0 or λs ≤ 0, the sum

∑
h∈H(D) exp(

∑
u∈i(D) αuhu)

is finite provided that λs+1−kλs < 0 and that ε > 0 is small enough. Therefore,
for every u ∈ i(D), the sequence (S(u;n))n defined by

S(u;n) :=
∑

h∈J(D;u;n)

exp
( ∑

v∈i(D)\{u}
hvαv + nαu

)
,

converges to zero. But Hn+1(D)\Hn(D) ⊂
⋃

u∈i(D) J(D;u;n+1), whence the
sequence (

∑
h∈Hn+1(D)\Hn(D) exp(

∑
u∈i(D) αuhu))n converges to zero.

3.3.2.2. Convergence of (F 2
n(2;D)(0) − F̃n(D))n to zero. — The difference

between F 2
n+1(2;D)(0) and F̃n+1(D) can also be decomposed as follows:

F 2
n+1(2;D)(0) − F̃n+1(D) =

∑
(χ,τ)∈Q(D)

β(χ, τ)
∑

h∈Hn(D)

g̃n(D;h;χ; τ)

where g̃n(D;h;χ; τ) is the multilinear application defined by

g̃n(D;h;χ; τ) = κ̄n(χρ)Ahρ−1(θ−(hρ−1))b(mρ)
hρ

(2)(0)(
g̃n,hρ(Dρ1 ;h|Dρ1

;χ|Dρ1
; τ|Dρ1

), . . . , g̃n,hρ(Dρrρ
;h|Dρrρ

;χ|Dρrρ
; τ|Dρrρ

),

(A−hρ(Πn −Π))⊗τρ , (A−hρΠ)⊗(�ρ−τρ)
)
,

(ρ1, . . . , ρrρ are the non-terminal sons of the root ρ). As usual, if u ∈ i1(D)
then the map g̃n,z(Du;h|Du

;χ|Du
; τ|Du

) is defined by:

g̃n,hp(u)(Du;h|Du
;χ|Du

; τ|Du
) = A−hp(u) ēn(χu)Ahu−1(θ−(hu−1))b(mu)

hu
(2)(0)(

g̃n,hu(Du1 ;h|Du1
;χ|Du1

; τ|Du1
), . . . , g̃n,hu(Duru

;h|Duru
;χ|Duru

; τ|Duru
),

(A−hu(Πn −Π))⊗τu , (A−huΠ)⊗(�u−τu)
)
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and if u ∈ i2(D) then the map g̃n,z(Du;h|Du
;χ|Du

; τ|Du
) is defined by:

g̃n,hp(u)(Du;h|Du
;χ|Du

; τ|Du
) = āhp(u),hu−1(χu)b

(mu)
hu

(2)(0)(
g̃n,hu(Du1 ;h|Du1

;χ|Du1
; τ|Du1

), . . . , g̃n,hu(Duru
;h|Duru

;χ|Duru
; τ|Duru

),

(A−hu(Πn −Π))⊗τu , (A−huΠ)⊗(�u−τu)
)

(u1, . . . , uru designate the non-terminal sons of the node u).

For 0 < ε < λs − λs+1, (χ, τ) ∈ Q(D) and h ∈ Hn(D), the norm of the
application g̃n(D;χ; τ ;h) is bounded above by∥∥g̃n(D;χ; τ ;h)

∥∥ ≤ Cε,n

∏
u∈i(D),hu=n

∥∥ξ(mu)(θ−n)
∥∥ exp

( ∑
u∈i(D)

βuhu

)
where

• βu = λs(1 −mu) + ε(3 + 2mu) if u ∈ i(D) and λs > 0;

• βu = −λs(+u + r
(1)
u ) + (1− r

(2)
u )λs+1 + ε(3 + 2mu) if u ∈ i2(D) ∪ {ρ(D)}

and λs ≤ 0;

• βu = λs(1 − +u − r
(1)
u ) − r

(2)
u λs+1 + ε(3 + 2mu) if u ∈ i1(D) and λs ≤ 0;

• (Cε,n)n is a sequence of random variables that converges in probability
to zero.

When λs+1 − kλs < 0, and ε > 0 is small enough, the sum∑
h∈H(D)

exp
( ∑

u∈i(D)

βuhu

)

is finite. Therefore, one may conclude that( ∑
h∈Hn+1(D)\Hn(D)

∥∥g̃n(D;χ; τ ;h)
∥∥)

n

converges to zero in probability for every D ∈ Tk and (χ, τ) ∈ Q(D).

