Minhyoung Kim
Dinesh S. Thakur
José Felipe Voloch

Diophantine approximation and deformation

<http://www.numdam.org/item?id=BSMF_2000__128_4_585_0>
DIOPHANTINE APPROXIMATION AND DEFORMATION

BY MINHYONG KIM, DINESH S. THAKUR, JOSÉ FELIPE VOLOCH (*)

ABSTRACT. — It is well-known that while the analogue of Liouville's theorem on diophantine approximation holds in finite characteristic, the analogue of Roth's theorem fails quite badly. We associate certain curves over function fields to given algebraic power series and show that bounds on the rank of Kodaira-Spencer map of this curves imply bounds on the diophantine approximation exponents of the power series, with more 'generic' curves (in the deformation sense) giving lower exponents. If we transport Vojta's conjecture on height inequality to finite characteristic by modifying it by adding suitable deformation theoretic condition, then we see that the numbers giving rise to general curves approach Roth's bound. We also prove a hierarchy of exponent bounds for approximation by algebraic quantities of bounded degree.

RESUME. — APPROXIMATION DIOPHANTIENNE ET DEFORMATION. — Alors que l'analogue du théorème de Liouville sur l'approximation diophantienne se conserve en caractéristique finie, il est bien connu que l'analogue du théorème de Roth échoue lamentablement. En associant à des séries de puissances algébriques données certaines courbes sur les corps de fonctions, nous prouvons que des bornes pour le rang de l'application de Kodaira-Spencer de cette courbe impliquent des bornes pour les exposants d'approximation diophantienne de la série, les courbes "génériques" (dans le sens de déformation) donnant les plus petits exposants. Si nous transportons — en ajoutant une condition de déformation appropriée — en caractéristique finie la conjecture de Vojta sur l'inégalité de la hauteur, alors nous voyons que les nombres qui donnent les courbes génériques approchent la borne de Roth. Nous prouvons également une hiérarchie des bornes pour les exposants pour l'approximation par des quantités algébriques de degré borné.

Authors supported in part by NSF and NSA grants.

M. KIM, University of Arizona, Tucson (USA).
Email: Kim@math.arizona.edu and http://www.math.arizona.edu/portraits/kim.html.

D.S. THAKUR, University of Arizona, Tucson (USA).
Email: thakur@math.arizona.edu and http://www.math.arizona.edu/portraits/thakur.html.

J.F. VOLOCH, University of Texas, Austin (USA).
Email: voloch@fireant.ma.utexas.edu and http://rene.ma.utexas.edu/users/voloch.

Keywords: diophantine approximation, deformation, positive characteristic, Kodaira-Spencer, Riccati.

0. Diophantine approximation exponents

0.0. — Let F be a finite field of characteristic p. For β an element of $F((t^{-1}))$ algebraic irrational over $F(t)$ (an algebraic irrational real number, respectively), define its *diophantine approximation exponent* $E(\beta)$ by

$$E(\beta) := \limsup \left(- \frac{\log |\beta - P/Q|}{\log |Q|} \right)$$

where P and Q run over polynomials in $F[t]$ (integers, respectively), the absolute value is the usual one in each case and the limit is taken as $|Q|$ grows.

0.1. — The well-known theorems of Dirichlet and Liouville and their analogues for function fields [M] show that

$$2 \leq E(\beta) \leq d(\beta),$$

where $d(\beta)$ is the algebraic degree of β defined as $[F(t, \beta) : F(t)]$ ($[Q(\beta) : Q]$, respectively). That the diophantine approximation results and in particular, the improvement on the Liouville bound of $d(\beta)$ have interesting implications for the study of related diophantine equations is well-known since the work of Thue, Siegel, etc. For the real number case, the well-known theorem of Roth shows that

$$E(\beta) = 2,$$

but Mahler showed [M] that

$$E(\beta) = d(\beta) = q \quad \text{for} \quad \beta = \sum t^{-q^i},$$

(so that $\beta^q - \beta - t^{-1} = 0$) as a straightforward estimate of approximation by truncation of this series shows. (Here and in what follows q is a power of p.) Osgood [O2] and Baum and Sweet [BS] gave many examples in various degrees. See [T] for the references to other examples.

