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UNIVERSAL TOPOLOGICAL STRATIFICATION

FOR THE PHAM EXAMPLE

BY

JAMES DAMON ̂  AND ANDRE GALLIGO (2)

RESUME. — On etudie la stratification de Pespace des modules d'un germe de
singularite, par Ie type topologique de la deformation verselle. On considere une coupe
transverse au discriminant de versalite, puis par un precede inductif, on recupere les
informations topologiques en utilisant un certain type de champs de vecteurs stratifies.
Ceci necessite Ie calcul explicite du discriminant de versalite, realise a 1'aide d'un
systeme de calcul formel.

ABSTRACT. — We study the stratification of the moduli space of a germe of
singularity by the topological type of the versal deformation. We take a slice to the
versality discriminant, then our method becomes an inductive process which recovers
topological properties by the use of a special kind of stratified vector fields. This requires
the explicit determination of the versality discriminant, performed via a computer
algebra system.

Around 1970, F. PHAM [Ph] showed that constant topological type in
a family of singularities does not imply constant topological type of the
corresponding families of versal deformations. He found an example of a
complex curve singularity fo(x^y) = y3 + x9 which has a two parameter
family of deformations (parametrized by the moduli (s,t))

FI (x, y , s, t) = y3 + tyx6 + syx7 + .r9.

This family has constant Milnor number, and hence is topologically
trivial. However, the versal deformation of /o is not topologically a product
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154 J. DAMON AND A. GALLIGO

along the ^-axis. In fact, he showed that for t = 0 there are fibres arbitrarily
close to fo1^) with both EQ and Es singularities in the fibre while this
does not happen for t / 0.

This raised the question for general singularities of how the space of
moduli is stratified by the topological type of the versal deformation (such
a stratification exists by results of THOM-MATHER [T], [M2], [M3]). For the
unimodal hypersurface singularities, the results began with LOOIJENGA [L]
and were extended by WIRTHMULLER [W] (and for complete intersec-
tions by RONGA [R] and [Dl]). This contrasts with the situation for the
bimodal singularities on ARNOLD'S list [A]. While advances have been
made on understanding the topological structure and the adjacencies,
e.g. BRIESKORN [B], EBELING [E], EBELING-WALL [E-W], BALKENBORG-
BAUER-BILITEWSKI [BBB], the stratification question has remained unan-
swered.

In this paper we address this question for the Pham example and
provide an outline for understanding the topological stratification of versal
deformations of bimodal singularities.

The approach initiated by LOOIJENGA demonstrated that the answer
to the stratification question for the unimodal singularities follows from
the Jacobian algebra being Gorenstein. This can be thought of as first
order information about the versal deformation. For the higher modality
singularities higher order information must be understood. This involves
the consideration of two problems for unfoldings which are partially
versal. It requires first a determination of the versality discriminant, which
describes where versality fails, and second an understanding of the germ
in a neighborhood of the versality discriminant. These two problems are
reduced to a single problem for unimodal case.

The role of the Jacobian algebra is replaced by an algebraic criterion
for determining the versality discriminant (given in § 2). We are able to
geometrically identify a candidate for the versality discriminant for the
Pham example; however, to verify that it is correct via the algebraic
criterion requires symbolic computations using the system MACSYMA
(see §3).

The theorem we prove uses the results of [D4]. To apply these results,
we must determine the structure of the germ in a neighborhood of the
versality discriminant and prove that it is stratified topologically trivial
(see § 4). By constructing a section to the versality discriminant and
using J^-action we are able to reduce consideration of the germ in a
neighborhood of the versality discriminant to consideration of the multi-
germ / obtained from this section.
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UNIVERSAL TOPOLOGICAL STRATIFICATION 155

More precisely we determine a local normal form for the multi-germ /,
whose initial parts, with respect to certain weights, consists of versal
deformations of Es and D^ (the singularities appearing in the special
fiber) although the multi-germ itself is not stable. By using algebraic
calculations of Looijenga and results from [D3] we are able to prove
stratified topological triviality for this multi-germ. Also, a smoothing
method is introduced to allow the stratifications to extend outside the
neighborhood (PROPOSITION 4.8). This result depends on another piece
of second order information, namely, an algebraic linking between the two
Jacobian algebras of the germs appearing in the multi-germ (LEMMA 5.6).
Such a linking is forced by the finite determinacy of the multi-germ
together with the failure of it for the initial terms in the normal form.

