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REMARKS ON YU’S ‘PROPERTYA’
FOR DISCRETE METRIC SPACES AND GROUPS

by Jean-Louis Tu

Abstract. — Guoliang Yu has introduced a property on discrete metric spaces and
groups, which is a weak form of amenability and which has important applications
to the Novikov conjecture and the coarse Baum–Connes conjecture. The aim of the
present paper is to prove that property in particular examples, like spaces with subex-
ponential growth, amalgamated free products of discrete groups having property A
and HNN extensions of discrete groups having property A.

Résumé (Remarques sur la propriété A de Yu pour les espaces métriques et les groupes
discrets)

Guoliang Yu a introduit une propriété sur les espaces métriques et les groupes
discrets, qui est une forme faible de moyennabilité et qui a d’importantes applications
à la conjecture de Novikov et la conjecture de Baum–Connes “coarse”. Le but de cet
article est de démontrer cette propriété dans des cas particuliers, tels que les espaces à
croissance sous-exponentielle, les produits libres amalgamés de groupes discrets ayant
la propriété A et les extensions HNN de groupes discrets ayant la propriété A.

1. Introduction

Let X be a discrete metric space. It is said to be of bounded geometry if
there exists N : R+ → R+ such that the number of elements in balls of given
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radius is uniformly bounded:

∀x ∈ X, #B(x, R) ≤ N(R).(1.1)

In [19, Definition 2.1], Yu introduces a property on discrete metric spaces he
calls property A, which is a weak form of amenability. It is shown in [10], [11],
[19] that

• For every discrete group G with a left-invariant distance such that the re-
sulting metric space has bounded geometry, G has property A if and only
if it admits an amenable action on some compact space (or, equivalently,
on its Stone-Čech compactification βG) [11, Theorem 3.3].

• With the same assumptions, if G has property A, then the Baum–Connes
map for G is split injective [10, Theorem 3.2], hence G satisfies the
Novikov Conjecture (see [3] for an introduction to the Baum–Connes
conjecture and its relation to the Novikov conjecture). Moreover, the
reduced group C∗-algebra C∗

r (G) is exact, meaning that for every exact
sequence of C∗-algebras

0 → J −→ A −→ A/J → 0,

the sequence obtained by taking spatial tensor products

0 → J ⊗min C∗
r (G) −→ A⊗min C∗

r (G) −→ A/J ⊗min C∗
r (G) → 0

is exact (see [17] for a survey on exactness).
• Every discrete metric space with bounded geometry with property A sat-

isfies the coarse Baum–Connes conjecture [19, Theorem 1.1] (see [13], [18]
for an introduction to that conjecture).

That such impressive consequences result from that elementary property (see
Definition 3.1) is quite remarkable. It was conjectured for a while that every
discrete metric space has property A, but Gromov recently announced the
construction of Cayley graphs that do not satisfy the property [7]. It remains
important to determine classes of metric spaces or groups for which the property
holds.

It is known that property A is true for amenable groups, semi-direct products
of groups that have property A, asymptotically finite dimensional metric spaces
with bounded geometry, hyperbolic groups in the sense of Gromov (see [8]). In
this paper, it is proven that property A is true in each of the following cases,
for a discrete metric space with bounded geometry X :

• X ⊂ Y , where Y is a metric space with property A;
• X has subexponential growth;
• X = Y1 ∪ Y2, where (Y1, Y2) is an excisive pair;
• X is hyperbolic in the sense of Gromov;
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REMARKS ON YU’S PROPERTY A 117

• X is a group acting on a tree, such that the stabilizer of each vertex
has property A. In particular, property A for groups is stable by taking
amalgamated free products and HNN extensions.

We have tried in this paper to keep proofs as elementary and self-contained
as possible, hoping to spark the interest of a broad range of readers.

2. Basic definitions

Let us recall a few elementary definitions from [13].
A metric space is said to be proper if every closed ball is compact.
Let X and Y be metric spaces. A (not necessarily continuous) map

f : X → Y is said to be proper if the inverse image of any bounded set is
bounded, and it is coarse if it is proper and if for every R > 0, there exists
S > 0 such that for every x, x′ ∈ X , d(x, x′) ≤ R implies d(f(x), f(x′)) ≤ S.

Two coarse maps f , g : X → Y are bornotopic if there exists R > 0 such
that d(f(x), g(x)) ≤ R for every x ∈ X . A coarse map f : X → Y is a coarse
equivalence if there exists a coarse map g : Y → X such that f ◦ g and g ◦ f are
bornotopic to the identity; X and Y are then said to be coarsely equivalent.

Two distances d and d′ on X are coarsely equivalent if the identity (X, d) →
(X, d′) is a coarse equivalence.

A map f : X → Y is a uniform embedding if it induces a coarse equiva-
lence between X and f(X). This means that f is coarse, and that for every
R > 0, there exists S > 0 such that d(x, x′) ≥ S implies d(f(x), f(x′)) ≥ R
for all x, x′ ∈ X .

Lemma 2.1. — Let G be a countable discrete group. Then up to coarse equiv-
alence, there exists one and only one left-invariant distance on G for which the
resulting metric space has bounded geometry.

Proof. — Let e be the unit element in G. Let d and d′ be such distances, and
"(g) = d(g, e), "′(g) = d′(g, e) the associated length functions. Let R > 0.
Since #Bd(e, R) < ∞, there exists S > 0 such that for all g ∈ Bd(e, R),
"′(g) ≤ S. By the left invariance, IdG : (G, d) → (G, d′) is coarse. Similarly,
IdG : (G, d′) → (G, d) is coarse.

To prove the existence, let f : G → N∗ be a function such that f−1([0, n]) is
finite for every n, f(g) = f(g−1) for all g ∈ G, and f(g) = 0 iff g = 1. Let

"(g) = inf
{

f(g1) + · · · + f(gn) : g = g1 · · · gn

}

.

The distance d(g, h) = "(g−1h) is left-invariant and the resulting metric space
has bounded geometry.
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If the group is finitely generated, one can take the distance associated to
any finite system of generators. If G acts freely and co-compactly by isometries
on a proper metric space X , and x0 ∈ X is arbitrary, then one can take
d(g, h) = "(g−1h) where "(g) = d(gx0, x0).

3. Property A, equivalent definitions

This section presents a few equivalent definitions of the property A intro-
duced by Yu [19]. For a given metric space and R > 0, ∆R will denote

{

(x, y) ∈ X ×X : d(x, y) ≤ R
}

.

Definition 3.1. — (See [19, Definition 2.1].) A discrete metric space X is
said to have property A if for any R > 0, ε > 0, there exist S > 0 and a family
(Ax)x∈X of finite, nonempty subsets of X × N, such that

(i) (y, n) ∈ Ax implies (x, y) ∈ ∆S ;
(ii) for all (x, y) ∈ ∆R,

#(Ax∆Ay)
#(Ax ∩Ay)

≤ ε.

Let us first recall the definition of a positive type kernel [12, Definition 5.1].
Let X be a set. A function ϕ : X × X → R is said to be a positive type
kernel if ϕ(x, y) = ϕ(y, x) for all x, y ∈ X , and if for every finitely supported,
real-valued function (λx)x∈X on X , the following inequality holds:

∑

x,y∈X

λxλyϕ(x, y) ≥ 0.(3.1)

A function ϕ : X × X → R is of positive type if and only if there exists a
map x .→ ηx from X to a real Hilbert space H such that ϕ(x, y) = 〈ηx, ηy〉
[12, Proposition 5.3].

Equivalent definitions listed in the proposition below clearly show that prop-
erty A is a weak form of amenability. Indeed, (ii) and (iii) are Reiter’s property
(P1) and (P2) respectively, and (v) is Hulanicki’s property [5].

