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CONNECTION BETWEEN THE ALGEBRA

OF KERNELS ON THE SPHERE AND THE

VOLTERRA ALGEBRA ON THE ONE-SHEETED

HYPERBOLOID : HOLOMORPHIC "PERIKERNELS"

BY

J. BROS AND G.A. VIANO (*)

RESUME. — On etablit une relation de type prolongement analytique entre P algebre
des noyaux sur la sphere Sd-i et P algebre des noyaux de Volterra sur 1'hyperbolo'i'de
a une nappe X^-i; cette relation est realisee au moyen d'une algebre de fonctions
holomorphes (appelees "perinoyaux") sur Phyperboloide complexe dans Cd; Ie produit
de composition definissant cette algebre fait intervenir des cycles d'integration mobiles
permettant Ie passage de S^_i a Xci-i par Ie domaine complexe.

L'extension de ce resultat au cas d'algebres de Volterra de noyaux-distributions
(incluant P etude microlocale correspondante) est egalement effectuee.

ABSTRACT. — The algebra of kernels on the unit sphere Sd-i and the algebra
of Volterra kernels on the one-sheeted hyperboloid X^-i are shown to be related
(through an analytic continuation procedure involving the distortion of integration
cycles) by an algebra of holomorphic functions, called "perikernels" on the complex
unit hyperboloid m Cd. This result is then extended to the case of Volterra algebras
of distribution-kernels.

Introduction

The present work has been motivated by analytic structural properties
of Quantum Field Theory which concern the passage from the so-called
"euclidean framework" of this theory (involving purely imaginary times
and energies) to the "minkowskian framework" in real d-dimensional
relativistic space-time.

(*) Texte recu Ie 30 juillet 1990.
J. BROS, Service de Physique Theorique, Direction des Sciences de la Matiere, CEA-
Saclay, 91191 Gif-sur-Yvette Cedex, France
G.A. VIANO, Istituto Nazionale Fisica Nucleare, Sezione di Geneva, Dipartimento di
Fisica dell'Universita di Genova, Italy.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE 0037-9484/1992/169/$ 5.00
© Societe mathematique de France



170 J. BROS AND G.A. VIANO

More specifically, one of the basic procedures involved in the the-
ory, namely Feynman-type integration, sets the problem of the con-
nection by analytic continuation between the algebra of kernels on the
sphere S^-i and an appropriate algebra of kernels on the one-sheeted hy-
perboloid Xd-i. As a matter of fact, since Xd-i is equipped with the par-
tial ordering of the ambient minkowskian space R^ (namely x ^ y <^> x — y
belongs to the closed future cone of R^), the relevance of the algebra of
Volterra kernels in the sense of [1] and [2] (i.e. kernels K(x, y ) whose sup-
port is contained in the set {(x,y) C Xd-i x Xd-i; x ^ y}) emerges
in a natural way. Then the idea of analytic continuation from S^-i to
Xd-i leads one to regard these sets as submanifolds of the unit complex
hyperboloid X^\ in the complex minkowskian space C^, and to intro-
duce holomorphic kernel-type functions on "cut-domains" A^ of the form
X^\ ><X^\\E^\ where the "cut" S^ is a certain analytic hypersurface.

It is the purpose of this work to define an appropriate *^ -product on
this class of functions, called "perikernels" on X^\ in the following, by an
integration procedure involving a certain class of cycles in X^\. By using
a contour distortion technique, this ^-product will then be shown to
interpolate between :

i) the usual composition product (denoted by *) of kernels on the
sphere Sd-i;

ii) the composition product (denoted by o) of Volterra kernels
on Xd-i.

While i) will be obtained simply by taking the restriction of perikernels
to Sd-i x Sd-i, ii) will involve relevant discontinuity functions of the
perikernels across the "cut" S^.

By adopting the same analytic continuation viewpoint in a forthcoming
paper, we shall display the connection (via X^\) between the harmonic
analysis on the sphere Sd-i and the harmonic analysis on the one-sheeted
hyperboloid Xd-i. To this purpose, we shall consider there a subclass
of perikernels satisfying additional invariance properties with respect to
the complex Lorentz group acting on X^\. Then, the previous *(c)-, *-
and o-products will be turned into "ordinary products" by making use of
appropriate Fourier-Laplace-type transformations.