We would like to thank the Institute INRIA, Sophia-Antipolis, France,
for providing us with the use of its facilities for carrying out the compu-
tations in this paper.

1. Statement of theorem

Consider the following polynomial mapping

F{x,y,s,t,u,v) = {F{x,y,s,t,u,v),s,t,u,v)

5 7

where F(x, y , s, t, u, v) = Fi {x, y , s, t) + ̂ UQ^y + ̂ 9- '̂.
i=0 i=l

The germ at the origin of this polynomial gives the versal deformation
of fo, more generally the germ of F at the point (0,0,5o,^ 0,0) is also
the versal deformation of the germ ^i(.r, y , so, to} for SQ and to fixed.

Figure 1. Figure 2.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



156 J. DAMON AND A. GALLIGO

We either let K = C and consider holomorphic germs or, K = R and
consider smooth germs.

Since the versal deformation is with respect to X-equi valence, we begin
with the K-orbit structure of the (s, t)-subspace given by figure 1. For any
given value of t there are only two orbits, the intersection with the t-axis
and the complement. The missing points on the ^-axis correspond to the
values where 4^3 + 27 = 0, where X-determinacy fails. This follows from
Arnold's classification [A] and the basic results of J. MATHER [Ml].

We shall prove in either the smooth case or holomorphic case :

THEOREM.— The stratification of the (s, t)-subspace such that the versal
unfolding (as a germ of mapping) is topologically a product on strata
is given by : the s-axis^ the punctured lines for 4t3 +27 = 0, and the
complement (see figure 2).

By a result of WIRTHMULLER [W], the versal deformation is topolog-
ically a product along any line parallel to the s-axis with 4t3 +27 7^= O.
Hence, we may assume 5 = 0 and study when the unfolding restricted to
this subspace is locally topologically a product along the t-axis.

It was pointed out to us by Terry WALL that if we write the weighted
homogeneous part of F\ as

y3 + ay'2x3 + byx6 + ex9,

the modulus is that of the elliptic curve

z2 = y3 + ay2 + by + c

and that another value (a = c = 0, b ^ 0), corresponding to t = oo is
also exceptional; indeed the same reasoning as used by PHAM shows that
only this case admits two ^-singularities in the nearby fibre. In fact this
other exceptional value was left off of Arnold's list.

Thus, another statement of our theorem takes the j-invariant of the
elliptic curve as the modulus parameter. Then j = 0 and j = 1 are the
only values where universal topological triviality fails (the equal roots case
4^3 + 27 = 0 disapears at j = oo).

This raises the question of whether this phenomena can be explained
by algebraic-geometrical methods.

2. The versality discriminant

We will freely make use of facts and notation concerning A and OC-
equivalence, see for example J. MARTINET [Mar], M. GOLUBITSKY et
V. GUILLEMIN [G-G], J. MATHER [Ml] or [Dl].

TOME 121 — 1993 — N° 2



UNIVERSAL TOPOLOGICAL STRATIFICATION 157

First we recall the definition :

DEFINITION 2.1. — Let go : X^O -^ KP.O be a finitely X-determined
polynomial germ and g : J^+^.O -^ KP^,0 be an unfolding of go', if
K = R we can construct the complexifications, which we still denote by go
and g. As g is finitely OC-determined, there is a neighborhood U of 0 such
that g has a representive on U (again denoted by g) and a neighborhood W
of 0 in CP^ so that:

(i) g\^g)r\u '• ^{9) F\U —^ W is proper and finite to one',

(ii) ^(O) D S(^) H U = {0} ; where S(^) denotes the critical set of g.

Then, the versality discriminant V of the unfolding g denotes the
complement in W of the set ( z , w) such that if g ~ l { z , w) D S(^) Fi U = S,
then the multi-germ

G(-,w) '.^.S -^CP.Z

is infinitesimally stable.

We call Vo = V H (CP x {0}), the versality discriminant of go.

In our case, we denote the restriction of the unfolding F with 5 = 0
by /. If we further restrict t = to we denote the restricted unfolding by f^.
Then, / viewed as an unfolding of f^ by the parameter t, is an unfolding
of weight 0.