Proposition 3.2. — Let X be a discrete metric space with bounded geometry.
The following are equivalent:

(i) X has property A;
(ii) ∀R > 0, ∀ε > 0, ∃S > 0, ∃(ξx)x∈X , ξx ∈ "1(X), supp(ξx) ⊂ B(x, S),

‖ξx‖!1(X) = 1, and ‖ξx − ξy‖!1(X) ≤ ε whenever d(x, y) ≤ R;
(ii′) ∀R > 0, ∀ε > 0, ∃S > 0, ∃(χx)x∈X , χx ∈ "1(X), supp(χx) ⊂ B(x, S),

‖χx − χy‖!1(X)/‖χx‖!1(X) ≤ ε whenever d(x, y) ≤ R;
(iii) ∀R > 0, ∀ε > 0, ∃S > 0, ∃(ηx)x∈X, ηx ∈ "2(X), supp(ηx) ⊂ B(x, S),

‖ηx‖!2(X) = 1, and ‖ηx − ηy‖!2(X) ≤ ε whenever d(x, y) ≤ R;
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REMARKS ON YU’S PROPERTY A 119

(iv) ∀R > 0, ∀ε > 0, ∃S > 0, ∃(ζx)x∈X , ζx ∈ "2(X×N), supp(ζx) ⊂ B(x, S)×
N, ‖ζx‖!2(X×N) = 1, and ‖ζx − ζy‖!2(X×N) ≤ ε whenever d(x, y) ≤ R;

(v) ∀R > 0, ∀ε > 0, ∃S > 0, ∃ϕ : X × X → R of positive type such that
suppϕ ⊂ ∆S and |1− ϕ(x, y)| ≤ ε whenever d(x, y) ≤ R.

Proof. — (i)⇔ (ii): noting that in (ii), ξx may be supposed to be nonnegative
(since ‖|ξx|− |ξy|‖!1(X) ≤ ‖ξx − ξy‖!1(X)), this is exactly [11, Lemma 3.5].

(ii)⇒ (ii′): obvious.
(ii′)⇒ (ii): let χx as in (ii′). Let ξx = χx/‖χx‖!1(X). Then

‖ξx − ξy‖1 ≤
‖χx − χy‖1
‖χx‖1

+ ‖χy‖1
∣

∣

∣

1
‖χx‖1

− 1
‖χy‖1

∣

∣

∣

=
‖χx − χy‖1
‖χx‖1

+
|‖χy‖1 − ‖χx‖1|

‖χx‖1
≤ 2‖χx − χy‖1

‖χx‖1
·

(ii)⇒ (iii): let ξx as in (ii). Define ηx = |ξx|1/2. Then, denoting by
∫

X the
summation on X , i.e. the integral with counting measure on X , one has

‖ηx − ηy‖2!2(X) =
∫

X
|ηx − ηy|2

≤
∫

X
|η2x − η2y| =

∥

∥|ξx|− |ξy|
∥

∥

!1(X)
≤ ‖ξx − ξy‖!1(X).

(iii)⇒ (ii): Let ηx as in (iii). We can suppose that ηx ≥ 0. Let ξx = η2x.
Then by the Cauchy-Schwarz inequality,

‖ξx − ξy‖!1(X) =
∫

X
|η2x − η2y | =

∫

X
|ηx − ηy|(ηx + ηy)

≤ ‖ηx − ηy‖!2(X)‖ηx + ηy‖!2(X) ≤ 2‖ηx − ηy‖!2(X).

(iii)⇒ (iv): obvious.
(iv)⇒ (iii): Let ζx as in (iv). Let ηx(z) = ‖ζx(z, ·)‖!2(N). Then

‖ηx − ηy‖2!2(X) =
∑

z∈X

∣

∣‖ζx(z, ·)‖!2(N) − ‖ζy(z, ·)‖!2(N)

∣

∣

2

≤
∑

z∈X

∥

∥ζx(z, ·)− ζy(z, ·)
∥

∥

2

!2(X×N)
= ‖ζx − ζy‖2!2(X×N).

(iii)⇒ (v): Let ηx as in (iii). Let ϕ(x, y) = 〈ηx, ηy〉. Then suppϕ ⊂ ∆2S

and if d(x, y) ≤ R, then 1− ϕ(x, y) = 1
2‖ηx − ηy‖2!2(X) ≤

1
2ε

2.

(v)⇒ (iii) is inspired from [4], proof of Theorem 13.8.6. The parallel would
have been more apparent, had we introduced the concept of positive definite
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function on groupoids and used results from [16], but we opted for a more
elementary proof. Let ϕ as in (v). Suppose ε ≤ 1

2 . Let

(Tϕη)(x) =
∑

x∈X

ϕ(x, y)η(y).

For all ξ, η ∈ "2(X), by the Cauchy-Schwarz inequality,
∣

∣〈ξ, Tϕη〉
∣

∣ ≤
∑

x,y∈X

∣

∣ϕ(x, y)
∣

∣ ·
∣

∣ξ(x)
∣

∣ ·
∣

∣η(y)
∣

∣

≤
(

∑

x,y∈X

∣

∣ϕ(x, y)
∣

∣ ·
∣

∣ξ(x)
∣

∣

2
)1/2( ∑

x,y∈X

∣

∣ϕ(x, y)
∣

∣ ·
∣

∣η(y)
∣

∣

2
)1/2

≤
(

sup
x∈X

∑

y∈X

∣

∣ϕ(x, y)
∣

∣

)

‖ξ‖!2(X) · ‖η‖!2(X).

Since ϕ is of positive type,

sup
x,y

∣

∣ϕ(x, y)
∣

∣ ≤ sup
x∈X

ϕ(x, x) ≤ 1 + ε ≤ 2,

so, using Notation (1.1), |〈ξ, Tϕη〉| ≤ 2N(S)‖ξ‖!2(X)‖η‖!2(X). We conclude
that Tϕ is a bounded operator on "2(X) and ‖Tϕ‖ ≤ 2N(S). Also, note that Tϕ

is a positive operator since (from Equation (3.1))

〈η, Tϕη〉 =
∑

x,y∈X

ϕ(x, y)η(x)η(y) ≥ 0.

Let p be a polynomial such that 0 ≤ p(t) and |p(t)2 − t| ≤ ε on [0, 2N(S)].
Let ϕ1 = p(ϕ), where p(ϕ) is obtained using the convolution product

(ϕ ∗ ψ)(x, y) =
∑

z∈X

ϕ(x, z)ψ(z, y).

Let (ex)x∈X be the canonical basis of "2(X). Let

η′x = ϕ1(x, ·), ηx =
η′x

‖η′x‖!2(X)
·

We have

〈η′x, η′y〉 =
∑

z∈X

ϕ1(x, z)ϕ1(z, y) = (ϕ1 ∗ ϕ1)(x, y) =
(

p2(ϕ)
)

(x, y),

∣

∣〈η′x, η′y〉 − ϕ(x, y)
∣

∣ =
∣

∣(p2(ϕ)− ϕ)(x, y)
∣

∣ =
∣

∣〈ey, (p2(Tϕ)− Tϕ)ex〉
∣

∣

≤
∥

∥p2(Tϕ)− Tϕ

∥

∥ ≤ ε,
which implies |〈η′x, η′y〉 − 1| ≤ 2ε for all (x, y) ∈ ∆R. Thus,

1− 〈ηx, ηy〉 = 1−
〈η′x, η′y〉

〈η′x, η′x〉1/2〈η′y, η′y〉1/2
≤ 1− 1− 2ε

1 + 2ε
≤ 4ε.
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REMARKS ON YU’S PROPERTY A 121

Therefore, ‖ηx−ηy‖2 =
√

2− 2〈ηx, ηy〉 ≤
√

8ε. Finally, if p is of degree n, then
it is not hard to see that supp(ηx) ⊂ B(x, nS).

We note that each of these definitions make sense for any metric space.
A close examination of proofs shows that in the general case,

(i) =⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv) =⇒ (v).

