JANINA KOTUS

On the Hausdorff dimension of Julia sets of meromorphic functions. I

<http://www.numdam.org/item?id=BSMF_1994__122_3_305_0>
ON THE HAUSDORFF DIMENSION OF JULIA SETS
OF MEROMORPHIC FUNCTIONS I

PAR

JANINA KOTUS (*)

RESUME. — On donne dans cet article des estimations de la dimension de Hausdorff
des ensembles de Julia pour trois familles de fonctions méromorphes. La dynamique de
ces fonctions et la structure topologique de leurs ensembles de Julia ont été étudiées
par Devaney et Keen.

ABSTRACT. — In the paper it is given a lower bound for the Hausdorff dimension
of the Julia sets of three families of transcendental meromorphic functions. Dynamics
of these functions and topological structure of their Julia sets have been investigated
by Devaney and Keen.

0. Introduction

Let \(f : \mathbb{C} \rightarrow \hat{\mathbb{C}} \) denote a meromorphic function which we shall always
assume to be neither a constant nor a rational function of degree one.
For \(n \in \mathbb{N} \), \(f^n \) denotes the \(n \)-th iterate of \(f \), and \(f^{-n} = (f^n)^{-1} \).
The Fatou set \(F(f) \) is the set of the points \(z \in \mathbb{C} \) such that \((f^n), n \in \mathbb{N}, \) is
defined, meromorphic, and forms a normal family in some neighbourhood
of \(z \). The complement of \(F(f) \) in \(\hat{\mathbb{C}} \) is called the Julia set \(J(f) \) of \(f \). \(J(f) \)
is perfect and has the property of complete invariance, that is, \(z \in J(f) \)
if and only if \(f(z) \in J(f) \).

Suppose \(f \) is transcendental meromorphic, has at least one pole and
\(f \) is not of the form \(f_0 = \alpha + (z - \alpha)^{-k} \exp(g(z)), \) where \(k \in \mathbb{N}, \) with
an entire \(g \). Then \(J(f) \) is the closure of the set of preimages of \(\infty \) under
all \(f^n \). For certain maps of this type the Julia set has several properties
in common with those of entire functions. For example the Julia set may

J. KOTUS, Institute of Mathematics, Technical University of Warsaw, Plac Politechniki 1, 00661 Warszawa, Poland.
AMS classification : 30D05, 58F08.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE 0037-9484/1994/305/$ 5.00
© Société mathématique de France
contain Cantor bouquets, which is a typical phenomenon encountered in the study of entire functions. For some other the Julia set resembles Julia sets of rational maps, e.g. \(J(f) \) is a Cantor set or a quasicircle. More details of these and other basic properties of the sets \(F(f) \) and \(J(f) \) can be found in [1], [2], and [3].

An upper bound for the Hausdorff dimension of the Julia set of meromorphic maps is two. The standard example when this bound is attained is a function with \(J(f) = \mathbb{C} \), but this is not a unique possibility. A sharp lower bound for the dimension of the Julia set of these meromorphic functions is zero (a result announced by G. Stallard).

In this paper we concentrate on the estimate of dimension of Julia sets of certain families of maps. Dynamics of these maps has been investigated in [4]. We prove the following theorems, where HD\((J(f)) \) denotes the Hausdorff dimension of \(J(f) \).

Theorem 1. — Let \(f_\lambda(z) = \lambda/(1 - e^{-2\pi z}), \lambda > 0 \). Then \(J(f_\lambda) \) contains a Cantor bouquet, and \(\text{HD}(J(f_\lambda)) = 2 \).

Theorem 2. — For \(f_\lambda(z) = 1/(\lambda + e^{-2\pi z}), \lambda > 0 \), \(J(f_\lambda) \) is a Cantor set. Moreover, the asymptotic estimate

\[
\text{HD}(J(f_\lambda)) \geq 1 - \frac{C}{\log |\log \lambda|}
\]

holds for some \(C > 0 \) and \(\lambda \to 0^+ \).

Of course, the above inequality implies that our lower bound for \(\text{HD}(J(f_\lambda)) \) tends to 1 if \(\lambda \) tends to 0.

Theorem 3. — Let \(f_\lambda(z) = \lambda \tan z, \lambda \in \mathbb{R} \) and \(0 < |\lambda| < \frac{3}{4} \). Then \(J(f_\lambda) \) is a Cantor subset of \(\mathbb{R} \) and

\[
1 \geq \text{HD}(J(f_\lambda)) \geq \frac{C}{|\log |\lambda||}
\]

for some \(C > 0 \) and \(\lambda \to 0 \).

The proofs of these estimates are based on the following result proved by McMullen [7].

Lemma 1. — For each \(k \in \mathbb{N} \), let \(\mathcal{A}_k \) be a finite collection of disjoint compact subsets of \(\mathbb{R}^n \), each of them has positive finite \(n \)-dimensional measure, and define

\[
\mathcal{U}_k = \bigcup_{A_k \in \mathcal{A}_k} A_k, \quad A = \bigcap_{k = 1}^\infty \mathcal{U}_k.
\]
Suppose also that, for each $A_k \in A_k$, there exists $A_{k+1} \in A_{k+1}$ and a unique $A_{k-1} \in A_{k-1}$ such that $A_{k+1} \subset A_k \subset A_{k-1}$. If Δ_k, d_k satisfy, for each $A_k \in A_k$, the conditions

$$\begin{align*}
\frac{\text{vol}(U_{k+1} \cap A_k)}{\text{vol}(A_k)} & \geq \Delta_k, \\
\text{diam } A_k & \leq d_k < 1, \\
d_k & \to 0 \quad \text{as } k \to \infty,
\end{align*}$$

then

$$\text{HD}(A) \geq n - \limsup_{k \to \infty} \sum_{j=1}^{k} \frac{|\log \Delta_j|}{|\log d_k|}.$$

It is clear that if f is a homeomorphism of a domain D onto $f(D)$, then the distortion defined by

$$L(f, D) = \sup_{z_1, z_2} \frac{|f'(z_1)|}{|f'(z_2)|}$$

satisfies $L(f, D) = L(f^{-1}, f(D))$. In the proofs we use the following Koebe’s distortion theorem, cf. [5].

Lemma 2. — Let $D(z, r)$ denote the disc of centre z, radius r. Then for $0 < s < r$, there is a constant $M(s/r)$ such that, for every univalent map $g : D(z, r) \to \mathbb{C}$,

$$L(f, D(z, s)) \leq M \left(\frac{s}{r} \right) = \left(\frac{r+s}{r-s} \right)^4.$$

1. Proof of Theorem 1

Consider the family of maps

$$f_\lambda(z) = \frac{\lambda}{1 - e^{-2z}}, \quad \lambda > 0.$$

The function f_λ is periodic with period πi, and its Schwarzian derivative equals $Sf_\lambda = \left(\frac{f_{\lambda}'''}{f_{\lambda}'} \right) - \frac{3}{2} \left(\frac{f_{\lambda}''}{f_{\lambda}'} \right)^2 = -2$. The singularities of f_λ^{-1} are $a_1 = 0$ and $a_2 = \lambda$. They are the transcendental singularities. Recall that a point a is said to be a transcendental singularity of f^{-1} (or an
asymptotic value of \(f \) if there exists a curve \(\Gamma \) in \(\mathbb{C} \) such that \(f(z) \to a \) on \(f(\Gamma) \) when \(z \to \infty \) on \(\Gamma \). Let

\[
W_1 = \{ z : \text{Re} z < 0 \}, \quad W_2 = \{ z : \text{Re} z > 0 \}.
\]

In each sector \(W_i, i = 1, 2 \), \(f_\lambda \) has the following behaviour: there is a disc \(B_i \) around \(a_i \) such that \(f_\lambda^{-1}(B_i \setminus \{a_i\}) \) contains a unique unbounded component \(U_i \subset W_i \), and \(f_\lambda : U_i \to B_i \setminus \{a_i\} \) is a universal covering. These \(U_i \) are called exponential tracts. It is seen from the graph of \(f_\lambda \) restricted to \(\mathbb{R} \) that \(f_\lambda \) has two fixed points \(q_i = q_i(\lambda), i = 1, 2 \), with \(q_1 < 0 < q_2 \), \(q_1 \) is repelling while \(q_2 \) is attracting. Moreover, if \(\text{Re} z > 0 \) then \(f_\lambda^n(z) \to q_2 \) as \(n \to \infty \), hence \(J(f_\lambda) \) is contained in the half-plane \(\{ z : \text{Re} z \leq 0 \} \). As \(\mathbb{R}^- \cup \{0\} \subset J(f_\lambda) \), hence all the preimages of \(\mathbb{R}^- \) are in \(J(f_\lambda) \). In particular the branches of \(f_\lambda^{-2n}(\mathbb{R}^-) \) belong to, so called, Cantor bouquet. We recall its definition. Let \(\Sigma_N \) be the set of sequences of \(s = (s_0, s_1, s_2, \ldots) \), where the \(s_i \) are integers, \(|s_i| \leq N \). An invariant subset \(C_N \) of \(J(f_\lambda) \) is called a Cantor \(N \)-bouquet for \(f_\lambda \) if there exists a homeomorphism \(h : \Sigma_N \times [0; \infty) \to C_N \) such that

\[
\pi \circ h^{-1} \circ f_\lambda \circ h(s, t) = \sigma(s),
\]

where \(\pi : \Sigma_N \times [0; \infty) \to \Sigma_N \) is the projection map, \(\sigma \) is the shift automorphism defined by \(\sigma(s_0, s_1, s_2, \ldots) = (s_1, s_2, \ldots) \), and \(\lim h(s, t) = \infty \) if \(t \to \infty \), \(\lim f_\lambda^n \circ h(s, t) = \infty \) if \(t \neq 0 \) and \(n \to \infty \). An \(N \)-bouquet \(C_N \) includes naturally an \((N+1) \)-bouquet \(C_{N+1} \) by considering only sequences with entries less than or equal to \(N \) in absolute value. The set

\[
\mathcal{C} = \bigcup_{N \geq 0} C_N
\]

is called a Cantor bouquet.