To see that in our case the versality discriminant is more than just a
point, we consider the family (where t ̂  0)

y3 + t{x - xof(x + ̂ xofy + {x - xo)6^ + 2xof

which we may write in the form :

6 9

(2.2) y3 + tx^y + x9 + ̂  tc^x6-^ + ̂  b^x9-1.
i=l i=2

Near x = XQ with X = x — XQ we have (from the lowest order terms) the
germ

2/3+^(3;^o)2X4^+(3^o)3X6,

which is an E'g-singularity. While near x = —2xo with X = x + 2xo^ we
obtain

^ + ̂ o)4^ + (3^o)6^3.

which is a ^-singularity.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



158 J. DAMON AND A. GALLIGO

Thus, along the parametrized curve G in K14" denned by ui = tCzXQ,
Vi = biXQ and z = b^x^ where z denotes the coordinate for / and XQ
denotes the parameter for the curve 6, there are Es and D^ singularities
in a fibre. However, for fixec^ ̂  0, the dimension of the target space is 14
while the codimensions of Es and D^ are 10 and 4 respectively. Thus, if
the multi-germ in this fibre were multi-transverse, the set of points where
it occurred would be isolated and not along a curve.

Thus, as versality implies multi-transversality [M1V], the curve G
belongs to the versality discriminant of /. In fact, we shall prove :

PROPOSITION 2.3. — The versality discriminant/or ft, where t -=/=- 0 and
4^3 + 27 7^ 0, is exactly the curve G described above.

Remark. — As t varies {t ̂  0) the curve Q is analytically trivial and a
simple change of coordinates makes it constant.

To begin the proof we let V denote the versality discriminant. We recall
that V is an analytic set [D1I] which has the following algebraic property,
with g as in the above definition :

PROPOSITION 2.4. — Let<]1 be an ideal in Cz,w such that:

(2.5) ^'6{g) C C^^{9G/9x,} + C^(a/9w,r)

then on some neighborhood of 0, V is contained in the analytic set V
defined by ( ] ' .

(Here we have abbreviated the ring of germs at J^"^, 0 by Cx w and
the JP-module generated by / i i , . . . , /^ over a ring R by R{h\,..., hk)
or R(hi) if k is understood.)

For the proof of the proposition, consider the inclusions

v 1 D v c e
where V is defined by an ideal J7. We shall show in § 4 that we can
choose J' such that 6 3 V, proving the PROPOSITION 2.3.

In our special case, where g = f and go = j^p, we are able to simplify
the inclusion (2.5) :

LEMMA 2.6. — In order for J' in Cz^u,v to satisfy (2.5) it is sufficient
that:

(2.7) hyx\ hyx7 c C^y^_{Qft^x,9ftJ9y}
+C^^(l,...,a17,^...,^5)

for a set of generators h of r } 1 (here f^ = z o /^p).

TOME 121 — 1993 — ?2



UNIVERSAL TOPOLOGICAL STRATIFICATION 159

Proof. — We observe for F^(x, y) = y3 + tox6y + x9 that

{ ! , . . . , a;7 ,2/,. . . ,7/;r7}

is a basis for C x , y / ' (?f\/Qx,Qf\/Qy). By the preparation theorem,

(2.8) C ,̂, = C^^_(ftJ9x^9ftJ9y)
+C^^(l,. . . ,a;7 ,^,. . . ,^7).

Multiplying by ( ] 1 yields :

(2.9) J^(/,J = ̂ C,,̂  C C^^_{9ftJ9x^ftJ9y}

+ 0,^(1,..., a;7,2/,...,^5)

+J'C^(^6,^7).

Since the right hand side of (2.7) is a C^ ̂ -module, J' • yx6 and J' • ?/a;7

belong to it. This gives (2.5).

Now we will construct an ideal J' as described above.

Let (j)i C { 1 , . . . , x7 ^ y ^ . . . , yx5} and

Z=ft,- ^xQftJQx - ̂ yQftJQy.
then by (2.8) we may write for k > 1 :

(2.10) Z^^h^^^h^yx6

modulo the right hand side of (2.7). Observe that :

(2.11) ^ = ft^i

modulo the right hand side of (2.7). Besides (2.11), we may also write

(2.12) Zyx5^ = ̂ yx7 + C^yx6

modulo the right hand side of (2.7). Form the infinite matrix :

H =
r/,(i) ^(i) ?,(i) 7 /1) /1)
I ^l,! ^l^ • • • ^l • • • ^ -^1 -^2

,(2) ,(2) ,(2) /2) „ .(2)
^1 i ^1^2 • • • li'2,\ ' • • ~tl ZJ ~ ^2

By (2.10)-(2.12) the expressions h^\yx7 + h^}yx6 belong to the right
hand side of (2.7). Then, by Cramer's rule the (2 x 2)-minors of H
satisfy (2.7).