In the sequel, we shall say that a not necessarily discrete space has property A
if and only if it satisfies the equivalent properties (ii)–(iv) (we found these
definitions easier to manipulate that Yu’s).

4. First properties

Lemma 4.1. — Let (X, d) be a discrete metric space and let d′ be a coarsely
equivalent distance. Then (X, d) has property A if and only of (X, d′) has
property A.

Proof. — Obvious.

In particular, from Lemma 2.1, one can talk about property A for discrete
countable groups without reference to a particular distance. See also Proposi-
tion 4.3 (i) below.

Now, we prove that property A is inherited by subspaces.

Proposition 4.2. — Let X and Y be discrete metric spaces. Suppose there
exists a uniform embedding of X into Y , and that Y has property A. Then X
has property A.

Proof. — From Lemma 4.1, we can assume that X is a subspace of Y . For
every y ∈ Y , let p(y) ∈ X be a point such that d(y, p(y)) ≤ 2d(y, X). Let

V : "2(Y ) −→ "2(X × Y )

be the isometry defined by

(V η)(x, y) =
{ η(y) if x = p(y),

0 otherwise.

Let R > 0, ε > 0. There exist (ηy)y∈Y and S > 0 such that

ηy ∈ "2(Y ), ‖ηy‖2 = 1, supp(ηy) ⊂ B(y, S),

and ‖ηy − ηy′‖2 ≤ ε whenever d(y, y′) ≤ R. Define ζx = V (ηx) ∈ "2(X × Y ).
Then supp(ζx) ⊂ B(x, 3S)× Y since

supp(ζx) ⊂ p
(

supp(ηx)
)

× Y ⊂ p
(

BY (x, S)
)

× Y ⊂ BX(x, 3S)× Y.

Moreover, ‖ζx‖2 = 1 and ‖ζx − ζx′‖2 = ‖ηx − ηx′‖2 ≤ ε whenever x, x′ ∈ X
and d(x, x′) ≤ R. We deduce that Proposition 3.2(iv) is satisfied.
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Proposition 4.3. — Let G be a discrete group. Then
(i) G has property A if and only if for every ε > 0 and every F ⊂ G finite,

there exists F ′ ⊂ G finite and (ξx)x∈G, ξx ∈ "1(G), ‖ξx‖1 = 1, supp ξx ⊂
xF ′, and ‖ξx − ξxg‖1 ≤ ε for all x ∈ G, for all g ∈ F ;

(ii) G has property A if and only if every finitely generated subgroup G′ ⊂ G
has property A.

Proof. — For (i), choose an arbitrary left-invariant distance on G such that
(G, d) has bounded geometry (cf. Lemma 2.1), and use the fact that

∃R,
{

(x, xg) : x ∈ G, g ∈ F
}

⊂ ∆R

⇐⇒
{

d(x, xg) : x ∈ G, g ∈ F
}

is bounded
⇐⇒

{

d(e, g) : g ∈ F
}

is bounded
⇐⇒ F is finite,

and that for every R > 0, ∆R = {(x, xg) : x ∈ G, g ∈ F} where F = B(e, 0)
is finite.

For (ii), the “only if” part follows from Proposition 4.2. For the “if” part,
suppose that every finitely generated subgroup has property A, and let ε > 0,
F ⊂ G finite. Let G′ be the subgroup generated by F . By assumption, there
exist F ′ ⊂ G′ finite, (ξx)x∈G′ , ξx ∈ "1(G′), ‖ξx‖1 = 1, supp ξx ⊂ xF ′, such that
‖ξx − ξxg‖1 ≤ ε for every x ∈ X and g ∈ F . Write G = 8i∈IxiG′. For every
i ∈ I and g′ ∈ G′, let ηxig′ (y) = ξg′(x−1

i y). Then (ηx)x∈G satisfies (i).

5. Excision

Recall [13, Definition 9.1] that if X is a metric space, Y ⊂ X and Z ⊂ X ,
then (Y, Z) is said to be an excisive pair if

∀R > 0, ∃S > 0, B(Y, R) ∩B(Z, R) ⊂ B(Y ∩ Z, S).

Here, B(Y, R) denotes {x ∈ X : d(x, Y ) ≤ R}.

Let R, ε > 0. We shall say that (ξx)x∈X satisfies property (P)R,ε,S if

ξx ∈ "1(X), ξx ≥ 0, ‖ξx‖1 = 1, supp ξx ⊂ B(x, S) and ‖ξx − ξy‖1 ≤ ε

whenever d(x, y) ≤ R.

Lemma 5.1. — Let X be a discrete metric space, Y ⊂ X, R > 0, ε ∈ (0, 1],
S′ > 0, S = S′ + 16R/ε, R′ = 33R/ε and ε′ = ε/2. Suppose that (ξ0x)x∈X

and (ηy)y∈Y satisfy (P)R′,ε′,S′ for the spaces X and Y respectively. Then there
exists (ξx)x∈X satisfying (P)R,ε,S , such that ξy = ηy for all y ∈ Y .

tome 129 – 2001 – no 1



REMARKS ON YU’S PROPERTY A 123

Proof. — Let c = 8R/ε. Denote {t} = inf(1, sup(t, 0)). Define

ξx =
{d(x, Y )

c

}

ξ0x +
{

1− d(x, Y )
c

}

ηp(x)

where p : X → Y is a projection such that d(x, p(x)) ≤ 2d(x, Y ).
Let x, x′ ∈ X such that d(x, x′) ≤ R.
• If inf(d(x, Y ), d(x′, Y )) ≥ c−R, then

‖ξx − ξ0x‖1 ≤
2R

c
and ‖ξx′ − ξ0x′‖1 ≤

2R

c
,

hence

‖ξx − ξx′‖1 ≤ ‖ξx − ξ0x‖1 + ‖ξx′ − ξ0x′‖1 + ‖ξ0x − ξ0x′‖1 ≤
4R

c
+ ε′ ≤ ε.

• If d(x, Y ) ≤ c and d(x′, Y ) ≤ c, then

d
(

p(x), p(x′)
)

≤ d(x, x′) + d
(

x, p(x)
)

+ d
(

x′, p(x′)
)

≤ R + 4c ≤ R′,

hence ‖ηp(x) − ηp(x′)‖1 ≤ ε′. It follows that

‖ξx − ξx′‖1 ≤
d(x, Y )

c
‖ξ0x − ξ0x′‖1 + ‖ξ0x′‖1

|d(x, Y )− d(x′, Y )|
c

+
{

1− d(x, Y )
c

}

‖ηp(x) − ηp(x′)‖1

+‖ηp(x′)‖1
|d(x, Y )− d(x′, Y )|

c

≤ d(x, Y )
c

ε′ +
R

c
+

{

1− d(x, Y )
c

}

ε′ +
R

c
= ε′ +

2R

c
≤ ε.

The assertion about S is easy to check.

Proposition 5.2. — Let X be a metric space, and Y , Z be subspaces of X
having property A, such that (Y, Z) is an excisive pair. Then Y ∪ Z has prop-
erty A.

Proof. — Let R > 0 and ε > 0. Let S > 0 such that

B(Y, R) ∩B(Z, R) ⊂ B(Y ∩ Z, S).

Since Y ∩ Z ⊂ Y , Y ∩ Z satisfies property A (Proposition 4.2), so B(Y, S),
B(Z, S) and B(Y ∩Z, S), being coarsely equivalent to Y , Z and Y ∩Z respec-
tively, satisfy property A (Lemma 4.1).

From Lemma 5.1 applied to the inclusions

B(Y ∩ Z, S) ⊂ B(Y, S) and B(Y ∩ Z, S) ⊂ B(Z, S),

there exist (ηy)y∈Y and (ζz)z∈Z satisfying (P)R,ε,S′′ for the spaces B(Y, S) and
B(Z, S) respectively, where S′′ > 0 is some real number, such that ηt = ζt
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if t ∈ B(Y ∩ Z, S). Let

ξx =
{

ηx if x ∈ Y,

ζx if x ∈ Z.