Note that one of the asymptotic values 0 is also a pole of \(f_\lambda \). Thus \(f_\lambda \) satisfies the assumptions of the following lemma proved in [4].

Lemma 3. — Let \(f : \mathbb{C} \to \hat{\mathbb{C}} \) be a meromorphic map. Suppose \(f \) has polynomial Schwarzian derivative of degree \((p - 2) \) and has an asymptotic value \(a_j \) which is also a pole. Let \(W_j \) be the sector containing the exponential tract corresponding to \(a_j \). Then for each \(N > 0 \), \(J(f) \) contains a Cantor \(N \)-bouquet in \(W_j \) which is invariant under \(f^2 \).

So, for \(\lambda > 0 \) \(J(f_\lambda) \) is contained in the half-plane \(\{ z : \text{Re} z \leq 0 \} \) and contains a Cantor bouquet, while \(F(f_\lambda) \) is an attractive basin of \(q_2 \). We will
show that $\text{HD}(J(f_{\lambda})) = 2$ for $\lambda > 0$. Fix $\lambda > 0$. Further on for simplicity we omit the index λ. Denote by g the second iterate of f, $g = f^2$. Choose $p = p(\lambda)$ such that $p \leq -\frac{\sqrt{2}}{2}$, $e^{-p} > \left((1+\lambda-2p)^2 + \frac{1}{4}\pi^2 \right)^{\frac{1}{2}}$ and the absolute value of $\lambda^2/(6p)$ is small enough, the meaning of this condition will appear further. Define the sets (see Fig. 1):

$$T_n = \{ z : \text{Re} z < p, |\text{Im} z - n\pi| < \frac{1}{4}\pi \}, \quad n \in \mathbb{Z},$$

$$T = \bigcup_{n \in \mathbb{Z}} T_n,$$

$$E = \{ z : g^n(z) \in T \text{ for all } n \in \mathbb{N} \}.$$
We will show that $E \subset J(f)$. First, we begin with the

Lemma 4. — Let $g^j(z) \in T$, $j = 0, \ldots, n - 1$, then

$$|(g^n)'(z)| \geq 4^{-n} \exp(2(2^n - 1)|pl|).$$

Proof. — A simple calculation gives

$$g(z) = \frac{\lambda}{1 - \exp(-2\lambda/(1 - e^{-2z}))},$$

$$g'(z) = (2\lambda^{-1}g(z)f(z)\exp(-\lambda/(1 - e^{-2z}) - z))^2.$$

This implies

$$|g'(z)| = \left\{2\lambda^{-1}|f^2(z)f(z)|\right.$$

$$\exp\left(-\frac{\lambda(1 - e^{-2Re z}\cos(2Im z))}{1 - 2e^{-2Re z}\cos(2Im z) + e^{-4Re z}}\right)\exp(-Re z)\right\}^2,$$

and consequently

$$(1) \quad |(g^n)'(z)| = 4^n\lambda^{-2n}\left\{|F_n(z)| G_n(z)H_n(z)\right\}^2,$$

with

$$F_n(z) = \prod_{m=1}^{n} (f^{2m-1}(z)f^{2m}(z)),$$

$$G_n(z) = \exp\left(-\sum_{m=0}^{n-1} Re g^m(z)\right),$$

$$H_n(z) = \exp\left\{\sum_{m=0}^{n-1} -\lambda[1 - \exp(-2 Re g^m(z))\cos(2 Im g^m(z))] \right.$$

$$\times \left[1 - 2\exp(-2 Re g^m(z))\cos(2 Im g^m(z))\right.$$

$$+ \exp(-4 Re g^m(z))\right\}^{-1}\right\}$$

First we show $|F_n(z)| > (\frac{1}{4}\lambda)^n$. Let $z \in (-\infty; p)$ and $z \rightarrow -\infty$, then $f(z) \in (q; 0)$, $q = \lambda/(1 - e^{-2p})$ and $f(z) \rightarrow 0^-$. Moreover, $T' = f(T_0)$ is a domain attached to 0, contained in the half-plane $\{z : Re z < 0\}$, and bounded by the three circular arcs two of them are symmetric with respect to R^- and pass through 0, while the third one is orthogonal to
the previous two. We have \(f(z) = \lambda/(1 - e^{-2z}) \approx 1/2 \lambda(1 + z^{-1}) \) in the vicinity of 0. In fact, in the set \(T' \) (which is thin and contained in a small neighbourhood of 0 by the conditions imposed on \(p \)) \(|f(z)| \geq 1/2 \lambda|1 + z^{-1}| \).

Now, for \(z \in T \), the product \(|f(z)g(z)| \) is estimated from below by \(|f(z)| \cdot |1/2 \lambda(1 + f(z)^{-1})| = 1/2 \lambda|1 + f(z)| \). This implies that

\[
(2) \quad |F_n(z)| = \prod_{m=1}^{n} |f^{2m-1}(z)f^{2m}(z)| \geq \prod_{m=1}^{n} 1/2 \lambda|1 + f^{2m-1}(z)| > (1/4 \lambda)^n
\]

since \(f^{2m-1}(z) \in T' \) and \(|f^{2m-1}(z)| < |f^{2m-3}(z)| < \cdots < |q| \).

We claim that \(G_n(z) > \exp((2^n - 1)|p|) \). To prove this it is enough to show that \(\text{Re} g(z) < 2 \text{Re} z \), which is equivalent to the inequality \(\text{Re} w < 2 \text{Re} g^{-1}(w) \), where \(w = g(z) \). As \(w \in T \)

\[
g^{-1}(w) = -1/2 \log(1 + 2\lambda \log^{-1}(1 - \lambda/w))
\]

\[
= -1/2 \log(1 + 2\lambda/(-\lambda w^{-1}(1 + \lambda/(2w) + \cdots)))
\]

\[
= -1/2 \log(1 - 2w(1 - \lambda/(2w) + \cdots))
\]

\[
\approx -1/2 \log(1 + \lambda - 2w)
\]

and

\[
\exp(-\text{Re} w) > \left((1 + \lambda - 2 \text{Re} w)^2 + 1/4 \pi^2\right)^{1/2}
\]

\[
\geq \left((1 + \lambda - 2 \text{Re} w)^2 + 4 \text{Im}^2 w\right)^{1/2},
\]

we have that

\[
2 \text{Re} w < -\log((1 + \lambda - 2 \text{Re} w)^2 + 4 \text{Im}^2 w) \leq 2 \text{Re} g^{-1}(w).
\]

Hence we obtain \(\text{Re} w < 2 \text{Re} g^{-1}(w) \). By induction one can prove that \(\exp(-\text{Re} g^m(z)) > \exp(-2^m \text{Re} z) \) for all \(m \leq n \). It follows that

\[
(3) \quad G_n(z) > \exp((2^n - 1)|\text{Re} z|) > \exp((2^n - 1)|p|).
\]

Now we show that

\[
(4) \quad H_n(z) \geq 1.
\]

As \(\text{Re} g^m(z) < p \) and \(|\text{Im} g^m(z)| < 1/4 \pi \) we have

\[
\exp(-2 \text{Re} g^m(z)) \cos(2 \text{Im} g^m(z)) > 2^{-\frac{1}{2}} \exp(-2p) > 1,
\]
so $-\lambda(1 - \exp(-2 \Re g^m(z)) \cos(2 \Im g^m(z))) > 0$. Moreover,

$$1 - 2 \exp(-2 \Re g^m(z)) \cos(2 \Im g^m(z)) > 1 - 2 \exp(-2 \Re g^m(z))$$

and $1 - 2 \exp(-2 \Re g^m(z)) + \exp(-4 \Re g^m(z)) > 0$, hence we get

$$1 - 2 \exp(-2 \Re g^m(z)) \cos(2 \Im g^m(z)) + \exp(-4 \Re g^m(z)) > 0,$$

and finally $H_n(z) \geq 1$. By (1)-(4) we have

$$|(g^n)'(z)| = 4^n \lambda^{-2n} \left\{ |F_n(z)|G_n(z)H_n(z) \right\}^2 \geq 4^{-n} \exp(2(2^n - 1)|p|).$$

Having estimated the derivatives of iterates we can prove the

LEMMA 5. — $E \subset J(f)$.