Let f]1 be the ideal generated by the (2 x 2)-minors of H\ by
LEMMA (2.6), ?' satisfies (2.5).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



160 J. DAMON AND A. GALLIGO

In our case we want to show that the space defined by f]1 is the curve 6.
First, we want to determine the projection of the space denned by J7 onto
the (iA, z;)-subspace by computing det(/^ , ) for the possible values of z,j .
Second, we will show that on the image of the projection both entries in
one of the columns are nonzero. This implies that the (2 x 2-determinants
using this column and each of the last two columns specifies Z. This
forces V(^) to map bijectively onto the image in {u, 'L')-space. Thus, it will
be enough to show that the image of the projection has the desired form.

3. Symbolic computations

Our goal is to compute sufficiently many generators of J' (defined at the
end of § 2) in order to prove that C 3 V and hence V = 6. A conceptual
(versus an effective) way of achieving this goal is the following.

Consider the first derivatives of / with respect to x and y as two
polynomials with coefficients in Q(t)[u^v\ :

fy = 3y2 + tx6 + ̂  U6-iX\

0<i<5

f^ = 6tx5y + 9x8 + ^m6-^^-l^+ ^ wg-^"1.
0<i<5 0<i<7

To them we add

g = ̂ x^fy - (2ty - 3x3)^
= (4^3 + 27).r11 + {terms smaller than x11 in x},

to form { f x ^ f y ^ g } ^ a standard basis for the jacobian ideal (fx^fy) with
respect to the following ordering :

x ' y 3 < x ^ y 3 ' if (z + 3j < i' + 3j') or (z + 3j = z + 3j and j < f)

(see [Ga, 3.1]). Then, for any polynomial P in Q(t)[n, v}[x, y} we can apply
the generalized Euclidean division algorithm with respect to the following
partition of N x N :

N x N == A U Ai U A2 U As

^ AI

A
Aa

As
0 5

TOME 121 — 1993 — ?2
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UNIVERSAL TOPOLOGICAL STRATIFICATION 161

(see [G3]), and obtain unique qi,Q2^Q3^Ri such that

p = Qify + Q2/x + 039 + Rl

with exponents {qiy2) in Ai, exponents (q^y) in As, exponents (93 a;11)
in As, and exponents {Ri) in A.

Very briefly, the algorithm consists of repeatedly replacing

V2 by J(3^/2-/,),

^ by -(Qtx^y-f^,bt

x11 by 4*3-^27((^3+27)^l-<?)

in such a way that the "generalized degree" z + 3j descreases.
In the remainder J?i, we successively replace x10 by ^^(O^8 — fx),

then a;9 by ^.r(9o'8 — /^), and then a;8 by ^ (9a*8 — /.r), to obtain the new
remainder R.

Thus, we obtain the following decomposition :

Q(t)[^,^;]=Q(t)[u,^(l, . . . ,a;7 ,^. . . ,^7)eQ(t)[^,^][^,2/](^,^}.

This process can, in theory, be programmed on a computer and we
would like to carry it out for P = Zkx^y3 for j = 0, i = 0 , . . . , 7 or
for j == 1, i = 0 , . . . , 5, and e.g. k = 1,2, where we recall

Z=f- ^xf,- \yiy.

If we collect the coefficients h^ \ • and hj^ \ • of x7y and x6y for the
corresponding 28 remainders into a (2 x 28)-matrix, then the (2 x 2)-
minors provide some of the generators of J'. However, we do not know in
advance which k will give us a complete set of generators.

Unfortunately, this "naive" method would lead to symbolic computa-
tions for which the number of terms and the size of the coefficients become/e\\
unmanageable. For example the coefficient h\ 7 5 is a quasi homogeneous
polynomial in u,v of total weight 22 in 14 variables over Q(t) and hence
may involve several thousand monomials which may as well have very
large coefficients.

We avoid this possible computational complexity by using an interative
procedure. Specifically, we compute (2 x 2)-minors as above; however we

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



162 J. DAMON AND A. GALLIGO

use the result of each step of the computation to simplify the later steps.
This amounts to replacing the ideal J7 by its radical.