This closes the proof of the convergence to zero in probability of
(DkΓn(0) −DkΥn(0)) when λs+1−kλs < 0 and Dξ(0)(Rd)∩

⊕r
i=s+1Ei = {0}

P-almost surely.

Appendix A

Description of the contacts of submanifolds

The objective of this appendix is to introduce equivalence classes of sub-
manifolds that play the same role as jets for maps and to state some of their
elementary properties.
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A.1. Properties of the jets of maps. — Let us start by recalling some
properties of the jets of maps.

Lemma A.1. — Let E, F and G be three Euclidean spaces.
1) There exists a unique application, Co, defined on the product

Jk
0

(
C∞
0,0(E,F )) × Jk

0 (C∞
0,0(F,G)

)
such that for all f ∈ C∞

0,0(E,F ) and g ∈ C∞
0,0(F,G),

Co
(
jk0 (f), j

k
0 (g)

)
= jk0 (g ◦ f).

Furthermore, Co is continuous.
2) Denote by Diff∞

0 (E) the set of local diffeomorphisms of C∞
0,0(E,E). There

exists a unique map, Inv, defined on Jk
0 (Diff∞

0 (E)) such that for all f in
Diff∞

0 (E),
Inv

(
jk0 (f)

)
= jk0 (f

−1).
Furthermore, Inv is continuous.

Proof. — These two properties are a consequence of Faa-di-Bruno’s formula:

Let E, F and G be three Euclidean spaces, let f be a C∞ map defined on a
neighbourhood U of 0 in E with values in F , let V be an open set of F such
that f(U) ⊂ V and let g : V → G be a C∞ map. The map g ◦ f is C∞ on U
and for all k ∈ N

∗, x ∈ U

(30) Dk(f ◦ g)(x) =
∑
q∈Ik

Cq
k D

|q|f(g(x))
(
(Dg(x))⊗q1 , . . . , (Dkg(x))⊗qk

)
,

where

Ik =
{
q = (q1, . . . , qk) ∈ N

k, q1 + 2q2 · · ·+ kqk = k
}
,

|q| = q1 + · · ·+ qk,

Cq
k =

k!
q1! . . . qk!

· 1
(2!)q2 . . . (k!)qk

for q = (q1, . . . , qk).

By this formula, if f̃ ∈ jk0 (f) and g̃ ∈ jk0 (g), then g̃◦ f̃ ∈ jk0 (g◦f). Therefore,
there exists a unique map Co, defined on Jk

0 (C∞
0,0(E,F ))×Jk

0 (C∞
0,0(F,G)), such

that for all f ∈ C∞
0,0(E,F ) and g ∈ C∞

0,0(F,G), jk0 (g ◦ f) = Co(jk0 (f), jk0 (g)).
Faa-di-Bruno’s formula also shows that the map Co is continuous.

If f ∈ Diff∞
0 (E), then Faa-di-Bruno’s formula gives an iterative formula

for the derivatives of f−1 at 0: Df−1(0) =
(
Df(0)

)−1 and for each k ≥ 2,
Dkf−1(0) is equal to

−
∑
q∈Ĩk

Cq
k D

|q|f−1(0)
((

Df(0)Df−1(0)
)⊗q1

, . . . ,
(
Dkf(0)(Df−1(0)⊗k)⊗qk

))
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where
Ĩk =

{
q = (q1, . . . , qk) ∈ Ik, |q| < k

}
.

Thus, if f̃ ∈ jk0 (f) then f̃−1 ∈ jk0 (f
−1); there exists a unique map Inv, defined

on Jk
0 (Diff∞

0 (E)) such that for every f ∈ Diff∞
0 (E), jk0 (f

−1) = Inv(jk0 (f)). The
iterative formula shows that Inv is continuous.

A.2. Orthogonal parametrization of a submanifold at 0. — This sub-
section contains a description of a particular class of parametrizations for sub-
manifolds of R

N .

Definition A.2. — Let S be a C∞ submanifold of R
N passing through 0

and let f ∈ C∞
0,0(T0S,RN ) be a parametrization of S at 0. “f is an orthogonal

parametrization of S at 0” if f ∈ C∞
0 (T0S,RN ) and if the orthogonal projection

of f on the tangent space T0S of S at 0 is equal to the identity on T0S.