Proof. — Suppose that $z_0 \in E \cap F(f)$. Then there is a disc $D = D(z_0, r) \subset F(f)$ and a subsequence of iterates (f^{n_k}) holomorphic on D which converges to a holomorphic function g. Hence $g'(z) \neq \infty$ in D. By LEMMA 4, $g'(z_0) = \lim_{k \to \infty} (f^{n_k})'(z_0) = \infty$, so we arrive at contradiction. Thus $z_0 \in J(f)$.

Let $z_{m,n} = 2m + n\pi i$, $m, n \in \mathbb{Z}$ and $m < p$, where p was chosen just before LEMMA 4. Define the squares

$$B_{m,n} = \{ z : |\Re(z - z_{m,n})| < \frac{1}{4} \pi, \ |\Im(z - z_{m,n})| < \frac{1}{4} \pi \} \subset T.$$

Take a square $B_{s,t}$ such that $g^{-1}(B_{s,t})$ has at least one component in T and let A_1 be one such component. We introduce the following collection of sets:

$A_1 = \{ A_1 \}$,

$A_2 = \{ A_2 : A_2 \text{ is a component of } g^{-2}(B_{m,n}) \text{ for some } m < p, m, n \in \mathbb{Z}, A_2 \subset A_1 \}$,

$A_k = \{ A_k : A_k \text{ is a component of } g^{-k}(B_{m,n}) \text{ for some } m < p, m, n \in \mathbb{Z}, A_k \subset A_{k-1} \text{ for some } A_{k-1} \in A_{k-1} \}.$

Moreover, define

$$\mathcal{U}_k = \bigcup_{A_k \in A_k} A_k, \ A = \bigcap_{k=1}^{\infty} \mathcal{U}_k.$$

Then, of course, $A \subset E$.

We will show that $\text{HD}(A) = 2$.
LEMMA 6. — For each \(k \in \mathbb{N} \), \(A_k \in A_k \), we have
\[\text{diam } A_k \leq 4^k \pi 2^{-\frac{k}{2}} \exp\left(-2(2^k - 1) |p|\right). \]

Proof. — Let \(A_k \in A_k \). Then \(g^k(A_k) = B_{m,n} \) for some \(m < p \), \(m, n \in \mathbb{Z} \), so \(\text{diam } g^k(A_k) = \pi 2^{-\frac{k}{2}} \). As \(g^k(A_k) \) is convex and \(g^j(z) \in T \), \(j = 0, \ldots, k - 1 \), we can apply LEMMA 4 which gives
\[\text{diam } A_k \leq \frac{\text{diam } g^k(A_k)}{\inf_{A_k} |(g^k(z))'|} \leq 4^k \pi 2^{-\frac{k}{2}} \exp\left(-2(2^k - 1) |p|\right). \]

For \(A_k \in A_k \) we define \(G(A_k) = \{ A_{k+1} \in A_{k+1} : A_{k+1} \subset A_k \} \). Then \(\mathcal{U}_{k+1} \cap A_k = \bigcup_{A_{k+1} \in G(A_k)} A_{k+1} \) and
\[\frac{\text{vol}(\mathcal{U}_{k+1} \cap A_k)}{\text{vol}(A_k)} \geq \frac{1}{L(g^k, A_k)^2} \sum_{A_{k+1} \in G(A_k)} \frac{\text{vol}(g^k(A_{k+1}))}{\text{vol}(g^k(A_k))}, \]
where \(L(g^k, A_k) \) denotes the distortion of \(g^k \) on the set \(A_k \). So we need an upper bound of this quantity, which appears to be uniform in \(\lambda \).

LEMMA 7. — There is a constant \(1 < C_1 < \infty \) such that for each \(A_k \in A_k \), \(k \in \mathbb{N} \), the distortion \(L(g^k, A_k) \) is bounded above by \(C_1 \).

Proof. — Recall that the singularities of \(f^{-1} \) are 0 and \(\lambda \), where 0 is also a pole, while \(\lambda \) belongs to an attractive basin of a fixed point \(q_2 > 0 \). So the function \(g = f^2 \) has only one finite asymptotic value
\[\lambda_1 = \frac{\lambda}{1 - e^{-2\lambda}} > 0. \]
Moreover, \(\text{Re } f^k(\lambda) > 0 \) for \(k \in \mathbb{N} \), so the branches of \(f^{-k} \), and consequently the branches of \(g^{-k} \) are univalent in the half-plane \(\{ z : \text{Re } z \leq 0 \} \). Thus \(g^k \) is a homeomorphism of \(A_k \) onto \(g^k(A_k) \), and
\[L(g^k, A_k) = L(g^{-k}, g(A_k)) = L(g^{-k}, B_{m,n}) \]
for some \(B_{m,n} \subset T \). As \(B_{m,n} \subset D(z_{m,n}, 2^{-\frac{1}{2}} \pi) \subset D(z_{m,n}, |p|) \), it follows from LEMMA 2 that
\[L(g^{-k}, B_{m,n}) \leq M\left(\frac{2^{-\frac{1}{2}} \pi}{|p|}\right) = \left(\frac{|p| + 2^{-\frac{1}{2}} \pi}{|p| - 2^{-\frac{1}{2}} \pi}\right)^4. \]
So by the definition of p there is a constant C_1 such that $1 < C_1 < \infty$ and $L(g^{-k}, B_{m,n}) \leq C_1$.

Let $A_k \in A_k$, $k \in \mathbb{N}$. Note that $g^k(A_{k+1})$ is a component of $g^{-1}(B_{m,n})$ for some $m < p$ and $m, n \in \mathbb{Z}$. As $g^{k+1}(A_{k+1})$ is convex subset of T, it follows from Lemma 4 that

$$
\text{diam } g^k(A_{k+1}) \leq \frac{\text{diam } g^{k+1}(A_{k+1})}{\inf_{A_{k+1}} |(g^{k+1}(z))'|} \leq 2^{\frac{3}{2}} \pi \exp(2p) < \frac{1}{12} \pi.
$$

Thus

$$
\sum_{A_{k+1} \in G(A_k)} \text{vol}(g^k(A_{k+1})) > \text{vol}(g^{-1}(T) \cap W_{m,n}),
$$

where

$$
W_{m,n} = \{ z \in \mathbb{C} : |\Re(z - z_{m,n})| < \frac{1}{6} \pi, |\Im(z - z_{m,n})| < \frac{1}{6} \pi \} \subset B_{m,n}
$$

and $g^k(A_k) = B_{m,n}$.

Lemma 8. There is a positive constant C_2 such that for each $m < p$, $m, n \in \mathbb{Z}$, $\text{vol}(g^{-1}(B) \cap W_{m,n}) \geq C_2$, where

$$
B = \bigcup_{k, \ell \in \mathbb{Z}} B_{k, \ell}.
$$

Proof. By periodicity of g it is enough to consider only the sets $W_{m,0}$. Fix $m < p$, $m \in \mathbb{Z}$, and take the points $x_0 + iy$ in $W_{m,0}$, where x_0 is fixed. We want to find the maximal s such that $g^{-1}(T_k) \cap W_{m,0} \neq \emptyset$, $|k| = 0, 1, \ldots, s$. Let

$$
L_k^\pm = \{ w = u + i(k \pm \frac{1}{4})\pi : u < p \} \subset \partial T_k.
$$

If $w \in T$, then $g^{-1}(w) \approx -\frac{1}{2} \log(1 + \lambda - 2w)$. It follows

$$
\text{(6) } g^{-1}(L_k^\pm) \approx \left\{ z = -\frac{1}{2} \log(1 + \lambda - 2(u + i(k \pm \frac{1}{4})\pi)) \right. \\
= -\frac{1}{4} \log[(1 + \lambda - 2u)^2 + 4(k \pm \frac{1}{4})^2\pi^2] \\
+ \frac{1}{2} i \arctan(2(k \pm \frac{1}{4})\pi/(1 + \lambda - 2u) : u < p \}.
$$

As $g^{-1}(L_k^\pm)$ intersects $x_0 + iy$ if

$$
\text{Re } g^{-1}(L_k^\pm) = x_0 \quad \text{and} \quad |\text{Im } g^{-1}(L_k^\pm)| < \frac{1}{6} \pi,
$$

