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POINCARE DUALITY FOR

k-A LIE SUPERALGEBRAS

BY

SOPHIE CHEMLA (*)

RESUME. — Soit A une fc-superalgebre associative supercommutative avec unite et
soit £ une /c-A-superalgebre de Lie. A partir de ces donnees, on peut construire une su-
peralgebre d^operateurs differentiels V(A, <2) (generalisant la superalgebre enveloppante
d^une superalgebre de Lie). Supposons que Ie corps de base soil de caracteristique 0
et que £ soil un A-module projectif de type fini. Le but de cet article est d'etudier la
dualite de Poincare pour les complexes de V(A, £)-modules a gauche. Nous verrons que
la dualite de Poincare est satisfaite pour les complexes qui admettent une resolution
projective finie. En utilisant notre resultat, nous demontrons des proprietes de dualite
pour les representations induites de superalgebres de Lie. En particulier, nous montrons
que, sous certaines hypotheses de finitude, le Ext-dual d'une representation induite est
une representation induite.

ABSTRACT. — Let A be a supercommutative associative fc-superalgebra with unity
and let £ be a k-A Lie superalgebra. From these data, one can construct a superalgebra
of differential operators V(A, £) (generalizing the enveloping superalgebra of a Lie
superalgebra). Assume that the ground field is of characteristic 0 and that S, is a
finitely generated projective A-module. The goal of this article is to study Poincare
duality for complexes in the derived category of left V(A, £)-modules. We will see
that Poincare duality holds for complexes which are quasi-isomorphic to a bounded
complex consisting of projective modules. Applying our result, we prove some duality
properties for induced representations of Lie superalgebras. In particular, under some
finiteness conditions, we show that the Ext-dual of an induced representation is an
induced representation.
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372 S. CHEMLA

1. Introduction
We will denote by A; a field of characteristic 0. Let A be a supercom-

mutative J^-superalgebra associative with unity. Let £ be a k-A-Lie su-
peralgebra. By definition, £ is endowed with a A:-Lie superalgebra struc-
ture and an A-module structure. Moreover, these two structures are com-
patible in a certain sense. These data allow us to define a superalgebra
V(A,£) of differential operators generalizing the enveloping superalge-
bra of a Lie superalgebra (see [F, p. 125]). The description of V(A,£)
by generators and relations is similar to the description of a superal-
gebra of differential operators on a supermanifold. Assume that £ is
a finitely generated projective A-module. I show that there is a corre-
spondence (analogous to the Bernstein's correspondence for D-modules)
(see [P]) between complexes of left V(A, £)-modules and complexes of
right V(A, £)-modules. This correspondence involves the Berezinian com-
plex of /C* which we denote by f^. Let X* be a bounded below com-
plex of left V(A, £)-modules. Then, with standard notations (see [Bo]),

we define (X*0A ̂ *) 0 A and RjjR7 Hom^A £) (A, X9). Using a reso-
V(A,£)

lution of A (analogous to the Koszul resolution), we construct a functorial
L

morphism ^(X9) from (X^A ̂ ') ^) A to RjjRj Homv(A,£)(A,X').
V(A,£)

If X9 is quasi-isomorphic to a bounded complex of projective modules,
then ^(X*) is an isomorphism which establishes the Poincare duality.

Using our result, we prove some duality properties for induced rep-
resentations of Lie superalgebras. More precisely, we get the following
statements.

THEOREM 7.0.1. — Let Q be a k-Lie superalgebra and let () and t be two
finite dimensional Lie sub superalgebras of Q. Let V (respectively W) be a
finite dimensional ^-module (respectively t-module). Put diml)o = ̂ o ^d
dim^o = so- Then^ if V* (resp. W*) denotes the contragredient module
ofV (resp. TV), for all n in Z, we have

Ex%° (U(Q) ̂ uw V. U(Q) ̂ uw W)

^ Ext^°((iy*0Ber(r)) ̂ ) ^(0), (y*0Ber(t)*)) ^uw ^(0)),

where in the left hand side (res. right hand side) the Ext is taken over left
(resp. right) U(o)-modules.

A. GYOJA [G] and G. ZUCKERMAN [B-C] showed a particular case of
this theorem under some strong assumptions over 9 and (). D. H. COLLING-
WOOD and B. SHELTON proved also a duality property of this type but in a
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POINCARE DUALITY FOR k-A LIE SUPERALGEBRAS 373

slightly different context (see [C-S]). Moreover, the THEOREM 7.0.1 allows
us to recover a duality result of M. DUFLO [D2].

If t = {0} and W = {0}, we have a more precise result.

THEOREM 7.0.5. — Let Q be a k-Lie superalgebra and let () be a finite
dimensional Lie sub superalgebra O/Q. Let V be a finite dimensional U{^)-
module. Put ho = dimf)o.

(a) Ifn + h^ then Ext^(l/(s) 0^) V, U{Q)) = {0}.

(b) The right U(Q)-modules

Ext^(£/(g) (S)uw V,U^}} and (V^Bev^)) (S)uw u^

are isomorphic.

This result has been proved by K.A. BROWN and T. LEVASSEUR
[B-L, p. 410] and by G.R. KEMPF [K] in the case where Q is a finite
dimensional semi simple Lie algebra and ?7(g) ̂ >u(^ ̂  is a Verma module.

Notations
For most of the definitions about supermathematics, we refer the reader

to [LI]. Here k will be a field of characteristic zero. We will denote by 0
and 1 the elements of Z/2Z. We will call superspace a A;-vector space
graded over Z/2Z, V = VQ (B V\. Let V and W be two superspaces.
If / is a morphism of degree i from V to W and if v is in Vj, we put
(v^f) = (—l)^/(-y). If V is a superspace, one defines the superspace HV
which, as a vector space, is equal to V but whose grading is (Iiy)o = V^
and (Iiy)i = VQ. Let us introduce the map TT : V —> HV which, as a
morphism of vector spaces, is equal to the identity. It is of degree 1. The
symmetric superalgebra of V will be denoted by S(V).