The present paper is organized as follows.
In view of its simplicity, the one-dimensional case (corresponding to the

complex hyperbola x[^ in C2) has been presented in section 1; it exhibits
clearly the connection (by analytic continuation) between periodic kernels
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HOLOMORPHIC PERIKERNELS ON THE COMPLEX HYPERBOLOID 171

and Volterra kernels on the real line. Definitions and simple geometrical
facts concerning the general case (i.e. perikernels on X^\, for all d > 3)
are given in section 2; section 3 is then devoted to the proof of our main
result concerning the *^ -product and the connection that it provides
between the * and o-products, respectively on S^-i and X^-i.

At the end of section 3, we also consider the case when the holomorphic
perikernels have a slowly increasing behaviour near the cut S^\ which
ensures the existence of boundary values in the sense of distributions. This
analysis then leads to the consideration of Volterra algebras on X^-i
whose elements are distribution kernels. For completeness, a microlocal
study in the framework of singular spectrum theory [3], [4], [5], [6] is also
presented.

In the last part of this paper (i.e. section 4), we shall consider a slightly
more general case where the domain A^ in X^\ x X^\ is bordered by
two "cuts" S^7 and S^', whose relative position corresponds to a certain
symmetry of the complex hyperboloid X^\ which we shall call "crossing
symmetry" . The relevance of perikernels holomorphic in such symmetric
domains A^ is again suggested by the structural properties of Quantum
Field Theory, in which the notion of "crossing symmetry" has a deep
physical meaning. In section 4, we extend the result of section 3 concerning
the ^-product of perikernels to this more general geometrical situation.

1. The one-dimensional case

1.1. Convolution of periodic functions and Volterra-convolu-
tion on R^~ : their connection by analytic continuation.

In the complex plane C^ of the variable 0 = u 4- w, we consider for
each [i > 0 the cut-domain J^ = jj^\ S(^), where

S(^) = [0 € C ; 0 = 2k7r + w, v > ̂  k e Z},

J4 = { ( 9 e C ; Im(9>0}.

We put J+ = ^+/27rZ, jy = Jw/27^1, and we denote by O^^J^)
the space of functions f(0) satisfying the properties :

i) V/c G Z, f(6) == f(0 + 2k7r) ;

ii) / is holomorphic in J ^ and admits a continuous boundary value
on R, denoted by f(n) ;
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172 J. BROS AND G.A. VIANO

iii) the limits fe(v) = lim^-^o f(eu^-w\ e = + or —, exist mC^fH^)^u>o
and one puts

f(^=A/(^^[/+(^)-/_(z;)];

f belongs to the space C ' ^(l^) of continuous functions on H^~ whose
support in contained in [/^, +00 [.

We denote by * the convolution product on IR/27rZ, namely : for every g\
and g-2 in ^°)(R/27rZ),

.27T

(1) ^(u) = ( î *^)(^) = / g^u-u^g^u^u'
Jo

8indgeC^(H/27rI).

On the other hand, we denote by o the "Volterra convolution product"
on IR4" defined as follows : for every couple ( f i , f2) with f^ G C . J IR '^ ) ,
z = l , 2 ,

(2) f(v) = (fiof2)(^) = F^v-v^Wdv' ;
Jo

f(-y) belongs to the space C^\^ 2)( I R +)•

The connection between these two convolution products is provided by
the following property.

