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RESUME. — Nous considerons un espace metrique X = ̂ s^777^1 avec des singularites
coniques E : Ie sous ensemble X — E est une variete riemannienne (m+l)-dimensionnelle
ouverte et dense dans X. Soit N une variete riemannienne compacte : nous disons
qu'une application / : N -^ X est harmomque si / est continue et si sa restriction
a X — S est harmonique dans les sens usuels. Nous appliquons la methode du flot
de la chaleur pour demontrer un resultat d'existence pour varietes N a courbure non
positive. En dimension 2, nos resultats sont valables pour les singularites conformement
coniques et nous conduisent a un theoreme d'existence pour les courbes algebriques
dans les espaces projectifs complexes.

ABSTRACT. — Let X == X77^1 be a compact metric space with conical singu-
larities S : then X — S is an open, (m + l)-dimensional Riemannian manifold dense
in X. Let N be a compact Riemannian manifold; we say that a map f : X —>• N is
harmonic if / is continuous and its restriction to X — S is harmonic in the usual sense.
We apply heat flow techniques to prove an existence result for nonpositively curved N .
In dimension 2, our results hold for conformally conical singularities and lead us to an
existence theorem for complex projective algebraic curves.

1. Introduction
Harmonic maps f : M —^ N between Riemannian manifolds are the

smooth critical points of the energy functional

W=^ I |d/|
- J M
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i.e. maps whose tension field r(/) = Trace Vd/ vanishes identically.
Their study provides a rich source of interplay between elliptic analysis,
geometry and topology (see the surveys [9], [10]); for instance, geodesies,
minimal immersions, harmonic functions and holomorphic maps between
Kahler manifolds are all special cases of harmonic maps.

In this paper we extend the notion of harmonic map to the case that the
domain of / is a space with conical singularities (see [I], [2], [3]). Let M
be an m-dimensional Riemannian manifold with metric QM \ the metric
cone C(M) on M is the space M x (0, +00), equipped with the metric

(1.1) r^M+dr2 .

Set

(1.2) C^y(M) = {(x,r) G C(M) \ u < r < v} ;

and

(1.3) C7*(M)=C(M)Up,

the completion of C(M) by adding the vertex p. We shall consider the
following class of spaces

DEFINITION 1.4. — A compact metric space ^rn+l = X, m >
1, is a space with conical singularities if there exist points pj G X,
j = 1 , . . . , A;, such that X — U -=i kPj ls an ̂ ^ (m + l)-dimensional
Riemannian manifold and each pj has a neighbourhood Uj such that
Uj —pj is isometric to CQ^. (M^-), for some Vj and compact (not necessarily
connected) manifolds Mj. We denote E = U-=i kPr

The standard De Rham-Hodge theory admits an extension to spaces
with conical singularities, provided that the usual cohomology and ho-
mology are replaced by J^-cohomology and intersection homology respec-
tively (see the survey [4]). A related type of L2 analysis concerns the
spectral theory of A : that leads to a detailed study of wave and heat
operators on X, as carried out in [I], [2], [3]. In particular, a smooth,
symmetric kernel is associated with the heat operator e"^, a fact which
will be the starting point of our analysis.

We shall study maps / : X —^ TV, where N is a compact Riemannian
manifold. We introduce the following :

DEFINITION 1.5. — A map / : X —^ N is said to be harmonic if it is
continuous and its restriction to X — S is harmonic in the usual sense.

Our main result is :
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THEOREM 1.6. — Assume N compact and RiemTV <, 0. Then any
continuous map fo : X —> N is homotopic to a harmonic map.

The proof is an adaptation of Eells-Sampson's method (see [11]) to this
context.

The paper is organized as follows : in section 2 we recall some properties
of the operators A and e"^ on C(M). In section 3 we prove THEOREM 1.6
above. In section 4 we show that the singularities of complex projective
algebraic curves C are conformally conical', from that we deduce an
existence result for maps f : C —> N .

2. Functional analysis on C(M)
We recall here some basic facts from [I], [2], [3]. Set :

dom d = [g G C°° H L2 \ dg G L2},

(2.1) dom6= {^(EA^L2 6uj e L2},

domA= [g^ C°° U L2 dg e dom6}.

The Laplacian A on functions, on (7(M), is given by

(2.2) A ^ d ^ - ^ + ^ A -
dr~ r or r2

where ^M denotes the Laplacian on the cross-section M, which we
assume to be compact. The operators d and 6 have well defined strong
closures d, 6 which satisfy Stokes5 theorem

(2.3) (dg^)=(g^^)

for all g C dom d, uj e dom^. It follows that the strong closure of A, still
denoted by A, is a self-adjoint operator; in particular, we shall be able to
form functions /(A) via spectral theory.