Let A be an associative supercommutative superalgebra with unity and
let M be an A-module. A basis of M is a family (m^)^jnj ^ M^ x M^
such that each element of M can be expressed in a unique way as a linear
combination of the (m^)^juj- If I and J are finite, their cardinalities are
independent of the basis of the A-module M. Then, the dimension of M
over A is the element |J|+e|J| ofZ[e]/(62—!). If(ei , ...,e^) is a basis of the
A-module M, then the family (e1,..., e71) where (e^, e3) = Sij for i ̂  j is a
basis of HomA(M, A) called the dual basis of (ei,..., en)- Moreover, if M
is an A-module, then TIM has a natural A-module structure defined by :

Vm € M, Va € A, a ' Trm = (-l)1"1^ • m).
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374 S. CHEMLA

We will only consider localization with respect to even multiplicative
systems. Let S be a multiplicative system of AQ, then Ms will denote the
localized module with respect to S. If p = po ®Pi is a prime ideal (resp. /
an element of Ao), then Mp (resp. Mf) will denote the localization of M
with respect to the multiplicative system AQ — po (resp. {/n n G N}).

Let A be an abelian category of objects graded over Z/2Z. We will
adopt the following conventions for the complexes : we require that
the differentials defining the complexes be odd whereas the morphisms
between complexes have to be even. If u is a morphism from X9 to V, we
will denote by jr(u) the morphism it induces from 7P(X') to H^(Y*).
In the diagrams, a quasi-isomorphism will be denoted by the sign « ~))
on the arrows « ̂  )) whereas an isomorphism will be denoted by a double
arrow «<-^ ». In a cohomology module, we will denote by « [m] » the class of
the element m. If M is an object of A and n an integer, M[—n] will be the
complex concentrated in degree n and whose n-th component is M. We
will denote by 'D(A) the derived category of A. One can also define T)~(A).

If A is an abelian category, A° will denote the opposite category. If B
is an associative superagebra with unity, then ^M (resp. Ma) will be the
category of graded left (resp. right) B-modules.

If ((C^'9)^, di, d2) is a double complex, then (Tot((7**), d) will denote
the total complex associated to (7**. So we have :

Tot^-)71 = Q) C^ and d = di + d2.
i-\-j-=n

Let a be a k-Lie superalgebra. We will write U(d) for its enveloping
superalgebra and A for the coproduct in U{a). If M is a left U(d)-
module, then M* will be the contragredient module. Let now Q be a Lie
superalgebra and () be a Lie subsuperalgebra. Let V (resp. W) be a left
(resp. right) l/(i))-module. We will denote by Ind^V) (resp. IND^(IV))
be the left (resp. right) [7(g)-module ^(^(g^^V (resp. W<^uwU(Q)).

I am grateful to Michel DUFLO for suggesting the problem to me and for
many valuable comments concerning earlier versions of this paper. I would
like to thank J. BERNSTEIN, J.J. DUISTERMAAT and W. VAN DER KALLEN
for helpful discussions.

I am grateful to all the members of the mathematics department of
Harvard University, and especially to J. BERNSTEIN and S. STERNBERG,
for their warmful welcome during the academic year 1990-1991. I am
pleased to thank the University of Utrecht for providing me a particularly
favourable and pleasant mathematical environment during my postdoc.
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POINCARE DUALITY FOR k-A LIE SUPERALGEBRAS 375

2. The Berezinian complex
In all this paragraph, A = AQ 0 A\ is an associative supercommutative

A:-superalgebra with unity.

2.1. Recollections.
(References : [C], [L2].) Let us remark that a prime ideal p of A is

characterized by its intersection with Ao, AQ H p, which is a prime ideal
ofAo (because A\ is included in p). One defines the ringed space, Spec(A),
as follows. The underlying topological space X is the set of prime ideals
of AQ endowed with the Zariski topology. The structural sheaf Ox of
Spec (A) is defined as in the non graded case. If / € AQ, let D(f) be the
open subset

^ ( / ) -{peSpec(Ao) | / ^p} .

Then, (D(/))^^Ao form a basis for the Zariski topology on Spec(Ao).
Let M be an A-module. Let us denote by M the sheaf associated

to the presheaf U C X i-» M0AO(U). The sheaf M has the same
properties as in the non graded case [H, p. 110].

2.2. Case of a free module.
Let M be a free A-module of dimension do + ec?i. Put n = do + d\. Let

(ei,..., en) be a basis of M such that (ei, ...,e^o) are even and (e^o+i? • • • 5 ^n}
are odd. Let us denote by (e1,...,€"') the dual basis and let d be left
multiplication by

^(-l)M+i^^
1=1

in the superalgebra ^(IIM (DA M*). The endomorphism d does not
depend on the choice of a basis.

PROPOSITION 2.2.1. — The complex

J(M)=(,?A(nM©M*) = ((^^(nM^^M^.d)
n€N A

has no cohomology except in degree do. The A-module Hdo{J(M)) is free
of dimension 1 or e. More precisely, the element 7rei • • • Tre^o (g)^^0^1 " • en

is a cycle whose class is a basis of H^^J^M)).

A proof of PROPOSITION 2.2.1 is given in [M, p. 172].

DEFINITION.—The module ̂ "(J^M)) is called the Berezinian module
of M and is denoted ber(M). The complex ber(M)[—do] is called the
Berezinian complex and will be denoted Ber(M).
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376 S. CHEMLA

If S is a multiplicative system of Ao, then A^-modules ber(M).s-
and bev{Ms) are canonically isomorphic.

2.3. Case of a projective A-module.
Let M be a finitely generated projective A-module. Before defining

the Berezinian complex of M, we need to recall the following result
[Bou, p. 141].

LEMMA 2.3.1. — Let M be a finitely generated projective A-module and
let p be a prime ideal of A. There exists f ^ p such that Mf is free.

NOTATION. — We will denote by J(M) the set of all elements / of AQ
such that Mf is a free Aj-module.

COROLLARY 2.3.2. — (D(f))f^'j^M) ^ an open covering o/Spec(A).

We come now to the theorem which will allow us to define the
Berezinian complex of a finitely generated projective A-module.

THEOREM 2.3.3. — Let M be a finitely generated projective A-
module. There is a unique complex of A-modules {up to isomorphism)
denoted Ber(M) such that, for all f in J(M), Ber{M)f is canonically
isomorphic to Ber(My).

DEFINITION. — The complex Ber(M) constructed by the previous
theorem is called the Berezinian complex of M.

