REMARKS ON YU'S 'PROPERTY A' FOR DISCRETE METRIC SPACES AND GROUPS

By Jean-Louis Tu

Abstract

Guoliang Yu has introduced a property on discrete metric spaces and groups, which is a weak form of amenability and which has important applications to the Novikov conjecture and the coarse Baum-Connes conjecture. The aim of the present paper is to prove that property in particular examples, like spaces with subexponential growth, amalgamated free products of discrete groups having property A and HNN extensions of discrete groups having property A. RÉSUMÉ (Remarques sur la propriété A de Yu pour les espaces métriques et les groupes discrets)

Guoliang Yu a introduit une propriété sur les espaces métriques et les groupes discrets, qui est une forme faible de moyennabilité et qui a d'importantes applications à la conjecture de Novikov et la conjecture de Baum-Connes "coarse". Le but de cet article est de démontrer cette propriété dans des cas particuliers, tels que les espaces à croissance sous-exponentielle, les produits libres amalgamés de groupes discrets ayant la propriété A et les extensions HNN de groupes discrets ayant la propriété A.

1. Introduction

Let X be a discrete metric space. It is said to be of bounded geometry if there exists $N: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that the number of elements in balls of given

[^0]radius is uniformly bounded:
\[

$$
\begin{equation*}
\forall x \in X, \quad \# B(x, R) \leq N(R) \tag{1.1}
\end{equation*}
$$

\]

In [19, Definition 2.1], Yu introduces a property on discrete metric spaces he calls property A, which is a weak form of amenability. It is shown in [10], [11], [19] that

- For every discrete group G with a left-invariant distance such that the resulting metric space has bounded geometry, G has property A if and only if it admits an amenable action on some compact space (or, equivalently, on its Stone-Čech compactification βG) [11, Theorem 3.3].
- With the same assumptions, if G has property A, then the Baum-Connes map for G is split injective [10, Theorem 3.2], hence G satisfies the Novikov Conjecture (see [3] for an introduction to the Baum-Connes conjecture and its relation to the Novikov conjecture). Moreover, the reduced group C^{*}-algebra $C_{r}^{*}(G)$ is exact, meaning that for every exact sequence of C^{*}-algebras

$$
0 \rightarrow J \longrightarrow A \longrightarrow A / J \rightarrow 0
$$

the sequence obtained by taking spatial tensor products

$$
0 \rightarrow J \otimes_{\min } C_{r}^{*}(G) \longrightarrow A \otimes_{\min } C_{r}^{*}(G) \longrightarrow A / J \otimes_{\min } C_{r}^{*}(G) \rightarrow 0
$$

is exact (see [17] for a survey on exactness).

- Every discrete metric space with bounded geometry with property A satisfies the coarse Baum-Connes conjecture [19, Theorem 1.1] (see [13], [18] for an introduction to that conjecture).
That such impressive consequences result from that elementary property (see Definition 3.1) is quite remarkable. It was conjectured for a while that every discrete metric space has property A, but Gromov recently announced the construction of Cayley graphs that do not satisfy the property [7]. It remains important to determine classes of metric spaces or groups for which the property holds.

It is known that property A is true for amenable groups, semi-direct products of groups that have property A, asymptotically finite dimensional metric spaces with bounded geometry, hyperbolic groups in the sense of Gromov (see [8]). In this paper, it is proven that property A is true in each of the following cases, for a discrete metric space with bounded geometry X :

- $X \subset Y$, where Y is a metric space with property A;
- X has subexponential growth;
- $X=Y_{1} \cup Y_{2}$, where $\left(Y_{1}, Y_{2}\right)$ is an excisive pair;
- X is hyperbolic in the sense of Gromov;
- X is a group acting on a tree, such that the stabilizer of each vertex has property A. In particular, property A for groups is stable by taking amalgamated free products and HNN extensions.
We have tried in this paper to keep proofs as elementary and self-contained as possible, hoping to spark the interest of a broad range of readers.

2. Basic definitions

Let us recall a few elementary definitions from [13].
A metric space is said to be proper if every closed ball is compact.
Let X and Y be metric spaces. A (not necessarily continuous) map $f: X \rightarrow Y$ is said to be proper if the inverse image of any bounded set is bounded, and it is coarse if it is proper and if for every $R>0$, there exists $S>0$ such that for every $x, x^{\prime} \in X, d\left(x, x^{\prime}\right) \leq R$ implies $d\left(f(x), f\left(x^{\prime}\right)\right) \leq S$.

Two coarse maps $f, g: X \rightarrow Y$ are bornotopic if there exists $R>0$ such that $d(f(x), g(x)) \leq R$ for every $x \in X$. A coarse map $f: X \rightarrow Y$ is a coarse equivalence if there exists a coarse map $g: Y \rightarrow X$ such that $f \circ g$ and $g \circ f$ are bornotopic to the identity; X and Y are then said to be coarsely equivalent.

Two distances d and d^{\prime} on X are coarsely equivalent if the identity $(X, d) \rightarrow$ (X, d^{\prime}) is a coarse equivalence.

A map $f: X \rightarrow Y$ is a uniform embedding if it induces a coarse equivalence between X and $f(X)$. This means that f is coarse, and that for every $R>0$, there exists $S>0$ such that $d\left(x, x^{\prime}\right) \geq S$ implies $d\left(f(x), f\left(x^{\prime}\right)\right) \geq R$ for all $x, x^{\prime} \in X$.

Lemma 2.1. - Let G be a countable discrete group. Then up to coarse equivalence, there exists one and only one left-invariant distance on G for which the resulting metric space has bounded geometry.

Proof. - Let e be the unit element in G. Let d and d^{\prime} be such distances, and $\ell(g)=d(g, e), \ell^{\prime}(g)=d^{\prime}(g, e)$ the associated length functions. Let $R>0$. Since $\# B_{d}(e, R)<\infty$, there exists $S>0$ such that for all $g \in B_{d}(e, R)$, $\ell^{\prime}(g) \leq S$. By the left invariance, $\operatorname{Id}_{G}:(G, d) \rightarrow\left(G, d^{\prime}\right)$ is coarse. Similarly, $\mathrm{Id}_{G}:\left(G, d^{\prime}\right) \rightarrow(G, d)$ is coarse.

To prove the existence, let $f: G \rightarrow \mathbb{N}^{*}$ be a function such that $f^{-1}([0, n])$ is finite for every $n, f(g)=f\left(g^{-1}\right)$ for all $g \in G$, and $f(g)=0$ iff $g=1$. Let

$$
\ell(g)=\inf \left\{f\left(g_{1}\right)+\cdots+f\left(g_{n}\right): g=g_{1} \cdots g_{n}\right\}
$$

The distance $d(g, h)=\ell\left(g^{-1} h\right)$ is left-invariant and the resulting metric space has bounded geometry.

If the group is finitely generated, one can take the distance associated to any finite system of generators. If G acts freely and co-compactly by isometries on a proper metric space X, and $x_{0} \in X$ is arbitrary, then one can take $d(g, h)=\ell\left(g^{-1} h\right)$ where $\ell(g)=d\left(g x_{0}, x_{0}\right)$.

3. Property A, equivalent definitions

This section presents a few equivalent definitions of the property A introduced by Yu [19]. For a given metric space and $R>0, \Delta_{R}$ will denote

$$
\{(x, y) \in X \times X: d(x, y) \leq R\}
$$

Definition 3.1. - (See [19, Definition 2.1].) A discrete metric space X is said to have property A if for any $R>0, \varepsilon>0$, there exist $S>0$ and a family $\left(A_{x}\right)_{x \in X}$ of finite, nonempty subsets of $X \times \mathbb{N}$, such that
(i) $(y, n) \in A_{x}$ implies $(x, y) \in \Delta_{S}$;
(ii) for all $(x, y) \in \Delta_{R}$,

$$
\frac{\#\left(A_{x} \Delta A_{y}\right)}{\#\left(A_{x} \cap A_{y}\right)} \leq \varepsilon
$$

Let us first recall the definition of a positive type kernel [12, Definition 5.1]. Let X be a set. A function $\varphi: X \times X \rightarrow \mathbb{R}$ is said to be a positive type kernel if $\varphi(x, y)=\varphi(y, x)$ for all $x, y \in X$, and if for every finitely supported, real-valued function $\left(\lambda_{x}\right)_{x \in X}$ on X, the following inequality holds:

$$
\begin{equation*}
\sum_{x, y \in X} \lambda_{x} \lambda_{y} \varphi(x, y) \geq 0 \tag{3.1}
\end{equation*}
$$

A function $\varphi: X \times X \rightarrow \mathbb{R}$ is of positive type if and only if there exists a map $x \mapsto \eta_{x}$ from X to a real Hilbert space H such that $\varphi(x, y)=\left\langle\eta_{x}, \eta_{y}\right\rangle$ [12, Proposition 5.3].

Equivalent definitions listed in the proposition below clearly show that property A is a weak form of amenability. Indeed, (ii) and (iii) are Reiter's property (P1) and (P2) respectively, and (v) is Hulanicki's property [5].

Proposition 3.2. - Let X be a discrete metric space with bounded geometry. The following are equivalent:
(i) X has property A;
(ii) $\forall R>0, \forall \varepsilon>0, \exists S>0, \exists\left(\xi_{x}\right)_{x \in X}, \xi_{x} \in \ell^{1}(X), \operatorname{supp}\left(\xi_{x}\right) \subset B(x, S)$, $\left\|\xi_{x}\right\|_{\ell^{1}(X)}=1$, and $\left\|\xi_{x}-\xi_{y}\right\|_{\ell^{1}(X)} \leq \varepsilon$ whenever $d(x, y) \leq R$;
(ii') $\forall R>0, \forall \varepsilon>0, \exists S>0, \exists\left(\chi_{x}\right)_{x \in X}, \chi_{x} \in \ell^{1}(X), \operatorname{supp}\left(\chi_{x}\right) \subset B(x, S)$, $\left\|\chi_{x}-\chi_{y}\right\|_{\ell^{1}(X)} /\left\|\chi_{x}\right\|_{\ell^{1}(X)} \leq \varepsilon$ whenever $d(x, y) \leq R$;
(iii) $\forall R>0, \forall \varepsilon>0, \exists S>0, \exists\left(\eta_{x}\right)_{x \in X}, \eta_{x} \in \ell^{2}(X), \operatorname{supp}\left(\eta_{x}\right) \subset B(x, S)$, $\left\|\eta_{x}\right\|_{\ell^{2}(X)}=1$, and $\left\|\eta_{x}-\eta_{y}\right\|_{\ell^{2}(X)} \leq \varepsilon$ whenever $d(x, y) \leq R$;
(iv) $\forall R>0, \forall \varepsilon>0, \exists S>0, \exists\left(\zeta_{x}\right)_{x \in X}, \zeta_{x} \in \ell^{2}(X \times \mathbb{N}), \operatorname{supp}\left(\zeta_{x}\right) \subset B(x, S) \times$ $\mathbb{N},\left\|\zeta_{x}\right\|_{\ell^{2}(X \times \mathbb{N})}=1$, and $\left\|\zeta_{x}-\zeta_{y}\right\|_{\ell^{2}(X \times \mathbb{N})} \leq \varepsilon$ whenever $d(x, y) \leq R$;
(v) $\forall R>0, \forall \varepsilon>0, \exists S>0, \exists \varphi: X \times X \rightarrow \mathbb{R}$ of positive type such that $\operatorname{supp} \varphi \subset \Delta_{S}$ and $|1-\varphi(x, y)| \leq \varepsilon$ whenever $d(x, y) \leq R$.

