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PROFILE DECOMPOSITION FOR SOLUTIONS OF THE
NAVIER-STOKES EQUATIONS

by Isabelle Gallagher

Abstract. — We consider sequences of solutions of the Navier-Stokes equations in R3,
associated with sequences of initial data bounded in Ḣ1/2. We prove, in the spirit of
the work of H. Bahouri and P. Gérard (in the case of the wave equation), that they can

be decomposed into a sum of orthogonal profiles, bounded in Ḣ1/2, up to a remainder
term small in L3; the method is based on the proof of a similar result for the heat
equation, followed by a perturbation–type argument. If A is an “admissible” space (in

particular L3, Ḃ
−1+3/p
p,∞ for p < +∞ or ∇BMO), and if BA

NS
is the largest ball in A

centered at zero such that the elements of Ḣ1/2 ∩BA
NS

generate global solutions, then
we obtain as a corollary an a priori estimate for those solutions. We also prove that
the mapping from data in Ḣ1/2 ∩ BA

NS
to the associate solution is Lipschitz.
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286 GALLAGHER (I.)

Résumé (Décomposition en profils pour les solutions des équations de Navier-Stokes)
On considère des suites de solutions des équations de Navier–Stokes dans R3, as-

sociées à des suites de données initiales bornées dans Ḣ1/2. On montre, dans l’esprit
du travail de H. Bahouri et P. Gérard (dans le cas de l’équation des ondes), qu’elles

peuvent être décomposées en une somme de profils orthogonaux, bornés dans Ḣ1/2,
à un terme de reste près, petit dans L3 ; la méthode s’appuie sur la démonstration
d’un résultat analogue pour l’équation de la chaleur, suivi d’un argument de pertur-

bation. Si A est un espace « admissible » (en particulier L3, Ḃ
−1+3/p
p,∞ pour p < +∞

ou ∇BMO), et si BA
NS

est la plus grande boule de de A centrée en zéro, telle que les

éléments de Ḣ1/2 ∩ BA
NS

génèrent des solutions globales, alors on obtient en corollaire
une estimation a priori pour ces solutions. On montre aussi que l’application associant
une donnée dans Ḣ1/2 ∩ BA

NS
à sa solution est lipschitzienne.

1. Introduction

We are interested in the incompressible Navier-Stokes equations in three
space dimensions

(NS)

∂tv + v · ∇v − ν∆v = −∇p in R
+
t × R

3
x,

div v = 0 in R
+
t × R

3
x,

v|t=0 = v0,

where v0 is a divergence free vector field, v(t, x) and p(t, x) are respectively
the velocity and the pressure fields of the fluid, and ν > 0 is the viscosity.
The velocity is a three-component vector field, and the pressure is a scalar
field. The divergence free condition on v represents the incompressibility of
the fluid. Here t and x are respectively the time and the space variables,
with t ∈ R

+ and x ∈ R
3. All the results stated here hold in the more general

case of x ∈ R
d, d ≥ 3, with obvious adaptations, namely in the orders of the

functional spaces considered.
In order to motivate our study, let us recall a few well–known facts concerning

the system (NS). The most important results about the Cauchy problem were
obtained by J. Leray in [21], who proved that for divergence free data v0 ∈
L2(R3), there is a global, weak solution v of (NS) with

v ∈ L∞(
R
+, L2(R3)

)
∩ L2

(
R
+, Ḣ1(R3)

)
,

where Lp(R3) denotes the usual Lebesgue space of order p, and where we have
noted Ḣs(R3) the homogeneous Sobolev space of order s, defined by

∀s <
3
2

, Ḣs(R3) def==
{
u ∈ S′(R3); ‖u‖Ḣs(R3) < +∞

}
,

where

‖u‖Ḣs(R3)

def==
( ∫

R3
|ξ|2s

∣∣û(ξ)
∣∣2dξ

)1/2

,
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PROFILES FOR THE NAVIER-STOKES EQUATIONS 287

and û is the Fourier transform of u. We will note (· | ·)Ḣs(R3) the scalar product
in Ḣs(R3). The restriction s < 3

2 is for ‖u‖Ḣs(R3) to be a norm and not a
semi-norm. Note that the inhomogeneous Sobolev space Hs(R3) is of course
defined in the same way, where |ξ|2s is replaced by (1+ |ξ|2)s. In the following,
we will call Ḣ3/2(R3) the space of vector fields whose components have first
derivatives in Ḣ1/2(R3).

The solutions constructed by J. Leray satisfy moreover the energy inequality

(1.1) ∀t ≥ 0,
∥∥v(t)

∥∥2
L2(R3)

+ 2ν
∫ t

0

∥∥∇v(s)
∥∥2
L2(R3)

ds ≤ ‖v0‖2L2(R3).

Those solutions are not known to be unique (except in two space dimensions);
many studies exist on that problem of uniqueness, and the starting point of
our study will be the result of H. Fujita and T. Kato [8]. It can be stated in
the following way (see [4] for instance): if v0 is in Ḣ1/2(R3), then there exists
a unique maximal time T∗ > 0 and a unique solution v associated with v0
such that

v ∈ C0
(
[0, T ], Ḣ1/2(R3)

)
∩ L2

(
[0, T ], Ḣ3/2(R3)

)
for all T < T∗.

Moreover, if T∗ < +∞, then we have

(1.2) lim
T→T∗

‖v‖L2([0,T ],Ḣ3/2(R3)) = +∞.

Furthermore, there exists a universal constant c such that

(1.3) ‖v0‖Ḣ1/2(R3) ≤ cν =⇒ T∗ = +∞,

and we have in that case, for any t ≥ 0,

(1.4)
∥∥v(t)

∥∥2
Ḣ1/2(R3)

+ ν

∫ t

0

∥∥v(s)
∥∥2
Ḣ3/2(R3)

ds ≤ ‖v0‖2Ḣ1/2(R3)
.

Finally it is well known (see for instance [21] or [7], Remark 10.3 (a)) that we
have the following weak-strong uniqueness result:

(1.5) ∀ v0 ∈ L2 ∩ Ḣ1/2(R3), NS(v0) satisfies (1.1),

where, as in the whole of this text, we have noted NS(v0) the unique solution
of (NS) associated with the initial data v0 ∈ Ḣ1/2(R3).

One important aspect to keep in mind in the study of (NS) is the scaling of
the equation. It is easy to check the following property: for any real number λ,

(1.6) v = NS(v0) ⇐⇒ vλ = NS(v0,λ),

with
vλ(t, x) def==λv(λ2t, λx) and v0,λ(x) def==λv0(λx).

Note that the Ḣ1/2(R3) norm is clearly conserved under the transformation
v0 �→ v0,λ· Many existence and uniqueness results have been obtained for data
in such function spaces, invariant under that transformation; it is impossible to
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288 GALLAGHER (I.)

present here all the function spaces in which such results have been obtained,
so let us simply recall the chain of spaces

Ḣ1/2(R3) ⊂ L3(R3) ⊂ Ḃ−1+3/p
p,∞ (R3)|p<+∞ ⊂ ∇BMO(R3) ⊂ Ċ−1(R3).

In that chain of spaces, Ḃ
−1+3/p
p,∞ (R3) stands for a homogeneous Besov space.

We shall not be using those spaces explicitly in this paper, so we will merely
recall the following definition, using Littlewood Paley theory, and we refer for
instance to [5] for a detailed presentation of the theory, and to [22] or [25] for
the analysis of Besov spaces: elements of Ḃs

p,∞(R3) satisfy

‖u‖Ḃs
p,∞(R3)

def== sup
j∈Z

2js‖∆ju‖Lp(R3) < +∞,

where ∆j is a Littlewood-Paley operator, defined by

∆̂ju(ξ) def==ϕ
(
2−j|ξ|

)
û(ξ)

and ϕ ∈ C∞
c ([12 , 2]) satisfies

∑
j∈Z

ϕ(2−jt) = 1, for all t > 0.

Furthermore, ∇BMO(R3) stands for the space of functions which are first
derivatives of functions in BMO(R3). We recall below the definition of the
norm ‖u‖BMO(R3), and refer to [24] for a detailed presentation of that space:

‖u‖BMO(R3)
def== sup

x0,R

1
|B(x0, R)|

∫
B(x0,R)

|u− uB(x0,R)|dx,

where

uB(x0,R)
def==

1
|B(x0, R)|

∫
B(x0,R)

u(x)dx.

In all those spaces except for the last, analogous existence and uniqueness
theorems to the case Ḣ1/2(R3) have been proved. We refer respectively to
T. Kato [18] and G. Furioli, P.-G. Lemarié and E. Terraneo [10] for the proof of
the L3(R3) case, to the book of M. Cannone [3] and the work of F. Planchon [23]
for Ḃ

−1+3/p
p,∞ (R3), p < +∞, and finally to H. Koch and D. Tataru [20] for the

space ∇BMO. In the space Ċ−1(R3) def== Ḃ−1
∞,∞(R3), uniqueness was proved by

J.-Y. Chemin in [6], supposing the data is also in the energy space L2(R3).
In relation with the result of H. Fujita and T. Kato mentionned above, let

us give the following definitions: we define the function spaces

(1.7)
{

ET
def== C0

(
[0, T ], Ḣ1/2(R3)

)
∩ L2

(
[0, T ], Ḣ3/2(R3)

)
,

E∞
def== C0

b

(
R
+, Ḣ1/2(R3)

)
∩ L2

(
R
+, Ḣ3/2(R3)

)
,

where C0
b denotes the set of bounded, continuous functions; we also define the

sets of initial data yielding solutions of (NS) in ET and E∞ respectively,

DT
def==

{
v0 ∈ Ḣ1/2(R3) |NS(v0) ∈ ET

}
,

D∞
def==

{
v0 ∈ Ḣ1/2(R3) |NS(v0) ∈ E∞

}
.
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PROFILES FOR THE NAVIER-STOKES EQUATIONS 289

Finally we define, for any vector field v,

(1.8)

{ ‖v‖Eν
T

def== supt≤T

(
‖v(t)‖2

Ḣ1/2(R3)
+ 2ν ‖v‖2

L2([0,t],Ḣ3/2(R3))

)1/2
,

‖v‖Eν
∞

def==
(
‖v‖2

L∞(R+,Ḣ1/2(R3))
+ 2ν ‖v‖2

L2(R+,Ḣ3/2(R3))

)1/2
.