0.2. — For given $d = d(\beta)$, $E(\beta)$'s form a countable subset of interval $2 \leq x \leq d$. What is it? Does it contain any irrational number? Does it contain all the rationals in the range? In [Sc2] and [T], the following result was proved.

Theorem 1. — Given any rational μ between 2 and $q + 1$, we can find a family of β's (given by explicit equations and explicit continued fractions), with $E(\beta) = \mu$ and $d(\beta) \leq q + 1$.

The question of exact degree of β is easily addressed for explicit families. (For more, see [T].)
1. Differential equations and deformations

1.0. — Osgood [O2] proved that the Liouville-Mahler bound can be improved to (even effectively)

\[E(\beta) \leq \left\lfloor \frac{1}{2} (d(\beta) + 3) \right\rfloor \]

(or rather \(\left\lfloor \frac{1}{2} d(\beta) \right\rfloor + 1 \), see [Sc1] or [LdM1]) for \(\beta \) not satisfying the generalized Riccati differential equation \(\frac{d\beta}{dt} = a\beta^2 + b\beta + c \), with \(a, b, c \in F(t) \). Most known (see e.g., [L] for exceptions) examples \(\beta \), whose continued fraction is known, do satisfy Riccati equation and indeed \(\beta \) is an integral linear fractional transformation of \(\beta^q \). What is the range of exponents for \(\beta \) not of this form?

1.1. — In [V2], [V3] there is an observation (for the lack of a better reference, we provide a proof of this in the appendix) that the Riccati condition is equivalent to the vanishing of Kodaira-Spencer (we write KS in short-form) class of projective line minus conjugates of \(\beta \). Hence, it may not be too wild to speculate that it might be possible to successively improve on Osgood’s bound, if we throw out some further classes of differential equations coming from the conditions that some corresponding Kodaira-Spencer map (or say the vector space generated by derivatives of the cross-ratios of conjugates of \(\beta \)) has rank not more than some integer. It should be also noted that even though the KS connection holds in characteristic zero, analogue of Roth’s theorem holds in the complex function field case. The Osgood bound still holds (conjectured in [V1], proved in [LdM1] and again in [LdM2]) by throwing out only a subclass given by ‘Frobenius’ equation

\[\beta^q = \frac{a\beta + b}{c\beta + d}. \]

This might be the best one can get. Similarly, the differential equation hierarchy suggested above might have some corresponding more refined hierarchy.

2. Height inequalities for algebraic points

2.0. — Though we have not succeeded yet in improving the Osgood bound unconditionally, by throwing out more classes of numbers (we want good conditions like Osgood rather than a trivial way of obtaining this by throwing solutions of \(y^j = P_k(y) \), where \(P_k \) is a polynomial of degree \(k \), for \(j \leq k \leq d \) to force exponents to be less than \(j \) via the Kolchin theorem [O1] on denomination, combined with the proposition of page 762 of [Sc1]), we prove existence of hierarchies, given by deformation theoretic conditions, of bounds, using results of [K], which we now recall: Let \(X \) be a smooth projective surface over a perfect
field k. Assume that X admits a map $f : X \to S$ to a smooth projective curve S defined over k, with function field L in such a way that the fibers of f are geometrically connected curves and the generic fiber X_L is smooth of genus $g \geq 2$. Consider algebraic points $P : T \to X$ of X_L, where T is a smooth projective curve mapping to S (such that the triangle commutes). Define the canonical height of P to be

$$h(P) := \deg P^*\omega_{X/S} = \frac{\langle P(T) \cdot \omega \rangle}{[K(P(T)) : L]},$$

where

$$\omega = \omega_X := K_X \otimes f^*K_S^{-1}$$

denotes the relative dualising sheaf for $X \to S$. This is a representative for the class of height functions on $X_L(L)$ associated to the canonical sheaf K_{X_L}. Define the relative discriminant to be

$$d(P) := \frac{2g(T) - 2}{[T : S]} = \frac{2g(P(T)) - 2}{[K(P(T)) : L]}.$$

The Kodaira-Spencer map is constructed on any open set $U \subset S$ over which f is smooth from the exact sequence

$$0 \to f^*\Omega^1_U \to \Omega^1_{X_U} \to \Omega^1_{X_U/U} \to 0,$$

by taking the coboundary map

$$KS : f_*\Omega^1_{X_U/U} \to \Omega^1_U \otimes R^1f_*(\mathcal{O}_{X_U}).$$

Theorem 2 (see [K]).