Proof of the theorem 2.3.3. — Put Spec(A) = (X, Ox). We know that

X= U D(f).
/eJ(M)

For all (/,/) in J(M)2, the complexes of A—-/-modules (Ber(Mf))^
and Ber(Mr^) are canonically isomorphic. This remark proves that we
can define a complexes of sheaves Ber(M) over X such that :

BER(M)|^)=Ber(M^)

for all / in J(M). We put :

Ber(M) = F(X,BER(M)).

This finishes the proof of the THEOREM 2.3.3.

REMARKS. — In the case where M is a finitely generated projective
A-module, the Berezinian complex is not necessarily concentrated in
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one degree. If for all / in J(M), Mf has the same dimension do + e^i,
then we will say that the rank of M is do + cd\. In this case, the
Berezinian complex Ber(M) has only one non zero component (namely
in degree do), hence we can define the Berezinian module ber(M) by
Ber(M) = ber(M)[-do].

3. Ring of differential operators defined by a
k-A Lie superalgebra

3.1. Recollections.
Let A be a supercommutative associative ^-superalgebra with unity

and let <C be a A;-Lie superalgebra that is also an A-module. Assume that
we are given a - : -C —> Der(A) a morphism of Lie superalgebras and of A-
modules. Assume moreover that for all D and A belonging to /C and all a
in A, we have :

(*) [A, aD\ = a [A, D] (-l)!0!-!^ + (r(A)(a)D.

Then /C is called a k-A-Lie superalgebra. Let V(A, £) be the superalgebra
of differential operators generated by A and £ (see [F], [R]). It can be
described as follows : V(A,/C) is the ^-superalgebra generated by the
elements of A, the elements of /C and the following relations

f a ' b = (a&),
^ D'a-{-l)\a\•\D\a'D=a{D){a)^

v / < D'A-{-I)^-WAD=[D,A},

^ a ' D = (aD).

Let V(A, £)n be the left A-submodule of V(A, £) generated by products
of at most n elements of /C. We define thus a filtration on V(A,/C). If £
is A-projective, then the graded A-superalgebra Gr V(A, £) (with respect
to this filtration) is isomorphic to the symmetric superalgebra SAW
(see [R, p. 198]).

Let S be a multiplicative system of AQ. We know (see [F, p. 128])
that S,s == As 0A ^ is endowed with a natural k-As Lie superalgebra
structure (extending that of £). Put V = V(A, £) and V(S) = V(A^ £5).

EXAMPLES :
• The simplest example is obtained when a is 0. Then, £ is just an

A-superalgebra and V(A, /C) is the enveloping superalgebra of Z.
• Let X be a paracompact smooth supermanifold (over M or C)

(see [LI], [Ko]). Let X (respectively O^c) be the underlying topological
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378 S. CHEMLA

space (resp. structural sheaf) of X. We write X = (X,0^). Put

A=Ox(X), ,C=DerOx(X), a= id .

Then V(A, ,C) is the superalgebra of differential operators over X.
Moreover, DerO^(X) is a finitely generated projective 03c(X)-module
(see [Hus, p. 31], [S, p. 266] and [We, p. 100]).

• Let A be a A;-Poisson superalgebra. Let DA be the A-module of
Kahler differentials for A. Then DA is naturally endowed with a k-A Lie
superalgebra structure [Hul]. Note that this structure depends on the
Poisson bracket on A.

• Let N = (TV, Ojsf) be a real Poisson supermanifold. Put A == Oj^(N).
Then the A-module of differential forms of degree 1 on N^ ^(-/V),
is naturally endowed with a M-A-Lie superalgebra structure [Hul]. As
previously, this structure depends on the Poisson bracket on A. The
natural epimorphism from DA to ^(N) is a morphism of R-A Lie
superalgebras.

4. Equivalence of category between complexes of
left V(A, /C)-modules and complexes of right V(A, £)-modules

From now on, we assume A, £ and a given and, we put V = V(A,£).
Moreover, if D is in ^ and a in A, we will write D(a) (instead of a(D)(a))
the action of D on a.

PROPOSITION 4.0.1. — If 5L is a finitely generated projective A-module^
then BerA(/C*) is endowed with a natural right V-module structure. In the
case where Z is free, the action of /C on BerA(^*) is induced by its adjoint
action on J(£*).

a) Proof in the case where £ is free. — Before starting the proof of this
proposition, let us introduce the following definition.

DEFINITION. — An A-module M will be called a (left) A-Z-module if
it is also a /C-module and if the following relation is satisfied : for all m
in M, a in A and D in £,

(1) D • (a • m) - (-1)^-^0 • (D • m) = D{a) • m.

An A-/C-module M is a V-module if and only if it satisfies the following :
for all m in M, D in /C and a in A, we have

(2) a • {D • m) = (aD) • m.

For example, /2 is an A-/C-module but not a left V-module.
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POINCARE DUALITY FOR k-A LIE SUPERALGEBRAS 379

If M is an A-/C-module, then M* has a natural A-/C-module structure
denned by the following operations : if a is in A, m in At, uj in M* and J9
in C,then :

{m.a-uj) ^(-l^-l^a.m.a;),

{m, D-UJ)= -(-i)PI-M^ . m.o;) 4- (-l^-^lp^m.a;)).

In particular, C* is an A-/C-module. Similarly, if M and TV are A-C-
modules, then IIM, M<^N,SA(M),SA{M*) are naturally endowed with

A
an A-/C-module structure. Hence, 5'A(IIM©M*) has a natural A-/C-module
structure. As this structure commutes with the differential of J(M) (the
complex defining the Berezinian module), we endow ber(M) with the
induced A-/C-module structure.

From now on, we assume M = C*.
Let D be an element of /C. Let us call Lie derivative of D and denote

by LD the action of D on ber(/C*). On ber(-C*), we define the following
right actions of C and A : for a in A, D in /C and uj in ber(£*),

^.^-(_1)P1-H^(^

u}.a=(-l^Dwa^.