Remark. — Note that nothing prevents a priori the life span T∗ associated
with some data v0 to satisfy T∗ = +∞ with v0 /∈ D∞: in that case,

lim
T→+∞

∥∥NS(v0)
∥∥
L2([0,T ],Ḣ3/2(R3))

= +∞.

Definition 1. — Let A ⊂ S′(R3) be a Banach space such that the embed-
ding Ḣ1/2(R3) ⊂ A is continuous. Then A is admissible if and only if the
following properties hold:

(i) The norm ‖ ‖A is invariant under the transformations

ϕ �−→ λϕ(λ·) ∀λ ∈ R and ϕ �→ ϕ(· − x0) ∀x0 ∈ R
3.

(ii) There exists a constant cAν depending only on ν and A such that if ϕ is
an element of Ḣ1/2(R3) and ‖ϕ‖A is smaller than cAν , then ϕ is in D∞.

Example 1. — An obvious example is of course Ḣ1/2(R3); point (i) is clear,
and point (ii) is due to H. Fujita and T. Kato’s theorem recalled above.

Example 2. — Similarly L3(R3) satisfies point (i), and a proof of (ii) can be
found in Proposition A.1 in the Appendix.

Example 3. — The Besov space Ḃ
−1+3/p
p,∞ (R3) satisfies point (i), and point (ii)

is proved for instance in Theorem 3.4.2 of [3] for p < +∞.

Example 4. — The space ∇BMO(R3) is a Banach space satisfying points (i)
and (ii), as proved in [9].

In the following, for any admissible space A in the sense of Definition 1, we
shall define the constant CA

NS
∈ R

+ ∪ {+∞} by

(1.9) CA
NS

def== sup
{
ρ > 0 ; BA

ρ ∩ Ḣ1/2(R3) ⊂ D∞
}
,

where
BA
ρ

def==
{
ϕ ∈ A ; ‖ϕ‖A < ρ

}
and we will note

(1.10) BA
NS

def==BA
C

NS
.

In other words, the set BA
NS

is the largest ball in A whose intersection with
Ḣ1/2(R3) is a subset of D∞. Note that we obviously have CA

NS
≥ cAν , where cAν

was defined in Property (ii) of Definition 1. The following result will be proved
in the Appendix.
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290 GALLAGHER (I.)

Proposition 1.1. — Let v0 ∈ H1/2(R3) be a divergence free vector field, and
let T∗ be the life span of NS(v0). If v0 /∈ D∞, then

T∗ ≤ 1
ν(CḢ1/2

NS
)4
‖v0‖4L2(R3).

Now let us come to the point of this study: it is well known that the embed-
ding of Ḣ1/2(R3) into L3(R3) is continuous, but not compact. Let us suppose
for a moment that the embedding were in fact compact. If (ϕn) is a bounded
sequence of functions in Ḣ1/2(R3), converging weakly to zero in Ḣ1/2(R3),
then it would converge strongly to zero in L3(R3); as a consequence, for n large
enough, the function ϕn would be small enough for us to obtain a global, unique
solution of (NS) in E∞ according to point (ii) of Definition 1, since L3(R3) is
an admissible space according to Example 2. In other words, if the embed-
ding of Ḣ1/2(R3) into L3(R3) was compact, then one could associate with
any bounded sequence of divergence free vector fields in Ḣ1/2(R3), converg-
ing weakly to zero in Ḣ1/2(R3), a unique sequence of global solutions of (NS)
in E∞. That remark leads us naturally to the problem of the defect of com-
pactness of the embedding of Ḣ1/2(R3) into L3(R3), which was very precisely
studied by P. Gérard in [16]. Let us recall the result of [16]. The Theorem
holds of course more generally for the embedding of Hs(Rd) intoLp(Rd) with
s = d (12 − 1

p ).

Theorem 1 (P. Gérard, [16]). — Let (ϕn) be a bounded sequence of functions
in Ḣ1/2(R3). Then up to the extraction of a subsequence, it can be decomposed
in the following way:

(1.11) ∀ ∈ N \ {0}, ϕn(x) = ϕ0(x) +
�∑

j=1

1
hj
n

ϕj
(x− xjn

hj
n

)
+ ψ�

n(x),

where the functions ϕj are in Ḣ1/2(R3) for all j ∈ N, where (ψ�
n) is a bounded

sequence in Ḣ1/2(R3) uniformly in  ∈ N \ {0}, and satisfies

(1.12) lim
�→∞

(
lim sup
n→∞

‖ψ�
n‖L3(R3)

)
= 0,

and where for any j ∈ N \ {0}, (hj
n, x

j
n) is a sequence in (R+ \ {0}×R

3)N with
the following orthogonality property: for every integers (j, k) such that j �= k,
we have

(1.13)

{ either lim
n→∞

(hj
n

hk
n

+
hk
n

hj
n

)
= +∞

or hj
n = hk

n and lim
n→∞

|xjn − xkn|
hj
n

= +∞.
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PROFILES FOR THE NAVIER-STOKES EQUATIONS 291

Finally we have for every  ∈ N \ {0},

(1.14) ‖ϕn‖2Ḣ1/2(R3)
=

�∑
j=0

‖ϕj‖2
Ḣ1/2(R3)

+ ‖ψ�
n‖2Ḣ1/2(R3)

+ o(1),

as n goes to infinity.

Remark. — (a) As we shall see in Section 3, if ϕn is divergence free for all
integers n, then the same goes for ϕ, ϕj and ψ�

n, for all integers j,  and n.

(b) The sequences hj
n are called the scales of ϕn, the points xjn are the cores

of concentration, and the functions

(1.15) ϕj
n(x) def==

1
hj
n

ϕj
(x− xjn

hj
n

)
are the associate profiles.

(c) Note that, up to rescaling the functions ϕj , one can suppose that for
every j ∈ N \ {0}, either hj

n = 1 and lim
n→∞

|xjn| = +∞, or lim
n→∞

hj
n is in {0,∞}.

(d) To simplify the notation, we shall note in the following

(1.16) h0n
def== 1, x0n

def== 0, and ϕ0
n(x) def==ϕ0(x).

(e) Finally we remark that the function ϕj , for every j ∈ N, is a weak limit
point of the sequence hj

nϕn(xjn + hj
n·) (see for instance [16], formula (4.3)).

Our aim in this study is to see how decomposition (1.11) is propagated by
the Navier-Stokes equation. By analogy with the work [1]–[2] on the critical
semilinear wave equation, we shall also consider the linear equation associated
with (NS), that is to say the heat equation

(H)
{∂tu− ν∆u = 0 in R

+
t × R

3
x,

u|t=0 = u0.

Notation. — In the following, we shall denote H(u0) the solution of the heat
equation (H) associated with the data u0.

Note that if u0 ∈ Ḣ1/2(R3), then H(u0) ∈ E∞, and the norm Eν
∞ is con-

served by the application H . Note that (H) has also the scale-invariance (1.6).

The following theorem gives a decomposition of the family of solutions of the
system (NS) in the case of data bounded in Ḣ1/2(R3). The last statement of
that theorem (result (iii)) concerns the case of data bounded in BA

NS
, where A

is any admissible space in the sense of Definition 1, and we will start with that
case in the proof of the result: as we shall see, that case enables one to avoid
life span problems. The general case will then be treated using (iii).
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Theorem 2. — Let (ϕn) be a family of divergence free vector fields, bounded
in Ḣ1/2(R3), and let ϕ0 ∈ Ḣ1/2(R3) be any weak limit point of (ϕn). Then up to
the extraction of a subsequence and with the notation of Theorem 1 and (1.16),
the following results hold, where we define

vn
def==NS(ϕn) and V j def==NS(ϕj)

for every integer j ∈ N.
(i) There exists a family (T j)j∈N of elements of R

+ ∪ {+∞} and a finite
subset J ⊂ N such that

(1.17) ∀j ∈ N, V j ∈ ET j and ∀j ∈ N \ J, T j = +∞.

Moreover, if
τn

def== min
j∈J

(hj
n)2T j,

then ‖vn‖Eν
τn

is bounded and we have for every integer n ∈ N, for all
times t ≤ τn, for every  ∈ N and every x ∈ R

3,

(1.18) vn(t, x) =
�∑

j=0

1
hj
n

V j
( t

(hj
n)2

,x− xjn

hj
n

)
+ w�

n(t, x) + r�n(t, x),

where w�
n

def==H(ψ�
n) and where

(1.19)

{ lim
�→∞

(
lim sup
n→∞

‖w�
n‖L∞(R+,L3(R3))

)
= 0,

lim
�→∞

(
lim sup
n→∞

‖r�n‖Eν
τn

)
= 0.

(ii) If there exists a time T ∈ R
+ ∪ {+∞} such that (vn) is bounded in

L2([0, T ], Ḣ3/2(R3)), then we have

(1.20) ∀n ∈ N, T ≤ min
j∈J

(hj
n)2T j.

In particular, the results above are valid with τn = T and the small
scales of concentration generate global solutions of (NS): if lim

n→∞
hj
n = 0,

then T j = +∞.
(iii) Let A be an admissible space in the sense of Definition 1. Let ρ be any

real number in ] 0, CA
NS

[. If ‖ϕn‖A ≤ ρ, then T j = +∞ for every j ∈ N

and the results above hold with τn = +∞.