PROPOSITION 1. — For every couple (/i,^)? with fi € O^0^^^ ),
i = 1,2, ^ere e.rz'5^ ft unique function f in O^^J^11^^), which we
denote by f = f\ *^ /2? such that:

i) f = fi * f2 ;
ii) A / = A / i o A / 2 ;
iii) /or erer^/ 0 = u-\-iv in j^11^^ ^ there exists a class of cycles 7(6^

m H\D°,), where D°, = D^/^l, and

D0, = {O' e C ; 0' C 4^^ ^ - 61 ^ ̂ 1)}

5^c/i that:

(3) / W = / /i(^-^)/2(^)d^.
JW)
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Proof. (^1+^2)For every 0 in j7_j_ (represented e.g. by the strip
{0 ; —TT :< Re (9 ^ 7r}) we define the class ^(0) of hi) by a representative
7 ((9) of the form illustrated by Figure 1. Since D° can be identified with
(e.g.) the "cut-rectangle"

[0' = u' + iv1 ; -TT < u1 ̂  TT, 0 < ̂  < ̂

^5(^2), ^-^2(^i)},

i/ ^ = M + iv
\

^2) ̂

^2

=(^l)

-> u'
0

Figure 1.

it is clear that ^(0) represents the unique generator of Hl(De). The
assumptions on /i and /2 imply that the integrand of (3) is an analytic
function of (0, 0 ' ) in |j -(^1+^2) {{0} x ̂ ) which is a (locally trivial) fiber

bundle with basis J7."1 \ then there exists correspondingly (see e.g. [7],
(^1+^2) and since the

({0} x T^)) is a continuous section of the latter (described
a homology bundle with fibers H^^D0) over J_

setj6<EJ_
(^,l+/Lt2)

explicitly by a "continuous distortion" of the cycle ^(0) of Figure 1,
for 0 varying in J^ \ the integral (3) defines f(0) as an analytic
function in J^l+^2\ The continuity assumptions on /i, /2 allow one to

take limiting representatives of ^(6) in D° and in particular to choose
^(6} = [—7r,7r] for 0 < v = Im 0 < ̂  : the boundary value of / is therefore
defined as a continuous function on IR/27rZ given by the ^convolution
formula of i). On the other hand, when 0 tends to the set S(/^i + ^2)
from the respective sides eRe0 > 0, e = + or —, the situation of ^(0)
is described correspondingly in Figure 2. a and Figure 2.b; in the limit,

•one obtains the functions fe(v) = lim-^o f(su + iv) via the following
n>0

formulae (deduced from (3)) :
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174 J. BROS AND G.A. VIANO

v' ^

^2 .
'-~^^

————————————»————-——————,————————r u
—7T 0 TT

k

1
^6

V- 0 - i^i

j [integrate A/i • /2,+]
V . ,. ../

Figure 2. a.

^
0 - i^i 4

integrate A/i • /2,-] |

-7T 0 7T

Figure 2.b.

1 '
———————•—————>-J-———————————.—————————————T

< V1

^-ip-2

(4) f,(v) = f
J\-

feW= \ h^-^W^Q'
[-7r,0[U]0,7r]

/>V—^2

• / Wv-v')f^(iv')dv'.+ / A/i^-^/o^ch/.
J U-l

It then follows that

/V—^2

(5) A/(^) = i[f^(v) - f_(v)] = A/i(^ - 2;'). A/2(^)d^
r-l

which expresses property ii). Q

The case of distribution boundary values

For any positive integer s, we denote by O^J^) the space of func-
tions f(6), analytic in J^\ which are of the form / = d^/d^, with g
in O^)^.^). From the theory of distributions as boundary values ofholo-
morphic functions [9], we know that if / e O^J^), f(u+iv) is "of slow
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increase" near the cut 5(/^) = [%^,+oo[ (i.e. is bounded by M(v)\u\~8)
and admits boundary values /+, /_ on 5(^) in the sense of distribu-
tions ; /+, /- and f = A/ = z(/+ — /_) are distributions of bounded order
(< s - 1) on IR(^), with support contained in 5(^), and all such distribu-
tions f can be generated in this way. Similarly each function / in Os^J^)
will have a (27r-periodic) distribution boundary value (of order < s — 1)
on H.

The convolution product f = fi *^ /2 of two functions fi in Os^ (J^)
(i = 1,2) can still be denned by the integral formula (3) and it satis-
fies the properties of PROPOSITION 2, the Volterra convolution product
A/ == A/i o A/2 being still defined by formula (2) in the sense of distri-
butions. In fact, this follows from the representation ji = d s ^ g i / d 0 s ^ , for
functions in 0^ {J^ ) and from the relations :

(6) {gi^g^^^g^^g^

(checked for 0 in the holomorphy domain j^^^^ and

(7) (gi^/^^g^g^,

(8) (glog2)(sl+s2)=g[sl)og<2s2).

respectively on Si and H^ ; the latter being valid in the sense of distribu-
tions.