Proof. - (i) \Leftrightarrow (ii): noting that in (ii), ξ_{x} may be supposed to be nonnegative (since $\left.\left\|\left|\xi_{x}\right|-\left|\xi_{y}\right|\right\|_{\ell^{1}(X)} \leq\left\|\xi_{x}-\xi_{y}\right\|_{\ell^{1}(X)}\right)$, this is exactly [11, Lemma 3.5].
(ii) \Rightarrow (ii'): obvious.
$\left(\mathrm{ii}^{\prime}\right) \Rightarrow(\mathrm{ii})$: let χ_{x} as in (ii'). Let $\xi_{x}=\chi_{x} /\left\|\chi_{x}\right\|_{\ell^{1}(X)}$. Then

$$
\begin{aligned}
\left\|\xi_{x}-\xi_{y}\right\|_{1} & \leq \frac{\left\|\chi_{x}-\chi_{y}\right\|_{1}}{\left\|\chi_{x}\right\|_{1}}+\left\|\chi_{y}\right\|_{1}\left|\frac{1}{\left\|\chi_{x}\right\|_{1}}-\frac{1}{\left\|\chi_{y}\right\|_{1}}\right| \\
& =\frac{\left\|\chi_{x}-\chi_{y}\right\|_{1}}{\left\|\chi_{x}\right\|_{1}}+\frac{\left|\left\|\chi_{y}\right\|_{1}-\left\|\chi_{x}\right\|_{1}\right|}{\left\|\chi_{x}\right\|_{1}} \leq \frac{2\left\|\chi_{x}-\chi_{y}\right\|_{1}}{\left\|\chi_{x}\right\|_{1}} .
\end{aligned}
$$

(ii) \Rightarrow (iii): let ξ_{x} as in (ii). Define $\eta_{x}=\left|\xi_{x}\right|^{1 / 2}$. Then, denoting by \int_{X} the summation on X, i.e. the integral with counting measure on X, one has

$$
\begin{aligned}
\left\|\eta_{x}-\eta_{y}\right\|_{\ell^{2}(X)}^{2} & =\int_{X}\left|\eta_{x}-\eta_{y}\right|^{2} \\
& \leq \int_{X}\left|\eta_{x}^{2}-\eta_{y}^{2}\right|=\left\|\left|\xi_{x}\right|-\left|\xi_{y}\right|\right\|_{\ell^{1}(X)} \leq\left\|\xi_{x}-\xi_{y}\right\|_{\ell^{1}(X)}
\end{aligned}
$$

(iii) \Rightarrow (ii): Let η_{x} as in (iii). We can suppose that $\eta_{x} \geq 0$. Let $\xi_{x}=\eta_{x}^{2}$. Then by the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\left\|\xi_{x}-\xi_{y}\right\|_{\ell^{1}(X)} & =\int_{X}\left|\eta_{x}^{2}-\eta_{y}^{2}\right|=\int_{X}\left|\eta_{x}-\eta_{y}\right|\left(\eta_{x}+\eta_{y}\right) \\
& \leq\left\|\eta_{x}-\eta_{y}\right\|_{\ell^{2}(X)}\left\|\eta_{x}+\eta_{y}\right\|_{\ell^{2}(X)} \leq 2\left\|\eta_{x}-\eta_{y}\right\|_{\ell^{2}(X)}
\end{aligned}
$$

(iii) \Rightarrow (iv): obvious.
(iv) \Rightarrow (iii): Let ζ_{x} as in (iv). Let $\eta_{x}(z)=\left\|\zeta_{x}(z, \cdot)\right\|_{\ell^{2}(\mathbb{N})}$. Then

$$
\begin{aligned}
\left\|\eta_{x}-\eta_{y}\right\|_{\ell^{2}(X)}^{2} & =\sum_{z \in X}\left|\left\|\zeta_{x}(z, \cdot)\right\|_{\ell^{2}(\mathbb{N})}-\left\|\zeta_{y}(z, \cdot)\right\|_{\ell^{2}(\mathbb{N})}\right|^{2} \\
& \leq \sum_{z \in X}\left\|\zeta_{x}(z, \cdot)-\zeta_{y}(z, \cdot)\right\|_{\ell^{2}(X \times \mathbb{N})}^{2}=\left\|\zeta_{x}-\zeta_{y}\right\|_{\ell^{2}(X \times \mathbb{N})}^{2}
\end{aligned}
$$

(iii) $\Rightarrow(\mathrm{v})$: Let η_{x} as in (iii). Let $\varphi(x, y)=\left\langle\eta_{x}, \eta_{y}\right\rangle$. Then $\operatorname{supp} \varphi \subset \Delta_{2 S}$ and if $d(x, y) \leq R$, then $1-\varphi(x, y)=\frac{1}{2}\left\|\eta_{x}-\eta_{y}\right\|_{\ell^{2}(X)}^{2} \leq \frac{1}{2} \varepsilon^{2}$.
$(\mathrm{v}) \Rightarrow($ iii $)$ is inspired from [4], proof of Theorem 13.8.6. The parallel would have been more apparent, had we introduced the concept of positive definite
function on groupoids and used results from [16], but we opted for a more elementary proof. Let φ as in (v). Suppose $\varepsilon \leq \frac{1}{2}$. Let

$$
\left(T_{\varphi} \eta\right)(x)=\sum_{x \in X} \varphi(x, y) \eta(y)
$$

For all $\xi, \eta \in \ell^{2}(X)$, by the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\left|\left\langle\xi, T_{\varphi} \eta\right\rangle\right| & \leq \sum_{x, y \in X}|\varphi(x, y)| \cdot|\xi(x)| \cdot|\eta(y)| \\
& \leq\left(\sum_{x, y \in X}|\varphi(x, y)| \cdot|\xi(x)|^{2}\right)^{1 / 2}\left(\sum_{x, y \in X}|\varphi(x, y)| \cdot|\eta(y)|^{2}\right)^{1 / 2} \\
& \leq\left(\sup _{x \in X} \sum_{y \in X}|\varphi(x, y)|\right)\|\xi\|_{\ell^{2}(X)} \cdot\|\eta\|_{\ell^{2}(X)} .
\end{aligned}
$$

Since φ is of positive type,

$$
\sup _{x, y}|\varphi(x, y)| \leq \sup _{x \in X} \varphi(x, x) \leq 1+\varepsilon \leq 2
$$

so, using Notation (1.1), $\left|\left\langle\xi, T_{\varphi} \eta\right\rangle\right| \leq 2 N(S)\|\xi\|_{\ell^{2}(X)}\|\eta\|_{\ell^{2}(X)}$. We conclude that T_{φ} is a bounded operator on $\ell^{2}(X)$ and $\left\|T_{\varphi}\right\| \leq 2 N(S)$. Also, note that T_{φ} is a positive operator since (from Equation (3.1))

$$
\left\langle\eta, T_{\varphi} \eta\right\rangle=\sum_{x, y \in X} \varphi(x, y) \eta(x) \eta(y) \geq 0
$$

Let p be a polynomial such that $0 \leq p(t)$ and $\left|p(t)^{2}-t\right| \leq \varepsilon$ on $[0,2 N(S)]$. Let $\varphi_{1}=p(\varphi)$, where $p(\varphi)$ is obtained using the convolution product

$$
(\varphi * \psi)(x, y)=\sum_{z \in X} \varphi(x, z) \psi(z, y)
$$

Let $\left(e_{x}\right)_{x \in X}$ be the canonical basis of $\ell^{2}(X)$. Let

$$
\eta_{x}^{\prime}=\varphi_{1}(x, \cdot), \quad \eta_{x}=\frac{\eta_{x}^{\prime}}{\left\|\eta_{x}^{\prime}\right\|_{\ell^{2}(X)}}
$$

We have

$$
\begin{aligned}
\left\langle\eta_{x}^{\prime}, \eta_{y}^{\prime}\right\rangle & =\sum_{z \in X} \varphi_{1}(x, z) \varphi_{1}(z, y)=\left(\varphi_{1} * \varphi_{1}\right)(x, y)=\left(p^{2}(\varphi)\right)(x, y) \\
\left|\left\langle\eta_{x}^{\prime}, \eta_{y}^{\prime}\right\rangle-\varphi(x, y)\right| & =\left|\left(p^{2}(\varphi)-\varphi\right)(x, y)\right|=\left|\left\langle e_{y},\left(p^{2}\left(T_{\varphi}\right)-T_{\varphi}\right) e_{x}\right\rangle\right| \\
& \leq\left\|p^{2}\left(T_{\varphi}\right)-T_{\varphi}\right\| \leq \varepsilon
\end{aligned}
$$

which implies $\left|\left\langle\eta_{x}^{\prime}, \eta_{y}^{\prime}\right\rangle-1\right| \leq 2 \varepsilon$ for all $(x, y) \in \Delta_{R}$. Thus,

$$
1-\left\langle\eta_{x}, \eta_{y}\right\rangle=1-\frac{\left\langle\eta_{x}^{\prime}, \eta_{y}^{\prime}\right\rangle}{\left\langle\eta_{x}^{\prime}, \eta_{x}^{\prime}\right\rangle^{1 / 2}\left\langle\eta_{y}^{\prime}, \eta_{y}^{\prime}\right\rangle^{1 / 2}} \leq 1-\frac{1-2 \varepsilon}{1+2 \varepsilon} \leq 4 \varepsilon .
$$

Therefore, $\left\|\eta_{x}-\eta_{y}\right\|_{2}=\sqrt{2-2\left\langle\eta_{x}, \eta_{y}\right\rangle} \leq \sqrt{8 \varepsilon}$. Finally, if p is of degree n, then it is not hard to see that $\operatorname{supp}\left(\eta_{x}\right) \subset B(x, n S)$.

We note that each of these definitions make sense for any metric space. A close examination of proofs shows that in the general case,

$$
(\mathrm{i}) \Longrightarrow \text { (ii) } \Longleftrightarrow \text { (iii) } \Longleftrightarrow \text { (iv) } \Longrightarrow \text { (v). }
$$

In the sequel, we shall say that a not necessarily discrete space has property A if and only if it satisfies the equivalent properties (ii)-(iv) (we found these definitions easier to manipulate that Yu's).

4. First properties

Lemma 4.1. - Let (X, d) be a discrete metric space and let d^{\prime} be a coarsely equivalent distance. Then (X, d) has property A if and only of $\left(X, d^{\prime}\right)$ has property A.

Proof. - Obvious.
In particular, from Lemma 2.1, one can talk about property A for discrete countable groups without reference to a particular distance. See also Proposition 4.3 (i) below.

Now, we prove that property A is inherited by subspaces.
Proposition 4.2. - Let X and Y be discrete metric spaces. Suppose there exists a uniform embedding of X into Y, and that Y has property A. Then X has property A.

Proof. - From Lemma 4.1, we can assume that X is a subspace of Y. For every $y \in Y$, let $p(y) \in X$ be a point such that $d(y, p(y)) \leq 2 d(y, X)$. Let

$$
V: \ell^{2}(Y) \longrightarrow \ell^{2}(X \times Y)
$$

be the isometry defined by

$$
(V \eta)(x, y)=\left\{\begin{array}{cl}
\eta(y) & \text { if } x=p(y) \\
0 & \text { otherwise }
\end{array}\right.
$$

Let $R>0, \varepsilon>0$. There exist $\left(\eta_{y}\right)_{y \in Y}$ and $S>0$ such that

$$
\eta_{y} \in \ell^{2}(Y), \quad\left\|\eta_{y}\right\|_{2}=1, \quad \operatorname{supp}\left(\eta_{y}\right) \subset B(y, S)
$$

and $\left\|\eta_{y}-\eta_{y^{\prime}}\right\|_{2} \leq \varepsilon$ whenever $d\left(y, y^{\prime}\right) \leq R$. Define $\zeta_{x}=V\left(\eta_{x}\right) \in \ell^{2}(X \times Y)$. Then $\operatorname{supp}\left(\zeta_{x}\right) \subset B(x, 3 S) \times Y$ since

$$
\operatorname{supp}\left(\zeta_{x}\right) \subset p\left(\operatorname{supp}\left(\eta_{x}\right)\right) \times Y \subset p\left(B_{Y}(x, S)\right) \times Y \subset B_{X}(x, 3 S) \times Y
$$

Moreover, $\left\|\zeta_{x}\right\|_{2}=1$ and $\left\|\zeta_{x}-\zeta_{x^{\prime}}\right\|_{2}=\left\|\eta_{x}-\eta_{x^{\prime}}\right\|_{2} \leq \varepsilon$ whenever $x, x^{\prime} \in X$ and $d\left(x, x^{\prime}\right) \leq R$. We deduce that Proposition 3.2(iv) is satisfied.