Remark. — Case (i) shows that the life span of vn is bounded from below by
the smallest of the life spans of each profile in the decomposition (1.18). In
particular, there is no phenomenon such as two initial profiles ϕj

n interacting
and generating a solution for a smaller time than that generated by each profile
separately. Case (ii) is a converse statement: if vn has a uniform life span, then
each profile generates a solution at least on that life span. Finally, note that
case (iii) is by no means a consequence of case (ii) because we do not suppose
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PROFILES FOR THE NAVIER-STOKES EQUATIONS 293

in case (iii) that the sequence of solutions (NS(ϕn)) is bounded in E∞: each
term of the sequence is an element of E∞ since the initial data is bounded
in BA

NS
, but no assumption is made on the boundedness of (NS(ϕn)). Such a

bound can in fact be deduced from Corollary 1 below.

Theorem 2 will enable us to infer the following corollaries. The method of
proof of those results follows closely the arguments of [2] and [14], as we shall
see in Section 4.

The following result shows that there is an a priori estimate for the Eν
∞

norm of all solutions of (NS) associated with data in BA
NS

, with notation (1.9)–
(1.10); that result is obvious in the case of small initial data in Ḣ1/2(R3), as
can be seen in estimate (1.4). A similar result was proved in [2] in the case of
the critical semilinear wave equation for Strichartz norms.

Corollary 1. — Let A be any admissible space, in the sense of Definition 1.
Then there exists a nondecreasing function A from R

+× [ 0, CA
NS

[ to R
+ such

that for any divergence free vector field ϕ in BA
NS
, we have∥∥NS(ϕ)

∥∥
Eν

∞
≤ A

(
‖ϕ‖Ḣ1/2(R3), ‖ϕ‖A

)
.

Remark. — Global existence theorems are often proved by exhibiting some
a priori estimate. Corollary 1 shows that whatever the method used to prove
global existence in a ball BA

NS
, there is an a priori estimate for the solutions.

The next corollary is a consequence of Corollary 1. Note that as above, that
result is not difficult to prove in the case of small initial data in, say, Ḣ1/2(R3);
its interest is that it extends to any ball BA

NS
. It is proved using methods similar

to [14] in the case of the wave equation.

Corollary 2. — For any admissible space A in the sense of Definition 1, the
application NS mapping elements of BA

NS
∩ Ḣ1/2(R3) to the associate solution

of (NS) is Lipschitz on bounded subsets of the space BA
NS

∩ Ḣ1/2(R3).

In the next theorem, we consider the case when the data is additionnally
bounded in L2(R3): according to (1.1) and (1.5), it is natural to consider data
which is also bounded in energy.

Theorem 3 (Bounded energy solutions). — Under the assumptions of Theo-
rem 2, if additionnally the sequence (ϕn) is bounded in L2(R3), then the re-
sult of Theorem 2 (i) holds, where the large scales have disappeared: for ev-
ery j ∈ N \ {0},
(1.21) either hj

n = 1 and lim
n→∞

|xjn| = +∞, or lim
n→∞

hj
n = 0.

Moreover, if the sequence (vn) is bounded in L2([0, T ], Ḣ3/2(R3)) for some T
in R

+ ∪ {+∞}, then there exists a finite subset J ⊂ N satisfying (1.17), such

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
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that

(1.22)

{
∀j ∈ J, hj

n = 1 and either lim inf
n→∞

T∗(vn) ≥ min
j∈J

(T j
∗ )

or T j = +∞ ∀j ∈ N and (vn) is bounded in E∞,

where we have noted T∗(vn) and T j
∗ the life spans respectively of vn and V j.

Remark. — One can wonder what remains of those results when the setting
is periodic instead of the whole space R

3. Some remarks on that case are given
at the end of Section 3.

Final remark. — The idea of decomposing solutions of non linear equations
in such a way stems from the work of H. Bahouri and P. Gérard in [1], [2]
concerning the critical semilinear wave equation in R

3 (see [14] for the case of an
exterior domain). There are two main differences between those studies and this
one. First, the smoothing effect of the heat equation implies that for the Navier-
Stokes equations (as well as for the heat equation, see Section 3.2), there are no
concentrations at times other than t = 0, contrary to hyperbolic equations like
the wave equation; so the extraction of cores and times of concentration is much
easier here (it comes directly from the decomposition of the data). Second, we
do not have at our disposal a global solution associated with arbitrary data,
so the control of life spans is a problem here; that is not the case for the wave
equation. Note that a similar result to Theorem 2 (in the case (iii)) was proved
by S. Keraani in [19] in the context of the Schrödinger equations.

The structure of the paper is as follows.
In Section 2, we prove a few orthogonality results concerning the Navier-

Stokes equations with profiles as initial data, which will be used in the proof
of Theorem 2.

Section 3 is devoted to the proofs of Theorems 2 and 3, whereas Corollaries 1
and 2 are proved in Section 4.

In the Appendix are proved a few classical results on the Navier-Stokes
equations used in the course of the study. We also prove Proposition 1.1 stated
above.

Some of the results proved in this paper were presented in [13].

Acknowledgments. — The author is grateful to P. Gérard for many helpful
discussions.

2. The Navier-Stokes equations with profiles as initial data

In this section, we are going to prove some orthogonality results for solutions
of (NS) with initial data of the form

ϕn
def==

1
hn

ϕ
(x− xn

hn

)
,
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with (hn, xn) ∈ (R+ \ {0} × R
3)N. Those results will be used in the proof of

Theorem 2.
Note that those orthogonality results are closely linked to the notion of hn-

oscillatory sequences (see [2], [15]–[17] for details, as well as Section 3.3); similar
results could be proved in the more general setting of hn-oscillation, but we shall
not go into those considerations here.

Proposition 2.1. — Let T ∈ R
+ ∪ {+∞} be given, and let ϕ1 and ϕ2 be

two divergence free vector fields, elements of DT . Let us consider two orthog-

onal sequences of
(

R
+ \ {0} × R

3
)N

in the sense of (1.13), called (h1n, x
1
n)

and (h2n, x
2
n). Suppose for instance that h1n ≤ h2n. Then with notation (1.15),

we have the following orthogonality results:

(2.1) lim
n→∞

sup
t∈[0,(h1

n)
2 T ]

(
NS(ϕ1

n)(t, ·) | NS(ϕ2
n)(t, ·)

)
Ḣ1/2(R3)

= 0,

as well as

(2.2) lim
n→∞

(
NS(ϕ1

n) |NS(ϕ2
n)

)
L2([0,(h1

n)
2 T ],Ḣ3/2(R3))

= 0,

and

(2.3) lim
n→∞

∥∥NS(ϕ1
n)NS(ϕ2

n)
∥∥
L4([0,(h1

n)
2 T ],L2(R3))

= 0.

Proof of Proposition 2.1. — We know, by the scale-invariance of (NS) recalled
in (1.6), that the solution of (NS) associated with the data ϕj

n is given by

∀j ∈ {1, 2}, vjn(t, x) def==NS(ϕj
n)(t, x) =

1
hj
n

V j
( t

(hj
n)2

,x− xjn

hj
n

)
,

where V j def==NS(ϕj).
Note that V j ∈ ET , so vjn ∈ E(hj

n)2T
, with notation (1.7).

The results have nothing to do with the fact that V j are solutions of (NS),
all we shall need is V j ∈ ET ; so we can suppose that the functions V j are, say,
smooth and compactly supported, and we have(

NS(ϕ1
n)(t, ·) |NS(ϕ2

n)(t, ·)
)
Ḣ1/2(R3)

=
∫

R3
(h1n)−3/2(h2n)−3/2(Λ1/2V 1)

( t

(h1n)2
,x− x1n

h1n

)
(Λ1/2V 2)

( t

(h2n)2
,x− x2n

h2n

)
dx,

where Λ def==
√
−∆. Let us start by supposing that limn→∞ h1n/h

2
n = 0. Then

the change of variables

(2.4) x = x1n + h1ny, t = (h1n)2s
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yields after an easy computation

∀t ∈ [0, (h1n)2 T ],
∣∣(NS(ϕ1

n)(t, ·) |NS(ϕ2
n)(t, ·)

)
Ḣ1/2(R3)

∣∣ = O
(
h1n/h

2
n

)3/2
,

which gives the result. The sequences (h1n, x
1
n) and (h2n, x

2
n) are orthog-

onal, in the sense of (1.13), and we have supposed that h1n ≤ h2n. So if
lim
n→∞

h1n/h
2
n �= 0, then h1n = h2n. In that case, the change of variables (2.4)

gives, for any t ≥ 0, the following estimate:(
NS(ϕ1

n)(t, ·) |NS(ϕ2
n)(t, ·)

)
Ḣ1/2(R3)

=
∫

R3
(Λ1/2V 1)(s, y)(Λ1/2V 2)

(
s, y +

x1n − x2n
h1n

)
dx.

The result (2.1) is then proved by the orthogonality property (1.13), since we
have supposed that V 2 is compactly supported. The arguments are identical
for (2.2) and left to the reader. Now let us prove (2.3). We start by supposing
that limn→∞ h1n/h

2
n = 0. Then for any t ∈ [0, (h1n)2 T ], we have∥∥NS(ϕ1

n)NS(ϕ2
n)

∥∥4
L4([0,t],L2(R3))

= (h1nh
2
n)−2

×
∫ t

0

{∫
R3

∣∣∣V 1
( t

(h1n)2
,x− x1n

h1n

)∣∣∣2 × ∣∣∣V 2
( t

(h2n)2
,x− x2n

h2n

)∣∣∣2dx
}2

dt.