Let {^pi} be an orthonormal basis of eigenfunctions of A^ with
eigenvalues ^. If g = g(r,x) C L^C^M)), we can write

(2.4) 9=^9z(r)^{x)
i

where the sum converges in the L2 norm. If we set

A 7 / x r Q2 m 9 A ^ l / ^A^ r = \ ——— - -— + -'- \h r ,
• I Or2 r Or r2 J
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then :

(2.5) Aff=^[A^(r)]^(a-).
i

Setting

(2.6) a = - \ (m - 1), v, = (^ + a2)1/2,

the eigenfunctions of A on Co,a(^0? for a > 0, are given by

(2.7) ^^(Ar)^,,

where Jy are Bessel functions (see [15]). Hence the associate eigen-
value is A2.

Remark. —Here and below, if m = 1, r^ is to be replaced by a suitable
logarithmic expression.

Using polar coordinates (r, x) makes it natural replacing Fourier trans-
form with Hankel transform; if h(r) is a smooth function with compact
support in (0,+oo), its Hankel transform is :

f00

(2.8) H,(h)(\)= \ h(r)J^\r)dr.
J o

Hankel inversion formula and Plancherel formula are

(2.9) h(r)=H^H^(h))(r)

and

r00 o r°° 9
(2.10) / \h(r)\ rdr= \ \H^(h)(\)\ \ dA

J o J o

respectively. Thus Hy can be extended to an isometry ofL^O, +00), rdr) ;
from that, together with (2.4) and (2.9), it is easy to deduce that the
map 7-̂  defined by

(2.11) H.[g(^x)] = [7^Jr-^o)^(r-^i),...]

provides an isometry of ^((^(M)) with the Hilbert space of measurable
functions k : (0,+00) -^ £2 such that f^° [ [^(A^pAdA < +00. Moreover,
using (2.7), it is not difficult to show that H^[/\g} = ^Uj[g\ : there-
fore (2.11) provides the spectral representation of \/A.
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From standard spectral theory (see [8]) we obtain the following formal
expression for the kernel of the operator /(A) :

(2.12) ^(ri,;n,r2^2) = ^A^(ri,r2, ̂ ^(x^^x^)
i

where
/*00

(2.13) kf{r^r^Vz) = (r^)" / /(A^J^An^Ar^AdA.
Jo

In many interesting cases the above series converges uniformly; in partic-
ular, we have :

PROPOSITION 2.14. — J//(A) = e"^, for all a, &, c > 0, (2.12) con-
verges uniformly on Co^a(M) x Co^a(M) x [b, c}. The associated kernel, de-
noted by H(r\^ x\^ rs, x^ ; t\ is smooth^ bounded and symmetric. Similarly
for the iterated Green's function Gk on Co,a(M) x Co^a(M) (corresponding
to /(A) =A-^ k> 1).

The distance function on C(M) is given by

^((ri^i)^,^))
_ f r ^ + r j -2rir2cos((9(a;i,a;2)), if 0{x^,x^) ̂  TT

^z.l5j — \
I (ri +r2)2, \i6{x^,x^} > TV,

where 0 denotes distance between points in M. Writting v,z for two
arbitrary points in (7(M), the parametrix for the heat equations is :

(2.16) P(v,z,t) = (2^Ji^+i)/2 ̂ {-A^V^}-

Let K = K ( v , z , t ) be the fundamental solution of the heat equation
associated with P. The following estimates follow by simple modification
of the arguments of the nonsingular case (see [13], [16]).

LEMMA 2.17. — For each 0 < ^ < 1,

^(^;,;^)<^-^[p(^;,^)]^-m-l

(9K/Ov,)(v,z,t) ^ Bt-^piv.z)]2^-2

{Q^K/Qv.Ov,)^^^) < Bt-^p^v^z)]2^-3

for some B > 0.
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3. Proof of Theorem 1.6
Step 1. — Given fo : X —^ N , we consider on X — S the parabolic

system

(3.1) t=TW•

We can assume that /o ls °f class C1 on X — S and that its energy
density e(fo) is bounded. Following EELLS-SAMPSON [II], we obtain
solutions ft, for t > 0, which converge uniformly to a continuous map
foo '. X —^ N whose restriction to X — S is harmonic. Since the general
case is not harder, we can assume

(3.2) X=Co*,i(M)ur,

where Y is a compact Riemannian manifold with boundary 9Y = M,
and the union is along the boundary; i.e., S is just one point, the vertex
ofCo,i(M).

We can blend together (see [I], [2]) the fundamental solution K
on Co i(M) (see (2.16)) with a corresponding fundamental solution on Y
to obtain a global fundamental solution K on X — E. Similarly, on X — S
we have a heat kernel H and iterated Green's functions Gk which behave
qualitatively, near the singular point, as those of PROPOSITION 2.14.