1.2. Kernels on §1, Volterra kernels on ff^ and associated
perikernels.

In this subsection, we consider algebras of kernels instead of the
convolution algebras of functions considered in § 1.1, and we shall establish
a connection by analytic continuation (similar to that of PROPOSITION 1)
between the algebra of 27r-periodic kernels K(iA, u') on H (or kernels on Si)
(V(/c, k ' ) e 1 x Z, K(u + 2A-7T, u' + 2k''Tr) = K(u, u')) and the algebra of
"Volterra kernels" on IR^ by "Volterra kernel" , we mean a kernel K(v, v ' )
whose support is contained in the set {(^, 'y7) e ff^ x H^~ ; v > v ' } .

These two algebras are respectively defined by means of the composi-
tion products :

/*27T

(9) (K^K^^uf)= \ K^yQlC^.nQd^,
Jo

(10) (^o^)M = I ' K^v^K^v11^)^11.
J v '
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176 J. BROS AND G.A. VIANO

To perform this connection, we introduce the space V^ of functions
/C((9, Q'\ with 6 = u + w, ff = u' + w', called "perikernels", which satisfy
the following properties :

i) V(/c, k') e I x I, JC(0 + 2A-7T, 6>' + 2^) = ̂ ((9, ̂ );

ii) JC is holomorphic in the ("cut-tube") domain

rw=(J^xJ^\a•W^

where a(^) = {(0, 0 ' ) e C2 ; 0 - 0f = 2k7r + ̂  A: e Z, p > ^} ;
iii) /C is defined and continuous in the set (J+ x J7+) \ cr(^), and its

boundary value on R x H is denoted by K(n, u1};
iv) /C is continuous on the set cr(^) D (^7+ x J^_) from both sides and

one puts for e = + or —, \/v^ v'\ (v > 0, v ' > 0),

(11)

JC (v.v') = lim ]C(eu-\-w, iv') ;
u^O
n>0

^(z;, /l;/) = A /C(^ ^Q = i [/C+ (^, 2;/) - /C_ (z;, ̂ )].

It follows from ii) that K belongs to the space A^ of continuous functions
on IF^ x IF^ whose support is contained in the set {(^z/) ; v — v ' ^ ^},
and which enjoy the following analyticity property : \/v, with v > ^,
^(-y + A, A) admits an analytic continuation with respect to A (from F^)
in the half-plane Re A > 0. A^ is a subspace of the algebra of Volterra
kernels on R+, and the following statement is readily obtained :

PROPOSITION 2.

ff Ki ^ -4^i an(^ KC! e ^2^ t^en K i ^ K ^ e ^1+^2-

On the other hand, the boundary value Kof /C introduced in iii) belongs
to the algebra of kernels on §1.

By using an argument completely similar to the proof of PROPOSITION 1,
we shall introduce a structure of algebra on the space of all perikernels
P = limP^^ > 0), by means of an appropriate composition product *^,
consistent with the o- and ^-products considered above namely, we will
show :

PROPOSITION 3. — For every couple of perikernels (/C^/C^), with
/C^ G P^, i = 1,2, there exists a unique perikernel 1C in 'Pin-^-u'z which
we denote by /C = /C^ *^ /C^ such that:

i) K = K i * K 2 ;
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ii) A /C=A/CioA/C:2 ;
iii) for every {0,0') in T^^\ the ^-product is defined by the

following integral

(12) ]C{0,0')= { 1C^O,Ot')1C^O",OI^O",
A(^)

with the following specification for the class 7(^5 0')
a) if Im((9 - 0') < 0, 7((9, 0') is represented by 0' + [-TT, 7r] ;
b) iflm(0 - 0') ^ 0, ^(0,0'} is represented by 0' + 7((9 - 0'), where

^(0 — 0') is the cycle defined in the proof of Proposition 1.