Proposition 4.3. - Let G be a discrete group. Then
(i) G has property A if and only if for every $\varepsilon>0$ and every $F \subset G$ finite, there exists $F^{\prime} \subset G$ finite and $\left(\xi_{x}\right)_{x \in G}, \xi_{x} \in \ell^{1}(G),\left\|\xi_{x}\right\|_{1}=1, \operatorname{supp} \xi_{x} \subset$ $x F^{\prime}$, and $\left\|\xi_{x}-\xi_{x g}\right\|_{1} \leq \varepsilon$ for all $x \in G$, for all $g \in F$;
(ii) G has property A if and only if every finitely generated subgroup $G^{\prime} \subset G$ has property A.

Proof. - For (i), choose an arbitrary left-invariant distance on G such that (G, d) has bounded geometry ($c f$. Lemma 2.1), and use the fact that

$$
\begin{aligned}
& \exists R,\{(x, x g): x \in G, g \in F\} \subset \Delta_{R} \\
& \Longleftrightarrow\{d(x, x g): x \in G, g \in F\} \text { is bounded } \\
& \Longleftrightarrow\{d(e, g): g \in F\} \text { is bounded } \\
& \Longleftrightarrow F \text { is finite },
\end{aligned}
$$

and that for every $R>0, \Delta_{R}=\{(x, x g): x \in G, g \in F\}$ where $F=B(e, 0)$ is finite.

For (ii), the "only if" part follows from Proposition 4.2. For the "if" part, suppose that every finitely generated subgroup has property A, and let $\varepsilon>0$, $F \subset G$ finite. Let G^{\prime} be the subgroup generated by F. By assumption, there exist $F^{\prime} \subset G^{\prime}$ finite, $\left(\xi_{x}\right)_{x \in G^{\prime}}, \xi_{x} \in \ell^{1}\left(G^{\prime}\right),\left\|\xi_{x}\right\|_{1}=1$, supp $\xi_{x} \subset x F^{\prime}$, such that $\left\|\xi_{x}-\xi_{x g}\right\|_{1} \leq \varepsilon$ for every $x \in X$ and $g \in F$. Write $G=\amalg_{i \in I} x_{i} G^{\prime}$. For every $i \in I$ and $g^{\prime} \in G^{\prime}$, let $\eta_{x_{i} g^{\prime}}(y)=\xi_{g^{\prime}}\left(x_{i}^{-1} y\right)$. Then $\left(\eta_{x}\right)_{x \in G}$ satisfies (i).

5. Excision

Recall [13, Definition 9.1] that if X is a metric space, $Y \subset X$ and $Z \subset X$, then (Y, Z) is said to be an excisive pair if

$$
\forall R>0, \exists S>0, \quad B(Y, R) \cap B(Z, R) \subset B(Y \cap Z, S)
$$

Here, $B(Y, R)$ denotes $\{x \in X: d(x, Y) \leq R\}$.
Let $R, \varepsilon>0$. We shall say that $\left(\xi_{x}\right)_{x \in X}$ satisfies property $(\mathrm{P})_{R, \varepsilon, S}$ if

$$
\xi_{x} \in \ell^{1}(X), \quad \xi_{x} \geq 0, \quad\left\|\xi_{x}\right\|_{1}=1, \quad \operatorname{supp} \xi_{x} \subset B(x, S) \text { and }\left\|\xi_{x}-\xi_{y}\right\|_{1} \leq \varepsilon
$$

whenever $d(x, y) \leq R$.
Lemma 5.1. - Let X be a discrete metric space, $Y \subset X, R>0, \varepsilon \in(0,1]$, $S^{\prime}>0, S=S^{\prime}+16 R / \varepsilon, R^{\prime}=33 R / \varepsilon$ and $\varepsilon^{\prime}=\varepsilon / 2$. Suppose that $\left(\xi_{x}^{0}\right)_{x \in X}$ and $\left(\eta_{y}\right)_{y \in Y}$ satisfy $(\mathrm{P})_{R^{\prime}, \varepsilon^{\prime}, S^{\prime}}$ for the spaces X and Y respectively. Then there exists $\left(\xi_{x}\right)_{x \in X}$ satisfying $(\mathrm{P})_{R, \varepsilon, S}$, such that $\xi_{y}=\eta_{y}$ for all $y \in Y$.

Proof. - Let $c=8 R / \varepsilon$. Denote $\{t\}=\inf (1, \sup (t, 0))$. Define

$$
\xi_{x}=\left\{\frac{d(x, Y)}{c}\right\} \xi_{x}^{0}+\left\{1-\frac{d(x, Y)}{c}\right\} \eta_{p(x)}
$$

where $p: X \rightarrow Y$ is a projection such that $d(x, p(x)) \leq 2 d(x, Y)$.
Let $x, x^{\prime} \in X$ such that $d\left(x, x^{\prime}\right) \leq R$.

- If $\inf \left(d(x, Y), d\left(x^{\prime}, Y\right)\right) \geq c-R$, then

$$
\left\|\xi_{x}-\xi_{x}^{0}\right\|_{1} \leq \frac{2 R}{c} \quad \text { and } \quad\left\|\xi_{x^{\prime}}-\xi_{x^{\prime}}^{0}\right\|_{1} \leq \frac{2 R}{c}
$$

hence

$$
\left\|\xi_{x}-\xi_{x^{\prime}}\right\|_{1} \leq\left\|\xi_{x}-\xi_{x}^{0}\right\|_{1}+\left\|\xi_{x^{\prime}}-\xi_{x^{\prime}}^{0}\right\|_{1}+\left\|\xi_{x}^{0}-\xi_{x^{\prime}}^{0}\right\|_{1} \leq \frac{4 R}{c}+\varepsilon^{\prime} \leq \varepsilon
$$

- If $d(x, Y) \leq c$ and $d\left(x^{\prime}, Y\right) \leq c$, then

$$
d\left(p(x), p\left(x^{\prime}\right)\right) \leq d\left(x, x^{\prime}\right)+d(x, p(x))+d\left(x^{\prime}, p\left(x^{\prime}\right)\right) \leq R+4 c \leq R^{\prime}
$$

hence $\left\|\eta_{p(x)}-\eta_{p\left(x^{\prime}\right)}\right\|_{1} \leq \varepsilon^{\prime}$. It follows that

$$
\left.\begin{array}{rl}
\left\|\xi_{x}-\xi_{x^{\prime}}\right\|_{1} \leq & \frac{d(x, Y)}{c}\left\|\xi_{x}^{0}-\xi_{x^{\prime}}^{0}\right\|_{1}
\end{array}\right)\left\|\xi_{x^{\prime}}^{0}\right\|_{1} \frac{\left|d(x, Y)-d\left(x^{\prime}, Y\right)\right|}{c}, ~+\left\{1-\frac{d(x, Y)}{c}\right\}\left\|\eta_{p(x)}-\eta_{p\left(x^{\prime}\right)}\right\|_{1} .
$$

The assertion about S is easy to check.
Proposition 5.2. - Let X be a metric space, and Y, Z be subspaces of X having property A, such that (Y, Z) is an excisive pair. Then $Y \cup Z$ has property A.

Proof. - Let $R>0$ and $\varepsilon>0$. Let $S>0$ such that

$$
B(Y, R) \cap B(Z, R) \subset B(Y \cap Z, S)
$$

Since $Y \cap Z \subset Y, Y \cap Z$ satisfies property A (Proposition 4.2), so $B(Y, S)$, $B(Z, S)$ and $B(Y \cap Z, S)$, being coarsely equivalent to Y, Z and $Y \cap Z$ respectively, satisfy property A (Lemma 4.1).

From Lemma 5.1 applied to the inclusions

$$
B(Y \cap Z, S) \subset B(Y, S) \quad \text { and } \quad B(Y \cap Z, S) \subset B(Z, S)
$$

there exist $\left(\eta_{y}\right)_{y \in Y}$ and $\left(\zeta_{z}\right)_{z \in Z}$ satisfying $(\mathrm{P})_{R, \varepsilon, S^{\prime \prime}}$ for the spaces $B(Y, S)$ and $B(Z, S)$ respectively, where $S^{\prime \prime}>0$ is some real number, such that $\eta_{t}=\zeta_{t}$

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
if $t \in B(Y \cap Z, S)$. Let

$$
\xi_{x}=\left\{\begin{array}{l}
\eta_{x} \text { if } x \in Y \\
\zeta_{x} \text { if } x \in Z
\end{array}\right.
$$

Let $x, x^{\prime} \in X$ such that $d\left(x, x^{\prime}\right) \leq R$. We check that $\left\|\xi_{x}-\xi_{x^{\prime}}\right\|_{1} \leq \varepsilon$. This is clear if $x, x^{\prime} \in Y$ or $x, x^{\prime} \in Z$. If $x \in Y$ and $x^{\prime} \in Z$, then $x, x^{\prime} \in$ $B(Y, R) \cap B(Z, R) \subset B(Y \cap Z, S)$, which implies $\xi_{x}=\eta_{x}$ and $\xi_{x^{\prime}}=\eta_{x^{\prime}}$, whence the conclusion.

6. Spaces with subexponential growth

A (discrete) metric space X is said to have subexponential growth if

$$
\lim _{R \rightarrow \infty} \sup _{x \in X} \frac{\log \# B(x, R)}{R}=0 .
$$

In [9], it is proven that such a space admits a uniform embedding into Hilbert space. The goal of this section is to prove the stronger proposition below (see [19, Theorem 2.2] for a proof that property A implies uniform embeddability into Hilbert space):

Theorem 6.1. - Let X be a discrete metric space with subexponential growth. Then X has property A.

The proof is much more complicated than in the case of groups, due to lack of homogeneity of the space. We need a few preliminary lemmas.

Lemma 6.2. - Let $\left(\alpha_{n}\right)_{n \geq 1}$ be a sequence with $\alpha_{n} \geq 0$ and $\lim _{n \rightarrow+\infty} \alpha_{n} / n=0$.
Then there exists $\left(\beta_{n}\right)_{n \geq 1}$ such that
(i) $\alpha_{n} \leq \beta_{n}$ for all $n \geq 1$;
(ii) $\left(\beta_{n}\right)$ is increasing;
(iii) $\lim _{n \rightarrow+\infty} \beta_{n} / n=0$;
(iv) $\lim _{n \rightarrow+\infty} \beta_{n+1}-\beta_{n}=0$.

Proof. - Let $\gamma_{n}=n \sup _{p>n}\left(\alpha_{p} / p\right)$. Clearly, $\left(\gamma_{n} / n\right)$ decreases and converges to 0 . Let $\beta_{n}=\sup _{q \leq n} \gamma_{q}$. By construction, (i) and (ii) hold.