Then the change of variables (2.4) yields

‖v1nv2n‖L4([0,t],L2(R3)) = O
(
h1n/h

2
n

)
,

which gives the result.
In the case when h1n = h2n, the change of variables (2.4) implies that

‖v1nv2n‖4L4([0,(h1
n)

2 T ],L2(R3))

=
∫ T

0

{∫
R3

∣∣V 1(s, y)
∣∣2 × ∣∣∣V 2

(
s, y +

x1n − x2n
h2n

)∣∣∣2 dy
}2

ds,

and as V 2 is compactly supported, the result follows. That proves Proposi-
tion 2.1. �

3. Profile decompositions: proof of Theorems 2 and 3

This section is devoted to the proof of Theorems 2 and 3. We start by writing,
in Section 3.1, the decomposition of the family of initial data; the following
section is devoted to the proof of Theorem 2. In the first paragraph of that
section, we deal with the heat equation (H), and prove a similar decomposition
to Theorem 2 for that equation; the arguments are straighforward, due to the
fact that the equation is linear and to the presence of the diffusion operator.
Theorem 2 is proved in the following paragraphs. Finally Theorem 3 is proved
in Section 3.3, and Section 3.4 consists in a remark on the periodic case.
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In order to make the discussion simpler, we shall neglect in the following to
extract subsequences; all the arguments below are valid up to the extraction of
a subsequence.

3.1. Introduction: decomposition of the data. — Let us consider a
bounded family of divergence free vector fields (ϕn) in Ḣ1/2(R3), and let ϕ0

be any weak limit point of (ϕn) in Ḣ1/2(R3). Then we can apply Theorem 1
to (ϕn − ϕ0), and we have, with notation (1.16),

(3.1) ∀ ∈ N, ϕn(x) =
�∑

j=0

1
hj
n

ϕj
(x− xjn

hj
n

)
+ ψ�

n(x),

where ϕj is in Ḣ1/2(R3) for j ∈ N, where (ψ�
n) is a bounded sequence

in Ḣ1/2(R3) uniformly in  ∈ N, and satisfies the limit (1.12). The se-
quences (hj

n, x
j
n) are orthogonal in the sense of (1.13), and finally for ev-

ery  ∈ N, we have orthogonality of the Ḣ1/2(R3) norms written in (1.14).
Note that the remark (e) after the statement of Theorem 1, in the introduc-

tion, implies in particular that the functions ϕj
n defined in (1.15) are divergence

free.

Lemma 3.1. — The functions ϕj of decomposition (3.1) satisfy

lim
j→∞

‖ϕj‖Ḣ1/2(R3) = 0.

Proof of Lemma 3.1. — Equation (1.14) implies that the series of general
term ‖ϕj‖2

Ḣ1/2(R3)
is convergent, which proves the result. �

3.2. Proof of Theorem 2. — The goal of this section is to prove Theo-
rem 2: we consider a sequence (ϕn), bounded in Ḣ1/2(R3), converging weakly
towards ϕ0 ∈ Ḣ1/2(R3). We start by proving a similar result to Theorem 2 in
the case of the heat equation: the proof of that result is quite straightforward.
Then, in the next paragraph, we deal with the Navier-Stokes equations. We
first consider the case when the norm of ϕn in some admissible space A, in
the sense of Definition 1, is smaller than the constant CA

NS
, with notation (1.9);

that enables us to avoid life span problems, and to prove Theorem 2 (iii). The
general Ḣ1/2(R3) case is treated in the following paragraph, using (iii).

3.2.1. A profile decomposition for the heat equation. — Let us prove the fol-
lowing result.

Proposition 3.2. — Let (ϕn) be a family of divergence free vector fields,
bounded in Ḣ1/2(R3), and let ϕ0 ∈ Ḣ1/2(R3) be any weak limit point of (ϕn).
Then up to the extraction of a subsequence, the following result holds, where
with the notation of Theorem 1 and (1.16) we define

un
def==H(ϕn) ∈ E∞ and U j def==H(ϕj) ∈ E∞
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for every integer j ∈ N.
For every  ∈ N, for every t ≥ 0 and every x ∈ R

3, we can write

un(t, x) =
�∑

j=0

1
hj
n

U j
( t

(hj
n)2

,x− xjn

hj
n

)
+ w�

n(t, x),

where w�
n

def==H(ψ�
n) is bounded in E∞ uniformly in  ∈ N, with

(3.2) lim
�→∞

(
lim sup
n→∞

‖w�
n‖L∞(R+,L3(R3))

)
= 0.

Moreover, the sequences (hj
n, x

j
n) are orthogonal in the sense of (1.13) and

finally we have for every  ∈ N,

(3.3) ‖un‖2Eν
∞

=
�∑

j=0

‖U j‖2Eν
∞

+ ‖w�
n‖2Eν

∞
+ o(1), when n → ∞.

Proof of Proposition 3.2. — We consider decomposition (3.1), and we define

∀j ∈ N, U j def==H(ϕj) and ∀( , n) ∈ N
2, w�

n
def==H(ψ�

n) .

By the scale-invariance (1.6) of (H), we have

(3.4) uj
n(t, x) def==

1
hj
n

U j
( t

(hj
n)2

,x− xjn

hj
n

)
= H(ϕj

n),

so we can write for every ( , n) ∈ N
2,

un =
�∑

j=0

uj
n + w�

n, where un
def==H(ϕn).

So all we need to check are properties (3.2) and (3.3).
The limit (3.2) is an immediate consequence of (1.12), since it is a well-

known fact (see for instance [3], Lemma 3.2.2 and formula (3.15)) that for
any u0 ∈ L3(R3),

(3.5)
∥∥H(u0)

∥∥
L∞(R+,L3(R3))

≤ ‖u0‖L3(R3).

Finally the orthogonality result (3.3) is simply due to the fact that for any
vector field u0 in Ḣ1/2(R3), we have∥∥H(u0)

∥∥
Eν

∞
= ‖u0‖Ḣ1/2(R3).

Then (1.14), associated with the scale-invariance

∀(j, n) ∈ N
2, ‖uj

n‖Eν
∞ = ‖U j‖Eν

∞ ,

yields (3.3). That proves Proposition 3.2. �
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Remark. — As noted in the introduction, the presence of the diffusion op-
erator −∆ prevents concentrations from occuring at another time than t = 0;
that can be seen in estimate (3.5). In the case of the wave equation [1]-[2],
concentrations can occur at any time.

Now let us deal with the Navier-Stokes equations. Note that contrary to
the case of the critical semilinear wave equation [1], [2] where the solutions are
global in time, we are going to have to pay a careful attention to life spans. In
the next paragraph, result (iii) of Theorem 2 is proved, in which there are no
life span problems. That result will then help us prove the theorem.

3.2.2. Proof of Theorem 2 (iii). — Let A be an admissible space, in the sense
of Definition 1, and let ρ ∈]0, CA

NS
[ be given, with notation (1.9), such that

(3.6) ∀n ∈ N, ‖ϕn‖A ≤ ρ.

Recall that for every j ∈ N, with the notation of Theorem 1, the function ϕj

is a weak limit point in Ḣ1/2(R3) of the sequence Φj
n

def==hj
nϕn(xjn + hj

n·). By
property (i) of Definition 1, we have

(3.7) ∀(j, n) ∈ N
2, ‖ϕn‖A = ‖Φj

n‖A.

Moreover, since Ḣ1/2(R3) is embedded in A, we have ϕj ∈ A, and since A is a
Banach space, the results (3.6) and (3.7) imply that

∀j ∈ N, ‖ϕj‖A ≤ ρ.

So in particular, by definition of ρ, we have ϕj ∈ D∞ for all integers j, and as
a consequence one can associate with ϕj a global solution of the Navier-Stokes
equations, namely

(3.8) ∀j ∈ N, V j def==NS(ϕj) ∈ E∞,

where recall that E∞ = C0
b (R+, Ḣ1/2(R3)) ∩ L2(R+, Ḣ3/2(R3)). By the

scale invariance of the Navier-Stokes equations explained in the introduction
(see (1.6)), we know that

vjn(t, x) def==
1
hj
n

V j
( t

(hj
n)2

,x− xjn

hj
n

)
is the unique, global solution of (NS) associated with the data ϕj

n. Now for
every integer  ∈ N, let us define

(3.9) r�n
def== vn −

∑
j≤�

vjn − w�
n,

where w�
n = H(ψ�

n) as in Proposition 3.2, and vn
def==NS(ϕn). To prove the

result, it is enough to prove that

(3.10) lim
�→∞

(
lim sup
n→∞

r�n
)

= 0 in E∞.
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The function r�n satisfies the following system:

(3.11)
{

∂tr
�
n + P (r�n · ∇r�n) − ν∆r�n + Q(r�n, f

�
n) = g�n in R

+ × R
3,

r�n|t=0 = 0,

where

(3.12) f �
n

def==
∑
j≤�

vjn + w�
n,

and

(3.13) g�n
def== − 1

2

∑
j 
=k

(j,k)∈{0,..,�}2

Q(vjn, v
k
n) −

∑
j≤�

Q(vjn, w
�
n) − P (w�

n · ∇w�
n),

where

(3.14) Q(a, b) def==P (a · ∇b + b · ∇a),

and finally where P is the orthogonal projector onto divergence-free vector
fields.

Proposition 3.3. — With notation (3.12) and (3.13), we have the following
results: the sequence (f �

n) is bounded in the space E∞, uniformly in  , and

lim
�→∞

lim sup
n→∞

‖g�n‖L2(R+,Ḣ−1/2(R3)) = 0.

Let us postpone the proof of Proposition 3.3 and finish the proof of The-
orem 2 (iii). By interpolation between the spaces L∞(R+, Ḣ1/2(R3)) and
L2(R+, Ḣ3/2(R3)), we know from Proposition 3.3 that (f �

n) is bounded in the
space L4(R+, Ḣ1(R3)), uniformly in  . Proposition A.2 proved in the Appendix,
applied to the sequence r�n, implies that for  large enough, uniformly in n, we
have according to Proposition 3.3

sup
n∈N

‖g�n‖L2(R+,Ḣ−1/2(R3)) ≤ C exp
(
− 2C sup

(�,n)∈N2
‖f �

n‖4L4(R+,Ḣ1(R3))

)
,

hence we get

‖r�n‖Eν
∞ ≤ C‖g�n‖L2(R+,Ḣ−1/2(R3))

(
1 + exp

(
C‖f �

n‖4L4(R+,Ḣ1(R3)

))
.