1) Suppose the KS map of X/S (defined on some open subset of S) is non-zero. Then

$$h(P) \leq (2g - 2)d(P) + O(h(P)^{1/2}) \quad \text{if } g > 2.$$

If $g = 2$, then

$$h(P) \leq (2 + \epsilon)d(P) + O(1).$$

2) Suppose the KS map of X/S has maximal rank, then

$$h(P) \leq (2 + \epsilon)d(P) + O(1).$$

2.1. — The inequality in 2) was proved [Voj2] in the characteristic 0 function field analogue, without any hypothesis, by Vojta, who also conjectured [Voj1] the stronger inequality with 2 replaced by 1 in the number field (and presumably also in the characteristic 0 function field) case.

2.2. — Modifying the proof in [K] of Theorem 2, we get an hierarchy of bounds:
Claim. — If the rank of the kernel of the KS map is $\leq i$, then we have

$$h(P) \leq \left[\max \left(\frac{2g-2}{g-i}, 2 \right) + \epsilon \right] d(P) + O(1), \quad (0 \leq i < g).$$

(Note that the maximum is 2 only for $i = 0, 1$.)

Proof. — To be consistent with the notation of [K], we change notation in 2.2 only: let F to be the function field of S and L to be a line bundle. The claim follows by combining the last displayed inequality in the proof of Theorem 1 of [K] with the argument in the proof of Theorem 2 connecting $\deg(G_P)$ to the rank of the kernel of the KS map.

In more detail, in [K], we have constructed a finite collection of exact sequences

$$0 \to L \to \Omega_X \to G \to 0$$

such that all points $P : T \to X$ not satisfying $h(P) \leq (2 + \epsilon)d(P) + O(1)$ will be tangential to some L, i.e., the composed map

$$0 \to L \to \Omega_X \to P_*\Omega_T$$

will be zero, which implies that there is a non-zero map $P^*G \to \Omega_T$ giving us an inequality $h_G(P) \leq d(P)$ for the height with respect to G. The bound

$$\left[\frac{2g-2}{g-i} + \epsilon \right] d(P) + O(1)$$

for the canonical height follows from comparing the two heights using a lower bound for the degree of G_P. That is,

$$\deg G_F = 2g - 2 - h^0(L_F) + h^1(L_F) - g + 1$$

$$\geq g - 1 - i + h^1(L_F) \geq g - i.$$

This follows from two facts: First, consider the exact sequence

$$0 \to \Omega_F \to H^0((\Omega_X)_F) \to H^0((\omega_X)_F) \to H^1(\mathcal{O}_{X_F}) \otimes \Omega_F$$

appearing in the definition of the KS map (the last arrow). Any subspace of $H^0((\Omega_X)_F)$ not contained in Ω_F contributes to the kernel of KS. Now, if $\deg L_F \leq 0$, then $\deg G_F \geq 2g - 2$. So we may assume $\deg L_F > 0$. But, then L_F is not contained in $f^*\Omega_F$ (which has degree zero) and hence intersects with it trivially (because both are saturated subsheaves of $(\Omega_X)_F$). Thus, $H^0(L_F) \cap \Omega_F = 0$ and $H^0(L_F)$ injects into the kernel of the KS map. Thus,
we get $h^0(L_F) \leq i$ by assumption. On the other hand, since L_F is not contained in f^*Q_F, it must possess a non-trivial map to ω_{X_F} from which we get that L_F is special, i.e., $h^1(L_F) \geq 1$.

For heights, we therefore get

$$h(P) \leq \left[\frac{2g-2}{g-1} + \epsilon\right] h_{G}(P) + O(1) \leq \left[\frac{2g-2}{g-1} + \epsilon\right] d(P) + O(1).$$

More precise knowledge of jumps in the bounds would depend on the fine gap structure for G_F.