For example, consider the unit circle S = {(x, y) ∈ R
2, (x + 1)2 + y2 = 1}.

Its tangent space at 0 is the vector space R(0, 1). The map γ, defined by
γ((0, t)) = (

√
1 − t2 − 1, t) for all t ∈]− 1, 1[, is an orthogonal parametrization

of S at 0.
An orthogonal parametrization of S at 0 can be constructed with the help

of a parametrization f ∈ C∞
0,0(E,RN ) of S at 0 as follows: let p denote the

orthogonal projection on T0S. There exist a neighbourhood U of 0 in E and
a neighbourhood V of 0 in T0S, such that p ◦ f is a diffeomorphism from U
onto V . Then the map g, defined on V by g(y) := f ◦ (p◦f)−1(y) for all y ∈ V ,
is an orthogonal parametrization of S at 0. The map g ◦ p ∈ C∞

0 (RN ,RN ) will
be called the “orthogonal normalization of f” and will be denoted by n⊥(f).

The following lemma states two properties of orthogonal normalizations:

Lemma A.3. — Let E be a subspace of R
N and let g1, g2 ∈ Emb∞

0,0(E,RN ).

1) If g1 and g2 are two parametrizations of a C∞ submanifold S of R
N at 0,

then their orthogonal normalizations coincide on a neighbourhood of 0 in
R
N .

2) There exists a unique map N⊥, defined on Jk
0 (Emb∞

0,0(E,RN )), such that
for all f ∈ Emb∞

0,0(E,RN ), N⊥(jk0 (f)) = jk0 (n⊥(f)). The map N⊥ is
continuous.

Proof. — 1) Let p be the orthogonal projection of R
N onto TxS. There exists

a neighbourhood U , of 0 in E such that:
• g1 and g2 are homeomorphisms from U onto their images V1 ∩ S and
V2 ∩ S, where V1 and V2 are two neighbourhoods of 0 in R

N ;
• p ◦ g1 and p ◦ g2 are diffeomorphisms from U onto their images.
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Set V = V1 ∩ V2, Ui = g−1
i (U) for i ∈ {1, 2}, and W = p−1(U1 ∩ U2). There

exists a homeomorphism h : U1 �→ U2, such that g2 ◦ h = g1 on U1. Thus, the
orthogonal normalizations of g1 and g2 are well-defined on W and

n⊥(g1) = g2 ◦ h ◦ (p ◦ g2 ◦ h)−1 ◦ p = n⊥(g2).

2) Due to Lemma A.1, it remains to show that there exists a unique map
P , defined on Jk

0 (C
∞
0,0(E,RN )) satisfying jk0 (p(f)) = P (jk0 (f)) for all f in

Emb∞
0,0(E,RN ), and to prove that P is continuous.

First, if f̃ , f ∈ Emb∞
0,0(E,RN ) have a contact of order at least one, then

p(f) = p(f̃). Therefore P is well-defined. The fact that P is continuous will be
established by proving that if f, f̃ ∈ Emb∞

0,0(E,RN ) satisfy∥∥Df(0)−Df̃(0)
∥∥ < 1,

then ‖p(f)−p(f̃)‖ ≤ ‖Df(0)−Df̃(0)‖ < 1. Actually, according to the following
theorem, it suffices to prove that ‖(I−p(f̃))p(f)‖ ≤ ‖Df(0)−Df̃(0)‖.

Theorem A.4 (T. Kato [4]). — Let P and Q be two orthogonal projections in
an Euclidean space. Set

δ(P,Q) := max
{
|〈x, y〉|, x ∈ Im(P ), y ∈ Im(Q) and ‖x‖ = ‖y‖ = 1

}
.

If dim Im(P ) = dim Im(Q) and δ(1 − P,Q) < 1, then ‖P −Q‖ = δ(1 − P,Q).