As ber(/C*) is an A-,C-module, we know that these actions satisfy the right
analog of (1). In order to prove that ber(/C*) is a right V-module, we have
to prove the right analog of (2). In other words, we need to prove that the
Lie derivative satisfies the relation

(3) LaD = (-l)^1'10^) + ^a 0 LD,

where ^a is left multiplication by a. Let (ei,...,Cyj be a basis of the
A-module C such that (ei , . . . ,Crfo) are even and (e^+i, ...,en) are odd
and let (e1, ....e71) be the dual basis. We denote by uj\e\ the class of the
element /JTel...7^edQ 0 e^4-i...e^. Put D == jiCi and let us compute Lp :

CLQ

-M^e]) = [E7rel > • • ̂ fiei • e^Tre^1. • . ̂  0 e^i • • • e,(-l)^l]
j=i

di

+ [E 7T61 • . . Tre^0 0 6^+1. • . [f^ e^k\ • • • e^-l)^^].
A;=l
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If £ is in [1, n] and j is in [1, do], then using (*), one shows that :

(e^D . e^) = {e^Me, • ^)> + ̂ 6,(/z).

• If e^ is odd, then D ' e3 = fi(ei' e3). Moreover, we have :

[fiCi, edo+fc] = fi [<°z, edo+fc] + edo+^.A)^-!)1^1.

From this, we get

(4) LD(^[e}) = fiLe^[e}) + (-l)^1^)^]

because, in the computation of Z/£)(a;[e]), the term edo+A;(.A)^z(—l)^ is
only to be taken into account if do + k == i.

• If Ci is even, then we have :

y ^ f fi{ei' e-7') if^^

' e "t^^-^+^e^/,).
^

From this, we deduce that (4) holds whatever the grading of ei might be.
Then the relation (3) follows easily from (4) and (1).

b) The projective case. — Assume now that £ is a finitely generated
projective A-module. Put Spec(A) = (X,0x)' We have :

X = U D^-
f^W

From the previous case, we know that for any / in J(/C), ber(£^), the only
non zero component of the complex of sheaves Ber(^), has a natural right
V(/)-module structure. The following remark shows that these structures
can be glued to give a right V-module structure on Ber(£*) : if we take
another element // in ^J(/C), the restriction of the 'V|D(/) (^ ^(/)) right
module structure on ber(/C*)|^^) (c^ ber(£?) to D(f) r\D(f') is nothing
but the V^y^) (^ ^(///)) right module structure on ber^*)^^)
(^ ber(/C* / ) ) . Then, if we apply the functor global sections, we get
a right V-module structure on Ber(-C*). This finishes the proof of the
PROPOSITION 4.0.1.
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REMARKS :
1) Assume that -C is a free A-module of finite dimension. Let

(ei,...,eyi) be a basis of /C and let uj[e} De tne basis of ber(/C*) it de-
termines. Let D G £. We define the divergence div[g] (D) of D in the basis
(ei,...,e^), by :

D-^e] =diV[e](P)o^].

Let us consider the map :

A e /C —————^ A © /C,
a + ̂  •—^ a - div[e] CD) - D.

FEL'DMAN [F, p. 125] showed that this maps extends uniquely to an anti-
involution a of V which he called antipodism. The antipodism gives a
correspondence between left and right V-modules. Indeed, if M is a left
V-module, then we construct a right V-module M061^ as follows :

\/v G V, Vm € M, m'v= a(v) • r^-l)1^'!7711.

So, in the free case, we have just proved that the right V-module A"^
and ber(/C*) are isomorphic. But the antipodism of FePdman can only
be defined for finitely dimensional free A-modules whereas our procedure
can be extended to finitely generated projective A-modules. The use of
the Berezinian complex is also more canonical.

2) The PROPOSITION 4.0.1 generalizes the Bernstein's correspondence
between left and right -D-modules in the case of a manifold. This corre-
spondence was extended by PENKOV [P] to the case of supermanifolds.

COROLLARY 4.0.2. — Assume that /C is a k-A-Lie superalgebra which is
a finitely generated projective A-module.

(a) If M9 is a complex of left V-modules^ then M* <S>A Ber(£*) is a
complex of right V-modules. The right V-module structure on the compo-
nents of M9 0A Ber(£*) is given by the operations described below : let m
be in M71, uj in Ber^*)^, a in A and D in Z. We put:

(m (g) a;) • a = (-l^KI^+H)^ . m (g) cc; = m (g) (a;. a),

(m (g) uj) ' D = -(-l^K^l+M)^ . m (g) uj + m (g) (uj • D).

(b) The functor M* i—>- M*(^A Ber(£*) gives an equivalence between
the category of complexes of left ^-modules and the category of complexes
of right V-modules. The converse functor is given by :

TV •—> HomA(Ber (/€*), N9).
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Proof.—The proof of consist (a) in verifying the relations (**). For (b),
see [Bo, p. 227].

5. Poincare duality

5.1. Resolution of A as a left V- module.
Consider the graded left V-module

V 0 S ÎIC) = ff) V (S) S71 (ILC)
A ^^ A

n

where V acts by left multiplication. One can prove [R, p. 200] that there
exists an endomorphism of degree — 1 on this module such that : for all v
in V and all /^ in £, we have

d(-y(g)7r^i —717^) == ^^(z^z)^ (g)7r^i...7r/2, • • •TT^
1=1

+ ̂  £"(^, %, k)v (g) TT^i • • • 7T [AAfc,^] • • • 7r/2, • - • TT/^n,

fc<z

where the notation .r means that x is omitted and where :

^ ^ ^ (_l^l(_l)(l^i!+"-+l^-il+^-i)(l^l+i)^

^(v i k) = (—l)l^l+l^ l l+" '"+"l^ ^- l l+ ^ - l(—l)l^ ^ l (^fe+ll+•••+l^-l l+ ^-A ;+ l)

Moreover, we define do : 'V05'°(ILC) —^ A by :
A

W e V , do(2;(g)l) = v - 1 .

THEOREM 5.1.1.— Let Zhe an A-projectwe k-A Lie superalgebra. The
complex P* defined by

Vn€Z, P^ =V(g)A^(HC)

one? ^e differential above is a V-projective resolution of A.