Let us show that $\beta_{n+1} /(n+1) \leq \beta_{n} / n$. This is obvious if $\beta_{n}=\beta_{n+1}$. If $\beta_{n}<\beta_{n+1}$, then for some $q \leq n$, one has $\gamma_{q}=\beta_{n}<\beta_{n+1}=\gamma_{n+1}$, so

$$
\frac{\beta_{n+1}}{n+1}=\frac{\gamma_{n+1}}{n+1} \leq \frac{\gamma_{n}}{n} \leq \frac{\sup _{q \leq n} \gamma_{q}}{n}=\frac{\beta_{n}}{n},
$$

thus proving our claim. Assertion (iii) is obvious if $\left(\beta_{n}\right)$ is bounded. If $\left(\beta_{n}\right)$ is unbounded, then $\beta_{n}=\gamma_{q(n)}$ for some $q(n) \leq n, \lim _{n \rightarrow+\infty} q(n)=\infty$, so $\beta_{n} / n=\gamma_{q(n)} / n \leq \gamma_{q(n)} / q(n) \rightarrow 0$.

Let us prove (iv): using the fact that $\left(\beta_{n} / n\right)$ is decreasing, one has

$$
0 \leq \beta_{n+1}-\beta_{n}=\frac{\beta_{n+1}}{n+1}(n+1)-\beta_{n} \leq \frac{\beta_{n}}{n}(n+1)-\beta_{n} \leq \frac{\beta_{n}}{n} \longrightarrow 0
$$

Lemma 6.3. - Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence with $a_{n} \geq 1$ and $\lim _{n \rightarrow \infty} \log a_{n} / n=0$.
Then there exists $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfying
(i) $a_{n} \leq f(n)$ for all $n \geq 1$;
(ii) f is increasing;
(iii) f is convex;
(iv) $\lim _{n \rightarrow \infty} f(n+1) / f(n)=1$.

Proof. - Taking $\alpha_{n}=\log a_{n}$, we can assume from Lemma 6.2 that $\left(a_{n}\right)$ is increasing and that a_{n+1} / a_{n} tends to 1 . Assume also $\lim _{n \rightarrow \infty} a_{n}=\infty$ (otherwise, f can be chosen to be a constant function). Let $a_{n}=0$ for $n \leq 0$, and $b_{n}=\sup _{k \leq n}\left(a_{k}-a_{k-1}\right)$. Define

$$
f(n+h)=\sum_{k \leq n} b_{k}+h b_{n+1} \quad(n \in \mathbb{N}, h \in[0,1))
$$

Then $f(n) \geq \sum_{k \leq n} b_{k} \geq \sum_{k \leq n} a_{k}-a_{k-1}=a_{n}$, whence (i).
(ii) and (iii) result from the fact that $\left(b_{n}\right)$ is a nonnegative increasing sequence.

To prove (iv), first note that

$$
\frac{f(n+1)}{f(n)}-1=\frac{b_{n+1}}{f(n)} \leq \frac{b_{n+1}}{a_{n}} .
$$

If $\left(b_{n}\right)$ is bounded, then clearly b_{n+1} / a_{n} tends to 0 . If $\left(b_{n}\right)$ is unbounded, then $b_{n}=a_{k(n)}-a_{k(n)-1}$ for some $k(n) \leq n, \lim _{n \rightarrow \infty} k(n)=\infty$, so

$$
0 \leq \frac{f(n+1)}{f(n)}-1 \leq \frac{a_{k(n+1)}-a_{k(n+1)-1}}{a_{n}} \leq \frac{a_{k(n+1)}-a_{k(n+1)-1}}{a_{k(n+1)-1}} \longrightarrow 0
$$

Lemma 6.4. - Let X be a space with subexponential growth. Then there exists a space Y such that
(i) for all $R \geq 0, \psi(R):=\# B_{Y}(y, R)$ is independent of $y \in Y$;
(ii) $\lim _{R \rightarrow \infty} \frac{\sup _{x \in X} \# B_{X}(x, R)}{\psi(R)-\psi(R-1)}=0$;
(iii) $\psi(R+1)-\psi(R) \sim \psi(R)-\psi(R-1)$;
(iv) $R \mapsto \psi(R+1)-\psi(R)$ is an increasing function.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

Proof. - Let $a_{n}=\sup _{x \in X} \# B_{X}(x, n)(n \in \mathbb{N})$, and let f as in Lemma 6.3. If $f(0) \leq 1$, replace $f(x)$ with $f(x)+(1-f(0))+x$, and if $f(0)>1$, replace $f(x)$ with $f(x)+(1-f(0))(1-x)$. We can thus suppose $f(0)=1$, and that f is a continuous bijection of $[0,+\infty)$ onto $[1,+\infty)$. Let φ be the inverse of the bijection $f-1:[0,+\infty) \rightarrow[0,+\infty)$. Then $\varphi(0)=0$ and φ is concave. This implies $\varphi(s+t) \leq \varphi(s)+\varphi(t)$ for all $s, t \geq 0$, hence

$$
d(m, n)=\varphi(|m-n|), \quad m, n \in \mathbb{Z}
$$

defines a distance on \mathbb{Z}. Let Y_{1} be the metric space obtained. Then for all $y \in Y_{1}$,

$$
\begin{aligned}
\# B(y, R) & =1+2 \sup \{n \in \mathbb{N}: \varphi(n) \leq R\} \\
& =1+2 \sup \{n \in \mathbb{N}: n \leq f(R)-1\} \\
& =2[f(R)]-1
\end{aligned}
$$

Let $\psi_{1}(R)=2[f(R)]-1$. Let $Y_{2}=Y_{1} \times Y_{1}$ with the sup distance. Let $Y=Y_{2} \times \mathbb{Z}$ with the distance

$$
d\left((y, n),\left(y^{\prime}, n^{\prime}\right)\right)=d\left(y, y^{\prime}\right)+\left|n-n^{\prime}\right| .
$$

Then $\psi(R)=\psi_{1}(R)^{2}+2 \sum_{k=1}^{[R]} \psi_{1}(R-k)^{2}$, so

$$
\psi(R)-\psi(R-1)=\psi_{1}(R)^{2}+\psi_{1}(R-1)^{2}
$$

(i) is clear. Let us prove (ii). We have

$$
\frac{\sup _{x \in X} \# B(x, R)}{\psi(R)-\psi(R-1)} \leq \frac{f(R+1)}{\psi_{1}(R)^{2}} \sim \frac{f(R+1)}{(2 f(R))^{2}} \sim \frac{1}{4 f(R)} \longrightarrow 0
$$

Let us prove (iii). Since $f(R) \sim f(R+1)$, we have

$$
\psi(R+1)-\psi(R) \sim 8 f(R+1)^{2} \sim 8 f(R)^{2} \sim \psi(R)-\psi(R-1)
$$

(iv) results from the fact that f is an increasing function.

It will be convenient to use the following terminology:
Definition 6.5. - Let Z be a set, and $u_{n}, v_{n}: Z \rightarrow \mathbb{R}_{+}^{*}(n \in \mathbb{N})$. We say that $u_{n} \sim v_{n}$ uniformly in $z \in Z$ if

$$
\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}, \quad \forall n \geq n_{0}, \quad \forall z \in Z, \quad\left|\frac{u_{n}(z)}{v_{n}(z)}-1\right| \leq \varepsilon
$$

Lemma 6.6. - Let Z be a discrete proper metric space. Suppose that

$$
\# B(z, n+1) \sim \# B(z, n)
$$

uniformly in $z \in Z$. Then Z has property A.

Proof. - Let χ_{z}^{n} be the characteristic function of $B(z, n)$. Let $R>0$, and $\Delta_{R}=\left\{\left(z, z^{\prime}\right) \in Z^{2}: d\left(z, z^{\prime}\right) \leq R\right\}$. Then since $d\left(z, z^{\prime}\right) \leq R$ implies

$$
\left\{\begin{array}{l}
B(z, n-R) \subset B\left(z^{\prime}, R\right) \subset B(z, n+R) \\
B(z, n-R) \subset B(z, R) \subset B(z, n+R)
\end{array}\right.
$$

we have

$$
\frac{\left\|\chi_{z}^{n}-\chi_{z^{\prime}}^{n}\right\|_{1}}{\left\|\chi_{z}^{n}\right\|_{1}} \leq 2 \frac{\# B(z, n+R)-\# B(z, n-R)}{\# B(z, n-R)}
$$

By assumption, $\# B(z, n-R) \sim \# B(z, n+R)$ uniformly in $z \in Z$, so

$$
\lim _{n \rightarrow \infty} \frac{\left\|\chi_{z}^{n}-\chi_{z^{\prime}}^{n}\right\|_{1}}{\left\|\chi_{z}^{n}\right\|_{1}}=0
$$

uniformly in $\left(z, z^{\prime}\right) \in \Delta_{R}$. By Proposition $3.2\left(\left(\mathrm{ii}^{\prime}\right) \Rightarrow(\mathrm{i})\right), Z$ has property A.

Proof of Theorem 6.1. - Let $Z=X \times Y$ with Y as in Lemma 6.4. Endow Z with the distance $d\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=d\left(x, x^{\prime}\right)+d\left(y, y^{\prime}\right)$. By Proposition 4.2, since X is a subspace of Z, it suffices to prove that Z satisfies the assumptions of Lemma 6.6. For given $z=(x, y) \in X \times Y$ and $n \geq 1$, let

$$
\begin{aligned}
b_{n}(x) & =\#\left\{x^{\prime} \in X: n-1<d\left(x, x^{\prime}\right) \leq n\right\} \\
c_{n} & =\#\left\{y^{\prime} \in Y: n-1<d\left(y, y^{\prime}\right) \leq n\right\}=\psi(n)-\psi(n-1)
\end{aligned}
$$

For brevity, we shall write b_{n} instead of $b_{n}(x)$. Let $d_{n}=b_{0} c_{n}+\cdots+b_{n} c_{0}$. Using the fact that $\left(c_{n}\right)$ is an increasing sequence,

$$
\begin{aligned}
& \# B(z, n+1)-\# B(z, n) \\
& \quad=\#\left\{z^{\prime} \in Z: n<d\left(z, z^{\prime}\right) \leq n+1\right\} \\
& \leq \#\left\{y^{\prime} \in Y: n<d\left(y, y^{\prime}\right) \leq n+1\right\} \\
& \quad+\sum_{k=1}^{n+1} \#\left\{x^{\prime} \in X: k-1<d\left(x, x^{\prime}\right) \leq k\right\} \\
& \quad \times \#\left\{y^{\prime} \in Y: n-k<d\left(y, y^{\prime}\right) \leq n-k+2\right\} \\
& \quad \\
& \quad \leq c_{n+1}+b_{1}\left(c_{n+1}+c_{n}\right)+\cdots+b_{n+1}\left(c_{1}+c_{0}\right) \\
& \leq
\end{aligned} \quad 2\left(b_{0} c_{n+2}+b_{1} c_{n+1}+\cdots+b_{n+2} c_{0}\right)=2 d_{n+2} .
$$

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

Similarly,

$$
\begin{aligned}
& \# B(z, n)-\# B(z, n-2) \\
& =\#\left\{z^{\prime} \in Z: n-2<d\left(z, z^{\prime}\right) \leq n\right\} \\
& \geq \sum_{k=0}^{n} \#\left\{x^{\prime} \in X: k-1<d\left(x, x^{\prime}\right) \leq k\right\} \\
& \quad \times \#\left\{y \in Y: n-k-1<d\left(y, y^{\prime}\right) \leq n-k\right\} \\
& =b_{0} c_{n}+\cdots+b_{n} c_{0}=d_{n}
\end{aligned}
$$

It follows that $\# B(z, n) \geq d_{n}+d_{n-2}+d_{n-4}+\cdots$, whence

$$
\frac{\# B(z, n+1)-\# B(z, n)}{\# B(z, n)} \leq \frac{2 d_{n+2}}{d_{n}+d_{n-2}+d_{n-4}+\cdots}
$$

It thus suffices to show that $d_{n}(x) \sim d_{n+1}(x)$ uniformly in X. To do this, fix $q \in \mathbb{N}$ and let $r \leq q$. Since $c_{n+1} \sim c_{n-r}$ and $b_{n-r} / c_{n-r} \rightarrow 0$ uniformly in $x \in X$ (Lemma 6.4), we have that $b_{n-r} / b_{0} c_{n+1} \sim b_{n-r} / c_{n-r}$ converges to 0 uniformly in $x \in X$, hence

$$
d_{n+1} \sim b_{0} c_{n+1}+\cdots+b_{n-q} c_{q+1}
$$

uniformly in $x \in X$. If $\varepsilon>0$ and q is chosen so that $c_{k+1} \leq(1+\varepsilon) c_{k}$ for all $k \geq q$, then for n large enough, we have for every $x \in X$,

$$
\begin{aligned}
d_{n+1} & \leq(1+\varepsilon)\left(b_{0} c_{n+1}+\cdots+b_{n-q} c_{q+1}\right) \\
& \leq(1+\varepsilon)^{2}\left(b_{0} c_{n}++\cdots+b_{n-q} c_{q}\right)
\end{aligned}
$$

hence $d_{n} \leq d_{n+1} \leq(1+\varepsilon)^{2} d_{n}$.