Let us note that δ(P,Q) = ‖PQ‖ = ‖QP‖.
Let (e1, . . . , eN) be an orthonormal basis of R

N such that (e1, . . . , ed) is a
basis of F = Df(0)(E). Set εi = Df−1(0)ei for i ∈ {1, . . . , d}. For a point x
in R

N :∥∥Df̃(0)ε1 ∧ · · · ∧Df̃(0)εd ∧ p(f)(x)
∥∥ =

∥∥Df̃(0)ε1 ∧ · · · ∧Df̃(0)εd
∥∥∥∥(I − p(f̃))p(f)(x)

∥∥.
The decomposition p(f)(x) =

∑d
i=1〈x, ei〉Df(0)εi, gives:∥∥Df̃(0)ε1 ∧ · · · ∧Df̃(0)εd ∧ p(f)(x)

∥∥ ≤
∥∥Df̃(0)ε1 ∧ · · · ∧Df̃(0)εd

∥∥
∥∥∥ d∑

i=1

〈x, ei〉
(
Df(0)εi −Df̃(0)εi

)∥∥∥.
It turns out that ‖(I−p(f̃))p(f)‖ ≤ ‖Df(0)−Df̃(0)‖.

A.3. The k-jets of submanifolds of R
N at 0 . — As a consequence of

Lemma A.3, one may introduce equivalence classes of submanifolds of R
N at 0.

Lemma A.5. — Let k be a positive integer.
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1) Consider two submanifolds of R
N passing through 0 denoted by S1 and S2.

The following two assertions are equivalent:
(i) There exist an integer d ∈ {1, . . . , N} and two applications

f1, f2 ∈ Emb∞
0,0(Rd,RN ) such that f1 and f2 are parametrizations

at 0 of S1 and S2 respectively, and jk0 (f1) = jk0 (f2).
(ii) The orthogonal normalization of any parametrization of S1 and of

S2 have the same k-jet at 0.
2) The relation on the set of C∞ submanifolds of R

N passing through 0
defined by, “S1 and S2 have a contact of order at least k at 0 if S1 and S2
satisfy (i)”, is an equivalence relation.

The equivalence class of a C∞ submanifold S of R
N at 0 for this equivalence

relation is denoted jk0 (S) and called the k-jet of S at 0. Let J k
0 (RN ) denote

the set of all k-jets at 0 of C∞ submanifolds of R
N . The metric dk on the set

Jk
0 (C∞

0,0(R
N ,RN )) yields a metric on J k

0 (RN ) denoted by ∂k:

Definition A.6. — Let S1 and S2 be two C∞ submanifolds of R
N passing

through 0. For i ∈ {1, 2}, let fi denote an orthogonal parametrization of Si

at 0 and let pi designate the orthogonal projection onto T0Si. The distance
between the k-jets of S1 and S2 at 0 is defined by

∂k
(
jk0 (S1), j

k
0 (S2)

)
:= dk

(
jk0 (f1 ◦ p1), jk0 (f2 ◦ p2)

)
.

Lemma A.7. — The metric space (J k
0 (RN ), ∂k) is complete. For each d in

{1, . . . , N}, the set of all k-jets at 0 of d-dimensional submanifolds of R
N is a

closed subset of (J k
0 (RN ), ∂k).

Proof. — Let (jk0 (Sn))n be a Cauchy sequence, let (fn)n be the sequence of
orthogonal parametrizations of the submanifolds Sn at 0 and let (pn)n be the
sequence of orthogonal projections onto T0Sn. Then, for all j ∈ {1, . . . , k},
the sequence (Dj(fn ◦ pn)(0))n converges to a j-linear map denoted by αj .
Set Pk =

∑k
j=1 αj/(j!) and E = Im(α1). For every n ∈ N, D(fn ◦ pn)(0) is

equal to pn and pn ◦ Djfn(0) vanishes on T0Sn for j ∈ {2, . . . , k}. Therefore
α1 is the orthogonal projection onto E and α1 ◦ Pk is the identity on E. In
conclusion, there exists a neighbourhood U of 0 in E such that Pk is a C∞

diffeomorphism from U onto its image and the restriction of Pk to U is the
orthogonal parametrization of the submanifold S = Pk(U). This shows that
(jk0 (Sn))n converges to jk0 (S).

Assume in addition that Sn are d-dimensional submanifolds of R
N . As the

orthogonal projection pn onto T0Sn converges to the orthogonal projection
onto E, then the dimension of E is d.

Remark A.8. — Let us note that if (Sn)n is a sequence of smooth submani-
folds of R

N passing through 0 such that (jk0 (Sn))n converges to the k-jet of a
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submanifold S at 0, then the dimension of T0Sn is constant for n large enough
and equal to that of T0S.