Proof.—See [R, p. 202]. Q

Let S be a multiplicative system of AQ. If we localize the resolution P*
with respect to 5, we get a V(S')-projective resolution of A^.
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5.2. Statement.
As in [Bo, p. 94], using the fact that the category yM has enough

projective objects, one constructs a functor denoted RjjR^ Hom'(—,—)
from ^-(yM)0 x ^(yM) to ^(^M). Similarly, using the fact that the
categories yM and My have enough projective objects, one can construct

L
a functor denoted (g) from ^"(My) x ^"(vM) to I)(fcM). Lastly, we will
write f2* for the Berezinian complex of £*.

THEOREM 5.2.1.—Let ̂  be a k-A Lie superalgebra which is finitely gen-
erated and projective as an A-module. Let X9 be an object ofT)~(^'M).
We consider A as an element of T)~(^'M,) in the natural way. There

L
exists a morphism ^(X9) (functorial in X9) from (X*(g)f^) (g)A to

A v
RjjR7 Homy( A,X*). If X9 is quasi-isomorphic to a bounded complex
consisting of projective modules, then ^(X9) is an isomorphism.

The last assertion can not be extended to any complex X* in 'D~(^M).
One can construct easily a counterexample by taking A to be k, a to be 0,
^ to be the completely odd Lie superalgebra Hk and X* to be the trivial
module k (see [C]). Nevertheless, we will see in the proof that, in the non
graded case, ^(X*) is an isomorphism without hypothesis on X * .

COROLLARY 5.2.2. — We keep the same assumptions as in the theorem.
Assume moreover that ^ has a rank do + ed\. Let M be a left V(A,^)-
module. Let i be in Z. There exists a superspace morphism ^(M) from
TorJ^_,(M (g) ber(£*),A) to Ext^(A.M). If M has a finite projective
resolution^ then ̂ (M) is an isomorphism and hence

Tor^_,(M^Aber(£*),A) ^Exty(A,M), Vz € Z.

From now on, we assume that £ is a finitely generated projective A-
module. We will prove the THEOREM 5.2.1 in several steps. Let us first
make some preliminary remarks.

5.3. Preliminary remarks.
Let M be a left V-module. Using the resolution of A, ?•, previously

described, one can see that RjjR^ Homy(A,M) is isomorphic (in the
derived category) to the complex

^(M) = (QHomA^n^.M),^),
n
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where SM is given by : for 0 in HomA( 5 (̂110), M) and (/^i,..., /^) in £,
n

(TT^i • • -TT^n^MW) = ̂ ^(^^(TT/^i • • • TT/^ • • • 71-̂ , ̂ )
i=l

~~ ̂  ̂ (^ ̂ (^i • • • A^k^i} ' " T r j T i - " 717^, (/)).
k<i

with :
^^\ ̂  (?_l^l^^l+•••+|^n|+n-^+l/_^^|^|(|^l|+... |^_l|+^-l)

e'^v.i.k) = (-l)l^l+•••l^l+r l-^+ l(-l)(l^+ll+...+|^-l|+^-fc-l)|^|^
As £ is a finitely generated projective A-module and we are in charac-
teristic 0, the A-modules 6 (̂112*) and (S^(ILC))* (here « * » means dual
with respect to A) are isomorphic. Hence ©^HoniA (5^(112)^) can be
identified with 5 (̂110*) 0 M.

A
Let us recall that £ acts on 6 (̂11/2) (respectively on V) by the adjoint

action which is defined as follows : an element D of /C acts as a derivation
determined by for all a C A, for all A e £,

D-a=D(a),

.D.TrA^-l^lTr^A].
Let M be a V-module. Then ©AK^A^^IIC^M) is endowed with a
^-module structure (preserving the N components) denoted r. As in the
Lie algebra case, one proves that r induces an action on the cohomology
modules ^(^(M)) which turns out to be trivial.

If M is equal to V with left multiplication, then K(V) is endowed
with a right V-module structure denoted by R and defined by right
multiplication. Write R for the action induced by R on the cohomology
modules ^(^(V)). Let p be the adjoint action of Z on K(V). As f is
trivial, we have for all [p\ e ̂ (^(V)), for all D e £,

W'R{D)=[-(-l)WWp(D)^].
Let M be a right V-module. In the derived category T)(fcM), the

complex M(g)A is isomorphic to B(M) = (M (g) ̂ •(IIC),^) where QM
is given by : if m belongs to M and (^i , . . . , /^) are elements of £, then :

<9M(^07T^i • • -7T/^)
n

= ̂  ̂ (m, %)m - /^ (g) TT/^i • • • TT/^ • • • 7TfJ.n
i=l

+ ̂  ̂ (m, z, A;)m (g) TT/^I • - • 7r[^fc, ̂ ] • • • 717^ • • • TT^.
k<i
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with

^ ^ i ) = (-l)lml(-l)(l^i+ l)(l^l+•••+l^-ll+^- l)

e'^m.i.k) = (-l)lm l(-l)l^ l l+•••+l^-ll+^- l(-l)l^l(l^+ll+•••+lAA^-ll+^-^-l) ,

5.4. Study of the complex K(V).
We are going to prove the following proposition.

PROPOSITION 5.4.1. — Let /C be a k-A-Lie superalgebra which is finitely
generated and projective as an A-module. For all n in Z, the right V-
modules H'^^Kfy)) and ̂ n are isomorphic.

Proof. — Assume first that £ is a free A-module. The complex K(V) is
filtered by the complexes (F]\[K(V)) where

(FNK{v))q={ ^ ^n^i^cv^, c^e^mr)}.
m—q<^N

This filtration is preserved by the differential 6^. Hence, we are led to
introduce the quotient complex

where

W= (ff)WN^dY
N

W^ = (F^(V))7(F,v_i^(V))9

and d is the differential induced by ^y. A small computation [C] shows W
coincides with J(£*). A diagram chasing argument proves that Hi(K(y))
is {0} when i ^ do and that the right A-module ^"(^(V)) is free of
dimension 1 or e. A basis of H^^Kfy)) is the class of

<^o = e^o+i • • • en ̂  AI • • • Adp.