TOME 122 — 1994 — n° 3
we have
\[x_0 = -\frac{1}{4} \log((1 + \lambda - 2u)^2 + 4(k \pm \frac{1}{4})^2\pi^2), \]
which is equivalent to \(\exp(-4x_0) = (1 + \lambda - 2u)^2 + 4(k \pm \frac{1}{4})^2\pi^2. \) Thus
\[(1 + \lambda - 2u) = (\exp(-4x_0) - 4(k \pm \frac{1}{4})^2\pi^2)\frac{1}{2}. \]
By (6)
\[|\text{Im } g^{-1}(L^\pm_k)| = \left| \frac{1}{2} \arctan\left(\frac{2(k \pm \frac{1}{4})\pi}{1 + \lambda - 2u} \right) \right| < \frac{1}{6} \pi. \]
Applying (7) we have
\[2(k \pm \frac{1}{4})\pi [\exp(-4x_0) - 4(k \pm \frac{1}{4})^2\pi^2]^{-\frac{1}{2}} \leq \tan\left(\frac{1}{3}\pi\right) = 3\frac{1}{2}, \]
or, equivalently,
\[16\pi^2(k \pm \frac{1}{4})^2 \leq 3 \exp(-4x_0), \quad |k \pm \frac{1}{4}| \leq 3\frac{1}{2} \left(4\pi \exp(2x_0)\right)^{-1}. \]
Thus
\[s \geq 3\frac{1}{2} \left(4\pi \exp(2x_0)\right)^{-1} - \frac{3}{4}. \]
Let \(J_k \) be a subinterval of the line \{\(z : \text{Re } z = x_0 \}\} lying in \(W_{m,0} \) such that \(y \in J_k \) if and only if \(f(x_0 + iy) \in T_k \). Denote
\[y^+_k = -\frac{1}{2} \arctan\left\{ 2\pi(k + \frac{1}{4})[\exp(-4x_0) - 4(k + \frac{1}{4})^2\pi^2]^{-\frac{1}{2}} \right\}, \]
\[y^-_k = -\frac{1}{2} \arctan\left\{ 2\pi(k - \frac{1}{4})[\exp(-4x_0) - 4(k - \frac{1}{4})^2\pi^2]^{-\frac{1}{2}} \right\}. \]
We want to estimate the length of the interval \(J_k, k \geq 0 \), as \(|J_k| = |J_{-k}| \), that is
\[|y^+_k - y^-_k| = \left| \frac{1}{2} \arctan\left(2\pi \frac{(k + \frac{1}{4})K_1^\frac{1}{2} - (k - \frac{1}{4})K_2^\frac{1}{2}}{K_1^\frac{1}{2}K_2^\frac{1}{2} + 4\pi^2(k^2 - \frac{1}{16})} \right) \right|, \]
where
\[K_1 = \exp(-4x_0) - 4(k - \frac{1}{4})^2\pi^2, \quad K_2 = \exp(-4x_0) - 4(k + \frac{1}{4})^2\pi^2. \]
We obtain
\[|J_k| = \frac{1}{2} \arctan \left(2\pi \frac{4k^2\pi^2(K_1^{1/2} + K_2^{1/2})^{-1} + \frac{1}{4}(K_1^{1/2} + K_2^{1/2})}{K_1^{1/2}K_2^{1/2} + 4\pi^2(k^2 - \frac{1}{16})} \right) \]
\[\geq \frac{1}{2} \arctan \left(\frac{2\pi \left(K_1^{1/2}K_2^{1/2}\right)^{1/2}}{16K_1 + 4\pi^2(k^2 - \frac{1}{16})} \right). \]
As \((k + \frac{1}{4})^2 \leq 3(16\pi^2 \exp(4x_0))^{-1}\) we have, for \(x_0 < p\)
\[|J_k| \geq \frac{1}{2} \arctan \left\{ \pi \left(\frac{1}{2} \exp(-2x_0) \right) \left[\exp(-4x_0) + 2\pi \exp(-2x_0) \right]^{-1} \right\} \]
\[\geq \frac{1}{2} \arctan \left(\frac{1}{8} \pi \exp(2x_0) \right) \geq \frac{1}{8} \pi \exp(2x_0). \]
The above inequality together with (8) imply that
\[\sum_{k=0}^{s} |J_k| \geq \frac{1}{8} \pi \exp(2x_0) \left[3 \frac{3}{4} \left(4\pi \exp(2x_0) \right)^{-1} - \frac{3}{4} \right] \]
\[\geq 0.0541 - 0.2945 \exp(2p) > 0.052. \]
Thus \(\text{vol}(g^{-1}(T) \cap W_{m,n}) \geq 2(\frac{1}{3} \pi)0.052 > 0.1 =: C_2'\) and hence
\[\text{vol}(g^{-1}(B) \cap W_{m,n}) \geq C_2 \]
for some \(C_2 > 0\). (Observe that \(\lim_{M \to \infty} \text{vol}(B_M)/\text{vol}(T \cap \{z : \Re z \leq M\}) = \frac{1}{4} \pi\), where \(B_M = \bigcup_{k, \ell \in \mathbb{Z}, k < M < p} B_{k, \ell}\). \(\square\)

The sets \(A_k\) satisfy the conditions of Lemma 1. By Lemma 6
\[\text{diam} A_k \leq d_k = 4^k \pi 2^{-\frac{1}{3}} \exp\left(-2(2^k - 1)|p|\right). \]
Moreover, Lemma 7 and Lemma 8 together with (5) imply that
\[\frac{\text{vol}(\mathcal{U}_{k+1} \cap A_k)}{\text{vol}(A_k)} \geq \frac{4C_2}{(\pi C_1)^2} = \Delta_k, \]
individually of \(k\). Thus we have
\[2 \geq \text{HD}(A) \geq 2 - \lim_{k \to \infty} \frac{k|\log(4C_2/\pi^2 C_2^2)|}{|\log d_k|} \]
\[= 2 - \lim_{k \to \infty} \frac{k|\log 4 + \log C_2 - 2 \log \pi - 2 \log C_1|}{|\log \pi + k \log 4 - \frac{1}{2} \log 2 - 2(2^k - 1)|p|} \]
\[= 2, \]
since \(C_1, C_2\) do not depend on \(k\). As \(A \subset E \subset J(f_\lambda)\), we obtain
\(\text{HD}(J(f_\lambda)) = 2\) for all \(\lambda > 0\), hence Theorem 1.
2. Proof of Theorem 2

Let \(f_\lambda(z) = 1/(\lambda + e^{-2z}) \), \(\lambda > 0 \). We remind to the reader some of the essential properties of this family described in [4]. The function \(f_\lambda \) maps \(\mathbb{R} \) diffeomorphically onto the interval with asymptotic values 0, 1/\(\lambda \) as the endpoints, so \(f_\lambda \) has an attracting fixed point \(p_\lambda \in (0; 1/\lambda) \), and the entire real axis lies in the immediate basin of \(p_\lambda \). In particular, both asymptotic values lie in the immediate basin of \(p_\lambda \), and so there are discs about these points which lie in the basin. Taking preimages of these discs, it follows that there are half planes of the form

\[
H_1 = \{ z : \text{Re} \, z < \nu_1 = \nu_1(\lambda) \} \quad \text{and} \quad H_2 = \{ z : \text{Re} \, z > \nu_2 = \nu_2(\lambda) \}
\]

with \(\nu_1 < p_\lambda < \nu_2 \), which lie in the immediate basin of \(p_\lambda \). Let

\[
S_\mu = H_1 \cup H_2 \cup \{ z : \nu_1 \leq \text{Re} \, z \leq \nu_2, \ |\text{Im} \, z - n\pi| < \mu, \ n \in \mathbb{Z} \},
\]

where \(\mu = \mu(\lambda) \). Then \(f_\lambda : S_\mu \to S_\mu \), so \(S_\mu \subset F(f_\lambda) \). The complement of \(S_\mu \) consists of infinitely many congruent rectangles \(R_m \), where \(m \in \mathbb{Z} \) and \(R_m \) are indexed according to increasing imaginary parts. In each \(R_m \) \(f_\lambda \) has exactly one pole \(s_m = -\frac{1}{2} \log \lambda + i(m + \frac{1}{2})\pi, \ m \in \mathbb{Z} \), and maps each \(R_m \) diffeomorphically onto \(\mathbb{C} \setminus f_\lambda(S_\mu) \). Thus \(J(f_\lambda) = \bigcap_{n \geq 0} f^{-n}(\mathbb{C} \setminus S_\mu) \), so \(J(f_\lambda) \) is a planar Cantor set, while \(F(f_\lambda) \) is the attractive basin of \(p_\lambda \).

Fix \(\lambda \) and assume that \(0 < \lambda < \varepsilon \) with \(\varepsilon \) small enough (we can take e.g. \(\varepsilon = 10^{-10} \)). As before we omit the index \(\lambda \). Let \(s_K \) be a pole such that

\[
-\frac{3}{2} \log \lambda \leq (K + \frac{1}{2})\pi \leq -\frac{3}{2} \log \lambda + \pi,
\]

\(w_K \) be the preimage of \(s_K \) with \(0 < \text{Im} \, w_K < \frac{1}{2} \pi \), that is,

\[
w_K = -\frac{1}{2} \log((1/s_K) - \lambda),
\]

\[
\text{Re} \, w_K \approx -\frac{1}{2} \log((\frac{3}{2} \log^2 \lambda + \frac{5}{8} \lambda \log^3 \lambda + \frac{25}{4} \lambda^2 \log \lambda) \frac{1}{2} / (\frac{5}{2} \log^2 \lambda))
\approx -\frac{1}{2} \log((-2.5)^{\frac{1}{2}} \log \lambda),
\]

\[
\text{Im} \, w_K \approx -\frac{1}{2} \arctan(\frac{3}{2} \log(-\frac{1}{2} \log \lambda - \frac{5}{2} \lambda \log^2 \lambda)^{-1})
\approx \frac{1}{2} \arctan 3 \approx 0.6245.
\]

Above and in the sequel \(G(\lambda) \approx H(\lambda) \) means

\[
\lim_{\lambda \to 0^+} G(\lambda)/H(\lambda) = 1.
\]
Let
\[\xi = -\frac{1}{2} \log \lambda - \text{Re } w_K \approx -\frac{1}{2} \log \lambda - \frac{1}{2} \log(-(2.5)^{\frac{1}{2}} \log \lambda) \]
\[= -\frac{1}{2} \log(-(2.5)^{\frac{1}{2}} \lambda \log \lambda), \]
\[\eta = \frac{1}{2} \pi - \text{Im } w_K \approx 0.9463. \]

Define the sets (see Fig. 2):
\[B_m = \{ z : \text{Re } w_K < \text{Re } z < -\frac{1}{2} \log \lambda, \ |\text{Im}(z-s_m)| < \eta \}, \]
\[T = \bigcup_{m \in I} B_m, \]
\[I = \mathbb{Z} \setminus \{-K, \ldots, 0, \ldots, K - 1\}, \]
\[E = \{ z : f^n(z) \in T \text{ for all } n \in \mathbb{N} \}. \]
We want to show that $E \subset J(f)$ and estimate $\text{HD}(E)$ from below.