The following lemma gives another characterization of the convergence
in J k

x (RN ):

Lemma A.9. — Let Sn, for all n ∈ N, be C∞ d-dimensional submanifolds
of R

N passing through 0. The following two assertions are equivalent:
(i) There exist a map f ∈ Emb∞

0,0(R
d,RN ) and, for all n ∈ N, a parametriza-

tion fn ∈ Emb∞
0,0(R

d,RN ) of Sn at 0, such that (jk0 (fn))n converges
to jk0 (f).

(ii) (jk0 (Sn))n converges in (J k
0 (RN ), ∂k).

If assertion (i) holds, then there exists a neighbourhood U of 0 in R
d such

that S := f(U) is a d-dimensional submanifold and ∂k(jk0 (Sn), jk0 (S)) converges
to 0 as n tends to ∞.

Proof. — (i) ⇒ (ii). The map N⊥, defined on Jk
0 (Emb∞

0 (Rd,RN )) by

N⊥(jk0 (f)) = jk0 (n⊥(f))

for all f ∈ Emb∞
0 (Rd,RN ), is continuous. Hence, (i) implies that the sequence

∂k(jk0 (Sn), jk0 (S)) converges to 0 as n tends to ∞.
(ii) ⇒ (i). For n ∈ N, let gn denote the orthogonal parametrization

of Sn at 0 and let pn denote the orthogonal projection onto T0Sn. Set
αi = limn→+∞Di(gn ◦ pn)(0) and Pk =

∑k
i=1 αi/(i!). In the proof of Lemma

A.7, it has been shown that there exists a neighbourhood U of 0 in E = Im(α1)
such that g := Pk|U is the orthogonal parametrization of the submanifold
S = Pk(U). For all n ∈ N, there exists a linear map Tn ∈ O(RN ) such that
Tn(Rd) = T0Sn. One may suppose that the sequence (Tn)n converges to
T ∈ O(RN ), otherwise one considers a subsequence. As (pn) converges to the
orthogonal projection onto T0S, T (Rd) = T0S. The restriction of g ◦ T and
gn ◦ Tn to a neighbourhood of 0 in R

d are parametrizations of S and Sn at
0 that belong to Emb∞

0 (Rd,RN ). By Lemma A.1, the k-jet at 0 of gn ◦ Tn

converges to the k-jet at 0 of g ◦ T .

A.4. Jets of submanifolds of a C∞ Riemannian manifold. — Let
(M, 〈·, ·〉x, x ∈ M) be a C∞ Riemannian manifold of dimension N . Equiva-
lence classes of submanifolds of M at a point x can be defined by taking charts
at x.

Lemma A.10. — Let S1 and S2 be two submanifolds of M passing through a
point x.

1) If there exists a chart (ζ, U) of M at x such that the k-jets of ζ(S1 ∩ U)
and ζ(S2 ∩ U) at x are equal, then for any other chart (ζ̃, Ũ) of M at x,
the k-jets of ζ̃(S1 ∩ Ũ) and ζ̃(S2 ∩ Ũ) at x are equal.
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2) The relation on the set of submanifolds of M passing through x defined
by “ S1 and S2 have a contact of order at least k at x, if for every chart
(ζ, U) of M at x, ζ(S1∩U) and ζ(S2∩U) have a contact of order at least
k at 0” is an equivalence relation.

Proof. — Let (ζ, U) and (ζ̃ , Ũ) be two charts of M at x. Assume that
jk0 (ζ(S1 ∩ U)) = jk0 (ζ(S2 ∩ U)). If fi is a parametrization of ζ(S1 ∩ U) for
i ∈ {1, 2} at 0, then ζ̃ ◦ ζ−1 ◦ fi is a parametrization of ζ̃(S1 ∩ U ∩ Ũ) at 0.
Therefore, it suffices to use that jk0 (f1) = jk0 (f2) implies

jk0 (ζ̃ ◦ ζ−1 ◦ f1) = jk0 (ζ̃ ◦ ζ−1 ◦ f2).
The second statement is then trivial.

The class of a submanifold S of M for this equivalence relation is denoted
by jkx(S) and called the k-jet of S at x. The set of k-jets at x of all C∞

submanifolds of M is denoted by J k
x (M) and the union of the sets J k

x (M) for
all x ∈ M is denoted by J k(M).

If M is the Euclidean space R
N , then the simplest chart at a point x is given

by the translation by the vector −x (denoted by t−x). This shows that the con-
tact between S1 and S2 at x can still be defined with the help of parametriza-
tions:

Lemma A.11. — Let x ∈ R
N and let S1 and S2 be two d-dimensional subman-

ifolds of R
N passing through x. S1 and S2 have a contact of order at least k at

x if and only if there exist parametrizations of S1 and S2 at x that belong to
Emb0,x(Rd,RN ) and have the same k-jet at 0.