7. Reduction to graphs

Recall a definition by Gromov [6]:
Definition 7.1. - Let X be a metric space. It is said to be large-scale connected if there exists a constant $c>0$ such that every two points x and y in X can be joined by a finite chain of points

$$
x=x_{0}, x_{1}, \ldots, x_{n}=y
$$

such that $d\left(x_{i}, x_{i-1}\right) \leq c(1 \leq i \leq n)$.
Lemma 7.2. - Let X be a discrete metric space with bounded geometry. Then X is a subspace of a discrete, large-scale connected metric space with bounded geometry.

Proof. - Let $X_{n}(n \geq 0)$ be the equivalence classes of the relation: $x \approx y$ if there exist $x_{0}, \ldots, x_{m} \in X$ such that $x_{0}=x, x_{m}=y, d\left(x_{i}, x_{i-1}\right) \leq 2$. Define $d_{n}=\left[d\left(X_{n}, X_{n+1}\right)\right]$, and let $a_{n} \in X_{n}, b_{n+1} \in X_{n+1}$ such that
$d\left(a_{n}, b_{n+1}\right) \leq 2 d_{n}$. Let $Y_{n}=\left\{0,1, \ldots, d_{n}\right\} \times\{n\}$, and let Y be the space obtained by attaching "line segments" to X as follows:

$$
Y=\frac{\coprod_{n \in \mathbb{N}}\left(X_{n} \amalg Y_{n}\right)}{(0, n) \sim a_{n} \text { and }\left(d_{n}, n\right) \sim b_{n+1}} .
$$

Endow Y with the maximal metric which agrees with the one on X, and such that $d((i, n),(j, n))=|i-j| d\left(a_{n}, b_{n+1}\right) / d_{n}$. Since $d_{n} \geq 1, Y$ is large-scale connected (with $c=2$ in Definition 7.1).

Let us prove that Y has bounded geometry. Let $N(R)$ satisfy Equation (1.1). Let $y \in Y$.

- Suppose $y \in X$. Since $d((i, n),(j, n)) \geq|i-j|, B_{Y}(y, R) \cap Y_{n}$ has at most $2 R+2$ elements, and since the a_{n} are all distinct, and the b_{n} are all distinct, $B_{Y}(y, R)$ intersects at most $2 N(R)$ of the spaces Y_{n}. Therefore,

$$
\begin{aligned}
\# B_{Y}(y, R) & \leq \#\left(B_{Y}(y, R) \cap X\right)+\sum_{n \in \mathbb{N}} B_{Y}(y, R) \cap Y_{n} \\
& \leq N(R)+2 N(R)(2 R+2)=N(R)(4 R+5) .
\end{aligned}
$$

- Suppose $y \in Y_{n}(n \in \mathbb{N})$. If $B(y, R)$ doesn't intersect X, then $B_{Y}(y, R) \subset$ $Y_{n}-X$, hence $\# B(y, R) \leq 2 R$. If $B(y, R) \cap X$ contains an element x, then $B(y, R) \subset B(x, 2 R)$, therefore

$$
\# B(y, R) \leq N(2 R)(8 R+5)
$$

We deduce that for all $y \in Y, \# B(y, R) \leq N(2 R)(8 R+5)$.
Let X be a discrete metric space. For every $R>0$, let $P_{R}(X)$ be the Rips' complex, defined as follows: $\left\{x_{1}, \ldots, x_{n}\right\}$ spans a simplex if and only if $d\left(x_{i}, x_{j}\right) \leq R$ for every i, j. Let X_{R} be the 1-skeleton of $P_{R}(X)$, and $X_{R}^{(0)}$ its set of vertices.

Recall a few definitions: let $\lambda \geq 1$ and $\mu \geq 0$.
A map $f: X \rightarrow Y$ between two metric spaces is called a (λ, μ)-quasi-isometry if for every x, x^{\prime} in $X,\left(d\left(x, x^{\prime}\right)-\mu\right) / \lambda \leq d\left(f(x), f\left(x^{\prime}\right)\right) \leq \lambda d\left(x, x^{\prime}\right)+\mu$.

A (λ, μ)-quasi-geodesic between two points x, x^{\prime} of a metric space X is a (λ, μ)-quasi-isometry $\varphi:\left[0, d\left(x, x^{\prime}\right)\right] \rightarrow X$ with $\varphi(0)=x$ and $\varphi\left(d\left(x, x^{\prime}\right)\right)=x^{\prime}$.

A space X is said to be quasi-geodesic if there exist $\lambda \geq 1$ and $\mu \geq 0$ such that every two points $x, y \in X$ can be joined by a (λ, μ)-quasi-isometry.

Lemma 7.3. - Let X be a discrete, large-scale connected metric space, with bounded geometry.
(i) There exists $R_{0}>0$ such that for $R \geq R_{0}, X_{R}$ is a connected graph with bounded geometry.
(ii) If for every $R \geq R_{0}, X_{R}$ has property A, then X has property A.
(iii) If X is quasi-geodesic, then for R large enough, the canonical inclusion $X \rightarrow X_{R}$ is a quasi-isometry.

Proof. - To prove (i), take $R_{0}=c$ where c is as in Definition 7.1. Let $N(R)$ as in Equation (1.1). Since each vertex has at most $N(R)$ neighbors, X_{R} has bounded geometry (with $N_{X_{R}}\left(R^{\prime}\right)=N(R)^{R^{\prime}}$).

Let us prove (ii). Let $R \geq R_{0}$ and $\varepsilon>0$. Let d_{R} be the distance on X_{R} and note that $d \leq R d_{R}$. Since $X_{R}^{(0)}$ has property A (cf. Proposition 4.2), there exists $S>0$ and a family $\left(\eta_{x}\right)_{x \in X}$ of vectors of norm one $\eta_{x} \in \ell^{2}(X)$, such that $\left\|\eta_{x}-\eta_{y}\right\|_{2} \leq \varepsilon$ whenever $d_{R}(x, y) \leq 1$, and η_{x} is supported in the ball centered in x of radius S in $X_{R}^{(0)}$. Therefore, η_{x} is supported in the ball centered in x of radius $R S$ in X, and $\left\|\eta_{x}-\eta_{y}\right\|_{2} \leq \varepsilon$ whenever $d(x, y) \leq R$.

To prove (iii), let $R \geq \sup \left(R_{0}, \lambda+\mu\right)$. Let $x, y \in X$. Clearly, $d_{X}(x, y) \leq$ $R d_{X_{R}}(x, y)$. Let φ be a (λ, μ)-quasi-geodesic from x to y. Let $x_{k}=\varphi(k)$ $\left(0 \leq k \leq n=\left[d_{X}(x, y)\right]\right)$. Put $x_{n+1}=y$. Then $d_{X}\left(x_{k}, x_{k+1}\right) \leq \lambda+\mu \leq R$, hence $d_{X_{R}}(x, y) \leq n+1 \leq d_{X}(x, y)+2$.

8. Hyperbolic spaces

The following result was observed by Yu [19] in the case of discrete hyperbolic groups and negatively curved manifolds (see [8] for an introduction to hyperbolicity in the sense of Gromov).

Proposition 8.1. - Property A holds for discrete metric spaces with bounded geometry, which are hyperbolic in the sense of Gromov.

Proof. - Let X be a metric space as stated. Since a hyperbolic space is quasigeodesic (and thus large-scale connected), it follows from Lemma 7.3 that X is quasi-isometric to a connected graph with bounded geometry. By Lemma 4.1 and the fact that hyperbolicity is preserved under quasi-isometry (see [8]), we are reduced to the case where X is the 0 -skeleton of a connected graph. Then, the proof by E. Germain [2, Appendix B] applies almost word by word. We outline the proof for the reader's convenience. Choose $a \in \partial X$ (the Gromov boundary of $X)$. For all $x \in X$, let $[[x, a[[$ be the set of infinite geodesics from x to a, i.e. isometries $g: \mathbb{N} \rightarrow X$ such that $g(0)=x$ and $\lim _{n \rightarrow \infty} g(n)=a$. For every $x \in X$ and $k, n \in \mathbb{N}^{*}$, define elements of $\ell^{1}(X)$ as follows:

$$
\begin{aligned}
F(x, k, n) & =\text { characteristic function of } \bigcup_{\substack{d(x, y)<k \\
g \in[[y, a[]}} g([n, 2 n]), \\
H(x, n) & =\frac{1}{n^{3 / 2}} \sum_{k<\sqrt{n}} F(x, k, n) .
\end{aligned}
$$

Let $\delta>0$ such that X is δ-hyperbolic. Then
(i) For $n \geq n_{0}=36+300 \delta$, for all $x \in X$, for all $y \in X$ with $d(x, y)<\sqrt{n}$, for all $g_{0} \in[[x, a[[, g \in[[y, a[[, p \in g([n, 2 n])$, one has

$$
d\left(p, g_{0}([n-\sqrt{n}, 2 n+\sqrt{n}])\right) \leq 4 \delta .
$$

See Lemma 2.3 in [2, Appendix B] for a proof.
(ii) $\exists C>0, \forall x \in X, \forall n \in \mathbb{N}^{*}, \forall k<\sqrt{n}$,

$$
n \leq\|F(x, k, n)\|_{\ell^{1}(X)} \leq C n
$$

The first inequality is obvious, since $F(x, k, n)$ is always greater than the characteristic function of a geodesic of length n. For the second inequality, let $x \in X$ and $n \in \mathbb{N}^{*}$. Suppose $n \geq n_{0}$. Using (i) and (1.1), one has

$$
\|F(x, k, n)\|_{\ell^{1}(X)} \leq[(2 n+\sqrt{n})-(n-\sqrt{n})+1] N(4 \delta) \leq 2 N(4 \delta) n
$$

If $n \leq n_{0}$, then $\|F(x, k, n)\|_{\ell^{1}(X)} \leq N\left(2 n_{0}+\sqrt{n_{0}}\right) \leq N(108+900 \delta) n$.
(iii) For all $R>0$,

$$
\lim _{n \rightarrow \infty}\|H(x, n)-H(y, n)\|_{\ell^{1}(X)}=0
$$

uniformly on $\Delta_{R}=\{(x, y) \in X \times X: d(x, y) \leq R\}$.
Indeed, suppose $d(x, y) \leq R$. Since $F(x, k, n) \leq F(y, k+R, n)$,

$$
\begin{aligned}
\sum_{0 \leq k<\sqrt{n}} F(x, k, n) & \leq \sum_{\sqrt{n}-R \leq k<\sqrt{n}} F(x, k, n)+\sum_{0 \leq k<\sqrt{n}-R} F(y, k+R, n) \\
& \leq \sum_{\sqrt{n}-R \leq k<\sqrt{n}} F(x, k, n)+\sum_{0 \leq k<\sqrt{n}} F(y, k, n) .
\end{aligned}
$$

By symmetry, and using (ii),

$$
\begin{aligned}
|H(x, n)-H(y, n)| & \leq \frac{1}{n^{3 / 2}} \sum_{\sqrt{n}-R \leq k<\sqrt{n}}(F(x, k, n)+F(y, k, n)), \\
\|H(x, n)-H(y, n)\|_{\ell^{1}(X)} & \leq \frac{1}{n^{3 / 2}}(2 C(R+1) n) \leq \frac{2 C(R+1)}{\sqrt{n}}
\end{aligned}
$$

Now from (ii), we have $\|H(x, n)\|_{1} \geq 1$. Using (iii), $\chi_{x}=H(x, n)$ satisfies Proposition 3.2 (ii') for n large enough.