Secondly, we change the presentation of / for this computation :

/ = y3 + x9 + tx6y + u^x°y — Gu^x^y + ̂ u^y

+ Qu^y — 12uQxy + ^UQV — ^v^x7 + Gv^x6 + ̂ Jv^x5

- 36v^ - 15V6X3 + 54^2 - 36^ - 8^9.

When Ui = tvi = tx^ i.e. on the curve 6,

/ = y3 + t[(x - xo)2(x + 2xo)l]2y + [(x - xo)2(x + 2a;o)1]3 ;

we might then expect the coefficients in our computation to remain
"small integers".

Thirdly, we recognize that each division will increase the number
of monomials in u and v appearing as coefficients in the remainders.
Consequently we minimize the number of divisions to be performed by
considering only polynomials of degree smaller than 2 in y .

Finally, we allowed for the possibility of considering truncated versions
of the problem to inductively obtain partial results; but this provision
was ultimately not needed.

Now, we will list the principal steps of the calculation (we suppose t 7^ 0
and 4^+27 ̂  0).

Here we let = denote equality modulo (/^, fy) '.

(3.1) 9Zx = u^y - 12u^y - ISv^x8 + • • • .

After division by f^i

9Zx E= u^y - 12(^2 - tv^x^y + • • • ,

9Zx2 = u^y - 12(^2 - tv^y + • • • .

Then

^41o = ̂ lo = u^ l̂o = 0. îlo = -12^ - ̂ 2).

Thus, the first equation obtained is (^i)2 = 0. This implies that u^ = 0
which we use to simplify /. Next

9Zx3 = -12(^2 - tv^y + • • •

which gives u^ = tv^.

TOME 121 — 1993 — N° 2
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After noticing that h^ = ^l^o = ^^+2,0 (where h^ is the
coefficient of x^y), in the same way we obtain from Zx^ and i < 7, the
relations :

^3 = ̂ 35 ^4 = 2^4 — tv^, U^ = 2tv^ — tv-^V^,

UQ = ^t{-5ve - 2vj + 27^4 - 18^J).

Observe we can't use Zx8 ; however, v^Zx8 will appear as a linear com-
bination of the products (1, . . . , x7, ̂ / , . . . , yx5) • (Z, Z2). Thus using (3.1),

ISv^Zx8 = Z2x - 12^2 Zx5y + • • • .

Provided ^2 7^ 0, we can use v^Zx8 to obtain :

V7 = 2^2 ̂ 5 + ̂ 3^4 — 2^J^3.

Also, considering the minor obtained from v-^Zx8 and

2Zy = - ̂  (4t3 + 27)(^7?/ - ̂ 3^2/) + • • •

yields :

vs= -^ (10^6 - 16^5 + 27 |̂ - 108vJV4. + 16^J + 63^).

Since
2Zyx= ̂  (4^+27) (^7^) + • • >

we observe that the expression for A = ^32^ + v^Zyx has no ;r7^ term.
In fact, a computation shows

9A = (At3 + 27) FV + ̂ j - J^]rr6^ + . • • .

Therefore via a similar procedure the minors formed from Ax^ for i < 3,
yield the relations :

^4 = -i^j - 7vl^ ^ == -i^J(^J -11^3),
^6- ^^(2^-27^j+35^).

To get z>9 and ^3 we need to compute remainders for multiples of Z2.
For that purpose we simplify the expression for Z x ^ ' y 3 by evaluating
^4 5 ^8 ? ^2 ? • • • 5 '^6- We write

Z2 EE Z(-12^4^ - 18^7 + • • • ) ,

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



164 j. DAMON AND A. GALLIGO

then we obtain

^ 9 = j (150-^7 + 30?;3^6 + 324'y4/^;5

- 624^5 - 635^3^4 + 16^j + 732^^),
9 ^vi = v^.

Then, everything simplifies to the required relations by parametrizing
v'2 = x^ and v^ = x^. Now the last case to consider is v^ = 0; the same
computations, but considerably simplified yield ui = v^ == 0 for all i.

Lastly, observe that the coefficients for Zy are (up to constant multi-
ples) v^ and vs. Therefore, by the comment at the end of § 2, the versality
discriminant is exactly the curve we have identified. Q

This computation was actually performed with the MACSYMA system
[MAC], it could have been done with any other interactive computer
algebra system which provides the usual "simplification" routines such
that Expand, Substitute or Eval, and where the function "Remainder" can
be constructed. The function Remainder^, m, x) returns the remainder
of the multivariate polynomial p divided by the a;-monic multivariate
polynomial m.