2.3. — It would be of interest to have a nice geometric condition that would allow us to extend to all points the bounds we get for degenerate points, since this would give us better than a $2+\epsilon$ bound (namely, $2 - 2/g + \epsilon$) in the maximal rank case. But the argument for general points at the beginning of [K] cannot be improved with the techniques of that paper. We also do not know whether the points we use below are degenerate or not.

3. Exponent hierarchy

3.0. — We now apply this theorem to get bounds on the exponents for the diophantine approximation situation by associating to $\beta = \beta(t)$ some curves X over $F(t)$ and associating to its approximations some algebraic points P on them. Let

$$f(x) = \sum_{i=0}^{d} f_i x^i$$

be an irreducible polynomial with $\beta = \beta(t)$ as a root and with $f_i \in F[[t]]$ being relatively prime. Let

$$F(x, y) = y^d f(x/y)$$

be its homogenization (there should be no confusion with the field F).

3.1. — Assume p does not divide d. Let X be the (projective) Thue curve with its affine equation $F(x, y) = 1$. Given a rational approximation x/y (reduced in the sense that $x, y \in F[[t]]$ are relatively prime) to β, with $F(x, y) = m(t)$, we associate the algebraic point $P = (x/m^{1/d}, y/m^{1/d})$ of X. Both F_x and F_y are not simultaneously zero on $F = 1$ by Euler’s theorem on homogeneous functions and at infinity there are d distinct points given by $F(x, 1) = 0$, so that X is non-singular and Theorem 2 can be applied. Then

$$g = \frac{1}{2} (d-1)(d-2),$$

so that $2g - 2 = d^2 - 3d$, and $[K(P(T)) : L] = d$. Note that $g \geq 2$ implies that $d \geq 4$, which implies $g \geq 3$.

TOME 128 — 2000 — N° 4
Now the naive height of P is $\deg(y)$ (if $\deg(x)$ is bigger than $\deg(y)$, it differs by the fixed $\deg(\beta)$, so the difference does not matter below, similarly we ignore ϵ's which do not matter at the end). Hence
\[
h(P) + O(h(P)^{1/2}) = \frac{(2g - 2)\deg(y)}{d} = (d - 3)\deg(y).
\]

Let $e = E(\beta)$. We want upper bounds for e. If x/y is an approximation approaching the exponent bound, then degree of the polynomial $m(t)$ is asymptotically (as $\deg(y)$ tends to infinity) $(d - e)\deg(y)$. Since $K(P)$ over L is totally ramified at zeros of m and at infinity, by the Riemann-Hurwitz formula, we have (since p does not divide d)
\[
2g(P) - 2 \leq -2d + ((d - e)\deg(y) + 1)(d - 1),
\]
which is asymptotic to $(d - e)(d - 1)\deg(y)$.

Hence under the maximal rank hypothesis, the theorem gives us
\[
d - 3 \leq \frac{2(d - 1)(d - e)}{d}.
\]
This simplifies to $e \leq d/2 + d/(d - 1)$, which is slightly worse than Osgood bound, but approaches it for large even d.

3.1.2. — Also note that if Vojta’s conjectured inequality is assumed to hold in characteristic p under the maximal rank hypothesis (this may be reasonable to do, taking into account parallel results (Remark 1 above) in the two cases), we get $e \leq 2d/(d - 1)$, which tends to the Roth bound 2 as d tends to infinity.

3.2. — Let X have affine equation $y^k = f(x)$, with k relatively prime with p and d. Corresponding to a (reduced) approximation x/z, let $P = (x/z, (m/z^d)^{1/k})$, where $m = F(x, z)$. Then by Riemann-Hurwitz (as p does not divide k), we have $g = \frac{1}{2}(d - 1)(k - 1)$, so that
\[
2g - 2 = (d - 1)(k - 1) - 2,
\]
and $[K(P(T)) : L] = k$. We assume that $g > 1$.