If M = 5'm, then the vertex of Co^(Sm) is actually a regular point
and X is an ordinary compact manifold : in this case, THEOREM 1.6 is
Eells-Sampson's theorem. If M is not a unit sphere, S is a singularity;
however, the compactness of M insures that, as r —> 0, the kernels H,
G1^ (expressed in polar coordinates near S) behave qualitatively as in
the nonsingular case : that is because, after separation of variables, the
various functions of r which occur (see (2.7), (2.13) for example) are
always solutions of an O.D.E. which qualitatively does not depend on the
cross-section M (M compact). Thus the proof of THEOREM 1.6 follows
essentially by the arguments of Eells-Sampson for compact manifolds. We
indicate the basic steps.

Step 2. — For technical reasons we can assume that N is isometrically
embedded in some Euclidean space Hq by a map i : N -^ R9 whose second
fundamental form is denoted by A = (AJ-).

Let L = —A — {9/9t) be the heat operator, and set Wt = i o ft-
Then (3.1) becomes :

(3.3) L(Wt) = A(Wt)(dWt, dWt) ;
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in charts,

(3.4) (W))7 = A^WfUWf), g^, 1 ^ 7 ^ ' L

where (W^)z = Q ( W [ ) / Q x i and g = (^j) is the metric on X — S.

Step 3. — Let u : X -^ H be a continuous function. The integral
operator associated to the heat kernel is

(3.5) U(z^t)= (
Jx

U(z,t) = / H(z,v, t)u(v)dv
X-E

for z G X — S, t > 0. From now on we always write f for f^_^'
The operator U is well-defined because u G L^^X — S). Moreover

(3.6) LU{z, t) = 0 for all z G X - S, ^ > 0,

(3.7) lim U{z, t) = u(z) for all z € X - E,

and Z^(^, ^) is continuous for t ^ 0.

Step 4. — Because Stokes' theorem (2.3) holds, we can compare the
heat kernel H with the fundamental solution K (see [6], [11]) :

(3.8) H{z, v ; t) - K{z, v ; t) = q(z, v ; t) for all z, v e X - S, t > 0,

where ^, together with its derivatives of all orders, are smooth, bounded
functions which tend uniformly to 0 as t —^ 0. Moreover, at least for small t
and for a suitable B > 0, the estimates of LEMMA 2.17 apply to H.

Step 5. — We have the following a priori estimates :

LEMMA 3.9.—Let u : X —^ R be a continuous function with continuous^
bounded first derivatives on X—E. Writing a subscrit i for Q/Qzi^ we have

(3.10) |^(^) < sup u\
x

(3.11) \Ui{z,t) ^C sup H, 0 < t < 6,
X-E

for some C, 6 > 0.

Proof. — Inequality (3.10) is an application of the maximum principle
for the heat equation. As for (3.11), we proceed as follows :

(3.12) \Ui(z,t)\=\[ H,(z,v; t)u(v)dv

^e\ Ki[z,v; t)u(v)dv , 0 < t < 6,
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by Step 4, for some e, 6 > 0.
Integrating by parts and using Stokes5 theorem (2.3), from (3.12) we

deduce :

(3.13) |^(^)| ̂ e { K ( z , v ; t)u,(v)d

^ e sup ui | x / K ( z , v, t) dv
x-s U

Now (3.11) follows from (3.13), LEMMA 2.17 and dv = r^dvM A dr
around S. Q

By similar arguments, we also have :

LEMMA 3.14. — If u = u(z,t) is a continuous function on X x [0,6],
then

i ( t r
(3.15) / dr H(z,v; t-r)u(v,r)dv <D sup u\

17 0 J Xx[0,t]

for some D > 0. If furthermore ui is continuous and bounded on
(X-S)x[(U],

i [ t r
(3.16) / dr Hi(z,v; t-r)u(v,r)dv ^E sup |̂ |

'^o J (x-s)x[o,^]

for some E > 0.

Step 6. — If ft is a solution of (3.1), then its energy density e(ft)
satisfies :

(3.17) Le(ft)=\^7dft2

- (Ricci(X - S)d/,, d/,) - (Riem^d/,, d/,)d/,, d/,>.

Clearly the metric structure of X near S guarantees that Ricci(JC - S)
is bounded; therefore, as in [II], we can use (3.17), together with
Riem^ < 0, to obtain :

LEMMA 3.18. — Let ft € ^((X - S),7V) be a solution of (3.1) for
0 < t < ^i, with t-t > 1 ; assume that e(fo) is bounded on X - S and
e(ft)(v) is continuous at t = 0. Then

(3.19) e{fi)(v) < ci y e(/o

TOME 120 — 1992 — ?2
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and

(3.20) e(ft)(v) < C2 sup {e(/o)}, 0 < t < 1,
x-s

for some ci,C2 > 0 independent of ft.