Lemma 9. — If $f^j(z) \in T$, $j = 0, \ldots, n - 1$, then

$$|(f^n)'(z)| \geq C_1^n,$$

for a constant $C_1 > 1$.

Proof. — Note that $|f'(z)| = 2|\lambda e^{-z} e^{z} - 2e^{z}|$. Taking the points $x_0 + iy$ in $B_m \subset T$, where x_0 is fixed, we have then

$$|f'(x_0 + iy)| \geq |f'(x_0 + i(\text{Im} w_K + m\pi))|.$$

Now, take $x + iy_0$ in B_m with $y_0 = \text{Im} w_K + m\pi$. Then

$$|f'(x + iy_0)| \geq |f'(\text{Re} w_K + iy_0)|,$$

and consequently $|f'(z)| \geq |f'(w_K + im\pi)|$ for all $z \in B_m$. As

$$|f'(w_K + im\pi)| = |f'(f^{-1}(s_K))| = 2|s_K(1 - \lambda s_K)|$$

$$= (- \log \lambda)[10(1 + \lambda \log \lambda + \frac{5}{2} \lambda^2 \log^2 \lambda)]^{\frac{1}{2}} =: C_1,$$

$C_1 > 1$, then $|(f^n)'(z)| \geq C_1^n$ for $z \in B_m$, and by periodicity of f, for all $z \in T$. \[\square\]

Take the smallest $M \in \mathbb{N}$ satisfying $M \geq 10^{1/2} \pi^{-1}(-\log \lambda) + 1$. Note that $M > K$. Fix $N \in \mathbb{N}$ such that $N \geq M$. For a pole s_N, consider the preimage $f^{-1}(s_N)$ lying in B_0, and define $\eta_N = |\text{Im}(s_0 - f^{-1}(s_N))|$. We introduce auxiliary sets:

$$B_{m,N} = \{z : \text{Re} w_K < \text{Re} z < -\frac{1}{2} \log \lambda, \ \eta_N < |\text{Im}(z - s_m)| < \eta\},$$

$$T_N = \bigcup_{m \in I} B_{m,N},$$

$$E_N = \{z : f^n(z) \in T_N \text{ for all } n \in \mathbb{N}\}.$$}

Clearly $B_{m,N} \subset B_{m,N+1}$, $T_N \subset T_{N+1}$, $E_N \subset E_{N+1}$ for each $N \geq M$, $N \in \mathbb{N}$. Thus

$$\bigcup_{N \geq M} B_{m,N} = B_{m}, \quad \bigcup_{N \geq M} T_N = T, \quad \bigcup_{N \geq M} E_N = E.$$

To estimate from below the Hausdorff dimension of the set E, it is enough to find a lower bound for the dimension of each E_N.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
LEMMA 10. — For each $N \geq M$, $N \in \mathbb{N}$, the set E_N is contained in $J(f)$, so $E \subset J(f)$.

The proof is analogous as that of LEMMA 5.

Note that $B_{m,N}$ has two components and $f(B_{m,N}) \cap B_{n,N} \neq \emptyset$ for $m, n \in I_1 = \{n \in \mathbb{Z} : -(N+1) \leq n \leq -(K+1) \text{ or } K \leq n \leq N \}$.

Take a specific set $B_{s,N}$, $s \in I_1$, and let $A_{N,1}$ be a component of $f^{-1}(B_{s,N})$ contained in T_N. Define the following collection of the sets inductively:

$A_{N,1} = \{A_{N,1}\}$,

$A_{N,2} = \{A_{N,2} : A_{N,2} \text{ is a component of } f^{-2}(B_{m,N})$ for some $m \in I_1$, and $A_{N,2} \subset A_{N,1}\}$,

\vdots

$A_{N,k} = \{A_{N,k} : A_{N,k} \text{ is a component of } f^{-k}(B_{m,N}) \text{ for some } m \in I_1$, and $A_{N,k} \subset A_{N,k-1} \text{ for some } A_{N,k-1} \in A_{N,k-1}\}$.

Thus $A_{N,k}$ consists of $(2(N-K+1))^{k-1}$ sets $A_{N,k}$, $k \in \mathbb{N}$. Let

$$U_{N,k} = \bigcup_{A_{N,k} \in A_{N,k}} A_{N,k}, \quad A_N = \bigcap_{k=1}^{\infty} A_{N,k}.$$

Thus $A_N \subset E_N$ and so it is sufficient to find a lower bound for $\text{HD}(A_N)$.

LEMMA 11. — For each $A_{N,k} \in A_{N,k}$, $k \in \mathbb{N}$, diam $A_{N,k} \leq DC_1^{-k}$, where $D = (\frac{1}{4} \log^2 (-2.5^{1/2} \lambda \log \lambda) + 4\eta^2)^{1/2}$.

Proof. — By the definition of $A_{N,k}$, $f^k(A_{N,k})$ is a connected component of $B_{m,N}$ for some $m \in I_1$. As $B_{m,N} \subset B_{m}$

$$\text{diam } f^k(A_{N,k}) \leq (\xi^2 + 4\eta^2)^{1/2}$$

$$= (\frac{1}{4} \log^2 (-2.5^{1/2} \lambda \log \lambda) + 4\eta^2)^{1/2} = D.$$

Moreover, $f^k(A_{N,k})$ is convex subset of $T_N \subset T$, so by LEMMA 9

$$\text{diam } A_{N,k} \leq \text{diam } f^k(A_{N,k})/\inf_{A_{N,k}} |(f^k)'| \leq DC_1^{-k}.$$

The sets $A_{N,k}$ and constants $d_k = DC_1^{-k}$, $k \in \mathbb{N}$, satisfy the conditions of LEMMA 1. To use this lemma we should find $\Delta_{N,k}$ such that for each $A_{N,k} \in A_{N,k}$

$$\frac{\text{vol}(U_{N,k+1} \cap A_{N,k})}{\text{vol}(A_{N,k})} \geq \Delta_{N,k}. \quad (9)$$
Note that $\mathcal{U}_{N,k+1} \cap A_{N,k} = \bigcup_{A_{N,k+1} \in G(A_{N,k})} A_{N,k+1}$, where

$$G(A_{N,k}) = \{A_{N,k+1} : A_{N,k+1} \in A_{N,k+1}, \: A_{N,k+1} \subset A_{N,k}\},$$

so

$$\frac{\text{vol}(\mathcal{U}_{N,k+1} \cap A_{N,k})}{\text{vol}(A_{N,k})} \geq L(f^k, A_{N,k})^{-2} \sum_{A_{N,k+1} \in G(A_{N,k})} \frac{\text{vol}(f^k(A_{N,k+1}))}{\text{vol}(f^k(A_{N,k}))}. \tag{10}$$

Lemma 12. For each $A_{N,k} \in A_{N,k}, \: k \in \mathbb{N}$, the distortion $L(f^k, A_{N,k})$ is bounded above by a constant $C_2 < 4$.