Let us prove that H^^K^V)) is canonically isomorphic to ber(£*) as
a right V-module. The superspace H^^F^-doKCV)) is endowed with a
right V-module because we know that, on the cohomology level, right
multiplication by an element of £ coincides with the adjoint action.
Moreover, Hdo(Fd,-doK(V)) and ^(^(V)) are isomorphic as right V-
modules. Let us prove that H^^F^-doKty)) is canonically isomorphic
to ber(^*) as right V-modules. If uj is a cycle of S^ (HC*) (g) V^, we

A
will write u) for the projection of uj on 5'̂ ° (!!£*) (g)S'(£). We will denote

A
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by [u] (resp. [U}]) the projection of uj (resp. ^) on H^^F^-d^K^))
(resp. ber(£*)). The following map

I : H^(Fd,-^K(V)) ——— ber(£*),

is well defined because we restrict ourselves to elements of F^-doK(V).
Let a; be a non-zero cycle in 3d0 (W) (g)V^ and let a be in A. The
following remark

cc;. ̂ (a) - (-l^H^a • uj 6 ̂ (IIC*) ̂ V^_i
A

proves that [a; • J?(a)] = (-l^l-Mata;]. Hence I is a morphism of right
A-modules. As J sends the basis [0:0] of the right A-module H^^CV))
to the basis [iJo] of the right A module ber(£*), it is an isomorphism. It is
easy to check that actually I is an isomorphism of right V-modules.

In the case where £ is only projective, we use as previously a localiza-
tion and gluing procedure to conclude.

5.5. Description of the morphism <^(X').

5.5.1. Case where £ has a rank.
We will denote by do -1- edi the rank of /C.

1) Preliminary remark. Using the isomorphism between ber(/C*)
and H^^KtV)), we can express any element of ber(£*) as a cohomol-
ogy class [^Va ^ ̂ ], where ^ is in V and o^ is in ^(RC*). The
map

^do (M) : H^ ((M 0 ̂ ) (g) ?•) ———. H^ (K(M)),

[m^ [Ea^^^]^)l] 1——> [E<^^a'm(-l)(l^H^i)|m|1

is well defined. Indeed, if ̂  v^ 0 ̂  is a cycle (resp. a boundary), it is
clear that

^o^ 0 Va • ̂ (-l)0^!-^!^!)^!
Q:

is a cycle (resp. a boundary). Lastly, ifm(g)[^c^(g)^](g)lisa boundary,
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then it is of the type

m(g) y^^q 0^0; ^i
CC

= <9M0^« (^ m, (g) ^ ̂  ̂  (g) ̂ ] 07rA)
I OL

= ̂  -Am, ® [ ̂  ̂  0 uj ̂ (-l/l^l+l^l+KDd-D.I+i)
i a

+^mi®[^^0Va£>^]®l(-l)l"l•l+l"°H^'al

I Q!

(where the m^ are elements of M and the Di are elements of /C) and it is
easy to check that its image by ^"(M) is 0.

Assume that £ is free. If a; is a basis of the A-module ber(£*),
then V (g) n* is a free right V-module of basis 10^. Hence, if M is a free
V-module, it is obvious that ^"(M) is an isomorphism. One generalizes
easily this assertion first to the case where £ has only a rank and then to
the case where M is a projective V-module.

2) Construction of ^(X*). Let X9 be a complex of left V-modules
bounded below. Let Q9 —^ X9 —^ 0 be a projective resolution of X*. We
can assume without loss of generality that Q* is of the form

. . . ̂  QS ^ Q.+l ̂  . . . ̂  QO _ {0}.

The total complex associated to the double complex

[^"•^HomvCP-",^)^)^]

(with the natural differentials) is a subcomplex of the complex

Horn* (?•,(?•).

In the case where Q9 (or P* for the non graded case) is bounded, it is
Hom*(P*,Q*). In the case where £ has a rank, this complex is such that
its lines have cohomology in only one degree, namely the do degree. It is
known [Bo, p. 283] that such a double complex is quasi-isomorphic to a
double complex with non zero coefficients in only one column. Let us recall
how one gets this result. Consider the truncated double complex r^C**
defined by

(C^8 if 5 < do,

(^o^T5 ={ M%) i^-^
l{0} ifs>do.
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There is a natural morphism from r^C" to C" inducing a morphism
on the associated total complex

Tot(T<^G-) —.Tot(G-).

If Q* is bounded, a spectral sequence argument shows that this morphism
is a quasi-isomorphism. It is also true if Q9 is unbounded but the proof is
slightly more subtle. We don't reproduce it here because we don't really
need it. Now, we can truncate T<^G- on the right. We get r^d^r^C")
given by ~ -

(r (. r-^8 S^ if57^05
t^do^do0 ) ) = \ , ,

[^(Hon^P-,^)) if 5^0.

There is a natural morphism from T<^G- to r^r^C" which induces a
quasi-isomorphism on the associated total complex as a spectral sequence
argument shows it. So we have the following picture :

Tot(T>^T<^G-) ̂ - Tot(T<^G-) -^ Tot(C-).

Similarly, the total complex associated to the double complex (G^'5)^ ^z)
defined by

G71'5 = (Q^ber^*)) (g)?^-^
' A / V

is the complex (Q9 0 ̂ *) (g) P*. As the double complex G- is such that its

lines have cohomology in only the degree do, we can do the same reasoning
as before. We have the following quasi-isomorphisms

Tot(T>^T^G-) ̂ - Tot(r<d,G-) ̂  Tot(G-),

the bicomplex T^T^G" given by :

n . f ° if 5 7^ do,
r^r^G^ = ̂  ^^((^(g)^-)^?-) if 5= do.

I A V

We know that we have an isomorphism ^(Q9) from Tot(T>^T<^G-) to
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Tot^r^do^doC") described by the diagram below :

I , I
<E> ° (Q }

0 -^ H'10^) ————r-— Hdo(Q'^ -^ 0

[ ^ [
0 -. H^iQ'^) ^do(Q^ ^(Q^i) ^ 0

i 1

0 ^ ^"(Qo) ' 'S>0(QO) ' ^^QoQ ^ 0

i i

0 0

with Q', = (Q, ®A ^*)1>A and Q'{ = R7jR7Homv(A,<3,). The following
diagram ^

(X*<g)n')<2)A
A Vv

Tot(r^^T<doG") ^- TotT<dn(?" —^ TotG"

J^0^')

Tot(T^doT<doC'") ^— Tot T ,̂, (7" ——^ TotG"

RjjR7Homv(A,0')

!'
RjjR7Homv(A,X')

defines a morphism ̂ (X9) from ((X* (g) 0*) (g) A) to RjjR7 Homy(A, X9).
A V

One checks easily that ^(X9) does not depend on the projective resolu-
tion chosen for X*. From its construction, it is obvious that, if X* admits
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a finite projective resolution (or if ?• is bounded as in the non graded
case), then ^(X9) is an isomorphism.