So (3.10) is proved, and with it, Theorem 2 (iii). �
Proof of Proposition 3.3. — Let us start by noticing that the sequence (vjn) is
bounded in E∞ for every j ∈ N since

‖vjn‖Eν
∞ = ‖V j‖Eν

∞ .

Note however that we do not have at our disposal an a priori estimate
for ‖vjn‖Eν

∞ (such an a priori estimate is available for small initial data
in Ḣ1/2(R3) for instance (see (1.4)), but in the more general BA

NS
case, it is a

consequence of Corollary 1 proved later in this paper).
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The following proposition will be proved later. Note that it is written in a
general setting, and not only for sequences (ϕn) in BA

NS
, because it will also be

used in the proof of the general case of Theorem 2, in the next section.

Proposition 3.4. — Let (ϕn) be a bounded sequence of divergence free vector
fields in Ḣ1/2(R3), and let ϕ0 be a weak limit point of (ϕn). There exists
an integer j0 such that the following holds. Let (ϕj)j∈N be the profiles of the
decomposition of ϕn, with the notation of Theorem 1, and let V j def==NS(ϕj).
Then we have

∀j ≥ j0, V j ∈ E∞ and
∑
j≥j0

‖V j‖2Eν
∞

< +∞.

From that result we can deduce the bound on f �
n. We have indeed, from (2.1)

and (2.2) proved in Proposition 2.1,

∀ ∈ N,
∥∥∥ ∑

j≤�

vjn

∥∥∥2
Eν

∞
=

∑
j≤�

‖vjn‖2Eν
∞

+ o(1), when n → ∞.

By a change of scale, we get∥∥∥ ∑
j≤�

vjn

∥∥∥2
Eν

∞

=
∑
j≤�

‖V j‖2Eν
∞

+ o(1), when n → ∞,

hence Proposition 3.4, associated with the fact that V j ∈ E∞ for every integer j
according to (3.8), implies that

(3.15)
∑
j≤�

vjn is bounded in E∞, uniformly in  .

So the result on f �
n is proved.

Now let us prove the limit on g�n: it is enough to prove the three following
results:

∀j �= k, lim
n→∞

Q(vjn, v
k
n) = 0 in L4

(
R
+, Ḣ−1(R3)

)
,(3.16)

lim
�→∞

lim sup
n→∞

Q
(∑

j≤�

vjn, w
�
n

)
= 0 in L4

(
R
+, Ḣ−1(R3)

)
,(3.17)

lim
�→∞

(
lim sup
n→∞

Q(w�
n, w

�
n)

)
= 0 in L4

(
R
+, Ḣ−1(R3)

)
.(3.18)

Indeed, one can notice that the sequences (vjn) and (w�
n) are bounded in

L8/3(R+, Ḣ5/4(R3)) uniformly in j and  , by interpolation between the space
L∞(R+, Ḣ1/2(R3)) and L2(R+, Ḣ3/2(R3)). Now let us recall the product rules
in Sobolev spaces: if a and b are two tempered distributions, then

(3.19) ∀s, t <
3
2

, s + t > 0, ‖ab‖
Ḣs+t− 3

2 (R3)
≤ Cs,t‖a‖Ḣs(R3) ‖b‖Ḣt(R3).
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Those rules enable us to infer that g�n is bounded in L4/3(R+, L2(R3)). Then
by interpolation with the results (3.16) to (3.18), the proposition is proved.

So let us prove those three limits: the product rules imply that the se-
quences Q(vjn, v

k
n), Q(vjn, w

�
n) and Q(w�

n, w
�
n) are bounded in L4(R+, Ḣ−1(R3))

for every (j, k,  ) ∈ N
3, since by interpolation between L∞(R+, Ḣ1/2(R3))

and L2(R+, Ḣ3/2(R3)), the functions vjn and w�
n are also bounded in the space

L4(R+, Ḣ1(R3)).
Now let us prove that for j �= k, the function Q(vjn, v

k
n) goes to zero in

L4(R+, Ḣ−1(R3)) as n goes to infinity. The divergence free condition on vjn
implies that

P (vjn · ∇vkn) = P div(vjn ⊗ vkn),
so since P is a Fourier multiplier of order 0, it is enough to prove that

(3.20) ∀j �= k, lim
n→∞

‖vjnvkn‖L4(R+,L2(R3)) = 0.

That result is simply due to (2.3) proved in Proposition 2.1 of the previous
section, so we have obtained (3.16).

To obtain (3.17) and (3.18), the method is different since w�
n is not oscilla-

tory, so we cannot use Proposition 2.1; that is compensated by the fact that,
according to Proposition 3.2,

(3.21) lim
�→∞

(
lim sup
n→∞

‖w�
n‖L∞(R+,L3(R3))

)
= 0.

As in (3.20), it is enough to prove that

lim
�→∞

lim sup
n→∞

∥∥∥(∑
j≤�

vjn + w�
n

)
w�
n

∥∥∥
L4(R+,L2(R3))

= 0.

But Hölder’s inequality yields

(3.22)
∥∥∥(∑

j≤�

vjn + w�
n

)
w�
n

∥∥∥
L4(R+,L2(R3))

≤
∥∥∥ ∑

j≤�

vjn + w�
n

∥∥∥
L4(R+,L6(R3))

‖w�
n‖L∞(R+,L3(R3)).

Since Ḣ1(R3) is embedded into L6(R3), we have for all n ∈ N,∥∥∥ ∑
j≤�

vjn + w�
n

∥∥∥
L4(R+,L6(R3))

≤ C
∥∥∥ ∑

j≤�

vjn + w�
n

∥∥∥
L4(R+,Ḣ1(R3))

(3.23)

≤ C
∥∥∥ ∑

j≤�

vjn

∥∥∥
Eν

∞

+ C‖w�
n‖Eν

∞ ,

by interpolation between L∞(R+, Ḣ1/2(R3)) and L2(R+, Ḣ3/2(R3)). Propo-
sition 3.4 and Proposition 3.2 enable us to infer that (

∑
j≤� v

j
n+w�

n) is bounded
in L4(R+, L6(R3)), uniformly in  , so (3.21) and (3.22) yield the limits (3.17)
and (3.18), and Proposition 3.3 is proved. �
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Proof of Proposition 3.4. — Lemma 3.1 implies that for j large enough, the
norm of ϕj in Ḣ1/2(R3) is smaller than cν, with notation (1.3). Then (1.4)
enables us to infer that for j large enough,

V j ∈ E∞ and ‖V j‖2Eν
∞

≤ 2‖ϕj‖2
Ḣ1/2(R3)

.

But (1.14) implies that the series of general term ‖ϕj‖2
Ḣ1/2(R3)

is convergent,
therefore Proposition 3.4 follows. �
3.2.3. Proof of Theorem 2 (i)–(ii): the general case. — Let us consider a
sequence (ϕn) of divergence free vector fields, bounded in Ḣ1/2(R3), and let us
define, with the notation of Theorem 1,

vn
def==NS(ϕn) and V j def==NS(ϕj).

We start by defining a sequence (tn) ∈ (R+ ∪ {+∞})N such that

(3.24)
∥∥NS(ϕn)

∥∥
Eν

tn

is bounded.

The existence of (tn) is due to the fact that the application

t �→
∥∥NS(ϕn)(t, ·)

∥∥2
Ḣ1/2(R3)

+ 2ν
∥∥NS(ϕn)

∥∥2
L2([0,t],Ḣ3/2(R3))

is continuous on the time interval [0, T∗(vn)[, where T∗(vn) ∈ R
+ ∪ {+∞} is

the life span of vn, and uniformly bounded at t = 0 by sup
n∈N

‖ϕn‖Ḣ1/2(R3). So

for any real number A > sup
n∈N

‖ϕn‖Ḣ1/2(R3) and any n ∈ N, one can find a

time tn(A) < T∗(vn) such that∥∥NS(ϕn)
∥∥
Eν

tn(A)
≤ A.

Note that nothing prevents tn(A) from going to zero as n goes to infinity.
Now let us prove that decomposition (1.18) holds, as well as properties (1.17)

and (1.19). We start by writing the decomposition (1.11) of Theorem 1, which
reads

(3.25) ∀ ∈ N, ∀n ∈ N, ϕn(x) =
�∑

j=0

ϕj
n(x) + ψ�

n(x),

with notation (1.15) and (1.16), and with properties (1.12), (1.13), and (1.14).

Then the limit (1.12) enables us to define an integer  0 in such a way that

(3.26) lim sup
n→∞

‖ψ�0
n ‖L3(R3) ≤

1
2
δν,

where δ is the constant of Proposition A.1. Then in particular

(3.27)
(
NS(ψ�0

n )
)

is bounded in E∞,
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by estimate (A.1) of Proposition A.1, since ‖ψ�0
n ‖Ḣ1/2(R3) is bounded according

to (1.14).
Now recall that L3(R3) is an admissible space in the sense of Definition 1,

according to Example 2 given in the introduction; but Proposition A.1 implies
that any function in Ḣ1/2(R3) whose L3 norm is smaller than δν is in fact
contained in D∞, so it follows that

1
2
δν < CL3

NS
,

with notation (1.9). So we can apply the result of Theorem 2 (iii) which yields

(3.28) NS(ψ�0
n )(t, x) =

�∑
j=�0+1

1
hj
n

V j
( t

(hj
n)2

,x− xjn

hj
n

)
+ w�

n(t, x) + r̃�n(t, x),

with the orthogonality property (1.13), the limit (3.2) for w�
n, and where we

have noted V j def==NS(ϕj) for j ≥  0 + 1. Furthermore, V j is an element of E∞
and

(3.29) lim
�→∞

lim sup
n→∞

r̃�n = 0 in E∞.