Proof. — The branches of $f^{-k}, \: k \in \mathbb{N}$, are univalent in T since $f^k(0)$ and $f^k(1/\lambda)$ are contained in \mathbb{R}. Thus f^k is a homeomorphism of $A_{N,k} \in A_{N,k}$ onto $f^k(A_{N,k})$ and

$$L(f^k, A_{N,k}) = L(f^{-k}, f^k(A_{N,k})) = L(f^{-k}, B_{m,N}).$$

As $B_{m,N}$ is contained in a disc D of diameter $2s = \text{diam} B_{m}$, and $D \subset D(s_m, r)$ with $r = (K + \frac{1}{2})\pi$, it follows from Lemma 2 that

$$L(f^{-k}, B_{m,N}) \leq M \left(\frac{s}{r} \right) = \left(\frac{r + s}{r - s} \right)^4$$

$$= \left(\frac{-\frac{3}{2} \log \lambda + \frac{1}{2} \lfloor \log^2(-(2.5)^{\frac{1}{2}} \log \lambda) + 4\eta^2 \rfloor^\frac{1}{2}}{-\frac{3}{2} \log \lambda - \frac{1}{2} \lfloor \log^2(-(2.5)^{\frac{1}{2}} \log \lambda) + 4\eta^2 \rfloor^\frac{1}{2}} \right)^4$$

$$\leq \left(1 + \frac{0.0277 + \varepsilon(\lambda)}{1 - (0.0277 + \varepsilon(\lambda))^\frac{1}{2}} \right)^4,$$

where $\varepsilon(\lambda) = \frac{3}{4} \log^2(-(2.5)^{\frac{1}{2}} \log \lambda) + 3.581)/(9 \log^2 \lambda)$. Thus

$$M \left(\frac{s}{r} \right) \leq (1.414)^4 \leq 3.9976 =: C_2 < 4$$

if $\lambda < 10^{-10}$. \[\square\]

Lemma 13. There exist constants $0 < \alpha_N, \: \beta_N < 1$, and $C_3, \: C_4 > 0$ such that for each $A_{N,k} \in A_{N,k}, \: k \in \mathbb{N}$

$$C_3 - \alpha_N \leq \sum_{A_{N,k+1} \in G(A_{N,k})} \text{vol}(f^k(A_{N,k+1})) \leq C_4 - \beta_N.$$
Proof. — Let $W_m \subset B_m$ be defined by

$$W_m = \{z : \text{Re } w_{K+2} < \text{Re } z < -\frac{1}{2} \log \lambda, \ \eta_N < |\text{Im}(z - s_m)| < \eta\},$$

$$W_{m,N} = B_{m,N} \cap W_m,$$

where $w_{K+2} = f^{-1}(s_{K+2})$, $m \in I$. Then for each $A_{N,k} \in A_{N,k}$

$$\sum_{A_{N,k+1} \in G(A_{N,k})} \text{vol}(f^k(A_{N,k+1})) \geq \frac{1}{2} \text{vol}(f^{-1}(T_N) \cap W_{m,N}),$$

where $f^k(A_{N,k})$ is a component of $B_{m,N}$ for some $m \in I$. Note that $f(B_m)$ intersects $B_{n,N}$ for $n \in I_2$ and covers $B_{n,N}$ for $n \in I_3$ where

$$I_2 = \{n \in \mathbb{Z} : -\frac{1}{2}(N-5) \leq n \leq -(K+1) \text{ or } K \leq n \leq \frac{1}{2}(N-3)\}$$

and $I_3 = I \setminus I_2$. Indeed, f maps $\{z : \text{Re } z = \text{Re } w_K\}$ onto the circle of radius $r_0 = r/(r^2 - \lambda^2)$ and centre $z_0 = -\lambda/(r^2 - \lambda^2)$, where $r = \exp(-2\text{Re } w_K)$. For $0 < \lambda < \varepsilon$, $r_0 \approx -(2.5)^{1/2} \log \lambda$, $z_0 \approx -(2.5)\lambda \log^2 \lambda$, so $r_0/\pi < \frac{1}{2}(N-1)$.

The lines

$$\{z : \text{Im } z = (m + \frac{1}{2})\pi - \eta\}, \quad \text{(resp. } \{z : \text{Im } z = (m + \frac{1}{2})\pi + \eta\})$$

are mapped by f onto circles passing through 0, $1/\lambda$ and the pole s_K (resp. $s_{-(K+1)}$), while $f(\{z : \text{Re } z = -\frac{1}{2} \log \lambda\})$ is the line $\{z : \text{Re } z = \frac{2}{\lambda}\}$.

As

$$\text{vol}(f^{-1}(B_m) \cap B_n) = \int_{B_m \cap f(B_n)} |(f^{-1})'(z)|^2,$$

and $(f^{-1})'(z) = (2z(1 - \lambda z))^{-1}$, we have

$$\max_{B_m} |(f^{-1})'| \leq \left(4\left[\frac{1}{4} \log^2(-(2.5)^{1/2} \log \lambda) + (m\pi)^2\right](1 + (\lambda m\pi)^2)\right)^{-1},$$

$$\min_{B_m} |(f^{-1})'| \geq \left(4\left[\frac{1}{4} \log^2 \lambda + (m + \frac{1}{2} + \eta/\pi)^2\pi^2\right](1 + (\lambda m\pi)^2)\right)^{-1}.$$

In these estimates we take simply $|1 - \lambda z|^2 \approx 1 + (\lambda m\pi)^2$, which is a sufficient approximation for our purposes.
Now, we estimate \(\text{vol}(f^{-1}(\bigcup B_m) \cap W_n) \) for \(m \in I_3 \) and \(n \in I : \)

\[
\begin{align*}
\text{vol}(f^{-1}(\bigcup B_m) \cap W_n) & \geq 2 \sum_{m \geq (N-1)/2} \text{vol}(B_m)(\min_{B_m} |(f^{-1})'|^2) \\
& \geq 2 \sum_{m \geq (N-1)/2} \frac{(-\frac{1}{2} \log(-(2.5)^{\frac{1}{2}} \lambda \log \lambda))2\eta}{4[\frac{1}{4} \log^2 \lambda + (m + 1/2 + \eta/\pi)^2/2]}(1 + (\lambda m \pi)^2) \\
& \geq \frac{1}{8} \pi (-\log(-(2.5)^{\frac{1}{2}} \lambda \log \lambda)) \int_a^\infty (\lambda^2 \pi^4)^{-1}((x^2 + D_2^3)(x^2 + D_1^3))^{-1} dx,
\end{align*}
\]

where \(2\eta > \frac{1}{2} \pi, a = \frac{1}{2} N + \eta/\pi, D_1 = 1/(\lambda \pi), D_2 = (-\log \lambda)/(2\pi), \)

\[
\text{vol}(f^{-1}(\bigcup B_m) \cap W_n) = \frac{1}{8} \pi (-\log(-(2.5)^{\frac{1}{2}} \lambda \log \lambda)) \int_a^\infty \frac{(x^2 + D_2^3) - (x^2 + D_1^3)}{\lambda^2 \pi^4(D_2^3 - D_1^3)} dx \\
= \frac{-\log(-(2.5)^{\frac{1}{2}} \lambda \log \lambda)}{8\pi(1 - \frac{1}{4} \lambda^2 \log^2 \lambda)} \left[D_2^{-1} \arctan\left(\frac{x}{D_2} \right) - D_1^{-1} \arctan\left(\frac{x}{D_1} \right) \right]_a \\
= \frac{1}{8\pi} \frac{1 + G_1(\lambda)}{G_3(\lambda)} \left[\pi^2 - 2\pi \arctan\left(\frac{N\pi + 2\eta}{-\log \lambda} \right) + G_2(\lambda) \right]
\]

with
\[
G_1(\lambda) = -\log(-(2.5)^{\frac{1}{2}} \log \lambda)/(-\log \lambda), \\
G_2(\lambda) = \pi \lambda \log \lambda(\frac{1}{2} \pi - \arctan(\frac{1}{2} \lambda \pi N + \eta \lambda)), \\
G_3(\lambda) = 1 - \frac{1}{4} \lambda^2 \log^2 \lambda;
\]

we get

\[
\text{vol}(f^{-1}(\bigcup B_m) \cap W_n) \geq \frac{1}{8\pi} (1 + G_1(\varepsilon)) \left\{ \pi^2 - 2\pi \arctan(10^{\frac{1}{2}} + 2(\pi + 1)(-\log^{-1} \varepsilon)) + \pi^2 \varepsilon \log \frac{1}{2} \varepsilon \right\} \\
\geq 0.0569 =: C_3'.
\]

Thus for \(n \in I \)

\[
\text{vol}(f^{-1}(\bigcap_{m \in I_3} B_m) \cap W_n) \geq C_3'.
\]
Analogously we can find an upper bound for $\text{vol}(f^{-1}(\bigcup_{m \in I_3} B_m) \cap B_n)$, $n \in I$, namely

$$\text{vol}\left(f^{-1}\left(\bigcup_{m \in I_3} B_m \right) \cap W_n \right) \leq 2 \sum_{m \geq (N-1)/2} \text{vol}(B_m)(\max_{B_m}|(f^{-1})'|^2)$$

$$\leq 2 \sum_{m \geq (N-1)/2} \frac{(-\frac{1}{2} \log \lambda)\pi}{4\left[\frac{1}{4} \log^2(-2.5)^{\frac{1}{2}} \log \lambda + (m\pi)^2\right](1 + (\lambda m\pi)^2)}$$

$$\leq \frac{1}{4}(\log \lambda)\int_{(N-3)/2}^{\infty} \frac{(x^2 + D_3^2)^{-1} - (x^2 + D_3^2)^{-1}}{\lambda^2 \pi^4(D_3^2 - D_3^2)} \, dx,$$

where $D_3 = \log(-2.5)^{\frac{1}{2}} \log \lambda)/(2\pi)$, and therefore

$$\leq \frac{-\log \lambda}{4\pi} [1 - \frac{1}{4} \lambda^2 \log^2(-2.5)^{\frac{1}{2}} \log \lambda]^{-1}\left[D_3^{-1} \arctan\left(\frac{x}{D_3}\right) \right]_{\frac{1}{2}(N-3)}^{\infty}$$

$$\leq \frac{-\log \lambda}{2\pi [10 \frac{1}{2} (-\log \lambda)/\pi - 2]} < \frac{0.55}{\pi} =: C_4^*.$$