9. Groups acting on trees

Let us recall a few facts about groups acting on trees. See [14], [15] for further details. Let \mathcal{G} be an oriented graph, and denote by $\mathcal{G}^{(0)}$ (resp. $\mathcal{G}^{(1)}$) its set of vertices (resp. edges). For each edge e, let e^{+}and e^{-}its terminal and initial vertices. A graph of groups is by definition a collection of groups $\left(G_{v}\right)_{v \in \mathcal{G}^{(0)}},\left(G_{e}\right)_{e \in \mathcal{G}^{(1)}}$, together with injective homomorphisms

$$
\pi_{e}^{+}: G_{e} \longrightarrow G_{e^{+}}, \quad \pi_{e}^{-}: G_{e} \longrightarrow G_{e^{-}} .
$$

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

A graph of spaces is a collection of topological spaces with preferred basepoint $\left(X_{v}\right)_{v \in \mathcal{G}^{(0)}},\left(X_{e}\right)_{e \in \mathcal{G}^{(1)}}$, together with pointed, injective maps $f_{e}^{+}: X_{e} \rightarrow$ $X_{e^{+}}, f_{e}^{-}: X_{e} \rightarrow X_{e^{-}}$. (If the graph is a tree, one talks about a tree of spaces.) The total space is defined by

$$
X=\frac{\left(\amalg_{v \in \mathcal{G}^{(0)}} X_{v}\right) \amalg\left(\amalg_{e \in \mathcal{G}^{(1)}} X_{e} \times[0,1]\right)}{f_{e}^{-}(x) \sim(x, 0) \text { and } f_{e}^{+}(x) \sim(x, 1)} .
$$

One of the ways to define the fundamental group of a graph of groups is as follows: take connected pointed spaces X_{v}, X_{e} such that $\pi_{1}\left(X_{v}\right)=G_{v}$, $\pi_{1}\left(X_{e}\right)=G_{e}$, and such that the group morphisms $\pi_{e}^{ \pm}: G_{e} \rightarrow G_{e^{ \pm}}$are induced by the inclusions $f_{e}^{ \pm}: X_{e} \rightarrow X_{e^{ \pm}}$. Then the fundamental group of the total space does not depend on the choice of the spaces X_{v} and X_{e}, and is called the fundamental group of the graph of groups [14, Section 3].

It is known that the fundamental group of a graph \mathcal{G} of groups admits an action on a tree such that the quotient is isomorphic (as a graph) to \mathcal{G}, and such that the stabilizer of each vertex (resp. edge) is isomorphic to the corresponding vertex group G_{v} (resp. edge group G_{e}). Conversely, any group acting on a tree is the fundamental group of a graph of groups with the same properties.

Consider a tree of discrete metric spaces $\left(X_{v}\right)_{v \in T^{(0)}},\left(X_{e}\right)_{e \in T^{(1)}}$ over T. Fix $\bar{v} \in \partial T$ (recall that the boundary ∂T of T is the set of infinite geodesics starting from a given basepoint). For every $v \in T^{(0)}$, let $\alpha(v) \in T^{(0)}$ such that $[v, \alpha(v)]$ is an edge pointing towards \bar{v}. Orient the tree by

$$
[v, \alpha(v)]^{+}=\alpha(v) .
$$

Let $v \in T^{(0)}$. Let $Y_{v}=f_{e}^{-}\left(X_{e}\right)$ and let f_{v} be the holonomy map

$$
f_{v}=f_{e}^{+} \circ\left(f_{e}^{-}\right)^{-1}: Y_{v} \longrightarrow X_{\alpha(v)}
$$

where $e=[v, \alpha(v)]$. We suppose that there exists a function $\rho: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that for all $v \in T^{(0)}$, for all $y, y^{\prime} \in Y_{v}$,

$$
d\left(f_{v}(y), f_{v}\left(y^{\prime}\right)\right) \leq \rho\left(d\left(y, y^{\prime}\right)\right), \quad d\left(y, y^{\prime}\right) \leq \rho\left(d\left(f_{v}(y), f_{v}\left(y^{\prime}\right)\right)\right)
$$

We metrize the total space X as follows: if $x \in X_{v}, x^{\prime} \in X_{v^{\prime}}$, there exist $k, \ell \in \mathbb{N}$ such that $\alpha^{k}(v)=\alpha^{\ell}\left(v^{\prime}\right), d_{T}\left(v, v^{\prime}\right)=k+\ell$. If $k \geq 1$ and $\ell \geq 1$, we let

$$
\begin{aligned}
d\left(x, x^{\prime}\right)=k+\ell+\inf [d(x, & \left.x_{0}\right)+\sum_{j=0}^{k-2} d\left(f_{\alpha^{j}(v)}\left(x_{j}\right), x_{j+1}\right) \\
+ & d\left(f_{\alpha^{k-1}(v)}\left(x_{k-1}\right), f_{\alpha^{\ell-1}\left(v^{\prime}\right)}\left(x_{\ell-1}^{\prime}\right)\right) \\
& \left.\quad+\sum_{j=0}^{\ell-2} d\left(f_{\alpha^{j}\left(v^{\prime}\right)}\left(x_{j}^{\prime}\right), x_{j+1}^{\prime}\right)+d\left(x^{\prime}, x_{0}^{\prime}\right)\right]
\end{aligned}
$$

with the constraints $x_{j} \in Y_{\alpha^{j}(v)}, x_{j}^{\prime} \in Y_{\alpha^{j}\left(v^{\prime}\right)}$.

If $\ell=0$ and $k>0$, let
$d\left(x, x^{\prime}\right)=k+\left[\inf d\left(x, x_{0}\right)+\sum_{j=0}^{k-2} d\left(f_{\alpha^{j}(v)}\left(x_{j}\right), x_{j+1}\right)+d\left(f_{\alpha^{k-1}(v)}\left(x_{k-1}\right), x^{\prime}\right)\right]$.
If $k=0$ and $\ell>0$, we use a similar formula, and if $k=\ell=0$, the distance coincides with the one on X_{v}.

Proposition 9.1. - With these assumptions, the tree of discrete spaces with the metric defined above has property A if and only if each of the vertex spaces has property A, and if one can find S (in Proposition 3.2 (ii)) independent of the vertex.

Proof. - The "only if" part results from Proposition 4.2. Let us prove the reverse implication. Let $R \geq 1$ and $\varepsilon \in(0,1]$. We construct $\left(\eta_{x}\right)_{x \in X}$, $\eta_{x} \in \ell^{1}(X),\left\|\eta_{x}\right\|_{1}=1, \operatorname{supp}\left(\eta_{x}\right) \subset B(x, S)$, such that $\left\|\eta_{x}-\eta_{x^{\prime}}\right\|_{1} \leq \varepsilon$ whenever $d\left(x, x^{\prime}\right) \leq R$.

For every $x \in X_{v}$, let $p(x) \in Y_{v}$ such that $d(x, p(x)) \leq d\left(x, Y_{v}\right)+1$. Let

$$
\begin{gathered}
\beta(x)=f_{v}(p(x)), \quad x_{k}=\beta^{k}(x) \in X_{\alpha^{k}(v)} \quad(k \geq 0) \\
\delta_{k}=d\left(x_{k}, Y_{\alpha^{k}(v)}\right), \quad \theta_{k}=\sup _{j \leq k} \delta_{j}
\end{gathered}
$$

Note that $d\left(x_{k-1}, x_{k}\right) \leq \delta_{k-1}+2$.
Let $R^{\prime}>0, S^{\prime}>0, \varepsilon^{\prime}>0, R_{1}>0, n \in \mathbb{N}$ and $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$an increasing function which will be specified later. For every $v \in T^{(0)}$ and $x \in X_{v}$, let $\xi_{x} \in \ell^{1}\left(X_{v}\right),\left\|\xi_{x}\right\|_{1}=1, \operatorname{supp}\left(\xi_{x}\right) \subset B\left(x, S^{\prime}\right)$, such that $\left\|\xi_{x}-\xi_{x^{\prime}}\right\|_{1} \leq \varepsilon^{\prime}$ whenever $d\left(x, x^{\prime}\right) \leq R^{\prime}$. Set

$$
\varphi(t)=\left(1-\frac{\psi(t)}{\psi\left(R_{1}\right)}\right)_{+}, \quad a_{k}=\varphi\left(\theta_{k}\right)
$$

Define finite sequences $\left(r_{k}\right)_{0 \leq k<n}$ and $\left(c_{k}\right)_{0 \leq k<n}$ by induction as follows: $r_{0}=n$, and for $0 \leq k \leq n-1$,

$$
\begin{aligned}
c_{k} & =\frac{r_{k}}{n-k}\left(1+(n-k-1)\left(1-a_{k}\right)\right), \\
r_{k+1} & =r_{k}-c_{k}=r_{k}\left(\frac{n-k-1}{n-k}\right) a_{k} .
\end{aligned}
$$

It is easily seen by induction that $0 \leq c_{k} \leq r_{k} \leq n-k(0 \leq k \leq n-1)$. Since $c_{k}=r_{k}-r_{k+1}(0 \leq k<n-1)$ and $c_{n-1}=r_{n-1}$, we have $n=c_{0}+\cdots+c_{n-1}$. Define

$$
\eta_{x}=\frac{1}{n} \sum_{k=0}^{n-1} c_{k} \xi_{x_{k}}
$$

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

We show that $\left(\eta_{x}\right)_{x \in X}$ satisfies the required properties. First, since

$$
\begin{aligned}
\left(c_{k} \neq 0\right) & \Longrightarrow\left(r_{k} \neq 0\right) \Longrightarrow\left(a_{k-1} \neq 0\right) \\
& \Longrightarrow\left(\delta_{k-1} \leq R_{1}\right) \Longrightarrow\left(d\left(x_{k-1}, x_{k}\right) \leq R_{1}+2\right)
\end{aligned}
$$

we can take $S=n\left(2+R_{1}\right)+S^{\prime}$.
We shall need a preliminary lemma, which says that η_{x} depends continuously on the a_{k} 's.

Lemma 9.2. - Let $a_{k}^{\prime} \in[0,1]$ be a sequence. Let r_{k}^{\prime}, c_{k}^{\prime} be defined recursively by $r_{0}^{\prime}=n$, and for $0 \leq k \leq n-1$,

$$
\begin{aligned}
c_{k}^{\prime} & =\frac{r_{k}}{n-k}\left(1+(n-k-1)\left(1-a_{k}^{\prime}\right)\right), \\
r_{k+1}^{\prime} & =r_{k}^{\prime}-c_{k}^{\prime}=r_{k}^{\prime} \frac{n-k-1}{n-k} a_{k}^{\prime} .
\end{aligned}
$$

Let $\eta^{\prime}=(1 / n) \sum_{k=0}^{n-1} c_{k}^{\prime} \xi_{x_{k}}$. Suppose that $\left|a_{k}-a_{k}^{\prime}\right| \leq \varepsilon_{1}(0 \leq k \leq n-1)$. Then $\left\|\eta_{x}-\eta^{\prime}\right\|_{1} \leq 2^{n} \varepsilon_{1}$.