Let x, x′ ∈ X such that d(x, x′) ≤ R. We check that ‖ξx − ξx′‖1 ≤ ε. This
is clear if x, x′ ∈ Y or x, x′ ∈ Z. If x ∈ Y and x′ ∈ Z, then x, x′ ∈
B(Y, R)∩B(Z, R) ⊂ B(Y ∩Z, S), which implies ξx = ηx and ξx′ = ηx′ , whence
the conclusion.

6. Spaces with subexponential growth

A (discrete) metric space X is said to have subexponential growth if

lim
R→∞

sup
x∈X

log #B(x, R)
R

= 0.

In [9], it is proven that such a space admits a uniform embedding into Hilbert
space. The goal of this section is to prove the stronger proposition below
(see [19, Theorem 2.2] for a proof that property A implies uniform embeddabil-
ity into Hilbert space):

Theorem 6.1. — Let X be a discrete metric space with subexponential growth.
Then X has property A.

The proof is much more complicated than in the case of groups, due to lack
of homogeneity of the space. We need a few preliminary lemmas.

Lemma 6.2. — Let (αn)n≥1 be a sequence with αn ≥ 0 and lim
n→+∞

αn/n = 0.

Then there exists (βn)n≥1 such that
(i) αn ≤ βn for all n ≥ 1;
(ii) (βn) is increasing;
(iii) limn→+∞ βn/n = 0;
(iv) limn→+∞ βn+1 − βn = 0.

Proof. — Let γn = n supp≥n(αp/p). Clearly, (γn/n) decreases and converges
to 0. Let βn = supq≤n γq. By construction, (i) and (ii) hold.

Let us show that βn+1/(n + 1) ≤ βn/n. This is obvious if βn = βn+1.
If βn < βn+1, then for some q ≤ n, one has γq = βn < βn+1 = γn+1, so

βn+1

n + 1
=
γn+1

n + 1
≤ γn

n
≤

supq≤n γq

n
=
βn

n
,

thus proving our claim. Assertion (iii) is obvious if (βn) is bounded. If (βn)
is unbounded, then βn = γq(n) for some q(n) ≤ n, limn→+∞ q(n) = ∞,
so βn/n = γq(n)/n ≤ γq(n)/q(n) → 0.
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Let us prove (iv): using the fact that (βn/n) is decreasing, one has

0 ≤ βn+1 − βn =
βn+1

n + 1
(n + 1)− βn ≤

βn

n
(n + 1)− βn ≤

βn

n
−→ 0.

Lemma 6.3. — Let (an)n≥1 be a sequence with an ≥ 1 and lim
n→∞

log an/n = 0.
Then there exists f : R+ → R+ satisfying

(i) an ≤ f(n) for all n ≥ 1;
(ii) f is increasing;
(iii) f is convex;
(iv) limn→∞ f(n + 1)/f(n) = 1.

Proof. — Taking αn = log an, we can assume from Lemma 6.2 that (an) is
increasing and that an+1/an tends to 1. Assume also limn→∞ an = ∞ (other-
wise, f can be chosen to be a constant function). Let an = 0 for n ≤ 0, and
bn = supk≤n(ak − ak−1). Define

f(n + h) =
∑

k≤n

bk + hbn+1

(

n ∈ N, h ∈ [0, 1)
)

.

Then f(n) ≥
∑

k≤n bk ≥
∑

k≤n ak − ak−1 = an, whence (i).

(ii) and (iii) result from the fact that (bn) is a nonnegative increasing se-
quence.

To prove (iv), first note that

f(n + 1)
f(n)

− 1 =
bn+1

f(n)
≤ bn+1

an
·

If (bn) is bounded, then clearly bn+1/an tends to 0. If (bn) is unbounded, then
bn = ak(n) − ak(n)−1 for some k(n) ≤ n, limn→∞ k(n) = ∞, so

0 ≤ f(n + 1)
f(n)

− 1 ≤
ak(n+1) − ak(n+1)−1

an
≤

ak(n+1) − ak(n+1)−1

ak(n+1)−1
−→ 0.

Lemma 6.4. — Let X be a space with subexponential growth. Then there exists
a space Y such that

(i) for all R ≥ 0, ψ(R) := #BY (y, R) is independent of y ∈ Y ;

(ii) lim
R→∞

supx∈X #BX(x, R)
ψ(R)− ψ(R − 1)

= 0;

(iii) ψ(R + 1)− ψ(R) ∼ ψ(R)− ψ(R − 1);

(iv) R .→ ψ(R + 1)− ψ(R) is an increasing function.
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Proof. — Let an = supx∈X #BX(x, n) (n ∈ N), and let f as in Lemma 6.3. If
f(0) ≤ 1, replace f(x) with f(x)+ (1− f(0))+ x, and if f(0) > 1, replace f(x)
with f(x) + (1 − f(0))(1 − x). We can thus suppose f(0) = 1, and that f
is a continuous bijection of [0, +∞) onto [1, +∞). Let ϕ be the inverse of
the bijection f − 1: [0, +∞) → [0, +∞). Then ϕ(0) = 0 and ϕ is concave.
This implies ϕ(s + t) ≤ ϕ(s) + ϕ(t) for all s, t ≥ 0, hence

d(m, n) = ϕ
(

|m− n|
)

, m, n ∈ Z

defines a distance on Z. Let Y1 be the metric space obtained. Then for all
y ∈ Y1,

#B(y, R) = 1 + 2 sup
{

n ∈ N : ϕ(n) ≤ R
}

= 1 + 2 sup
{

n ∈ N : n ≤ f(R)− 1
}

= 2
[

f(R)
]

− 1.

Let ψ1(R) = 2[f(R)]−1. Let Y2 = Y1×Y1 with the sup distance. Let Y = Y2×Z

with the distance

d
(

(y, n), (y′, n′)
)

= d(y, y′) + |n− n′|.

Then ψ(R) = ψ1(R)2 + 2
∑[R]

k=1 ψ1(R− k)2, so

ψ(R)− ψ(R− 1) = ψ1(R)2 + ψ1(R − 1)2.

(i) is clear. Let us prove (ii). We have

supx∈X #B(x, R)
ψ(R)− ψ(R− 1)

≤ f(R + 1)
ψ1(R)2

∼ f(R + 1)
(2f(R))2

∼ 1
4f(R)

−→ 0.

Let us prove (iii). Since f(R) ∼ f(R + 1), we have

ψ(R + 1)− ψ(R) ∼ 8f(R + 1)2 ∼ 8f(R)2 ∼ ψ(R)− ψ(R− 1).

(iv) results from the fact that f is an increasing function.

It will be convenient to use the following terminology:

Definition 6.5. — Let Z be a set, and un, vn : Z → R∗
+ (n ∈ N). We say

that un ∼ vn uniformly in z ∈ Z if

∀ε > 0, ∃n0 ∈ N, ∀n ≥ n0, ∀z ∈ Z,
∣

∣

∣

un(z)
vn(z)

− 1
∣

∣

∣
≤ ε.

Lemma 6.6. — Let Z be a discrete proper metric space. Suppose that

#B(z, n + 1) ∼ #B(z, n)

uniformly in z ∈ Z. Then Z has property A.
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Proof. — Let χn
z be the characteristic function of B(z, n). Let R > 0, and

∆R = {(z, z′) ∈ Z2 : d(z, z′) ≤ R}. Then since d(z, z′) ≤ R implies

{

B(z, n−R) ⊂ B(z′, R) ⊂ B(z, n + R),
B(z, n−R) ⊂ B(z, R) ⊂ B(z, n + R),

we have

‖χn
z − χn

z′‖1
‖χn

z ‖1
≤ 2

#B(z, n + R)−#B(z, n−R)
#B(z, n−R)

·

By assumption, #B(z, n−R) ∼ #B(z, n + R) uniformly in z ∈ Z, so

lim
n→∞

‖χn
z − χn

z′‖1
‖χn

z ‖1
= 0

uniformly in (z, z′) ∈ ∆R. By Proposition 3.2 ((ii′) ⇒ (i)), Z has property A.