Moreover, if

$$m \in I_4 = \{n \in \mathbb{Z} : -\frac{1}{2}(N-5) \leq n \leq -(K+2)$$

or $(K+1) \leq n \leq \frac{1}{2}(N-3)$},

then using

$$\text{vol}(B_m \cap f(B_n)) \leq \pi(-\log \lambda)(-\frac{1}{2} - [2.5 - (k\pi/\log \lambda)^2]^{\frac{1}{2}})$$

we obtain

$$\text{vol}\left(f^{-1}\left(\bigcup_{m \in I_4} B_m \right) \cap B_n \right)$$

$$\leq 2 \sum_{K+1}^{(N-3)/2} \frac{\pi(-\log \lambda)(-\frac{1}{2} - [2.5 - (k\pi/\log \lambda)^2]^{\frac{1}{2}})}{4\left[\frac{1}{4} \log^2(-2.5)^{\frac{1}{2}} \log \lambda + (m\pi)^2\right][1 + (\lambda m\pi)^2]}$$

$$\leq \frac{1}{2}(\log \lambda)\int_{K}^{\frac{1}{2}(N-1)} \frac{\left(\frac{1}{2} - [2.5 - (x\pi/\log \lambda)^2]^{\frac{1}{2}}\right)}{\left[\frac{1}{4} \log^2(-2.5)^{\frac{1}{2}} \log \lambda + (m\pi)^2\right][1 + (\lambda m\pi)^2]} \, dx$$

$$\leq \frac{1}{2}(\log \lambda)\int_{K}^{\frac{1}{2}(N-1)} \left(\frac{1}{2} - [2.5 - (x\pi/\log \lambda)^2]^{\frac{1}{2}}\right)(\pi x)^{-2} \, dx$$

$$\leq \frac{1}{2}(2.5)^\frac{1}{2}\int_{\frac{1}{2}(2.5)}^{\frac{1}{2}} (\frac{1}{2} - (2.5 - y^2)^{\frac{1}{2}})y^{-2} \, dy < 0.0091 =: C_4''.$$
HAUSDORFF DIMENSION OF JULIA SETS

As \(\text{vol}(f^{-1}(B_{-(K+1)} \cup B_K) \cap B_n) < 0.0001 =: C_3'' \) we have for \(n \in I \)
\[
(13) \quad \text{vol}\left(f^{-1}\left(\bigcup_{m \in I} B_m \right) \cap B_n\right) \leq C_4' + C_4'' + C_4''' \leq 0.177 =: C_4.
\]
Note that for \(n \in I \)
\[
(14) \quad \lim_{N \to \infty} \text{vol}\left(f^{-1}\left(\bigcup_{m \in I} B_{m,N} \right) \cap W_{n,N}\right) = \text{vol}\left(f^{-1}\left(\bigcup_{m \in I} B_m \right) \cap W_n\right),
\]
so by (11)–(12) and (13)–(14) there are constants \(C_3 = \frac{1}{2} C_3' \) and \(\alpha_N, \beta_N \)
such that
\[
C_3 - \alpha_N \leq \sum_{A_{N,k+1} \in G(A_{N,k})} \text{vol}(f^k(A_{N,k+1})) \leq C_4 - \beta_N,
\]
and \(\alpha_N, \beta_N \to 0 \) if \(N \to \infty \). LEMMA 12 and LEMMA 13 together with (10)
imply that
\[
\frac\text{vol}(U_{N,k+1} \cap A_{N,k})}{\text{vol}(A_{N,k})} \geq \frac{C_3 - \alpha_N}{C_3' C_5}
\]
with \(C_5 = -\log(-(-2.5)^\frac{1}{2} \lambda \log \lambda) \geq \text{vol}(B_m) \geq \text{vol}(B_{m,N}) \), that is,
\[
\Delta_{N,k} = (C_3 - \alpha_N)/(C_3' C_5) \text{ by } (9).
\]
Now we can apply LEMMA 1 to the sets \(A_{N,k} \). Thus
\[
\text{HD}(A_N) \geq 2 - \limsup_{k \to \infty} \frac{k \left| \log\left(C_3 - \alpha_N\right)/(C_3' C_5)\right|}{\left| \log(DC_3^{-k})\right|}
\]
\[
= 2 - \frac{\left| \log\left(C_3 - \alpha_N\right)/(C_3' C_5)\right|}{\left| \log C_3\right|}.
\]
As \(A_N \subset A_{N+1} \) and \(\bigcup_{M \geq N} A_N = A \) we have
\[
\text{HD}(A) \geq \lim_{N \to \infty} \text{HD}(A_N) \geq 2 - \frac{\left| \log(C_3/(C_3' C_5))\right|}{\left| \log C_3\right|}.
\]
By the definition \(A_N \subset E_N \) for each \(N \geq M \) and \(\bigcup_{N \geq M} E_N = E \subset J(f_\lambda) \), so
\[
\text{HD}(J(f_\lambda)) \geq 2 - \frac{\left| \log(C_3/(C_3' C_5))\right|}{\left| \log C_3\right|}
\]
\[
= 2 - \frac{\left| \log 0.0284 - \log 3.998^2 - \log(-\log\left(-(-2.5)^\frac{1}{2} \lambda \log \lambda\right))\right|}{\left| \log(-\log \lambda) + \frac{1}{2} \log(10(1 - \lambda \log \lambda + \frac{5}{2} \lambda^2 \log^2 \lambda))\right|}
\]
\[
\geq 2 - \frac{\left| \log(\left| \log \lambda \right| - \log(1.581 | \log \lambda |)) + 6.331\right|}{\left| \log(\left| \log \lambda \right|) + 1.152\right|}
\]
\[
\geq 1 - \frac{C}{\log |\log \lambda|}
\]
for some \(C > 0 \).
Our lower bound for $\text{HD}(J(f_\lambda))$ tends to 1 if $\lambda \to 0^+$, as follows from the above inequality valid for $0 < \lambda < 10^{-10}$. \[\]

3. Proof of Theorem 3

Let $f_\lambda(z) = \lambda \tan z$. Suppose $\lambda \in \mathbb{R}$ and $0 < |\lambda| < 1$. Then 0 is an attracting fixed point for f_λ. Let I denote the component of the basin of attraction of 0 in \mathbb{R}. I is an open interval of the form $(-p; p)$, where $f_\lambda(\pm p) = \pm p$. The points $\pm p$ lie on a repelling periodic orbit of period two if $-1 < \lambda < 0$, or are repelling fixed points if $0 < \lambda < 1$. The set $\mathbb{R} \setminus f_\lambda^{-1}(I)$ consists of infinitely many disjoint open intervals I_m, $m \in \mathbb{Z}$. Each of them contains exactly one pole $s_m = (m + \frac{1}{2})\pi$. Thus $f_\lambda : I_m \to (\mathbb{R} \cup \{\infty\}) \setminus I$ and $|f_\lambda'(x)| > 1$ for each $x \in I_m$. Thus

$$J(f_\lambda) \setminus \{\infty\} = \bigcap_{n=0}^{\infty} f_{\lambda}^{-n} \left(\bigcup_{m \in \mathbb{Z}} I_m \right)$$

is a Cantor subset of \mathbb{R}.

As before we fix λ and assume additionally $0 < |\lambda| < \frac{3}{4}$. Let

$$w_1 = f^{-1}(s_1) = \arctan(s_1/\lambda) \approx \frac{1}{2} \pi - 2|\lambda|/(3\pi),$$

$$\delta = \delta_1 = |s_0 - w_1| \approx 2|\lambda|/(3\pi).$$

Define the sets :

$$B_m = \{z \in \mathbb{R} : |z - s_m| < \delta\},$$

$$T = \bigcup_{m \in J} B_m,$$

$$J = \mathbb{Z} \setminus \{-1, 0\},$$

$$E = \{z \in \mathbb{R} : f^n(z) \in T \text{ for all } n \in \mathbb{N}\}.$$

Fix $N \in \mathbb{N}$, $N \geq M \geq 10$, and define $\delta_N = |s_0 - w_N|$, where $w_N = f^{-1}(s_N) \in (0, \pi)$. Let

$$B_{m,N} = \{z \in \mathbb{R} : \delta_N < |z - s_m| < \delta\},$$

$$T_N = \bigcup_{m \in J} B_{m,N},$$

$$E_N = \{z \in \mathbb{R} : f^n(z) \in T_N \text{ for all } n \in \mathbb{N}\}.$$
Then $B_{m,N} \subset B_{m,N+1}$, $T_N \subset T_{N+1}$, $E_N \subset E_{N+1}$ for each $N \geq M$, $N \in \mathbb{N}$, and thus

$$
\bigcup_{N \geq M} B_{m,N} = B_m, \quad \bigcup_{N \geq M} T_N = T, \quad \bigcup_{N \geq M} E_N = E.
$$

We show that $E \subset J(f)$ and estimate $\text{HD}(E)$ from below.