5.5.2. General case. — Assume now that -C is only a finitely gener-
ated projective A-module. We make a partition of Spec(A) into open
subsets (Ui)i^i over which £* has a given rank. The previous case al-
lows us to construct ^(X9) on each Ui. Then, we finish the proof of the
THEOREM 5.2.1 by applying a gluing procedure.

6. Examples of computations
From now on we always assume that /C is a A;-A-Lie superalgebra which

is finitely generated and projective as an A-module.
• Let us denote by a the Lie superalgebra and A-module morphism

from /C to Der/c(A). The restriction of a to /Co produces a Lie algebra and
Ao-module morphism for which we construct V(AQ, /Co)- Assume that A\ is
a projective Ao-module, then it is not hard to prove that V(A, £) is a
projective V(Ao,/Co)-module. We have :

RnRJ Homv(A^)(A,V) ̂  (v 0 Ber(^)) 0 A.
\ AQ ^ V(Ao,£o)

Hence, if the rank do -\-ed\ of /C exists, we can compute Ext^^_ ^-)(A, V) :

(=W if^^o,
Extv(^)(A,V) "•u

fv^A^o)) ^ A '^z=do.
\ An / x / W^ ̂A^ ^ ^ V ( A o A )

• Assume that we are in the non graded case then we can apply our
theorem to the V-module A. We get the following isomorphism :

RuRJ Homy (A, A) ^ Ber(£*) I) A.

If /C has a rank d, we get :

Ext^A.A) ^ Tor^(ber(;C*),A).

• Let N be a n-dimensional smooth Poisson manifold admitting a
global volume form uj annihilated by Hamiltonian vector fields. Put
A = C°°(N) and denote by { } the Poisson bracket on A. We have
already seen that ^(TV) was endowed with a natural M-A Lie algebra
structure and that ^(TV) was a finitely generated projective A-module.
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The volume form a; is a basis of the free A-module /^(^(TV)). We denote
by a its dual basis. We can compute the action of ^(N) on /^(^(TV)*).
We have :

(ga) • d/ = [g, f}a,

using the fact that uj is annihilated by Hamiltonian vector fields.
On another hand, we know from [Hu2]) that A has a natural right
'V^A^^TV^-module structure defined by the two following operations :
for all /, g and h in A,

f'9=f9^ f'gdh= {fg,h}.

The algebra A, endowed with this right 'V^A^^A^-module structure,
will be denoted Ay. So it is easy to see that the map

A'^W) ——— A,,
io ^ f

is a right 'V^A^^TV^-module morphism. Let ^^(N) be the canonical
homology of the Poisson manifold N (see [Br], [Kos]). We know [Hu2] that

Tor^^^)(A„A)^^an(^).

Combining the two previous remarks, our theorem gives :

H—(N) ̂  Ext^^^^(A,A).

Assume now that N is symplectic. Then, the M-A Lie algebra ^(TV) is
isomorphic to the M-A Lie algebra of smooth vectors. Hence, the right
hand side is isomorphic to the de Rham cohomology of N and we recover
a BRYLINSKI'S result [Br, p. 101]

H—(N) ̂  H^(N)^

where H^^(N) denotes the de Rham cohomology of N.
• As SAW is the associated graded superalgebra of V(A,£), it is

naturally endowed with a Poisson bracket [Br, p. 106] characterized by :
for all (D, A) in /C and for all a in A, we have

We£,VAe£ ,
{D,A}=[D,A]

{D^a}=D(a).
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Take for A the algebra of regular functions on an affine smooth variety N
and put /C = Der(A). Then S = 5'A(Der(A)) is the algebra of regular
functions on T*(7V) and the Poisson bracket is induced by the symplec-
tic structure on r*(JV). Let H^^S) be the canonical homology of the
Poisson algebra S (see [Br, p. 106]). The previous example shows that,
if n is the dimension of JV, we have :

2n

H^(S) ̂  Tor^5^/^)^).

Hence, if we apply our theorem to the V(5', 2^5')-module 5, we get :

H—{S) ̂  H^^N) ̂  ^T(AO.

We recover a result of BRYLINSKI [Br, thm 3.3.1].

7. Duality properties for induced representations of
Lie superalgebras

In this section, we will keep using the correspondence introduced in the
COROLLARY 4.0.2. We are going to prove the following result :

THEOREM 7.0.1. — Let Q be a k-Lie superalgebra. Let \) and t be two
finite dimensional sub superalgebras of Q. Setdimt)o = ho and dim ̂ o = ^o-
Let V (respectively W) be a finite dimensional ^-module (respectively t-
module). Then^ for all n in Z, we have :

Ext^°(lnd^y),Indf(^))

^ Ext^°(mDf(Vr ^ber(r)),IND^(y* ^)ber(i)*))),

where in the left hand side (resp. right hand side) the Ext is taken over
left (resp. right) U(o)-modules.

It is easy to see that this result is wrong if V or W is not finite
dimensional. The situation ^ = {0}, W = {0}, V = U(\)) provides a
counterexample.

Generalizing a result of G. ZUCKERMAN [B-C], A. GYOJA [G] proved a
part of this theorem (namely the case where () = t and n = ho = so) under
the assumptions that g is split semisimple and \) is a parabolic subalgebra
of Q. D.H. COLLINGWOOD and B. SHELTON proved also a duality property
of this type but in a slightly different context [C-S].