Proof of Theorem 6.1. — Let Z = X × Y with Y as in Lemma 6.4. Endow Z
with the distance d((x, y), (x′, y′)) = d(x, x′) + d(y, y′). By Proposition 4.2,
since X is a subspace of Z, it suffices to prove that Z satisfies the assumptions
of Lemma 6.6. For given z = (x, y) ∈ X × Y and n ≥ 1, let

bn(x) = #
{

x′ ∈ X : n− 1 < d(x, x′) ≤ n
}

,

cn = #
{

y′ ∈ Y : n− 1 < d(y, y′) ≤ n
}

= ψ(n)− ψ(n− 1).

For brevity, we shall write bn instead of bn(x). Let dn = b0cn + · · · + bnc0.
Using the fact that (cn) is an increasing sequence,

#B(z, n + 1)−#B(z, n)
= #

{

z′ ∈ Z : n < d(z, z′) ≤ n + 1
}

≤ #
{

y′ ∈ Y : n < d(y, y′) ≤ n + 1
}

+
n+1
∑

k=1

#
{

x′ ∈ X : k − 1 < d(x, x′) ≤ k
}

×#
{

y′ ∈ Y : n− k < d(y, y′) ≤ n− k + 2
}

≤ cn+1 + b1(cn+1 + cn) + · · · + bn+1(c1 + c0)

≤ 2(b0cn+2 + b1cn+1 + · · · + bn+2c0) = 2dn+2.
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Similarly,

#B(z, n)−#B(z, n− 2)

= #
{

z′ ∈ Z : n− 2 < d(z, z′) ≤ n
}

≥
n

∑

k=0

#
{

x′ ∈ X : k − 1 < d(x, x′) ≤ k
}

×#
{

y ∈ Y : n− k − 1 < d(y, y′) ≤ n− k
}

= b0cn + · · · + bnc0 = dn.

It follows that #B(z, n) ≥ dn + dn−2 + dn−4 + · · · , whence

#B(z, n + 1)−#B(z, n)
#B(z, n)

≤ 2dn+2

dn + dn−2 + dn−4 + · · · ·

It thus suffices to show that dn(x) ∼ dn+1(x) uniformly in X . To do this, fix
q ∈ N and let r ≤ q. Since cn+1 ∼ cn−r and bn−r/cn−r → 0 uniformly in x ∈ X
(Lemma 6.4), we have that bn−r/b0cn+1 ∼ bn−r/cn−r converges to 0 uniformly
in x ∈ X , hence

dn+1 ∼ b0cn+1 + · · · + bn−qcq+1

uniformly in x ∈ X . If ε > 0 and q is chosen so that ck+1 ≤ (1 + ε)ck for
all k ≥ q, then for n large enough, we have for every x ∈ X ,

dn+1 ≤ (1 + ε)(b0cn+1 + · · · + bn−qcq+1)
≤ (1 + ε)2(b0cn + + · · · + bn−qcq),

hence dn ≤ dn+1 ≤ (1 + ε)2dn.

7. Reduction to graphs

Recall a definition by Gromov [6]:

Definition 7.1. — Let X be a metric space. It is said to be large-scale con-
nected if there exists a constant c > 0 such that every two points x and y in X
can be joined by a finite chain of points

x = x0, x1, . . . , xn = y

such that d(xi, xi−1) ≤ c (1 ≤ i ≤ n).

Lemma 7.2. — Let X be a discrete metric space with bounded geometry. Then
X is a subspace of a discrete, large-scale connected metric space with bounded
geometry.

Proof. — Let Xn (n ≥ 0) be the equivalence classes of the relation: x ≈ y
if there exist x0, . . . , xm ∈ X such that x0 = x, xm = y, d(xi, xi−1) ≤ 2.
Define dn = [d(Xn, Xn+1)], and let an ∈ Xn, bn+1 ∈ Xn+1 such that
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d(an, bn+1) ≤ 2dn. Let Yn = {0, 1, . . . , dn} × {n}, and let Y be the space
obtained by attaching “line segments” to X as follows:

Y =
∐

n∈N
(Xn 8 Yn)

(0, n) ∼ an and (dn, n) ∼ bn+1
·

Endow Y with the maximal metric which agrees with the one on X , and such
that d((i, n), (j, n)) = |i − j|d(an, bn+1)/dn. Since dn ≥ 1, Y is large-scale
connected (with c = 2 in Definition 7.1).

Let us prove that Y has bounded geometry. Let N(R) satisfy Equation (1.1).
Let y ∈ Y .

• Suppose y ∈ X . Since d((i, n), (j, n)) ≥ |i − j|, BY (y, R) ∩ Yn has at
most 2R + 2 elements, and since the an are all distinct, and the bn are all
distinct, BY (y, R) intersects at most 2N(R) of the spaces Yn. Therefore,

#BY (y, R) ≤ #(BY (y, R) ∩X) +
∑

n∈N

BY (y, R) ∩ Yn

≤ N(R) + 2N(R)(2R + 2) = N(R)(4R + 5).

• Suppose y ∈ Yn (n ∈ N). If B(y, R) doesn’t intersect X , then BY (y, R) ⊂
Yn − X , hence #B(y, R) ≤ 2R. If B(y, R) ∩ X contains an element x, then
B(y, R) ⊂ B(x, 2R), therefore

#B(y, R) ≤ N(2R)(8R + 5).

We deduce that for all y ∈ Y , #B(y, R) ≤ N(2R)(8R + 5).

Let X be a discrete metric space. For every R > 0, let PR(X) be the
Rips’ complex, defined as follows: {x1, . . . , xn} spans a simplex if and only
if d(xi, xj) ≤ R for every i, j. Let XR be the 1-skeleton of PR(X), and X(0)

R
its set of vertices.

Recall a few definitions: let λ ≥ 1 and µ ≥ 0.
A map f : X → Y between two metric spaces is called a (λ, µ)-quasi-isometry

if for every x, x′ in X , (d(x, x′)− µ)/λ ≤ d(f(x), f(x′)) ≤ λd(x, x′) + µ.
A (λ, µ)-quasi-geodesic between two points x, x′ of a metric space X is a

(λ, µ)-quasi-isometry ϕ : [0, d(x, x′)] → X with ϕ(0) = x and ϕ(d(x, x′)) = x′.
A space X is said to be quasi-geodesic if there exist λ ≥ 1 and µ ≥ 0 such

that every two points x, y ∈ X can be joined by a (λ, µ)-quasi-isometry.

Lemma 7.3. — Let X be a discrete, large-scale connected metric space, with
bounded geometry.

(i) There exists R0 > 0 such that for R ≥ R0, XR is a connected graph with
bounded geometry.

(ii) If for every R ≥ R0, XR has property A, then X has property A.
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(iii) If X is quasi-geodesic, then for R large enough, the canonical inclusion
X → XR is a quasi-isometry.

Proof. — To prove (i), take R0 = c where c is as in Definition 7.1. Let N(R)
as in Equation (1.1). Since each vertex has at most N(R) neighbors, XR has
bounded geometry (with NXR(R′) = N(R)R′

).
Let us prove (ii). Let R ≥ R0 and ε > 0. Let dR be the distance on XR

and note that d ≤ RdR. Since X(0)
R has property A (cf. Proposition 4.2), there

exists S > 0 and a family (ηx)x∈X of vectors of norm one ηx ∈ "2(X), such that
‖ηx− ηy‖2 ≤ ε whenever dR(x, y) ≤ 1, and ηx is supported in the ball centered
in x of radius S in X(0)

R . Therefore, ηx is supported in the ball centered in x
of radius RS in X , and ‖ηx − ηy‖2 ≤ ε whenever d(x, y) ≤ R.