Take $z \in B_m$, $z \neq s_m$. As $f'(z) = \lambda(1 + \tan^2 z)$, it is easy to see that $|f'(z)| \geq |f'(s_m - \delta)| = |f'(s_m + \delta)|$. But

$$
|f'(s_m - \delta)| = |f'(f^{-1}(s_{\pm 1}))| = |\lambda(1 + (s_1/\lambda)^2)| =: C_1 > 1.
$$

Thus $|f'(z)| \geq C_1$, and if additionally $f^j(z) \in T$, $j = 0, \ldots, n - 1$, then

$$
\min_T |(f^n)'| \geq C_1^n.
$$

Using this property one can prove that $E_N \subset J(f)$, and consequently $E = \bigcup_{N \geq M} E_N \subset J(f)$ (compare Lemma 5).

The set $B_{m,N}$ consists of two intervals, $f(B_{m,N}) \cap B_{n,N} \neq \emptyset$ if

$$m, n \in J_1 = \{ n \in \mathbb{Z} : -(N+1) \leq n \leq -2 \text{ or } 1 \leq n \leq N \},$$

and $f(B_{m,N}) \supset B_{n,N}$ if

$$n \in J_2 = \{ n \in \mathbb{Z} : -N \leq n \leq -3 \text{ or } 2 \leq n \leq N-1 \}, \quad m \in J_1. $$

Let $s \in J_2$. Take a component of $f^{-1}(B_{s,N})$ contained in T_N and denote it by $A_{N,1}$. Define the following family of sets:

$A_{N,1} = \{ A_{N,1} \}$,

$A_{N,2} = \{ A_{N,2} : A_{N,2} \text{ is a component of } f^{-2}(B_{m,N}) \text{ for some } m \in J_2, \quad \text{and } A_{N,2} \subset A_{N,1} \}$,

$$ \vdots $$

$A_{N,k} = \{ A_{N,k} : A_{N,k} \text{ is a component of } f^{-k}(B_{m,N}) \text{ for some } m \in J_2, \quad \text{and } A_{N,k} \subset A_{N,k-1} \text{ for some } A_{N,k-1} \in A_{N,k-1} \}$.

Let $U_{N,k} = \bigcup A_{N,k} \in A_{N,k}$ and $A_N = \bigcap_{k=1}^{\infty} U_{N,k}$, so clearly $A_N \subset E_N$ for each $N \geq M$. To estimate $\text{HD}(A_N)$ we should find the constants d_k and $\Delta_{N,k}$ such that

$$ \frac{\text{vol}(U_{N,k+1} \cap A_{N,k})}{\text{vol}(A_{N,k})} \geq \Delta_{N,k}, $$

and $\text{diam } A_{N,k} \leq d_k < 1$. Let $A_{N,k} \in A_{N,k}$, then $f^k(A_{N,k})$ is connected component of $B_{m,N}$ for some $m \in J_2$. By (15)

$$ \text{diam } (A_{N,k}) \leq \frac{\text{diam } f^k(A_{N,k})}{\inf_{A_{N,k}} |(f^k)'|} \leq LC_1^{-k}, $$

where $L = 2(\delta - \delta_N)$. As before

$$ G(A_{N,k}) = \{ A_{N,k+1} \in A_{N,k+1} : A_{N,k+1} \subset A_{N,k} \}. $$

Then

$$ \frac{\text{vol}(U_{N,k+1} \cap A_{N,k})}{\text{vol}(A_{N,k})} \geq \frac{1}{L(f^k, A_{N,k})^2} \sum_{A_{N,k+1} \in G(A_{N,k})} \frac{\text{vol}(f^k(A_{N,k+1}))}{\text{vol}(f^k(A_{N,k}))}. $$
First we find a bound for $L(f^k, A_{N,k})$. The branches of f^{-k}, $k \in \mathbb{N}$, are univalent in T, since both asymptotic values $\lambda i, -\lambda i$ of f tend to the attracting fixed point 0 along the imaginary axis. Thus

$$L(f^k, A_{N,k}) = L(f^{-k}, f^k(A_{N,k})) = L(f^{-k}, B_{m,N}).$$

As $B_{m,N} \subset D(s_m, \delta) \subset D(s_m, \frac{3}{2}\pi)$, and it follows from Lemma 2 that

$$(19) \quad L(f^k, A_{N,k}) \leq M \left(\frac{2|\lambda|/(3\pi)}{3\pi/2} \right) =: C_2.$$

Let $W_m = \{z \in \mathbb{R} : |z - s_m| < \eta\}$, $W_{m,N} = \{z \in \mathbb{R} : \eta_N < |z - s_m| < \eta\}$ where $\eta = \eta_1 = |s_0 - f^{-1}(s_1 + \delta)|$, $f^{-1}(s_1 + \delta) \in (0; \pi)$, and $\eta_N = |s_0 - f^{-1}(s_N + \delta)|$, $f^{-1}(s_N + \delta) \in (0; \pi)$ for $N \geq M$. Then $W_m \subset B_m$, $W_{m,N} \subset B_{m,N}$. Note that

$$(20) \quad \sum_{A_{N,k+1} \in G(A_{N,k})} \text{vol}(f^k(A_{N,k+1})) \geq \frac{1}{2} \text{vol}(f^{-1}(T) \cap W_{m,N}),$$

if $f^k(A_{N,k})$ is a connected component of $B_{m,N}$, $m \in J_2$, and

$$(21) \quad \lim_{N \to \infty} \text{vol}(f^{-1}(T_N) \cap W_{m,N}) = \text{vol}(f^{-1}(T) \cap W_m).$$

Consider the quotient $\text{vol}(f^{-1}(T) \cap W_m)/\text{vol}(B_m)$. The uniform bound for it from below for $m \in J$ is obtained from the inequalities

$$
\begin{aligned}
&\left\{ \begin{array}{l}
2 \sum_{m=2}^{\infty} \frac{\text{vol}(B_m)|f^{-1}(s_m + \delta)|}{\text{vol}(B_m)} \\
= 2 \sum_{m=2}^{\infty} \frac{|\lambda|}{\lambda^2 + ((m + \frac{1}{2})\pi + \delta)^2} \\
\geq 2 \sum_{m=2}^{\infty} \frac{|\lambda|}{\lambda^2 + (m + 1)^2 \pi^2} = 2 \sum_{m=3}^{\infty} \frac{|\lambda|}{\lambda^2 + m^2 \pi^2} \\
= |\coth |\lambda| - |\lambda|^{-1} - 2|\lambda|[(\lambda^2 + \pi^2)^{-1} + (\lambda^2 + 4\pi^2)^{-1}]| =: C_3,
\end{array} \right.
\end{aligned}
$$

since $1/\lambda - \sum_{n=1}^{\infty} 2\lambda / (\lambda^2 + n^2 \pi^2) = \coth \lambda$ from the well known expansion of \coth in fractions.
As \(f^k(A_{N,k}) \) is a connected component of \(B_{m,N} \subset B_m \) for some \(m \in J_2 \), this implies together with (20)–(22), that there are constants \(0 < \alpha_N < 1 \) such that \(\alpha_N \to 0 \), and

\[
\sum_{A_{N,k+1} \in G(A_{N,k})} \frac{\text{vol}(f^k(A_{N,k+1}))}{\text{vol}(f^k(A_{N,k}))} \geq C_3 - \alpha_N.
\]

By (16), (18)–(19) and (23) \(\Delta_{N,k} = (C_3 - \alpha_N)/C_2^2 \). Applying Lemma 1 to the sets \(A_{N,k} \) we have

\[
1 \geq \text{HD}(A_n) \geq 1 - \limsup_{k \to \infty} \frac{k \log \left(\frac{(C_3 - \alpha_N)/C_2^2}{C_2} \right)}{|\log C_1|} = 1 - \frac{\log \left(\frac{(C_3 - \alpha_N)/C_2^2}{C_2} \right)}{|\log C_1|}.
\]

As \(A_N \subset E_N \) and \(\bigcup_{N \geq M} A_N = A \), we obtain

\[
1 \geq \text{HD}(A) \geq \lim_{N \to \infty} \text{HD}(A_N) = 1 - \frac{\log \left(\frac{(C_3)/C_2^2}{C_2} \right)}{|\log C_1|}.
\]

Moreover, for each \(N \geq M, A_N \subset E_N \) and \(\bigcup_{N \geq M} E_N = E \subset J(f) \subset \mathbb{R} \), so

\[
1 \geq \text{HD}(J(f)) \geq 1 - \frac{\log \left(\frac{(C_3)/C_2^2}{C_2} \right)}{|\log C_1|} = 1 - \frac{\log \left(\frac{\coth |\lambda| - \frac{1}{|\lambda|} - \frac{2|\lambda|}{\lambda^2 + \pi^2} + \frac{2|\lambda|}{\lambda^2 + 4\pi^2}}{\biggl| \log |\lambda| + \log \left(1 + \frac{9\pi^2}{(4\lambda)^2} \right) \biggr|} \right)}{|\log |\lambda||}
\]

for some \(C > 0 \), which concludes the proof of Theorem 3.

In the second part (see [6]) we give the global formula for a lower bound for the Hausdorff dimension of the Julia set of meromorphic function. To prove it we construct a limit Hausdorff measure of the computable dimension, supported on hyperbolic subsets of the Julia set.

BIBLIOGRAPHY