Now the naive height is $\deg(z)$ ($\deg(x)$ differs by an additive constant, so it does not matter which is bigger). Hence the $h(P) + O(h(P)^{1/2})$ is
\[
\frac{(d - 1)(k - 1) - 2}{k}
\]
times that.
Now zeros of \(m \) and \(z \) can ramify totally, so that Riemann-Hurwitz (as \(p \) does not divide \(k \)) gives (for approximation approaching the exponent bound)

\[
2g(P) - 2 \leq -2k + (1 + d - e)(k - 1)\deg(z),
\]

which is \((1 + d - e)(k - 1)\deg(z)\) asymptotically. Hence under the maximal rank hypothesis, the theorem gives \((d - 1)(k - 1) - 2 \leq 2(1 + d - e)(k - 1)\), which simplifies to

\[
e \leq \frac{1}{2}(d + 3) + \frac{1}{k - 1}.
\]

This is again worse than, but asymptotic to, Osgood bound.

3.2.2. — In this case, if we assume Vojta’s bound under the maximal rank hypothesis, then we get \(e \leq 2 + 2/(k - 1) \) again approaching Roth bound, this time with \(k \) approaching infinity. So we can say that \(e = 2 \) under the maximal rank hypothesis and assuming the corresponding modification of Vojta’s conjecture.

4. Approximation by algebraic functions of bounded degree

4.0. — Similar ideas can be used to study approximation of \(\beta \) by algebraic functions of lower degree in the spirit of Wirsing’s theorem [Sc3]. The setting is as follows: Let \(\beta \) as before of degree \(d \) over \(F(t) \). Now we want to see how close \(\beta \) can be to \(\alpha \) of degree \(r < d \) over \(F(t) \). Let \(\alpha \) have height \(H \) and be such that \(-\log|\beta - \alpha|/H\) is close to \(e \). We use the curves from 3.2: \(y^k = f(x) \) and the point \(P = (\alpha, f(\alpha)^1/k) \) and \([F(t)(P) : F(t)] = kr\) now. Then

\[
h(P) = \frac{((d - 1)(k - 1) - 2)H}{kr}
\]

by the same calculation as before. Also the ramification of \(K(P) \) over \(K(\alpha) \) (where \(K = F(t) \)) is bounded by \((1 + d - e)(k - 1)H\). So by Riemann-Hurwitz

\[
2g(P) - 2 < k(2g(\alpha) - 2) + (1 + d - e)(k - 1)H,
\]

where \(g(\alpha) \) is the genus of \(K(\alpha)/F \). To bound \(g(\alpha) \) apply the Castelnuevo inequality to \(K(\alpha) \) viewed as the compositum of \(F(t) \) and \(F(\alpha) \) both function fields of genus 0 together with \([K(\alpha) : F(t)] = r, [K(\alpha) : F(\alpha)] = H\). So

\[
g(\alpha) < Hr \quad \text{and} \quad 2g(P) - 2 < 2krH + (1 + d - e)(k - 1)H.
\]

Finally, we can apply Theorem 2, provided the Kodaira-Spencer map is of maximal rank and get

\[
\frac{(d - 1)(k - 1) - 2)H}{kr} < \frac{(2 + \epsilon)(2krH + (1 + d - e)(k - 1)H)}{kr} + O(1).
\]
Now divide by H and make H big and ϵ small, obtaining
\[
\frac{(d-1)(k-1) - 2}{kr} \leq \frac{2(2kr + (1 + d - \epsilon)(k-1))}{kr}.
\]
The last inequality gives a bound for ϵ in terms of d, r and k. If we can take k arbitrarily large it gives $\epsilon \leq \frac{1}{2} (d + 3 + 4r)$. Of course this is only interesting when $r < \frac{1}{4}(d - 3)$ but it seems that other methods that yield improvements on Liouville’s inequality, such as Osgood’s, do not give anything in this setting.

4.0.2. — In this case, our finite characteristic version of Vojta’s conjecture gives (under the maximal rank condition) $\epsilon \leq 2r + 2$, for $r > 1$.

5. Explicit formulas

5.0. — Now we turn to calculation of Kodaira-Spencer matrix and explicit formulae for the rank conditions.