There are two ways to prove the convergence in J k(RN ):

Lemma A.12. — Let (xn) be a sequence of points of R
N and for every n ∈ N,

let Sn be a d-dimensional submanifold of R
N passing through xn. The following

propositions (i) and (ii) are equivalent:
(i) for every n ∈ N, there exists a parametrization fn ∈ Emb∞

0,xn
(Rd,RN ) of

Sn at xn such that (jkxn
(fn))n converges;

(ii) (xn)n converges and (jk0 (t−xn(Sn)))n converges in (J∞
0 (RN ), ∂k).

If (i) and (ii) hold, the sequence (jkxn
(Sn))n is said to converge.

Let us revert to the general case of a Riemannian manifold M . The following
lemma assures that the convergence in J k(M) can be defined by taking a chart:

Lemma A.13. — Let (xn)n be a sequence in M and let, for every n ∈ N, Sn

be a sequence of submanifolds of M passing through xn. Assume that (xn)n
converges to a point denoted by x. If there exists a chart (ζ, U) of M at x such
that the k-jet of ζ(Sn ∩ U) at ζ(xn) converges, then there exists a submanifold

tome 129 – 2001 – n
o
3



INVARIANT JETS OF A SMOOTH DYNAMICAL SYSTEM 445

S of M at x such that for any chart (ζ, U) of M at x, the k-jet of ζ(Sn ∩ U)
at 0 converges to the k-jet of ζ(S ∩ U) at 0 as n tends to +∞.

Proof. — Let (ζ, U) be a chart of M at x such that (jkζ(xn)
(ζ(Sn ∩ U)))n con-

verges. Let Sζ denote a submanifold which belongs to the asymptotic k-jet.
There exists a neighbourhood V of 0 such that S := ζ−1(Sζ ∩ V ) defines a C∞

submanifold of M .
Let (ζ̃ , Ũ) be another chart of M at x. The convergence of(

jk
ζ̃(xn)

(ζ̃(Sn ∩ Ũ))
)
n

to jk0 (ζ̃(S ∩ Ũ)) has to be proved. It follows from Remark A.8 that the sub-
manifolds Sn, for all n ∈ N, can be assumed to have the same dimension
at xn, denoted by d. There exists a parametrization fn ∈ Emb∞

0,ζ(xn)(R
d,RN)

of ζ(Sn) at ζ(xn) and a parametrization, f ∈ Emb∞
0,0(R

d,RN ), of Sζ at x,
such that (jk0 (fn))n converges to jk0 (f). The map ζ̃ ◦ ζ−1 ◦ fn belongs to
Emb∞

0,ζ̃(xn)
and is a parametrization of ζ̃(Sn) at ζ̃(xn). As (Dj(ζ̃◦ζ−1)(ζ(xn)))n

converges to Dj(ζ̃ ◦ ζ−1)(0) and (Djfn(0)) converges to Djf(0) for every
j ∈ {1, . . . , k}, Faa-di-Bruno’s formula (30) shows that (jk

ζ̃(xn)
(ζ̃ ◦ ζ−1 ◦ fn))n

converges to jk0 (ζ̃ ◦ ζ−1 ◦ f). It turns out that (jk
ζ̃(xn)

(ζ̃(Sn ∩ Ũ)))n converges

to jk0 (ζ̃(S ∩ U)).

Appendix B
Proof of the continuity result (Corollary 1.21)

This section contains a proof of the continuity result stated for the invari-
ant k-jets associated to a smooth RDS (ϕn)n∈Z over θ on a C∞ Riemannian
manifold M .