To prove (iii), let R ≥ sup(R0,λ + µ). Let x, y ∈ X . Clearly, dX(x, y) ≤
RdXR(x, y). Let ϕ be a (λ, µ)-quasi-geodesic from x to y. Let xk = ϕ(k)
(0 ≤ k ≤ n = [dX(x, y)]). Put xn+1 = y. Then dX(xk, xk+1) ≤ λ + µ ≤ R,
hence dXR(x, y) ≤ n + 1 ≤ dX(x, y) + 2.

8. Hyperbolic spaces

The following result was observed by Yu [19] in the case of discrete hyper-
bolic groups and negatively curved manifolds (see [8] for an introduction to
hyperbolicity in the sense of Gromov).

Proposition 8.1. — Property A holds for discrete metric spaces with bounded
geometry, which are hyperbolic in the sense of Gromov.

Proof. — Let X be a metric space as stated. Since a hyperbolic space is quasi-
geodesic (and thus large-scale connected), it follows from Lemma 7.3 that X is
quasi-isometric to a connected graph with bounded geometry. By Lemma 4.1
and the fact that hyperbolicity is preserved under quasi-isometry (see [8]), we
are reduced to the case where X is the 0-skeleton of a connected graph. Then,
the proof by E. Germain [2, Appendix B] applies almost word by word. We
outline the proof for the reader’s convenience. Choose a ∈ ∂X (the Gromov
boundary of X). For all x ∈ X , let [[x, a[[ be the set of infinite geodesics from x
to a, i.e. isometries g : N → X such that g(0) = x and limn→∞ g(n) = a. For
every x ∈ X and k, n ∈ N∗, define elements of "1(X) as follows:

F (x, k, n) = characteristic function of
⋃

d(x,y)<k
g∈[[y,a[[

g
(

[n, 2n]
)

,

H(x, n) =
1

n3/2

∑

k<
√

n

F (x, k, n).

Let δ > 0 such that X is δ-hyperbolic. Then
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(i) For n ≥ n0 = 36 + 300δ, for all x ∈ X , for all y ∈ X with d(x, y) <
√

n,
for all g0 ∈ [[x, a[[, g ∈ [[y, a[[, p ∈ g([n, 2n]), one has

d
(

p, g0

(

[n−
√

n, 2n +
√

n ]
))

≤ 4δ.

See Lemma 2.3 in [2, Appendix B] for a proof.

(ii) ∃C > 0, ∀x ∈ X , ∀n ∈ N∗, ∀k <
√

n,

n ≤
∥

∥F (x, k, n)
∥

∥

!1(X)
≤ Cn.

The first inequality is obvious, since F (x, k, n) is always greater than the
characteristic function of a geodesic of length n. For the second inequality,
let x ∈ X and n ∈ N∗. Suppose n ≥ n0. Using (i) and (1.1), one has

∥

∥F (x, k, n)
∥

∥

!1(X)
≤

[

(2n +
√

n )− (n−
√

n ) + 1
]

N(4δ) ≤ 2N(4δ)n.

If n ≤ n0, then ‖F (x, k, n)‖!1(X) ≤ N(2n0 +
√

n0) ≤ N(108 + 900δ)n.

(iii) For all R > 0,

lim
n→∞

∥

∥H(x, n)−H(y, n)
∥

∥

!1(X)
= 0

uniformly on ∆R = {(x, y) ∈ X ×X : d(x, y) ≤ R}.
Indeed, suppose d(x, y) ≤ R. Since F (x, k, n) ≤ F (y, k + R, n),

∑

0≤k<
√

n

F (x, k, n) ≤
∑

√
n−R≤k<

√
n

F (x, k, n) +
∑

0≤k<
√

n−R

F (y, k + R, n)

≤
∑

√
n−R≤k<

√
n

F (x, k, n) +
∑

0≤k<
√

n

F (y, k, n).

By symmetry, and using (ii),
∣

∣H(x, n)−H(y, n)
∣

∣ ≤ 1
n3/2

∑

√
n−R≤k<

√
n

(

F (x, k, n) + F (y, k, n)
)

,

∥

∥H(x, n)−H(y, n)
∥

∥

!1(X)
≤ 1

n3/2
(2C(R + 1)n) ≤ 2C(R + 1)√

n
·

Now from (ii), we have ‖H(x, n)‖1 ≥ 1. Using (iii), χx = H(x, n) satisfies
Proposition 3.2 (ii′) for n large enough.

9. Groups acting on trees

Let us recall a few facts about groups acting on trees. See [14], [15] for
further details. Let G be an oriented graph, and denote by G(0) (resp. G(1))
its set of vertices (resp. edges). For each edge e, let e+ and e− its terminal
and initial vertices. A graph of groups is by definition a collection of groups
(Gv)v∈G(0) , (Ge)e∈G(1) , together with injective homomorphisms

π+
e : Ge −→ Ge+ , π−e : Ge −→ Ge− .
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A graph of spaces is a collection of topological spaces with preferred base-
point (Xv)v∈G(0) , (Xe)e∈G(1) , together with pointed, injective maps f+

e : Xe →
Xe+ , f−

e : Xe → Xe− . (If the graph is a tree, one talks about a tree of spaces.)
The total space is defined by

X =
(8v∈G(0)Xv) 8 (8e∈G(1)Xe × [0, 1])
f−

e (x) ∼ (x, 0) and f+
e (x) ∼ (x, 1)

·

One of the ways to define the fundamental group of a graph of groups is
as follows: take connected pointed spaces Xv, Xe such that π1(Xv) = Gv,
π1(Xe) = Ge, and such that the group morphisms π±e : Ge → Ge± are induced
by the inclusions f±

e : Xe → Xe± . Then the fundamental group of the total
space does not depend on the choice of the spaces Xv and Xe, and is called the
fundamental group of the graph of groups [14, Section 3].

It is known that the fundamental group of a graph G of groups admits an
action on a tree such that the quotient is isomorphic (as a graph) to G, and such
that the stabilizer of each vertex (resp. edge) is isomorphic to the corresponding
vertex group Gv (resp. edge group Ge). Conversely, any group acting on a tree
is the fundamental group of a graph of groups with the same properties.

Consider a tree of discrete metric spaces (Xv)v∈T (0) , (Xe)e∈T (1) over T . Fix
v̄ ∈ ∂T (recall that the boundary ∂T of T is the set of infinite geodesics starting
from a given basepoint). For every v ∈ T (0), let α(v) ∈ T (0) such that [v,α(v)]
is an edge pointing towards v̄. Orient the tree by

[

v,α(v)
]+ = α(v).

Let v ∈ T (0). Let Yv = f−
e (Xe) and let fv be the holonomy map

fv = f+
e ◦ (f−

e )−1 : Yv −→ Xα(v),

where e = [v,α(v)]. We suppose that there exists a function ρ : R+ → R+ such
that for all v ∈ T (0), for all y, y′ ∈ Yv,

d
(

fv(y), fv(y′)
)

≤ ρ
(

d(y, y′)
)

, d(y, y′) ≤ ρ
(

d(fv(y), fv(y′))
)

.

We metrize the total space X as follows: if x ∈ Xv, x′ ∈ Xv′ , there exist
k, " ∈ N such that αk(v) = α!(v′), dT (v, v′) = k + ". If k ≥ 1 and " ≥ 1, we let

d(x, x′) = k + "+ inf
[

d(x, x0) +
k−2
∑

j=0

d(fαj(v)(xj), xj+1)

+d
(

fαk−1(v)(xk−1), fα!−1(v′)(x′
!−1)

)

+
!−2
∑

j=0

d
(

fαj(v′)(x′
j), x

′
j+1

)

+ d(x′, x′
0)

]

with the constraints xj ∈ Yαj(v), x′
j ∈ Yαj(v′).
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If " = 0 and k > 0, let

d(x, x′) = k +
[

inf d(x, x0) +
k−2
∑

j=0

d
(

fαj(v)(xj), xj+1

)

+ d
(

fαk−1(v)(xk−1), x′)
]

.