5.1. — For X as in 3.1, the basis for holomorphic differentials is
\[
\omega_{(a,b)} = x^a y^b (dx/Fy),
\]
with $a, b \geq 0$ and $a + b \leq d - 3$: Differentiating $F = 1$ (treating t as a constant for now), we get
\[
F_x dx + F_y dy = 0,
\]
hence $dx/Fy = -dy/Fx$. Since F_x and F_y are not simultaneously zero, one has only to look at poles at infinity. Since dx has order two pole and F_y has order $d - 1$ pole there, the claim follows.

Since $F_x dx + F_y dy + F_t dt = 0$, the relative differential dx/Fy has good liftings: dx/F_y in the open set U_1 where $F_y \neq 0$ and $-dy/F_x$ in the open set U_2 where $F_x \neq 0$. By our assumptions U_1 and U_2 cover X and Cech cohomology computation shows that the map
\[
KS : H^0(\Omega^1_{X/S}) \rightarrow H^1(\mathcal{O}_X) \otimes \Omega^1_S
\]
sends dx/F_y to $F_t dt/(F_x F_y)$. Hence $x^a y^b dx/F_y$ is sent to $x^a y^b F_t dt/(F_x F_y)$.

We calculate the $g \times g$ matrix $M = (m_{ij})$ of the KS map in the basis above: If P_k’s are zeros of F_y, i.e. points in the complement of U_1, then since the Serre duality sends a differential on $U_1 \cap U_2$ to the sum of its residues at P_k’s (if we use U_2 instead, we get negative of this: it is well-defined only up to a sign), we have
\[
m_{(a,b)(r,s)} = \sum_k \text{Res}_{P_k} \left(\frac{x^{a+r} y^{b+s} F_t dt}{F_x F_y} \right) \in \Omega^1_S.
\]
5.2. — In the situation of 3.2, now \(x \) has degree \(k \) and \(y \) has degree \(d \), so that \(x^j \frac{dx}{y^i} \) is holomorphic, as long as \(0 < j < k \) and \((i + 1)k + 1 \leq jd\). Note that

\[
\sum_{j=1}^{k-1} \left(\frac{j^d - 1}{k} \right) = \sum_{j=1}^{j^d} \frac{j}{k} - \sum_{j=1}^{j^d} \frac{j}{k} = \frac{1}{2} \frac{k^d - 1}{k} - \frac{1}{2} \frac{k^d - k}{k} = g,
\]

since \(k \) and \(d \) are relatively prime. Since these differentials are linearly independent, they give the basis of the holomorphic differentials.

Since

\[
ky^{k-1} \frac{dy}{f_{x}} = f_{x} \frac{dx}{f_{x}} + f_{t} \frac{dt}{f_{x}},
\]

\(\frac{dx}{y^i} \) has good liftings: \(\frac{dx}{y^i} \) in the open set \(U_1 \) where \(y \neq 0 \) and \(ky^{k-i} \frac{dy}{f_{x}} \) in the open set \(U_2 \) where \(f_{x} \neq 0 \). By our assumptions \(U_1 \) and \(U_2 \) cover \(X \). The KS map sends \(x^j \frac{dx}{y^i} \) to \(x^j \frac{dt}{f_{x} y^i} \).

Similar calculation then gives

\[
m_{i,j}(t,n) = \sum_{s} \text{Res}_{P_{s}} \left(\frac{x^{i+j} f_{t} \frac{dx}{y^{j+n} f_{x}}} \right) \frac{dt}{f_{x}}
\]

where \(P_{s} \) are now zeros of \(y \), i.e. the conjugates of \(\beta \). In the hyper-elliptic case \(k = 2 \) (so that \(d \) and \(p \) are odd), this simplifies to

\[
m_{i,j} = \sum_{s} \text{Res}_{P_{s}} \left(\frac{x^{i+j} f_{t} \frac{dx}{y^{2} f_{x}}} \right) \frac{dt}{2 f_{x} (P_{s})^2}
\]

since \(y^2 = f(x) \), so that \(f/(x - P_{s})|_{P_{s}} = f_{x}(P_{s}) \) and the fact that \(x - P_{s} \) is of degree 2 gives rise to the factor of 2.