Let us recall that Φ(ω, x) denotes the map Exp−1
ϕ(ω)(x) ◦ϕ(ω) ◦ Expx that is

well-defined on the δ(ω, x)-ball Bx(0, δ(ω, x)) of TxM . For every n ∈ N, there
exists a positive measurable function δn, such that for every (ω, x) ∈ Ω ×M ,
the map

Φn(ω, x) := Exp−1
ϕn(ω)(x)

◦ϕn(ω) ◦ Expx
is a C∞ diffeomorphism from Bx(0, δn(ω, x)) onto its image and is equal to
Φ(θ̃n−1(ω, x)) ◦ · · · ◦ Φ(ω, x). Let Wn(ω, x) denote the d-dimensional subman-
ifold Expx(Es(ω, x) ∩ Bx(0, δn(ω, x))) and let Un(ω, x) denote the image of
Wn(θ̃−n(ω, x)) by ϕn(θ−n(ω)). The proof of Corollary 1.21 proceeds in three
steps. First, the application of Corollary 1.19 will give that (jkx(Un(ω, x)))n
converges in probability to a k-jet, denoted by S(k)

1 (ω, x), which is invariant by
the RDS (ϕn). Secondly, with the aid of the “local RDS on the bundle TM”
(Φn) over θ̃, one shows that:
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• the k-jets of the manifolds Ũn(ω, x) := Exp−1
x (Un(ω, x)) at 0 converge to

the k-jet at 0 of a submanifold of TxM denoted by S̃(ω, x);

• if (xn)n is a sequence in ΛR,ε(ω) that converges to x, then (jk0 (S̃(ω, xn)))n
converges to jk0 (S̃(ω, x)).

Finally, one shows that the k-jet S(k)(ω, x) := jkx(Expx(S̃(ω, x))) is µ-almost
surely equal to S(k)

1 (ω, x) and that, if (xn)n is a sequence in ΛR,ε(ω) that
converges to x, then (S(k)(ω, xn))n converges to S(k)(ω, x).

First step. — Let Ψ : TM → M × R
N denote a bimeasurable bijection cover-

ing idM such that for each x ∈ M , the restriction ψ(x) of Ψ to the fiber TxM
is an isometry between (TxM, ‖ · ‖x) and the Euclidean space (RN , | · |). A con-
struction of such a map is detailed in [1]. Let ζ(x) denote the map ψ(x)◦Exp−1

x

for every x ∈ M . The map ζ belongs to C1(M) and the map Φζ = ζ ◦ ϕ ◦ ζ−1

satisfies the assumptions of Corollary 1.19. It turns out that (jkx(Un(ω, x)))n
converges in probability to a k-jet at x denoted by S(k)

1 (ω, x) and that S(k)
1 is

invariant by the RDS (ϕn)n.

Second step. — Let Ũn(ω, x) denote the submanifold of TxM defined by
Expx(Un(ω, x)) = Φn(θ̃−n(ω, x))(Es(θ̃−n(ω, x)) ∩ Bϕ−n(ω)(x)(0, δn(θ

−n(ω)))).
The proof of the first assertion of Theorem 1.7 can be rewritten, word for word,
by substituting Φ(ω, x) for φ(ω) and θ̃ for θ. This shows that (jk0 (Ũn)(ω, x))n
converges to the k-jet at 0 of a submanifold S̃(ω, x) of TxM for µ-almost
every (ω, x). More precisely, if fn denotes an orthogonal parametrization
of Ũn at 0 and if Π denotes the orthogonal projection onto Es, then for
every j ∈ {1, . . . , k}, (Dj(fn ◦ Π)(0))n converges µ-almost surely to a map
denoted by αj . The restriction f of

∑k
j=1 αj/(j!) to Es(ω, x) is an orthogonal

parametrization of S̃(ω, x) at 0.

Let Ωk denote the subset of points ω ∈ Ω such that

sup
n∈Z,x∈M

e−|n|ε∥∥DjΦ(θ̃n(ω, x))(0)
∥∥
ϕn(ω)(x)

is finite for every j ∈ {2, . . . , k}. By hypothesis, P(Ωk) = 1. Let ε be a positive
number smaller than 1

20λs or 1
20k (kλs − λs+1) depending on whether λs > 0 or

λs ≤ 0. It follows from the definitions of ΛR,ε and Ωk that, for ω ∈ Ωk, there
exists a finite real C(ω) > 0 such that for every x ∈ ΛR,ε(ω)

∥∥DmΦ(θ̃−j(ω, x))(0)
∥∥
ϕ−j(ω)(x)

≤ C(ω)ejε for m ∈ {2, . . . , k} and j ∈ N,

∥∥(I−Π(ω, x))DΦj(θ̃−j(ω, x))(0)
∥∥
ϕ−j(ω)(x)