Note that in particular (1.17) is proved, choosing J
def== {0, ..,  0}.

So defining V j def==NS(ϕj) for j ≤  0, we can write for any n ∈ N and
any t ≤ min(τn, tn), where recall that τn

def== min
j∈J

(hj
n)2T j,

(3.30) NS(ϕn)(t, x)

=
�∑

j=0

1
hj
n

V j
( t

(hj
n)2

,x− xjn

hj
n

)
+ w�

n(t, x) + r̃�n(t, x) + r�0n (t, x).

The restriction t ≤ min(τn, tn) is of course for the terms NS(ϕn) and

vjn
def==

1
hj
n

V j
( t

(hj
n)2

,x− xjn

hj
n

)
in (3.30) to be defined. Then all we have to prove is that in (3.24), one can
take

(3.31) tn = τn,

as well as the fact that (1.13) holds with the additional couples (hj
n, x

j
n) for

j ≤  0, and that

(3.32) lim sup
n→∞

‖r�0n ‖Eν
τn

= 0.

Then the theorem will be proved with r�n
def== r̃�n + r�0n .

The orthogonality of the couples (hj
n, x

j
n) for all integers j is an obvious

consequence of the orthogonality of the decomposition of the initial data due
to Theorem 1, so let us check the two other points, (3.31) and (3.32). In fact
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the result (3.31) is a consequence of (3.32) due to (3.30): if (3.32) is proved,
then in particular all the terms in the right-hand side have a bounded Eν

τn

norm, which implies that the same goes for (vn).
For convenience, let us re-order the functions vjn, for j ≤  0, in such a way

that, for n large enough,

(3.33) ∀j ≤ k ≤  0, (hj
n)2T j

∗ ≤ (hk
n)2T k

∗ .

We decide that if T j
∗ = +∞, then (hj

n)2T j
∗ = +∞ for every integer n. Recall

that T j
∗ = +∞ does not imply ϕj ∈ D∞, so if T j

∗ = +∞ for all j, and if there
exists j0 such that ϕj0 /∈ D∞, then we choose the first index 0 in such a way
that ϕ0 is not in D∞. Note that (hj

n)2T j
∗ is the life span of vjn.

Now let us define the following scaling operator: for any vector field f , we
define

(3.34) ∀j ∈ N, Sjf(s, y) def==hj
nf

(
(hj

n)2s, xjn + hj
ny

)
.

Note that
∀(j, n) ∈ N

2, Sjv
j
n = V j .

We then define, for every integer  ,

∀j ≤  , V j,0
n

def==S0v
j
n, R

�0,0

n
def==S0r

�0
n ,

W �,0
n

def==S0w
�
n, R̃�,0

n
def==S0r̃

�
n, and V 0

n
def==S0vn.

Then the function R
�0,0

n satisfies the following system, similarly to (3.11):

(3.35)

{
∂sR

�0,0

n + P (R
�0,0

n · ∇R
�0,0

n ) − ν∆R
�0,0

n + Q(R
�0,0

n , F �,0
n ) = G�,0

n ,

R
�0,0

n|s=0 = 0,

where

(3.36) F �,0
n

def==
∑
j≤�

V j,0
n + W �,0

n + R̃�,0
n ,

and

G�,0
n

def== −1
2

∑
j 
=k

(j,k)∈{0,..,�}2

Q(V j,0
n , V k,0

n ) −
∑
j≤�

Q(V j,0
n ,W �,0

n + R̃�,0
n )(3.37)

− 1
2
Q(W �,0

n , 2R̃�,0
n + W �,0

n ).

Now let T0 be any real number smaller than T 0
∗ . Then V j,0

n = V 0 is bounded
in ET 0 , and according to (3.33) we have

(3.38) ∀j ∈ N, ‖vjn‖E(h0
n)2T0 is bounded,
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since (h0n)2T 0 < (hj
n)2T j

∗ for j ∈ {0, ..,  0}, and vjn is bounded in E∞ for
j ≥  0 + 1. Moreover (3.38) can also be written

(3.39) ∀j ∈ N, (V j,0
n ) is bounded in ET 0 .

We have the following proposition.

Proposition 3.5. — With notation (3.36) and (3.37), we have the following
results: the sequence (F �,0

n ) is bounded in the space ET 0 uniformly in  , and

lim
�→∞

lim sup
n→∞

‖G�,0
n ‖L2([0,T 0],Ḣ−1/2(R3)) = 0.

Let us postpone the proof of Proposition 3.5 and finish the proof of the
theorem. As in the previous section, Propositions 3.5 and A.2 imply that

(3.40) lim sup
n→∞

‖R�0,0

n ‖Eν
T0

= 0,

and that proves (3.32) after a rescaling. Then as noticed above, the result (3.31)
is simply due to the fact that all the terms in the decomposition of vn written
in (3.30) are bounded in E(h0

n)
2T 0 . That proves Theorem 2 (i). �

Finally let us prove Theorem 2 (ii): suppose that there exists a time T in
R
+ ∪ {+∞} such that (vn) is bounded in L2([0, T ], Ḣ3/2(R3)). If for every

integer j, the function ϕj is in D∞, then the result is proved. If not, then in
particular we have ϕ0 /∈ D∞, with the re-ordering (3.33). In the computations
above, we were free of our choice of the time T 0 provided T 0 < T 0

∗ , so let us
choose T 0 in the following way. We have, according to (3.30),

�0∑
j=0

vjn + r�0n = vn −NS(ψ�0
n ),

and since the sequence (NS(ψ�0
n )) is bounded in E∞ by (3.27) and (vn) is

bounded in the space L2([0, T ], Ḣ3/2(R3)), it follows that
�0∑
j=0

vjn + r�0n is bounded in L2
(
[0, T ], Ḣ3/2(R3)

)
.

Then (1.2), and the remark after (1.8) if T 0
∗ = +∞, enable us to choose T 0 < T 0

∗
such that

‖V 0‖L2([0,T 0],Ḣ3/2(R3)) ≥ 2 sup
n∈N

∥∥∥ �0∑
j=0

vjn + r�0n

∥∥∥
L2([0,T ],Ḣ3/2(R3))

,

which in turn yields

(3.41)
�0∑
j=0

‖V j,0
n ‖2

L2([0,T 0],Ḣ3/2(R3))
≥ 4 sup

n∈N

∥∥∥ �0∑
j=0

vjn + r�0n

∥∥∥2
L2([0,T ],Ḣ3/2(R3))

.
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But Proposition 2.1 implies, after a rescaling, that∥∥∥ �0∑
j=0

V j,0
n

∥∥∥2
L2([0,T 0],Ḣ3/2(R3))

=
�0∑
j=0

‖V j,0
n ‖2

L2([0,T 0],Ḣ3/2(R3))
+ o(1),

when n goes to infinity. So (3.40) implies that for any ε > 0 and for n large
enough we have

�0∑
j=0

‖V j,0
n ‖2

L2([0,T 0],Ḣ3/2(R3))

≤ ε + 2 sup
n∈N

‖R�0,0

n +
�0∑
j=0

V j,0
n ‖2

L2([0,T 0],Ḣ3/2(R3))

≤ ε + 2 sup
n∈N

‖r�0n +
�0∑
j=0

vjn‖2L2([0,(h0
n)

2T 0],Ḣ3/2(R3))
.

The only way not to contradict (3.41) is to have T ≤ (h0n)2T 0, which proves
Theorem 2 (ii). �
Proof of Proposition 3.5. — The proof is very similar to the proof of Proposi-
tion 3.3 in the previous section, so we shall not go into too much detail. Let
us start by noticing that the term R̃�,0

n satisfies the same estimates as W �,0
n ,

and in particular the limit (3.2), by Sobolev embeddings; so we shall forget it
in the following.

Let us start by considering the term F �,0
n : Proposition 3.4, along with

the orthogonality properties (2.1) and (2.2), implies in particular that the
sequence ‖

∑�
�0+1 vjn‖2Eν

∞
is bounded independently of  ; moreover we know

from (3.38) that (vjn) is bounded in E(h0
n)

2T 0 for j ≤  0, so we get finally

(3.42) ∀ ∈ N,
∥∥∥ ∑

j≤�

vjn

∥∥∥
Eν

(h0
n)2T0

is bounded uniformly in  ,

and the result is proved for F �,0
n since ‖w�

n‖Eν
∞ is bounded uniformly in  

according to Proposition 3.2.
For the limit of G�,0

n , it is enough to prove the following results, after rescal-
ing: for all (j, k) ∈ {0, ..,  }2, with j �= k,

lim
n→∞

Q(vjn, v
k
n) = 0 in L4

(
[0, (h0n)2T 0], Ḣ−1(R3)

)
(3.43)

lim
�→∞

lim sup
n→∞

Q
(∑

j≤�

vjn, w
�
n

)
= 0 in L4

(
[0, (h0n)2T 0], Ḣ−1(R3)

)
.(3.44)

Indeed, the limit of Q(w�
n, w

�
n) was proved in Proposition 3.3, and similar argu-

ments to the case of g�n above imply that G�,0
n is bounded in L4/3([0, T 0], L2(R3)).

Then the result follows by interpolation.
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The limit (3.43) follows from Proposition 2.1 exactly as (3.16), using (3.38).
To prove (3.44), we follow the proof of (3.17): we have∥∥∥Q(∑

j≤�

vjn, w
�
n

)∥∥∥
L4([0,(h0

n)
2T 0],Ḣ−1(R3))

≤ C
∥∥∥ ∑

j≤�

vjn

∥∥∥
L4([0,(h0

n)
2T 0],L6(R3))

‖w�
n‖L∞(R+,L3(R3)),

and
∀n ∈ N,

∥∥∥ ∑
j≤�

vjn

∥∥∥
L4([0,(h0

n)
2T 0],L6(R3))

≤ C
∥∥∥ ∑

j≤�

vjn

∥∥∥
Eν

(h0
n)2T0

.