6. Remarks and questions

6.0. — If \(\beta \) satisfies a rational Riccati equation, then we know that the KS class of

\[
Y := \text{the projective line minus the Galois orbit of } \beta
\]

is zero and hence \(Y \) is defined over \(F(t^p) \). So for appropriate models, we have \(f_{t} = F_{t} = 0 \) and since KS is independent of co-ordinates and separable base change, we see that KS is zero in this case for the examples in 3.1 and 3.2. In other words, KS is non-zero implies ‘not Riccati’ and hence our inequalities, using Theorem 2, follow by Osgood’s result proved under weaker hypothesis. Hence, the hierarchy given in 2.2, does not give any new hierarchy in that case unconditionally (except possibly in Wirsing-type result above as well as in
approximation results on non-rational base field that we get using non-rational base S in Theorem 2, where there are no earlier results), though it suggests that there is such hierarchy conjecturally, giving Vojta’s inequality under the maximal rank. What are the best inequalities one can conjecture? (It is not just half the bound, because that would be Roth for $g = 2$, on just ‘not Riccati’ hypothesis, and that is known to be false by the examples in [V2]). For the height inequalities, multiplier $2g - 2$ would be best under non-zero KS and 1 would be best under the maximal rank. (So we understand $g = 2$ at least). What would be the best multipliers in between? Are they obtained by interpolating reciprocal-linearly as in 2.2?

6.1. — One can ask the similar question for the exponent hierarchy: But here different association of curves seem to lead to different conditions and bounds and the correct formulation is still unclear (even whether the hierarchy is finite or infinite), except it is likely that the maximal rank (‘generic’) gives the exponent 2 and KS non-zero would give some exponent between $\frac{1}{2}d$ (attained by examples of [V2]) and Osgood bound. In this context, note that the condition that KS vanishes is independent of k. Is the maximal rank condition (or the whole hierarchy for that matter) also independent of k? Explicit calculation in 5.2 might help in deciding this.

6.2. — It is well-known that general curves have maximal rank KS, but though most of our curves (namely Thue curves for irreducible polynomials and super-hyperelliptic curves with branch points consisting of Galois orbit together with infinity) are most probably of maximal rank, since bounding a rank would give a differentially closed condition, this has not been established. As a simple example, if we are in characteristic 2 and β of degree 4 is given by

$$\beta^4 + a\beta^3 + b\beta^2 + c\beta + d = 0,$$

then KS is zero (i.e. β satisfies Riccati) implies $ac' = a'c$. Now, if we can show for any d, k (sufficiently large), p that there is at least one curve $y^k = f(x)$, with $\text{deg } f = d$ in characteristic p with maximal rank KS, then it is easy to show that most do: The coefficients of f satisfy a differential equation, which can be turned into an algebraic equation by writing each coefficient

$$a = \sum_{0}^{p-1} a_i^t t^i,$$

so getting an algebraic equation on the a_i which is not identically zero so it is not satisfied by most a_i. Our explicit calculations of KS maps may help construct such examples, but it has not been done yet.
6.3. — We have optimistically suggested that Vojta inequality would hold in finite characteristic under the maximal KS rank hypothesis, but it may be that higher order deformation theory is needed for that.

7. Riccati and cross-ratios

7.0. — Finally, we record the proof of the claim on Riccati connection (Note that vanishing of KS (i.e. having no infinitesimal deformations of first order) is equivalent in this case to vanishing of derivatives of all cross ratios of 4 conjugates): Let \(\beta \in F((1/t)) \) be algebraic (and so automatically separable) of degree \(d \) over \(F(t) \), with

\[
\beta^d + b_{d-1}(t)\beta^{d-1} + \cdots = 0.
\]

Implicit differentiation gives

\[
\beta' = a_n\beta^n + \cdots + a_0, \quad a_i \in F(t), \quad a_n \neq 0, \quad n \leq d - 1.
\]

Claim. — \(n = 2 \), i.e. \(\beta \) satisfies the rational Riccati equation \(\beta' = a\beta^2 + b\beta + c \), with \(a, b, c \in F(t) \) if and only if the cross ratio of any four conjugates of \(\beta \) has zero derivative.