If k = 0 and " > 0, we use a similar formula, and if k = " = 0, the distance
coincides with the one on Xv.

Proposition 9.1. — With these assumptions, the tree of discrete spaces with
the metric defined above has property A if and only if each of the vertex spaces
has property A, and if one can find S (in Proposition 3.2 (ii)) independent of
the vertex.

Proof. — The “only if” part results from Proposition 4.2. Let us prove
the reverse implication. Let R ≥ 1 and ε ∈ (0, 1]. We construct (ηx)x∈X ,
ηx ∈ "1(X), ‖ηx‖1 = 1, supp(ηx) ⊂ B(x, S), such that ‖ηx−ηx′‖1 ≤ ε whenever
d(x, x′) ≤ R.

For every x ∈ Xv, let p(x) ∈ Yv such that d(x, p(x)) ≤ d(x, Yv) + 1. Let

β(x) = fv

(

p(x)
)

, xk = βk(x) ∈ Xαk(v) (k ≥ 0),

δk = d
(

xk, Yαk(v)

)

, θk = sup
j≤k

δj .

Note that d(xk−1, xk) ≤ δk−1 + 2.
Let R′ > 0, S′ > 0, ε′ > 0, R1 > 0, n ∈ N and ψ : R+ → R+ an increasing

function which will be specified later. For every v ∈ T (0) and x ∈ Xv, let
ξx ∈ "1(Xv), ‖ξx‖1 = 1, supp(ξx) ⊂ B(x, S′), such that ‖ξx − ξx′‖1 ≤ ε′

whenever d(x, x′) ≤ R′. Set

ϕ(t) =
(

1− ψ(t)
ψ(R1)

)

+
, ak = ϕ(θk).

Define finite sequences (rk)0≤k<n and (ck)0≤k<n by induction as follows:
r0 = n, and for 0 ≤ k ≤ n− 1,

ck =
rk

n− k

(

1 + (n− k − 1)(1− ak)
)

,

rk+1 = rk − ck = rk

(n− k − 1
n− k

)

ak.

It is easily seen by induction that 0 ≤ ck ≤ rk ≤ n− k (0 ≤ k ≤ n− 1). Since
ck = rk − rk+1 (0 ≤ k < n− 1) and cn−1 = rn−1, we have n = c0 + · · ·+ cn−1.
Define

ηx =
1
n

n−1
∑

k=0

ckξxk .
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We show that (ηx)x∈X satisfies the required properties. First, since

(ck ;= 0) =⇒ (rk ;= 0) =⇒ (ak−1 ;= 0)
=⇒ (δk−1 ≤ R1) =⇒

(

d(xk−1, xk) ≤ R1 + 2
)

,

we can take S = n(2 + R1) + S′.
We shall need a preliminary lemma, which says that ηx depends continuously

on the ak’s.

Lemma 9.2. — Let a′
k ∈ [0, 1] be a sequence. Let r′k, c′k be defined recursively

by r′0 = n, and for 0 ≤ k ≤ n− 1,

c′k =
rk

n− k

(

1 + (n− k − 1)(1− a′
k)

)

,

r′k+1 = r′k − c′k = r′k
n− k − 1

n− k
a′

k.

Let η′ = (1/n)
∑n−1

k=0 c′kξxk . Suppose that |ak − a′
k| ≤ ε1 (0 ≤ k ≤ n − 1).

Then ‖ηx − η′‖1 ≤ 2nε1.

Proof. — It is easily shown by induction that |c′k− ck| ≤ 2knε1 and |r′k− rk| ≤
(2k − 1)nε1. It follows that ‖ηx − η′‖!1(X) ≤ 1

n

∑n−1
k=0 2knε1 ≤ 2nε1.

Let x, x′ ∈ X such that d(x, x′) ≤ R. Our objective is now to show that
‖ηx − ηx′‖1 ≤ ε. We shall distinguish several cases.

(a) Suppose x, x′ ∈ Xv. Let δ′k, θ′k, etc. be the sequences associated to x′,
defined like δk, θk, etc. We first need a

Lemma 9.3. — Let f : R+ → R+ be an increasing function, such that f(t) ≥ t.
There exists ψ : R+ → R+ with the following properties:

(i) ψ(0) = 0;
(ii) ψ is increasing, limt→∞ ψ(t) = +∞;
(iii) ψ is 1-Lipschitz;
(iv) ψ(f(t))− ψ(t) ≤ 1 for all t ≥ 0.

Proof. — Replacing f(t) by
∫ t+1

t f(s) ds, we can suppose f continuous. Then,
replacing f(t) by t+1+

∫ t+1
t f(s) ds, we can suppose f differentiable, f ′(t) ≥ 1

for all t ∈ R+ and f(0) ≥ 1. Let tn = fn(0). We have 1 ≤ t1 < · · · < tn →∞.
Define ψ(t) = t/t1 (0 ≤ t < t1), and if tk ≤ t < tk+1, ψ(t) = ψ(f−k(t)) + k
for all k ≥ 1.

We have

d(xk+1, x
′
k+1) ≤ ρ

(

d(p(xk), p(x′
k))

)

≤ ρ
(

2 + θk + θ′k + d(xk, x′
k)

)

.
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Let f1(θ) = ρ(2 + 2θ + R), and define by induction

fk+1(θ) = ρ
(

2 + 2θ + fk(θ)
)

.

Let f(θ) = 2fn−1(θ) + 2θ. By induction on j, we have for 1 ≤ j ≤ k,

d(xj , x
′
j) ≤ fj

(

sup(θk−1, θ
′
k−1)

)

.

Letting j = k, we find

2d(xk, x′
k) ≤ f

(

sup(θk−1, θ
′
k−1)

)

∀k ≥ 1.(9.1)

With the function f thus defined, let ψ as in Lemma 9.3. Let us prove

|ak − a′
k| ≤ |ak−1 − a′

k−1| +
1

ψ(R1)
·(9.2)

Without loss of generality, we can suppose θk−1 ≥ θ′k−1.

• If sup(θk, θ′k) ≤ f(θk−1), then

θ′k−1 ≤ θk−1 ≤ θk ≤ f(θk−1), θ′k−1 ≤ θ′k ≤ f(θk−1)

From Lemma 9.3(iv),

ψ(θ′k−1) ≤ ψ(θk) ≤ ψ(θk−1) + 1, ψ(θ′k−1) ≤ ψ(θ′k) ≤ ψ(θk−1) + 1

which implies ak−1 − 1/ψ(R1) ≤ ak ≤ a′
k−1 and ak−1 − 1/ψ(R1) ≤ a′

k ≤ a′
k−1,

whence (9.2).
• If θk > f(θk−1) and θk ≥ θ′k, then θk > f(θk−1) > θk−1 implies δk = θk >

θk−1. From Equation (9.1), δk ≥ 2d(xk, x′
k), hence

δ′k ≥ δk − d(xk, x′
k) ≥ 1

2
δk.

We deduce θk ≥ θ′k ≥ δ′k ≥ 1
2δk = 1

2θk, hence θ′k ≤ θk ≤ 2θ′k ≤ f(θ′k). From
Lemma 9.3 (iv),

ψ(θ′k) ≤ ψ(θk) ≤ ψ(θ′k) + 1,

which implies a′
k ≥ ak ≥ a′

k − 1/ψ(R1), whence (9.2).