≤ C(ω)ej(λs+1+3ε) for j ∈ N,

tome 129 – 2001 – n
o
3



INVARIANT JETS OF A SMOOTH DYNAMICAL SYSTEM 447

∥∥DΦ−j(ω, x)(0)Π(ω, x)
∥∥
x
≤ C(ω)ej(−λs+ε) for j ∈ N,∥∥DΦj−i(θ̃−j(ω, x))(0) −DΦ−i(ω, x)(0)Π(ω, x)DΦj(θ̃−j(ω, x))(0)

∥∥
ϕ−j(ω)(x)

≤ C(ω)e(j−i)λs+1+2(j+i)ε

for i, j ∈ N
∗ such that i ≤ j and∥∥DΦ−i(ω, x)(0)Π(ω, x)DΦj(θ̃−j(ω, x))(0)

∥∥
ϕ−j(ω)(x)

≤ C(ω)e(j−i)λs+3(i+j)ε

for i, j ∈ N
∗ such that j ≤ i.

These terms will replace, in this order, the maps B(m)(θ−j), (I−Π)Aj(θ−j),
A−jΠ, Ãi,j and A−iΠAj(θ−j) of Section 3.2. By using these inequalities, in-
stead of inequalities (16), (17), (18), (19) and (20) in Section 3.2, one obtains,
instead of Proposition 3.8, that(

‖Dj(fn(ω, x) ◦ Π(ω, x))(0) −Dj(f(ω, x) ◦ Π(ω, x))(0)‖x
)
n

converges to 0 uniformly in ΛR,ε(ω), for each ω ∈ Ωk and j ∈ {2, . . . , k}.
Consider a relatively compact chart (ζ, U) at a point x ∈ ΛR,ε(ω) in order

to identify TU with ζ(U) × R
N and let fζ denote the restriction of Txζ ◦

f(ω, x) ◦ (Txζ)−1 to a neighbourhood of 0 in Txζ(Es(ω, x)) (fζ(ω, x) is a
“parametrization” of Txζ(S̃(ω, x)) at 0). The previous convergence result can
be rewritten as follows: for each ω ∈ Ωk and j ∈ {2, . . . , k}, the sequence
(Dj(Tyζ◦fn(ω, y)◦Π(ω, y)◦(Tyζ)−1)(0))n converges uniformly for in ΛR,ε(ω)∩U
(with respect to the usual metric of R

N ). Assume furthermore that ε is smaller
than (λi − λi+1)/4 for every i ∈ {1, . . . , r − 1}. It follows from the continuity
of y �→ Es(ω, y) on ΛR,ε(ω) and the regularity of the maps Exp and ϕ that
the map y �→ Dj(Tyζ ◦ fn(ω, y) ◦ Π(ω, y) ◦ (Tyζ)−1)(0) is continuous at x for
every j ∈ N

∗ and n ∈ N. Thus the map y �→ Djfζ(ω, y)(0) is continuous at x.
This shows that, if (xn) is a sequence of points of ΛR,ε(ω) that converges to x,
then jk0 (Txnζ(S̃(ω, xn))) converges to jk0 (Txζ(S̃(ω, x))).

Third step. — Consider a point (ω, x) ∈ Ω × M such that the sequences
(jk0 (Un(ω, x)))n and (jk0 (Ũn(ω, x)))n converge. Let S(ω, x) denote the subman-
ifold of M defined by Expx(S̃(ω, x) ∩ Bx(0, δ(ω, x))) and let S(k)(ω, x) denote
its k-jet at 0. Let us note that, if (ζ, U) is a chart at x, then

jk0
(
ζ(S(ω, x))

)
= jk0

(
ζ ◦ Expx ◦(Txζ)−1 ◦ Txζ(S̃(ω, x))

)
.

It follows from the second step and the Faa-di-Bruno’s formula that:

• The k-jet jk0 (ζ ◦ Expx ◦(Txζ)−1 ◦ Txζ(Un)) (which is equal to jk0 (ζ(Un)))
tends to jk0 (ζ(S(ω, x))) as n tends to +∞. This yields the equalilty
S(k)(ω, x) = S(k)

1 (ω, x).
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• If x ∈ ΛR,ε(ω) and if (xn) is a sequence in ΛR,ε(ω) that converges to x,
then the sequence (jk0 (ζ ◦ Expxn

◦(Txnζ)
−1 ◦ Txnζ(S(ω, xn))))n converges

to jk0 (ζ(S(ω, x))). Thus (S(k)(ω, xn))n converges to S(k)(ω, x).
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