Proof. — The derivative of the cross-ratio of \(\beta, \beta_1, \beta_2, \beta_3 \) being zero is equivalent to

\[
\frac{\beta' - \beta'_1}{\beta - \beta_1} + \frac{\beta'_3 - \beta'_2}{\beta_3 - \beta_2} - \frac{\beta' - \beta'_2}{\beta - \beta_2} - \frac{\beta'_3 - \beta'_1}{\beta_3 - \beta_1} = 0.
\]

Now conjugates \(\beta_i \) of \(\beta \) also satisfy (1). Hence

\[
\frac{\beta'_i - \beta'_j}{\beta_i - \beta_j} = a_n \frac{\beta^n_i - \beta^n_j}{\beta_i - \beta_j} + \cdots + a_2 \frac{\beta^2_i - \beta^2_j}{\beta_i - \beta_j} + a_1.
\]

If \(a_n = 0 \) for \(n \geq 3 \), the left hand side of (2) then reduces to

\[
a_2 ((\beta + \beta_1) + (\beta_3 + \beta_2) - (\beta + \beta_2) - (\beta_3 + \beta_1)),
\]

which is zero. This proves the ‘only if’ statement.

The ‘if’ statement will be proved by a contradiction: So we fix any three conjugates \(\beta_1, \beta_2, \beta_3 \) and assume that for any other conjugate \(\beta \) we have

\[
\sum_{m>2} a_m \left(\frac{\beta^m - \beta_1^m}{\beta - \beta_1} + \frac{\beta^m_3 - \beta_2^m}{\beta_3 - \beta_2} - \frac{\beta^m - \beta_2^m}{\beta - \beta_2} - \frac{\beta^m_3 - \beta_1^m}{\beta_3 - \beta_1} \right) = 0.
\]
Now \(\frac{\beta_m - \beta^m}{\beta - \beta_1} = \sum_{i+j=m-1} \beta^i \beta^j_1 \) and
\[
\beta^i \beta^j_1 + \beta^k_3 \beta^k_2 - \beta^i \beta^k_2 - \beta^k_3 \beta^k_1 = (\beta - \beta_3) \left[\frac{\beta^k_1 \beta^j - \beta^j_1 \beta^k_1}{\beta - \beta_3} - \beta^k_2 \frac{\beta^j - \beta^j_2}{\beta - \beta_3} \right],
\]
so that taking out the non-zero factor \((\beta - \beta_3)(\beta_1 - \beta_2)\) we get
\[
0 = \sum_{m>2} a_m \left[\sum_{j,k \geq 0} \frac{\beta^j - \beta^j_3}{\beta - \beta_3} \frac{\beta^k - \beta^k_2}{\beta - \beta_2} \right].
\]
Now the quantity between the square brackets is just \(\sum \beta_i \cdots \beta_{i_{m-3}} \), where each \(\beta_i \) is one of the four conjugates. Hence we get
\[
0 = a_n \sum \beta_i \cdots \beta_{i_{n-3}} + a_{n-1} \sum \beta_{i_{1}} \cdots \beta_{i_{n-4}} + \cdots + a_3.
\]

The coefficient of \(a_n \) is of degree \(n - 3 \) in \(\beta_i \)'s. Subtracting a similar equation that one obtains when \(\beta \) is replaced by another conjugate \(\tilde{\beta} \), and taking out the non-zero factor \(\beta - \tilde{\beta} \) we get another equation with degrees dropping by one. Continuing in this fashion with other conjugates (there are \(d - 4 \geq n - 3 \) of them), we get \(a_n = 0 \), a contradiction.

Acknowledgments. — The second author would like to thank Nitin Nitsure and Nicholas Katz for helpful conversations about the deformation theory. He would also like to thank Tata Institute of Fundamental Research where he visited while this research was carried out.

Note added in proof. — In 4.0, if we use the exact Castelnuovo bound \(g(\alpha) \leq (H-1)(\gamma-1) \) in the place of the weaker version \(g(\alpha) < H\gamma \) there, then we get improvements \(e \leq 2\gamma + \frac{1}{2} (d-1) \) in 4.0 and \(e \leq 2\gamma \) in 4.0.2.

BIBLIOGRAPHY