• If θ′k > f(θk−1) and θ′k ≥ θk, then we similarly show

δk ≥
1
2
δ′k, θ′k ≥ θk ≥

1
2
θ′k

and ak ≥ a′
k ≥ ak − 1/ψ(R1), whence (9.2).

It follows by induction that

|ak − a′
k| ≤

ψ(R) + k

ψ(R1)
≤ ψ(R) + n

ψ(R1)
·
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Thus, from Lemma 9.2,

‖ηx − ηx′‖1 ≤ ‖ξx − ξx′‖1 +
∥

∥

∥
ηx −

1
n

n−1
∑

k=0

c′kηxk

∥

∥

∥

1

≤ ‖ξx − ξx′‖1 + 2nψ(R) + n

ψ(R1)
≤ ε′ + 2nn

ψ(R) + 1
ψ(R1)

·

(b) The same proof shows that if ηx is constructed using another projection
p̃ : Xv → Yv instead of p, then the resulting vector η̃x satisfies

‖ηx − η̃x‖1 ≤ 2nn/ψ(R1).

(c) Suppose x′ = x1. By definition,

ηx1 =
1
n

n
∑

k=1

c′kξxk ,

with (c′k)k≥1 defined as follows. Let r′1 = n, and for 1 ≤ k ≤ n,

c′k =
r′k

n− k + 1
(

1 + (n− k)(1− a′
k)

)

,

r′k+1 = r′k − c′k = r′k

( n− k

n− k + 1

)

a′
k,

where a′
k = inf(ϕ(δ1), . . . ,ϕ(δk)). Put a′

0 = 1, r′′0 = n and for 1 ≤ k ≤ n − 1,
define

c′′k =
r′′k

n− k

(

1 + (n− k − 1)(1− a′
k)

)

,(9.3)

r′′k+1 = r′′k − c′′k = r′′k

(n− k − 1
n− k

)

a′
k.

Let η2 = (1/n)
∑n−1

k=0 c′′kξxk . Since

|a′
k − ak| =

∣

∣a′
k − inf(a0, a

′
k)

∣

∣ = sup(a′
k − a0, 0) ≤ 1− a0 ≤ ψ(R)/ψ(R1),

we have from Lemma 9.2

‖η2 − ηx‖1 ≤ 2n ψ(R)
ψ(R1)

·(9.4)

Let s′′k = r′′k/(n− k), s′k = r′k/(n− k + 1). Since s′′k+1/s′′k = a′
k = s′k+1/s′k,

we have s′′k+1/s′k+1 = s′′k/s′k, so s′′k/s′k is constant equal to

s′′1
s′1

=
r′′1

n− 1
· n

r′1
=

r′′0a′
0

n
· 1 = 1,

hence, from Equation (9.3),

c′′k =
r′k

n− k + 1
(

1 + (n− k − 1)(1− a′
k)

)

.

Thus, c′′k ≤ c′k ≤ inf
(

(n− k)/(n− k − 1)c′′k, n− k + 1
)

.
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Suppose n ≥ 8, and let a = n1/3. We have

‖η2 − ηx1‖1 ≤
1
n

(

c′′0 +
n−1
∑

k=1

(c′k − c′′k) + c′n

)

≤ 1
n

(

1 +
n−1
∑

k=1

inf
( c′′k

n− k − 1
, n− k + 1

)

+ 1
)

≤ 1
n

(

2 +
∑

1≤k≤n−a

c′′k
a− 1

+
∑

n−a<k<n

n− k + 1
)

≤ 1
n

(

2 +
∑

1≤k≤n−1

c′′k
a− 1

+
∑

2≤!≤n−a

"
)

≤ 1
n

( n

a− 1
+

a2 + 3a + 4
2

)

≤ 2
(1

a
+

a2

n

)

,

‖η2 − ηx1‖1 ≤ 4n−1/3.(9.5)

We conclude from (9.4) and (9.5) that

‖η − ηx1‖1 ≤ 4n−1/3 + 2n ψ(R)
ψ(R1)

·(9.6)

(d) Suppose d(x, xk) ≤ R. Then k ≤ R, so it follows from (9.6) that

‖ηx − ηxk‖1 ≤
4R

n1/3
+ 2n Rψ(R)

ψ(R1)
·

(e) Finally, let x, x′ such that d(x, x′) ≤ R. After possibly changing the
projection p : Xv → Yv into another projection p̃ : Xv → Yv, there exist k,
" ∈ N such that d(x, x̃k) ≤ R, d(x′, x̃!) ≤ R, αk(v) = α!(v′) and d(x̃k, x̃!) ≤ R
where x̃k, η̃x, etc. are constructed like xk, ηx, etc., but using p̃ instead of p.
Putting together cases (a) and (d),

‖η̃x − η̃x′‖1 ≤ ‖η̃xk − η̃x′
l
‖1 +

(

‖η̃x − η̃xk‖1 + ‖η̃x′
l
− η̃x′‖1

)

≤
(

2nn
ψ(R) + 1
ψ(R1)

+ ε′
)

+ 2
( 4R

n1/3
+ 2n Rψ(R)

ψ(R1)

)

.

Now, from (b),

‖ηx − ηx′‖1 ≤ ‖η̃x − η̃x′‖1 + 2
( 2nn

ψ(R1)

)

≤ 8R

n1/3
+ 2n+1 Rψ(R)

ψ(R1)
+ 2nn

ψ(R) + 3
ψ(R1)

+ ε′

≤ 8R

n1/3
+ 2n+2n

Rψ(R) + 1
ψ(R1)

+ ε′.
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If we choose ε′ = 1
4ε, an integer n satisfying n ≥ (16R/ε)3 and R1 such that

ψ(R1) ≥ 2n+4n(Rψ(R) + 1)/ε, then ‖ηx − ηx′‖1 ≤ ε.

Theorem 9.4. — Let G be a discrete group acting on a tree, with finite quo-
tient. Then G has property A if and only if the stabilizer of each vertex group
has property A.

Proof. — Analogous to [1, Theorem 3.1]. We reproduce here the argument for
the reader’s convenience. The group G is the fundamental group of a finite
graph of groups G, such that every vertex group has property A (see [15]).
From Proposition 4.3, we can suppose that each vertex group Gv and each
edge group Ge is finitely generated.

For each vertex group Gv and each edge group Ge, we fix a presentation
such that the presentation of Gv contains the one of Ge if v = e+ or v = e−.
Denote the standard 2-CW-complex associated to this presentation by Xv or Xe

respectively (recall that it is obtained from a bouquet of loops, one for each
generator, and attaching a 2-cell for each relation). Let f±

e : Xe → Xe± be
the cellular maps associated to the homomorphisms Ge → Ge± . This defines
a graph of spaces over G, and by definition G is the fundamental group of the
total space X .

Let X̃ be the universal cover of X , and X̃(1) its 1-skeleton. We shall call
vertex spaces (resp. edge spaces) the connected components of the preimage of
a space Xv (resp. Xe × [0, 1]) under the projection X̃(1) → X . Then X̃(1) is
a tree of spaces, with each vertex space (resp. edge space) isomorphic to the
Cayley graph of some Gv (resp. Ge). (Recall that the Cayley graph associated
to a group G and a symmetric system of generators S is the graph whose vertex
space is G, and such that g and h are endpoints of a common edge if and only
if g−1h ∈ S.)

X̃(1) is metrized as explained before Proposition 9.1. It is easy to see that G
acts freely, cocompactly and by isometries on X̃(1). By the remark following
Lemma 2.1, we are reduced to showing that X̃(1) has property A: this is true
by Proposition 9.1.

The corollaries below are consequences of [15].

Corollary 9.5. — If G and H are countable discrete groups having prop-
erty A, and K is a group that injects in each, then the amalgamated free product
G ∗K H has property A.

Corollary 9.6. — If G is a countable discrete group with property A, K is
a subgroup and θ : K → θ(K) is an isomorphism, then the HNN extension
HNN(K, G, θ) has property A.
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