Proof. - It is easily shown by induction that $\left|c_{k}^{\prime}-c_{k}\right| \leq 2^{k} n \varepsilon_{1}$ and $\left|r_{k}^{\prime}-r_{k}\right| \leq$ $\left(2^{k}-1\right) n \varepsilon_{1}$. It follows that $\left\|\eta_{x}-\eta^{\prime}\right\|_{\ell^{1}(X)} \leq \frac{1}{n} \sum_{k=0}^{n-1} 2^{k} n \varepsilon_{1} \leq 2^{n} \varepsilon_{1}$.

Let $x, x^{\prime} \in X$ such that $d\left(x, x^{\prime}\right) \leq R$. Our objective is now to show that $\left\|\eta_{x}-\eta_{x^{\prime}}\right\|_{1} \leq \varepsilon$. We shall distinguish several cases.
(a) Suppose $x, x^{\prime} \in X_{v}$. Let $\delta_{k}^{\prime}, \theta_{k}^{\prime}$, etc. be the sequences associated to x^{\prime}, defined like δ_{k}, θ_{k}, etc. We first need a

LEmma 9.3. - Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be an increasing function, such that $f(t) \geq t$. There exists $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with the following properties:
(i) $\psi(0)=0$;
(ii) ψ is increasing, $\lim _{t \rightarrow \infty} \psi(t)=+\infty$;
(iii) ψ is 1-Lipschitz;
(iv) $\psi(f(t))-\psi(t) \leq 1$ for all $t \geq 0$.

Proof. - Replacing $f(t)$ by $\int_{t}^{t+1} f(s) d s$, we can suppose f continuous. Then, replacing $f(t)$ by $t+1+\int_{t}^{t+1} f(s) d s$, we can suppose f differentiable, $f^{\prime}(t) \geq 1$ for all $t \in \mathbb{R}_{+}$and $f(0) \geq 1$. Let $t_{n}=f^{n}(0)$. We have $1 \leq t_{1}<\cdots<t_{n} \rightarrow \infty$. Define $\psi(t)=t / t_{1}\left(0 \leq t<t_{1}\right)$, and if $t_{k} \leq t<t_{k+1}, \psi(t)=\psi\left(f^{-k}(t)\right)+k$ for all $k \geq 1$.

We have

$$
d\left(x_{k+1}, x_{k+1}^{\prime}\right) \leq \rho\left(d\left(p\left(x_{k}\right), p\left(x_{k}^{\prime}\right)\right)\right) \leq \rho\left(2+\theta_{k}+\theta_{k}^{\prime}+d\left(x_{k}, x_{k}^{\prime}\right)\right)
$$

TOME $129-2001-\mathrm{N}^{\mathrm{O}} 1$

Let $f_{1}(\theta)=\rho(2+2 \theta+R)$, and define by induction

$$
f_{k+1}(\theta)=\rho\left(2+2 \theta+f_{k}(\theta)\right)
$$

Let $f(\theta)=2 f_{n-1}(\theta)+2 \theta$. By induction on j, we have for $1 \leq j \leq k$,

$$
d\left(x_{j}, x_{j}^{\prime}\right) \leq f_{j}\left(\sup \left(\theta_{k-1}, \theta_{k-1}^{\prime}\right)\right)
$$

Letting $j=k$, we find

$$
\begin{equation*}
2 d\left(x_{k}, x_{k}^{\prime}\right) \leq f\left(\sup \left(\theta_{k-1}, \theta_{k-1}^{\prime}\right)\right) \quad \forall k \geq 1 \tag{9.1}
\end{equation*}
$$

With the function f thus defined, let ψ as in Lemma 9.3. Let us prove

$$
\begin{equation*}
\left|a_{k}-a_{k}^{\prime}\right| \leq\left|a_{k-1}-a_{k-1}^{\prime}\right|+\frac{1}{\psi\left(R_{1}\right)} \tag{9.2}
\end{equation*}
$$

Without loss of generality, we can suppose $\theta_{k-1} \geq \theta_{k-1}^{\prime}$.

- If $\sup \left(\theta_{k}, \theta_{k}^{\prime}\right) \leq f\left(\theta_{k-1}\right)$, then

$$
\theta_{k-1}^{\prime} \leq \theta_{k-1} \leq \theta_{k} \leq f\left(\theta_{k-1}\right), \quad \theta_{k-1}^{\prime} \leq \theta_{k}^{\prime} \leq f\left(\theta_{k-1}\right)
$$

From Lemma 9.3(iv),

$$
\psi\left(\theta_{k-1}^{\prime}\right) \leq \psi\left(\theta_{k}\right) \leq \psi\left(\theta_{k-1}\right)+1, \quad \psi\left(\theta_{k-1}^{\prime}\right) \leq \psi\left(\theta_{k}^{\prime}\right) \leq \psi\left(\theta_{k-1}\right)+1
$$

which implies $a_{k-1}-1 / \psi\left(R_{1}\right) \leq a_{k} \leq a_{k-1}^{\prime}$ and $a_{k-1}-1 / \psi\left(R_{1}\right) \leq a_{k}^{\prime} \leq a_{k-1}^{\prime}$, whence (9.2).

- If $\theta_{k}>f\left(\theta_{k-1}\right)$ and $\theta_{k} \geq \theta_{k}^{\prime}$, then $\theta_{k}>f\left(\theta_{k-1}\right)>\theta_{k-1}$ implies $\delta_{k}=\theta_{k}>$ θ_{k-1}. From Equation (9.1), $\delta_{k} \geq 2 d\left(x_{k}, x_{k}^{\prime}\right)$, hence

$$
\delta_{k}^{\prime} \geq \delta_{k}-d\left(x_{k}, x_{k}^{\prime}\right) \geq \frac{1}{2} \delta_{k} .
$$

We deduce $\theta_{k} \geq \theta_{k}^{\prime} \geq \delta_{k}^{\prime} \geq \frac{1}{2} \delta_{k}=\frac{1}{2} \theta_{k}$, hence $\theta_{k}^{\prime} \leq \theta_{k} \leq 2 \theta_{k}^{\prime} \leq f\left(\theta_{k}^{\prime}\right)$. From Lemma 9.3 (iv),

$$
\psi\left(\theta_{k}^{\prime}\right) \leq \psi\left(\theta_{k}\right) \leq \psi\left(\theta_{k}^{\prime}\right)+1
$$

which implies $a_{k}^{\prime} \geq a_{k} \geq a_{k}^{\prime}-1 / \psi\left(R_{1}\right)$, whence (9.2).

- If $\theta_{k}^{\prime}>f\left(\theta_{k-1}\right)$ and $\theta_{k}^{\prime} \geq \theta_{k}$, then we similarly show

$$
\delta_{k} \geq \frac{1}{2} \delta_{k}^{\prime}, \quad \theta_{k}^{\prime} \geq \theta_{k} \geq \frac{1}{2} \theta_{k}^{\prime}
$$

and $a_{k} \geq a_{k}^{\prime} \geq a_{k}-1 / \psi\left(R_{1}\right)$, whence (9.2).
It follows by induction that

$$
\left|a_{k}-a_{k}^{\prime}\right| \leq \frac{\psi(R)+k}{\psi\left(R_{1}\right)} \leq \frac{\psi(R)+n}{\psi\left(R_{1}\right)}
$$

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

Thus, from Lemma 9.2,

$$
\begin{aligned}
\left\|\eta_{x}-\eta_{x^{\prime}}\right\|_{1} & \leq\left\|\xi_{x}-\xi_{x^{\prime}}\right\|_{1}+\left\|\eta_{x}-\frac{1}{n} \sum_{k=0}^{n-1} c_{k}^{\prime} \eta_{x_{k}}\right\|_{1} \\
& \leq\left\|\xi_{x}-\xi_{x^{\prime}}\right\|_{1}+2^{n} \frac{\psi(R)+n}{\psi\left(R_{1}\right)} \leq \varepsilon^{\prime}+2^{n} n \frac{\psi(R)+1}{\psi\left(R_{1}\right)}
\end{aligned}
$$

(b) The same proof shows that if η_{x} is constructed using another projection $\tilde{p}: X_{v} \rightarrow Y_{v}$ instead of p, then the resulting vector $\tilde{\eta}_{x}$ satisfies

$$
\left\|\eta_{x}-\tilde{\eta}_{x}\right\|_{1} \leq 2^{n} n / \psi\left(R_{1}\right)
$$

(c) Suppose $x^{\prime}=x_{1}$. By definition,

$$
\eta_{x_{1}}=\frac{1}{n} \sum_{k=1}^{n} c_{k}^{\prime} \xi_{x_{k}}
$$

with $\left(c_{k}^{\prime}\right)_{k \geq 1}$ defined as follows. Let $r_{1}^{\prime}=n$, and for $1 \leq k \leq n$,

$$
\begin{aligned}
c_{k}^{\prime} & =\frac{r_{k}^{\prime}}{n-k+1}\left(1+(n-k)\left(1-a_{k}^{\prime}\right)\right), \\
r_{k+1}^{\prime} & =r_{k}^{\prime}-c_{k}^{\prime}=r_{k}^{\prime}\left(\frac{n-k}{n-k+1}\right) a_{k}^{\prime}
\end{aligned}
$$

where $a_{k}^{\prime}=\inf \left(\varphi\left(\delta_{1}\right), \ldots, \varphi\left(\delta_{k}\right)\right)$. Put $a_{0}^{\prime}=1, r_{0}^{\prime \prime}=n$ and for $1 \leq k \leq n-1$, define

$$
\begin{align*}
c_{k}^{\prime \prime} & =\frac{r_{k}^{\prime \prime}}{n-k}\left(1+(n-k-1)\left(1-a_{k}^{\prime}\right)\right) \tag{9.3}\\
r_{k+1}^{\prime \prime} & =r_{k}^{\prime \prime}-c_{k}^{\prime \prime}=r_{k}^{\prime \prime}\left(\frac{n-k-1}{n-k}\right) a_{k}^{\prime}
\end{align*}
$$

Let $\eta_{2}=(1 / n) \sum_{k=0}^{n-1} c_{k}^{\prime \prime} \xi_{x_{k}}$. Since

$$
\left|a_{k}^{\prime}-a_{k}\right|=\left|a_{k}^{\prime}-\inf \left(a_{0}, a_{k}^{\prime}\right)\right|=\sup \left(a_{k}^{\prime}-a_{0}, 0\right) \leq 1-a_{0} \leq \psi(R) / \psi\left(R_{1}\right)
$$

we have from Lemma 9.2

$$
\begin{equation*}
\left\|\eta_{2}-\eta_{x}\right\|_{1} \leq 2^{n} \frac{\psi(R)}{\psi\left(R_{1}\right)} \tag{9.4}
\end{equation*}
$$

Let $s_{k}^{\prime \prime}=r_{k}^{\prime \prime} /(n-k), s_{k}^{\prime}=r_{k}^{\prime} /(n-k+1)$. Since $s_{k+1}^{\prime \prime} / s_{k}^{\prime \prime}=a_{k}^{\prime}=s_{k+1}^{\prime} / s_{k}^{\prime}$, we have $s_{k+1}^{\prime \prime} / s_{k+1}^{\prime}=s_{k}^{\prime \prime} / s_{k}^{\prime}$, so $s_{k}^{\prime \prime} / s_{k}^{\prime}$ is constant equal to

$$
\frac{s_{1}^{\prime \prime}}{s_{1}^{\prime}}=\frac{r_{1}^{\prime \prime}}{n-1} \cdot \frac{n}{r_{1}^{\prime}}=\frac{r_{0}^{\prime \prime} a_{0}^{\prime}}{n} \cdot 1=1
$$

hence, from Equation (9.3),

$$
c_{k}^{\prime \prime}=\frac{r_{k}^{\prime}}{n-k+1}\left(1+(n-k-1)\left(1-a_{k}^{\prime}\right)\right) .
$$

Thus, $c_{k}^{\prime \prime} \leq c_{k}^{\prime} \leq \inf \left((n-k) /(n-k-1) c_{k}^{\prime \prime}, n-k+1\right)$.