Moreover, the THEOREM 7.0.1 allows us to recover the following result
of M. DUFLO [D2]. Assume that A is a character of (}. Then, for the adjoint
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representation of 1) on Ind^) and IND^ (g) A^^l)*)) (interpreted
as quotients of U{o)), the following duality holds :

dim h

V z e Z , ^(i)Jnd^(A)) ^^(()JND^(^^/\ (()*)))•

As Duflo's proof, our proof will rely on the LEMMA 7.0.2.
LEMMA 7.0.2. — Assume that E is a i) x ^-bimodule which is free

as a left ^-module and as a right ^-module, then we have the following
isomorphisms :

H^^E^ ber(C)) c. ̂  k JT l̂'Tl)v / v / / \ (E<S>ber(t) (g) ber (()*))()/

^"-^D-
Proof of the lemma 7.0.2. — This follows from the Hochschild-Serre

spectral sequence applied to the ideals () x {0} and {0} x ^ (see [Fu, p. 40])
and from the THEOREM 5.2.1. []

LEMMA 7.0.3.—Let a be a finite dimensional Lie superalgebra, we have:

Ext^(y,HQ ̂  7r(a,Homfc(y,TV)).

IfW= U(a) (or more generally an ax a bimodule), then Ext^^(V, U(a))
is endowed with a natural right a-module structure provided by right
multiplication. If we also endow Hom/c(y, U(a)) with the right a-module
structure given by right multiplication^ then the isomorphism above is a
right U (a)-module isomorphism.

Proof of lemma 7.0.3. — See [Kn, p. 185]. D
LEMMA 7.0.4. — Let a be a finite dimensional Lie superalgebra. Let U

be a left a-module and let V be a right a-module. We have the following
isomorphism

Ext^ (U, V ^ ber(a)) c± Ext^ (U ^ ber(a*), V),

where^ in the left hand side (resp. right hand side), the Ext is taken over
left modules (resp. right modules).

Proof of the theorem 7.0.1.—We put E = V* <S>U(o) ̂ W. We endow E
with a I) x ^-bimodule structure by the following operations : for all H € (),
K C ^ u G (7(0), w G W, v* C V*. we have

H • (v*(g)ZA(g)w) = H -v^^u^v+^-^^^v^Hu^w,

(v*(g) u 0 w) • K = v*(g) uK (g) ̂ (-l)^'^1 - ̂ *(g) u (g) K • ̂ (-l)^"^.
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It is clear that E is free as a left (/(h)-module and as a right [7(6)-module
(the reader can refer to the LEMMA 7.0.6 a bit further). We now apply
the LEMMA 7.0.2 to the f) x ?-bimodule E. On one hand, we get :

ff" (() x t, E ® ber(C)) =± ff"-^ ̂  E <s berw 0 beT^ \
\ ' CE®ber(6)(g)ber(h*))hy

^ ff"-^ (t, IND^(V*0 ber(r)) ̂ W^ ber(S)).

Then, by using successively the LEMMA 7.0.3 and 7.0.4, we have

ff"(f) x S.^®ber(6)) ^Ext^^.IND^V^ber^*)) ®ber(t))

^ Ext^0 (^*^ ber(r).IND^(V*0 ber(h*))).

Lastly, using Shapiro's lemma [Kn, p. 286], we obtain

^"(bx6,£;®ber(e))

^ Ext^0 (iND^W^ ber(r)).Ind^(y^ ber(r))).

On the other hand, by the same series of arguments, we get :

ff"(l) x 6, E ® ber(t)) ^ Ext^° (ind^V), Ind^W)).

This finishes the proof of the THEOREM 7.0.1.

In the case where { = {0} and W = {0}. the THEOREM 7.0.1 allows us
to compute Ext^^Ind^V), U(g)) :
. If n ̂  ho, then Ext^(Indj^y), U(s)) equals {0}.
• For n = ho, we can improve the result.

THEOREM 7.0.5. — Let g be a Lie superalgebra and let f) be a finite
dzmensional subsuperalgebra 0/0. Let V be a finite dimensional left U(b}-
module. Put ho = dim ho. The right U(z)-modules Ext?0 Jind8 )̂ [/fa))
(mtnND^V^ber^)) are zsomorp^c. (0) b 7/

This result was proved by BROWN and LEVASSEUR [B-L, p. 410] and
KEMPF [K] in the case where fl is a finite dimensional semi-simple Lie
algebra and Indg(y) is a Verma module.

To prove the THEOREM 7.0.5, we will need the following lemma.

TOME 122 — 1994 — ?3



POINCARE DUALITY FOR k-A LIE SUPERALGEBRAS 395

LEMMA 7.0.6.—Let us denote by (V*<S)U(^))-^ the superspace V*<S>U{^)
endowed with the following () x ^-bimodule structure : for all f C V*, for
allue ?7(g), for allH € (},

(/ (g) u) • H = f 0 n^f,

H ' { f ^ u ) = H ' f ( ^ u + (-l)W-\f\f 0 ̂ n.

Le^ zzs denote by (V* 0^7(1}))2 ^^ superspace V*(S)U(fy) endowed with the
following (} x ^-bimodule structure : for all f € V*, /or a^ n G ?7(0), for
all H C (},

J:f . (/ (g) ^) = f (g) ̂ ^(-1)^1^1,

( f ^ u ) ' H = - H - f ( S ) ̂ (-1)1^^+1^) +f^uH.

Then the () x I) bimodules (V* (̂ ) L^(i)))^ and (V* (g) ^(()))2 are isomorphic.

Proof of lemma 7.0.6. — The map (see [Dl, p. 387])

(V*(^(i)))2 ———— (V^UW),

V^U I——> ^^2;*(g)<(-l)l^

I

where A(n) == ^^ZA^ 0 n^, provides an isomorphism between the two
structures, i

Proof of the theorem 7.0.5. — Let us compute the right L^(0)-module
Ext^0/ JJnd^y),^)). One sees easily [B-L, p. 397] that we have the
following isomorphism of right ?7 ({^-modules :

Ext^ (ind^V), £/(s)) ^ Ext^^ (V, U^)) ̂  U{Q).

Hence, we have now to compute the right L^(())-module Ext^.JV, U(^)).
Using successively the LEMMA 7.0.3 and the LEMMA 7.0.6, we see that we
have the following isomorphism of right U(\}) -modules :

Ext^ (V, UW) ̂  H^ (1), (V* 0 £7(i)))i)

^^°(i),(y*^[/(l)))2)
^V^H^^.UW).

Then, the PROPOSITION 5.4.1 tells us that the right ?7((})-modules
Ext^.v(y, [/((})) and ber(i)*) are isomorphic. This finishes the proof of
the THEOREM 7.0.5.
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