Step 7. — Let WQ = i o /o, as in step 2. For integers v > 0, 1 < 7 < <7,
we define

(3.21) W°^(^) = /^,2;; W(v)dv

and

(3.22) W^(z^t)=- f dr/^(^; t - r)F"-1^, r)d^
JQ J .

+W0'7^^)

where
F .̂r) ̂ A^^^),^^),^.

Using steps 5 and 6, we can repeat the arguments of section 10 of [11]
(see also [6]) to show that, as v —^ +00, the successive approxima-
tions (3.22) converge to the required solution Wt of (3.3). Moreover,
each Wt extends continuously across E, because of (3.7) and the fact
that Wo does. []

Remark. — As in [II], THEOREM 1.6 extends to the case that N
is complete and satisfies some growth conditions at oo. On the other
hand, a straightforward modification of [7] gives examples of initial data
/o '' C" (M) —^ S71' such that the associated solution of the heat equation
blows up in finite time (see also [5]).

4. An application of Theorem 1.6
(4.1). — Let C be a (possibly singular) complex projective algebraic

curve : i.e., C is the locus of common zeros of a certain finite set of
homogeneous polynomials over C71"^1. To avoid trivialities, we can assume
that C has only isolated singular points, whose union is denoted by S.
The inclusion C -^ CP71 induces a Kahler metric uj on C - E.

LEMMA 4.2. — Around each point of S, uj is conformally conical
(i.e., conformally equivalent to a metric of type (1.1)).
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Proof. — Let p be a point of C. In terms of local Euclidean coordinates,
each branch of C through p can be expressed by

F(^)=(Fi(^),...,F^)),

for some analytic functions Fj, with F(zo) = p.
Let f3(p) be the order of vanishing of the Jacobian ( 9 F j / 9 z ) ; i.e.,

f3(p)=mm(ord^9F,/9z)).

And let f2 be the associated (1, l)-form of the Fubini-Study metric on CP71.
We show that

(4.3) F^= ^V~^i\z-zo\2^h(z)dz/\dz

with h(z) smooth and nonzero at ZQ.
Indeed, let v(z) be any lifting of F to C^^, near ZQ. Then (see [14])

F^= ^V^199\og\\v(z)\\\

where || || denotes Euclidean norm on C^"^.
In particular, we may take the lifting :

v(z)= [l,Fi(^),...,F^)].

Then a computation shows

^vW^-{Ef^E|f^f.4
v 3 3^k )

from which (4.3) follows easily. Now from (4.3) :

(4.4) uj= z-zo^^h^dz^dz.

But in polar coordinates

dz^ dz = r2d0-}- dr2,

and so the proof of the Lemma is complete. []
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Remark 4.5. — Expression (4.4) tells us that p e C — S iff C has
only one branch through p and f3(p) = 0. If p e S, then, around p, G
is conformally equivalent to Co,i(M), where M is a disjoint union of as
many copies of 5'1 as there are branches of C through p.

(4.6). — For two dimensional domains, harmonicity is invariant under
conformal changes of metric; this fact, together with THEOREM 1.6 and
LEMMA 4.2, gives :

THEOREM 4.7. — In the notation of (4.1), let fo : C — N be a contin-
uous map into a compact manifold N with Riem^ ^ 0. Then fo is homo-
topic to a continuous map f : C — N whose restriction f '. (C—S, uj) —^ N
is harmonic.

(4.8). — Let W,Y be compact Riemann surfaces. Suppose that there
exists a non-constant ± holomorphic map ^ : W -^ C (i.e., (p : W -^ CP71

is ± holomorphic and ^(W) C C) of degree dy. Let / : C -^ Y be a non-
constant map of degree df which is harmonic on C — S. Applying the
main THEOREM of [12] to / o (p and using the characterization

dzholomorphic = weakly conformal,

it is not difficult to deduce the following :

Ife(W) + \dfd^e(Y)\ > 0, then f is ± holomorphic on C - E.

(Here e(W\ e(Y) denote Euler characteristics.)

(4.9). — If we replace (1.1) by metrics of type

(4.10) ^(r^M+dr2 , lim/(r) - 0,
r—^O

the separation of variables methods of this paper do not immediately
generalize : the main difficulty is the more complicated type of singularity
(at r = 0) of the associated O.D.E. We note the following construction :
consider the metric

g =sml2rgsr^-l + sin2^"^ rdr2

on Sn = Sn~l x [0,7r], with n > 2. Then g (after reparametrization) has
two singularities of type (4.10) at the two poles. The map ̂  : (5^, g) -^ S1

defined by (S>(x,r) = 2r is continuous on Sn and harmonic on S71 minus
the two poles (Note that any harmonic map 5'"' -^ S1, n ^ 2, is constant.)
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