Lastly, to give an idea of the size of the intermediate data, we mention
that the listing for the entire session consists of about 40 pages and can
be checked with 2 or 3 hours interactive use of a mini-computer.

4. Stratified topological triviality and the structure of the
multi-germ

To prove that f is topologically trivial along the ^-axis, it is sufficient
by theorem 1 of [D4] to prove that / is tratified topologically trivial in
a conical neighborhood of the versality discriminant in the sense of [D4]
(see below).

We know that the versality discriminant of ft is a curve (°, which on
replacing ui by tui, with t ̂  0, is defined parametrically by

Ui=CiXQ, Vi=biXQ, z=bQX^,

for XQ in K, and for appropriate integers c^, bi given in § 3. Then,

./r^nscf,)^

is a curve with two components parametrized by y = 0, x = XQ or
x = —2xo and t^,z^ given above.

TOME 121 — 1993 — ?2



UNIVERSAL TOPOLOGICAL STRATIFICATION 165

We recall that "conical neighborhoods" of (° x K and C' x K are
neighborhoods of (C \ {0} x K and (C' \ {0}) x K of the form

£/ = {(z^t) € ^13 x K : p(z) < e'pQ(z)}^

U' = {M C K14 x K : p^(x) < e'p^(z)}^

where the various p are smooth non-negative "control" functions which
vanish on {0} x K for po and p^ and on 6 x K and 6' x K for p and p^.
Observe that since (° and (0/ are invariant under the JC*-action, we may
choose the p's to be real weighted homogeneous of the same degree and
then U and U ' are unions of K* -orbits.

PROPOSITION 4.1. — There exist conical neighborhoods U and U'
such that given a smaller conical neighborhood U\ of Q x K such that
Cl([/i) C U (where Cl denotes closure in K13 \ {0} x K) then there exist
K* -equivariant stratified vector fields ^, rj defined on Uf and U respectively
(in the sense of [D4, § 3] and see below) such that:

1) ^ and T] project to 9/9t^

2) ^ andr] are smooth on L7'/\.f~l(Cl(L/l)) andU\G\(U\) respectively^

3) fi(f)=rjof.

Now, if we examine the definition of stratified topological triviality
in [D4], we see that the conditions of PROPOSITION 4.1 are conditions 1), 2)
and 4) of that definition. Also, the K^-eqm variance implies the remaining
condition 3). Hence, we can apply theorem 1 of [D4] to obtain the theorem.

In this section we shall prove this proposition modulo several algebraic
lemmas to be established in § 5; the outline of the proof is as follows :

First, slices to (° and 6' are taken, reducing the problem to one about
multi-germs. Next the multi-germ is put into a normal form. From this
normal form we prove that the multi-germ is stratified topologically
trivial. We also prove that this trivialization can be smoothed outside
of a small neighborhood. Lastly, the stratified vector fields used for the
trivialization are extended by the J^-action to prove the proposition.

In order to obtain a useful local form, we now take a slice through 6 by
fixing XQ (as above) to be small and not zero, and by intersecting 6 with
the affine hyperplane :

V4_ = -(126^ + 24^2 + Gxovs).

This is easy seen to be transverse to the curve 6 with inverse image
in X15 defined by the same equation and passing through (0/ in two points
corresponding to x = XQ and to x = —2xQ.
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Figure 3.

By restricting ft to the inverse image of this slice in a neighbor-
hood of (0// we obtain a multi-germ that we continute to denote by
f^ = (^ 1,^2) ^OT a nxea t ¥" 0; and we will denote by / = (/i^)
the corresponding unfolding along the parameter t.

K^,x .

K^.x".

Next, we place the multi-germ f= (f^,f^) into normal form.

PROPOSITION 4.2. — If to 7^ 0 and 4^ + 27 7^ O, then by a local change
of coordinates near t = t — to = 0 and z f ,x / and x"\ we may write the
multi-germ in the form

f^(x',y',w,s,t) == (/i,w,5,t) nearx',

f^(x",yff,w,s,t) = (/2,w,5,t) nearx",

where W = (wi,... ,wg), s = (^i,..., 54) and

(4.3) h (^ ^//, ̂  5, t) = ^//3 + (t + ̂ o + c^)^4 + ̂ /6

3 4

+ y ' (^ w,+ia;7^ + ̂  w,+4^/% + ̂ i
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