Then (3.42) yields the result, and the proposition is proved. �

3.3. Proof of Theorem 3. — We will keep the notation introduced in the
course of the proof of Theorem 2, and we shall suppose in this section that
additionnally to the assumptions of Theorem 2, the sequence (ϕn) is bounded
in L2(R3).

The proof of the result (1.21) in Theorem 3 requires a more precise under-
standing of decomposition (1.11) given in Theorem 1. Let us therefore briefly
recall how the scales hj

n are determined in [16]: a preliminary result in [16]
states that any bounded sequence in Ḣ1/2(R3) can be written, up to a subse-
quence, as

(3.45) ∀x ∈ R
3, ∀ ∈ N, ϕn(x) =

�∑
j=0

ϕ̃j
n(x) + ψ̃�

n(x),

where lim�→∞ lim supn→∞ ‖ψ̃�
n‖L3(R3) = 0, and where each ϕ̃j

n is bounded
in Ḣ1/2(R3) and strictly hj

n-oscillatory, in the following sense.

Definition 2. — Let (hn) be a sequence in (R+ \ {0})N, and let (φn) be a
bounded sequence in Ḣ1/2(R3). Then (φn) is hn-oscillatory if

(3.46) lim
R→∞

lim sup
n→∞

∫
hn|ξ|≥R

|ξ| × |ϕ̂n(ξ)|2dξ = 0.

The sequence (φn) is strictly hn-oscillatory if it also satisfies

(3.47) lim
ε→0

lim sup
n→∞

∫
hn|ξ|≤ε

|ξ| × |ϕ̂n(ξ)|2dξ = 0.

Note that the sequences (ϕ̃j
n) are of course also supposed not to converge

strongly to zero in Ḣ1/2(R3) as n goes to infinity, and the sequences (hj
n) are

orthogonal in the sense of (1.13); the cores of concentration xjn in decompo-
sition (1.11) are then extracted from each ϕ̃j

n successively, and the profiles
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are determined at the same time. More precisely, one can write (see [16]) for
every (j, n) ∈ N

2 and every x ∈ R
3, up to the extraction of a subsequence,

ϕ̃j
n(x) =

�∑
k=0

1
hj
n

ϕj,k
n

(x− xj,kn

hj
n

)
+ ψj,�

n ,

with lim�→∞ lim supn→∞ ‖ψj,�
n ‖L3(R3) = 0.

Finally it is proved in [16] that if (ϕn) is bounded in Ḣ1/2(R3) ∩ L2(R3),
then for every integer j, (ϕ̃j

n) is also bounded in Ḣ1/2(R3) ∩ L2(R3) (see for
instance Remark 2.10, formula (2.20), of [16]). So the result (1.21) on the limit
of the sequence (hj

n) will be obtained if we prove the following lemma.

Lemma 3.6. — Let (hn) be a sequence in (R+ \ {0})N, converging towards
infinity with n, and let (Φn) be a hn-oscillatory sequence of functions, in the
sense of Definition 2, bounded in Ḣ1/2(R3). Suppose that (Φn) is bounded
in L2(R3). Then Φn converges strongly to zero in Ḣ1/2(R3).

Proof of Lemma 3.6. — Let us suppose that Φn does not converge strongly to
zero in Ḣ1/2(R3), and let us prove that (Φn) is not bounded in L2(R3). In that
case, up to a subsequence, there exists C0 > 0 such that ‖Φn‖Ḣ1/2(R3) > C0 for
any n large enough. Then (3.46) enables us to choose a real number R0 such
that

(3.48) lim sup
n→∞

∫
hn|ξ|≥R0

|ξ| ×
∣∣Φ̂n(ξ)

∣∣2dξ ≤ C0

2
·

But we have

‖Φn‖2L2(R3) ≥
hn

R0

∫
hn|ξ|≤R0

|ξ| ×
∣∣Φ̂n(ξ)

∣∣2dξ

≥ hn

R0

(
‖Φn‖2Ḣ1/2(R3)

−
∫
hn|ξ|≥R0

|ξ| ×
∣∣Φ̂n(ξ)

∣∣2dξ
)
,

so (3.48) implies that

‖Φn‖L2(R3) ≥ hn
C0

2R0

,

which yields the result, since (hn) is supposed to converge towards infinity
with n. �

That lemma implies that under the assumptions of Theorem 3, there are no
large scales in the decomposition (3.45), and (1.21) is proved.

Finally let us prove (1.22): we suppose that (vn) is bounded in the space
L2([0, T ], Ḣ3/2(R3)), and we define

J
def==

{
j ≤  0 | hj

n = 1
}
,
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where  0 was defined in (3.26). If j is in N \ J , then either j ≥  0 + 1 and
then ϕj ∈ D∞, or lim

n→∞
hj
n = 0 in which case ϕj ∈ D∞ according to Theo-

rem 2 (ii). So J satisfies (1.17). To prove (1.22), we recall that decomposi-
tion (3.30) implies that

(3.49)
{ for all T 0 < T 0

∗ , ‖vn‖Eν
(h0

n)2T0
is bounded,

and if ϕ0 ∈ D∞, then ‖vn‖Eν
∞ is bounded

with notation (3.33). Then two cases can occur: in the first case, we have
limn→∞ h0n = 0 and ϕ0 ∈ D∞ according to Theorem 2 (ii). Then (3.49) im-
plies that (vn) is bounded in E∞, and since ϕj ∈ D∞, for all j, the result is
proved. In the second case, we have h0n = 1 so in particular (vn) is bounded
in L2([0, T 0], Ḣ3/2(R3)), which proves (1.22) according to (1.2). So Theorem 3
is proved. �

3.4. A remark in the case of periodic data. — If we suppose that the ini-
tial data is a sequence of periodic, mean free, divergence free vector fields (ϕn),
bounded in the space Ḣ1/2(T3), where T

3 def== (R/Z)3, then it is also bounded
in L2(T3), since the Ḣs(T3) norm is defined by

‖f‖2
Ḣs(T3)

def==
∑
n∈Z

|n|2s × |f̂(n)|2,

where f̂(n) is the (discrete) Fourier transform of f . So the results of Theorem 3
apply. In particular, there are no large scales, and the scales equal to 1 are
reduced to the weak limit only, since the cores xjn are bounded when hj

n = 1.
However, one must note that the profile decomposition of Theorem 1 must
be slightly modified, for instance by multiplying the profiles ϕj

n by trunca-
tions χ(x − xjn) where χ is supported in [0, 1]3. Similarly, one can decompose
the solution (vn) also by multiplying the profiles in the decomposition of The-
orem 2 by such truncations; the remainder induced by those truncations can
be proved to be small in Eν

T , but that smallness is not uniform in T even in
the case of global solutions.

4. Proof of the corollaries

This section is devoted to the proof of the corollaries given in the introduc-
tion. We shall keep the notation of the previous sections.

4.1. Proof of Corollary 1. — As in [2] for the wave equation, Corollary 1
is proved by contradiction: let A be an admissible space, and suppose there
exists a sequence of global solutions of (NS) in E∞, associated with a family
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of initial data (ϕn), bounded in a closed ball of BA
NS

as defined in (1.10), such
that

(4.1) lim
n→∞

∥∥NS(ϕn)
∥∥
Eν

∞
= +∞.

We can apply Theorem 2 (iii) to (ϕn). That implies in particular that (NS(ϕn))
is bounded in L∞(R+, Ḣ1/2(R3))∩L2(R+, Ḣ3/2(R3)), since that holds for each
term of the decomposition. The contradiction is obvious, and Corollary 1 is
proved. �

4.2. Proof of Corollary 2. — Let us prove that the mapping from data
in D∞ to the associate solution is Lipschitz on bounded subsets of BA

NS
, where A

is an admissible space and BA
NS

was defined in (1.10).

We start by proving the following .

Lemma 4.1. — Let u0 and v0 be two divergence free elements of D∞, and
define u

def==NS(u0). Then we have
d
dε

(
NS(u0 + εv0)

)
|ε=0

= v,

where v is the unique solution in E∞ of the following system:{
∂tv + P (v · ∇u + u · ∇v) − ν∆v = 0,

v|t=0 = v0,

where P is the Leray projector onto divergence free vector fields. Moreover we
have, for any t ≥ 0,

‖v‖Eν
t
≤ C‖v0‖Ḣ1/2(R3)

{
1 +

( ∫ t

0

∥∥u(s)
∥∥2
Ḣ3/2(R3)

ds
)1/2}

(4.2)

× exp
(
C

∫ t

0

∥∥u(s)
∥∥2
Ḣ3/2(R3)

ds
)
.

Proof of Lemma 4.1. — The fact that there is a unique solution to the lin-
earized equation, which satisfies (4.2), is simply due to Proposition A.3 stated
in the Appendix.

Now let uε be defined by uε def==NS(u0 + εv0), and let us define

εrε
def== uε − u− εv.

We are going to prove that limε→0 rε = 0 in E∞, which clearly will imply the
lemma. The function rε satisfies the following equation:{∂tr

ε + Q(rε, u) − ν∆rε = fε,

rε|t=0 = 0,

with
fε def== − εP (v · ∇v + v · ∇rε + rε · ∇v + rε · ∇rε).
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As a consequence, we can write, using Proposition A.3,

∀t ≥ 0, ‖rε‖Eν
t
≤ C‖fε‖L2

t (Ḣ
−1/2)

(
1 + ‖u‖L2

t(Ḣ
3/2) expC‖u‖2

L2
t(Ḣ

3/2)

)
.