Suppose $n \geq 8$, and let $a=n^{1 / 3}$. We have

$$
\begin{align*}
\left\|\eta_{2}-\eta_{x_{1}}\right\|_{1} & \leq \frac{1}{n}\left(c_{0}^{\prime \prime}+\sum_{k=1}^{n-1}\left(c_{k}^{\prime}-c_{k}^{\prime \prime}\right)+c_{n}^{\prime}\right) \\
& \leq \frac{1}{n}\left(1+\sum_{k=1}^{n-1} \inf \left(\frac{c_{k}^{\prime \prime}}{n-k-1}, n-k+1\right)+1\right) \\
& \leq \frac{1}{n}\left(2+\sum_{1 \leq k \leq n-a} \frac{c_{k}^{\prime \prime}}{a-1}+\sum_{n-a<k<n} n-k+1\right) \\
& \leq \frac{1}{n}\left(2+\sum_{1 \leq k \leq n-1} \frac{c_{k}^{\prime \prime}}{a-1}+\sum_{2 \leq \ell \leq n-a} \ell\right) \\
& \leq \frac{1}{n}\left(\frac{n}{a-1}+\frac{a^{2}+3 a+4}{2}\right) \leq 2\left(\frac{1}{a}+\frac{a^{2}}{n}\right) \\
\left\|\eta_{2}-\eta_{x_{1}}\right\|_{1} & \leq 4 n^{-1 / 3} \tag{9.5}
\end{align*}
$$

We conclude from (9.4) and (9.5) that

$$
\begin{equation*}
\left\|\eta-\eta_{x_{1}}\right\|_{1} \leq 4 n^{-1 / 3}+2^{n} \frac{\psi(R)}{\psi\left(R_{1}\right)} \tag{9.6}
\end{equation*}
$$

(d) Suppose $d\left(x, x_{k}\right) \leq R$. Then $k \leq R$, so it follows from (9.6) that

$$
\left\|\eta_{x}-\eta_{x_{k}}\right\|_{1} \leq \frac{4 R}{n^{1 / 3}}+2^{n} \frac{R \psi(R)}{\psi\left(R_{1}\right)}
$$

(e) Finally, let x, x^{\prime} such that $d\left(x, x^{\prime}\right) \leq R$. After possibly changing the projection $p: X_{v} \rightarrow Y_{v}$ into another projection $\tilde{p}: X_{v} \rightarrow Y_{v}$, there exist k, $\ell \in \mathbb{N}$ such that $d\left(x, \tilde{x}_{k}\right) \leq R, d\left(x^{\prime}, \tilde{x}_{\ell}\right) \leq R, \alpha^{k}(v)=\alpha^{\ell}\left(v^{\prime}\right)$ and $d\left(\tilde{x}_{k}, \tilde{x}_{\ell}\right) \leq R$ where $\tilde{x}_{k}, \tilde{\eta}_{x}$, etc. are constructed like x_{k}, η_{x}, etc., but using \tilde{p} instead of p. Putting together cases (a) and (d),

$$
\begin{aligned}
\left\|\tilde{\eta}_{x}-\tilde{\eta}_{x^{\prime}}\right\|_{1} & \leq\left\|\tilde{\eta}_{x_{k}}-\tilde{\eta}_{x_{l}^{\prime}}\right\|_{1}+\left(\left\|\tilde{\eta}_{x}-\tilde{\eta}_{x_{k}}\right\|_{1}+\left\|\tilde{\eta}_{x_{l}^{\prime}}-\tilde{\eta}_{x^{\prime}}\right\|_{1}\right) \\
& \leq\left(2^{n} n \frac{\psi(R)+1}{\psi\left(R_{1}\right)}+\varepsilon^{\prime}\right)+2\left(\frac{4 R}{n^{1 / 3}}+2^{n} \frac{R \psi(R)}{\psi\left(R_{1}\right)}\right)
\end{aligned}
$$

Now, from (b),

$$
\begin{aligned}
\left\|\eta_{x}-\eta_{x^{\prime}}\right\|_{1} & \leq\left\|\tilde{\eta}_{x}-\tilde{\eta}_{x^{\prime}}\right\|_{1}+2\left(\frac{2^{n} n}{\psi\left(R_{1}\right)}\right) \\
& \leq \frac{8 R}{n^{1 / 3}}+2^{n+1} \frac{R \psi(R)}{\psi\left(R_{1}\right)}+2^{n} n \frac{\psi(R)+3}{\psi\left(R_{1}\right)}+\varepsilon^{\prime} \\
& \leq \frac{8 R}{n^{1 / 3}}+2^{n+2} n \frac{R \psi(R)+1}{\psi\left(R_{1}\right)}+\varepsilon^{\prime}
\end{aligned}
$$

bulletin de la société mathématique de france

If we choose $\varepsilon^{\prime}=\frac{1}{4} \varepsilon$, an integer n satisfying $n \geq(16 R / \varepsilon)^{3}$ and R_{1} such that $\psi\left(R_{1}\right) \geq 2^{n+4} n(R \psi(R)+1) / \varepsilon$, then $\left\|\eta_{x}-\eta_{x^{\prime}}\right\|_{1} \leq \varepsilon$.

Theorem 9.4. - Let G be a discrete group acting on a tree, with finite quotient. Then G has property A if and only if the stabilizer of each vertex group has property A.

Proof. - Analogous to [1, Theorem 3.1]. We reproduce here the argument for the reader's convenience. The group G is the fundamental group of a finite graph of groups \mathcal{G}, such that every vertex group has property A (see [15]). From Proposition 4.3, we can suppose that each vertex group G_{v} and each edge group G_{e} is finitely generated.

For each vertex group G_{v} and each edge group G_{e}, we fix a presentation such that the presentation of G_{v} contains the one of G_{e} if $v=e^{+}$or $v=e^{-}$. Denote the standard 2-CW-complex associated to this presentation by X_{v} or X_{e} respectively (recall that it is obtained from a bouquet of loops, one for each generator, and attaching a 2-cell for each relation). Let $f_{e}^{ \pm}: X_{e} \rightarrow X_{e^{ \pm}}$be the cellular maps associated to the homomorphisms $G_{e} \rightarrow G_{e^{ \pm}}$. This defines a graph of spaces over \mathcal{G}, and by definition G is the fundamental group of the total space X.

Let \tilde{X} be the universal cover of X, and $\tilde{X}^{(1)}$ its 1 -skeleton. We shall call vertex spaces (resp. edge spaces) the connected components of the preimage of a space X_{v} (resp. $X_{e} \times[0,1]$) under the projection $\tilde{X}^{(1)} \rightarrow X$. Then $\tilde{X}^{(1)}$ is a tree of spaces, with each vertex space (resp. edge space) isomorphic to the Cayley graph of some G_{v} (resp. G_{e}). (Recall that the Cayley graph associated to a group G and a symmetric system of generators S is the graph whose vertex space is G, and such that g and h are endpoints of a common edge if and only if $g^{-1} h \in S$.)
$\tilde{X}^{(1)}$ is metrized as explained before Proposition 9.1. It is easy to see that G acts freely, cocompactly and by isometries on $\tilde{X}^{(1)}$. By the remark following Lemma 2.1, we are reduced to showing that $\tilde{X}^{(1)}$ has property A: this is true by Proposition 9.1.

The corollaries below are consequences of [15].
Corollary 9.5. - If G and H are countable discrete groups having property A, and K is a group that injects in each, then the amalgamated free product $G *_{K} H$ has property A.

Corollary 9.6. - If G is a countable discrete group with property A, K is a subgroup and $\theta: K \rightarrow \theta(K)$ is an isomorphism, then the HNN extension $\operatorname{HNN}(K, G, \theta)$ has property A.

BIBLIOGRAPHY

[1] Alonso (J.), Bridson (M.) - Semihyperbolic groups, Proc. London Math. Soc., t. 70(3) (1995), no. 1, pp. 56-114.
[2] Anantharaman-Delaroche (C.), Renault (J.) - Amenable groupoids, Monographies de L'Enseignement Mathématique, vol. 36, 2000.
[3] Baum (P.), Connes (A.), Higson (N.) - Classifying space for proper actions and K-theory of group C^{*}-algebras, Contemp. Math., t. 167 (1994), pp. 241-291.
[4] Dixmier (J.) - C ${ }^{*}$-algebras, North-Holland Mathematical Library, 1982.
[5] Eymard (P.) - Moyennes invariantes et représentations unitaires, Springer Lecture Notes in Math., vol. 300, 1972.
[6] Gromov (M.) - Asymptotic invariants for infinite groups, in Geometric Group Theory (G.A. Niblo, M.A. Roller, eds.), Cambridge University Press, 1993, pp. 1-295.
[7] Gromov (M.) - Spaces and questions, Preprint, 1999.
[8] Ghys (E.), De la Harpe (P.) - Sur les groupes hyperboliques d'après Mikhael Gromov, Birkhäuser, 1990.
[9] Gong (G.), Yu (G.) - Volume Growth and Positive Scalar Curvature, Geom. Funct. Anal. 10 (2000), n ${ }^{\circ} 4$, pp. 821-828.
[10] Higson (N.) - Bivariant K-theory and the Novikov conjecture, Preprint, 1999.
[11] Higson (N.), Roe (J.) - A remark on amenable group actions and the Novikov conjecture, Preprint, Penn State, 1999.
[12] De La Harpe (P.), Valette (A.) - La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque 175 (1989), Soc. Math. France, Paris.
[13] Roe (J.) - Index Theory, Coarse Geometry, and Topology of Manifolds, CBMS Regional Conf. Series in Math. 90, Amer. Math. Soc., 1996.
[14] Scott (P.), Wall (T.) - Topological methods in group theory, in Homological group theory (Proc. Sympos., Durham, 1977), 137-203; London Math. Soc. Lecture Note Ser., vol. 36, Cambridge Univ. Press, CambridgeNew York, 1979.
[15] Serre (J.-P.) - Trees, Springer-Verlag, Berlin-New York, 1980.
[16] Skandalis (G.), Tu (J.L.), Yu (G.) - Coarse Baum-Connes conjecture and groupoids, Preprint.
[17] Wassermann (S.) - Exact C^{*}-algebras and related topics, Seoul National University Global Analysis Research Center Lecture Notes 19, 1994.
[18] Yu (G.) - Coarse Baum-Connes Conjecture, K-Theory, t. 9 (1995), pp. 199-221.
[19] Yu (G.) - The Coarse Baum-Connes Conjecture for Spaces Which Admit a Uniform Embedding into Hilbert Space, to appear in Inventiones.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

[^0]: Texte reçu le 10 novembre 1999, révisé le 7 février 2000 et le 11 avril 2000
 Jean-Louis Tu, Université Pierre et Marie Curie, Algèbres d'Opérateurs et Représentations, Institut de Mathématiques (UMR 7586), 4 Place Jussieu, F- 75252 Paris Cedex 05, France. E-mail: tu@math.jussieu.fr • Url:http://www.math.jussieu.fr/~tu/ 2000 Mathematics Subject Classification. - 54E35, 20F32, 19K56, 58G12, 05 C 05.
 Key words and phrases. - Metric spaces, Novikov conjecture, coarse Baum-Connes conjecture.