But the product rules in Sobolev spaces recalled in (3.19) imply that

‖fε‖L2
t(Ḣ

−1/2) ≤ Cε
(
‖v‖2Eν

t
+ ‖v‖Eν

t
‖rε‖Eν

t
+ ‖rε‖2Eν

t

)
,

so writing Xε(t) def== ‖rε‖Eν
t
, we have

Xε(t) ≤ Cε
(
‖v‖2Eν

t
+ ‖v‖Eν

t
Xε(t) + (Xε(t))2

)
×

(
1 + ‖u‖L2

t(Ḣ
3/2) expC‖u‖2

L2
t(Ḣ

3/2)

)
.

Now let us recall that u ∈ E∞ by assumption; then if C(u) denotes any constant
depending on ‖u‖Eν

∞, estimate (4.2) enables us to write

∀t ≥ 0, C(u)ε
(
Xε(t)

)2 −Xε(t)
(
1 − C(u)ε

)
+ C(u)ε ≥ 0.

But Xe(t) is a continuous function and is equal to zero at time t = 0;
since C(u)ε is the smallest root of the polynomial above, we conclude that

∀t ≥ 0, Xε(t) ≤ C(u)ε.

So the lemma is proved. �

Finally Corollary 1 implies that in estimate (4.2), ‖u‖L2([0,T ],Ḣ3/2(R3)) can
be replaced by a function of ‖u0‖Ḣ1/2(R3), so Corollary 2 is proved. �

Appendix A

Some results on the Navier-Stokes equations

In this final section, we shall present some results on the Navier-Stokes
equations which have been used in the proofs. Those results are quite classical.
We are also going to prove Proposition 1.1 stated in the introduction.

The first result is of the propagation of regularity type. It can be seen as a
corollary of Theorem 3.4.2 of [3], but we present here a self-contained proof.

Proposition A.1. — There exists a constant δ such that the following is true.
Let v0 ∈ Ḣ1/2(R3) be a divergence free vector field, such that ‖v0‖L3(R3) is
smaller than δν. Then v0 ∈ D∞, and if v

def==NS(v0), then for any t ≥ 0 we
have

(A.1)
∥∥v(t)

∥∥2
Ḣ1/2(R3)

+ ν

∫ t

0

∥∥∇v(s)
∥∥2
Ḣ1/2(R3)

ds ≤ ‖v0‖2Ḣ1/2(R3)
.
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Proof of Proposition A.1. — It is known (see [10],[18]) that there exists a
constant c > 0 such that if ‖v0‖L3(R3) ≤ cν, then NS(v0) is in C0(R+, L3(R3)),
and we have

(A.2) ∀t ≥ 0,
∥∥NS(v0)(t, ·)

∥∥
L3(R3)

≤ C‖v0‖L3(R3),

where C is a universal constant. Moreover, recall that L3(R3) is an admissible
space in the sense of Definition 1, according to Example 2 of the introduction.
So property (ii) of Definition 1 enables us to choose a constant δ ≤ c such that
if ‖v0‖L3(R3) ≤ δν, then v0 ∈ D∞. Now let us prove the estimate (A.1): an
energy estimate in Ḣ1/2(R3) for the function v(t, ·) reads

1
2

d
dt

∥∥v(t)
∥∥2
Ḣ1/2(R3)

+ ν
∥∥∇v(t)

∥∥2
Ḣ1/2(R3)

=
∣∣(v · ∇v(t) | v(t)

)
Ḣ1/2(R3)

∣∣.
But writing Λ def==

√
−∆, we have(

v · ∇v(t) | v(t)
)
Ḣ1/2(R3)

=
(
v · ∇v(t) | Λv(t)

)
L2(R3)

,

and Hölder’s inequality yields∣∣(v · ∇v(t) | Λv(t)
)
L2(R3)

∣∣ ≤ ∥∥v(t)
∥∥
L3(R3)

×
∥∥∇v(t)

∥∥2
L3(R3)

.

The continuous embedding of Ḣ1/2(R3) into L3(R3) enables us to infer that
1
2

d
dt

∥∥v(t)
∥∥2
Ḣ1/2(R3)

+ ν
∥∥∇v(t)

∥∥2
Ḣ1/2(R3)

≤ C
∥∥v(t)

∥∥
L3(R3)

×
∥∥∇v(t)

∥∥2
Ḣ1/2(R3)

,

so finally choosing δ small enough, we have according to (A.2),
d
dt

∥∥v(t)
∥∥2
Ḣ1/2(R3)

+ ν
∥∥∇v(t)

∥∥2
Ḣ1/2(R3)

≤ 0.

The proposition is proved. �
Proposition A.2. — Let T ∈ R

+ ∪ {+∞} and ν > 0 be fixed. There ex-
ists a constant C, depending on ν but not on T , such that the following is
true. Let (fn) and (gn) be two families of vector fields, bounded in ET and
in L2([0, T ], Ḣ−1/2(R3)) respectively. If

(A.3) sup
n∈N

‖gn‖L2([0,T ],Ḣ−1/2(R3)) ≤ C exp
(
− 2C sup

n∈N

‖fn‖4Eν
T

)
,

then there exists a unique solution in ET to the following system:{
∂trn + P (rn · ∇rn) − ν∆rn + Q(rn, fn) = gn,

rn|t=0 = 0,

where P is the Leray projector onto divergence free vector fields, and where

Q(a, b) def==P (a · ∇b + b · ∇a).

Moreover, we have, with notation (1.8), and writing

L2
T (Ḣ−1/2(R3)) def==L2([0, T ], Ḣ−1/2(R3),
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‖rn‖Eν
T
≤ C‖gn‖L2

T (Ḣ−1/2(R3))

(
1 + exp

(
C‖fn‖4Eν

T

))
.

Proof of Proposition A.2. — Let us start by noticing that any function
in ET is in L4([0, T ], Ḣ1(R3)), by interpolation between L∞([0, T ], Ḣ1/2(R3))
and L2([0, T ], Ḣ3/2(R3)). Then the proposition is a direct consequence of
Lemma B.1 of [12]: formula (B.3) of [12] indeed states that

‖rn‖L4
T (Ḣ1(R3)) ≤ C

(
‖gn‖L2

T (Ḣ−1/2(R3)) + ‖rn‖2L4
T (Ḣ1(R3))

)
× exp

(
C‖fn‖4L4

T (Ḣ1(R3))

)
.

Then assumption (A.3) enables us to write, by superlinear bootstrap (see for
instance [2], Lemma 2.2), that

‖rn‖L4
T (Ḣ1(R3)) ≤ C‖gn‖L2

T (Ḣ−1/2(R3)) exp
(
C‖fn‖4L4

T (Ḣ1(R3))

)
.

But Lemma B.1 of [12] also implies that

‖rn‖L∞
T (Ḣ1/2(R3)) + ‖rn‖L2

T (Ḣ3/2(R3)) ≤ C‖gn‖L2
T (Ḣ−1/2(R3))

+ C‖rn‖L4
T (Ḣ1(R3))

(
‖rn‖L4

T (Ḣ1(R3)) + ‖fn‖L4
T (Ḣ1(R3))

)
,

so the result follows. �

The following proposition is similar to the previous one, and is a direct
consequence of Lemma B.1 of [12].

Proposition A.3. — Let T ∈ R
+ ∪ {+∞} be fixed, and let fn and gn be two

vector fields, bounded respectively in the space L2([0, T ], Ḣ3/2(R3)), and in the
space L2([0, T ], Ḣ−1/2(R3)). Finally let rn,0 be a family of divergence free vector
fields, bounded in Ḣ1/2(R3). Then there exists a unique solution in ET to the
following system: {

∂trn − ν∆rn + Q(rn, fn) = gn,

rn|t=0 = rn,0,

where Q(a, b) def==P (a · ∇b + b · ∇a). Moreover, we have

‖rn‖Eν
T
≤ C

(
‖rn,0‖Ḣ1/2 + ‖gn‖L2

T (Ḣ
−1/2)

)
×

(
1 + ‖fn‖L2

T (Ḣ3/2) exp
(
C‖fn‖2L2

T (Ḣ3/2)

))
,

where C is a constant which depends on ν but not on T .

Finally let us prove Proposition 1.1 stated in the introduction. We recall the
statement below.

Proposition A.4. — Let v0 ∈ H1/2(R3) be a divergence free vector field, and
let T∗ be the life span of NS(v0). If v0 /∈ D∞, then

T∗ ≤ 1
ν(CḢ1/2

NS
)4
‖v0‖4L2(R3).
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Proof of Proposition A.4. — The proof is also quite classical (see for in-
stance [11] in a different context); as it is quite short, we recall it here for
the convenience of the reader. So let us consider a divergence free vector
field v0 ∈ H1/2(R3), and let us suppose that v0 /∈ D∞. Let T∗ be the life
span of v

def==NS(v0). Then for all T < T∗, writing λ(X) for the Lebesgue
measure of X , we have

λ
{
t ∈ [0, T [ ; CḢ1/2

NS
≤

∥∥v(t, ·)
∥∥
Ḣ1/2(R3)

}
≤ 1

(CḢ1/2

NS
)4

∫ T

0

‖v(t, ·)‖4
Ḣ1/2(R3)

dt

by the Bienaymé-Tchebytchev inequality. That yields

T∗ ≤ 1
(CḢ1/2

NS
)4
‖v‖2L∞(R+,L2(R3)) × ‖v‖2

L2(R+,Ḣ1(R3))
≤ 1

ν(CḢ1/2

NS
)4
‖v0‖4L2(R3).

So the result is proved. �

BIBLIOGRAPHY

[1] Bahouri (H.), Gérard (P.) – Concentration effects in critical nonlinear
wave equations, in Geometrical Optics and Related Topics (F. Colombini
and N. Lerner eds.), Progress in Nonlinear Differential Equations and Ap-
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