Proof. — By putting 6 = 0 - 0 ' and Q" = 0" - 0 ' , we can rewrite
Eq. (12) as follows :

(i3) !C{0,0/)=}C(Q^0f,0/)
- / /Ci(e + <9', e" +(9 /)^2(© / / +OW.

J^fQ^\_Qf

Iflm((9-6>') =Ime < 0, the choice 7 ((9 ̂ /)-(9' = [-7T, 71-] is appropriate
since the set {(0" , 0 ' ) ; ImO" = Im^ > 0} belongs to the domain T^
of JC^ and since the set {{0,0") ; 0 < ImO < lm0//} belongs to the
domain T^ of JC^ .

If Im((9 - 0 ' ) = ImO ^ 0 and {0,0') ^ a(^i + ^2), the choice
7(^, ^ /) — 0 ' = ̂ (0 — O1) given in the proof of PROPOSITION 1 is relevant,

/ c-\\

since the domain {Q" C D^ } used in the latter is embedded (as easily
checked) in the analyticity domain of the integrand /C^ • /C^ at the
r.h.s. of Eq. (13). Formula (13) therefore defines 1C(0,0') as an analytic
function in the domain j^^^2^ which proves iii). Property i) follows
immediately and property ii) is obtained by the same argument as the
similar statement ii) of PROPOSITION 1 (in the variables 9, © / /, for each
fixed 0 ' =w'). D

Remark. — In PROPOSITION 3 the statement /C e P^-\-^ together
with the discontinuity formula of ii) are consistent with the result of
PROPOSITION 2.

The class of perikernels V^

Results similar to those of PROPOSITION 3 hold for the set P^ of
functions ]C{0,0'), satisfying the periodicity condition i) and which are
analytic in the domain T— = C2 \ a(^) and have continuous boundary
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178 J. BROS AND G.A. VIANO

values (from both sides) on the set a(^). The discontinuity formula (11)
(now valid for all (v^ v ' } in R2) defines K { v ^ v ' ) as a Volterra kernel
on IR (with support in { ( v ^ v ' ) ; v — vf > /^}). For this extended class of
perikernels 7^, the ^-product is still defined through formula (12), but
with the additional following specification : if (0, 0 ' ) ^ T^ , there always
exists a complex number A such that (©, 0') = (6 + A, 0' + A) G T^, and
one then puts :

(i4) JC{0,0f)=!C{e-\,ef - x )
= / /Cl (e-A,e / / -A) /C2(e / / -A,e / -A)de / / ,

^(©^o
7(Q, Q') being then defined in the situation of PROPOSITION 3 (the value
of the integral in (14) being in fact independent of A, as it can be seen by
contour distortion).

The case of distribution boundary values
As in § 1.1, we can introduce the spaces T^s ^d Pp,,s of perikernels

/C((9, 0 ' ) which are of the form 1C = d^+^r/d^d^', with £ in P^ or in
V^ and s = (5, s') C N x N; each of these kernels admits boundary values
JC^v.v') and an associated Volterra kernel K = AJC on IR'^, which are
defined as distributions (of bounded order) on R^~ x R^~. Similarly, the
kernels JC in Pp,,s have distribution boundary values on IR x IR (and in
fact on §1 x Si in view of periodicity conditions) from the tube J^. x J7+.
The composition product /C^ *^ /C^ of two kernels A^ (z = 1,2) in V^^
(resp. T^sJ can still be defined by the integral formula (12) (resp. (12)
and (14)) in the complex domain T^^ (resp. T^^}. Moreover, this
composition product still satisfies the properties listed in PROPOSITION 3
(as it follows from the representation of /^ in terms of derivatives of
kernels in P^ or P^ and from formulae similar to Eqs. (6), (7)), the
Volterra o-product (and possibly the ^-product) being now understood in
the sense of distributions (i.e. defining an algebra of distribution kernels).

1.3. The geometrical interpretation : algebra of holomorphic
perikernels on the complex hyperbola X[ \

We introduce the complex hyperbola (isomorphic to the complex unit
circleS^) :

^^{^(^.^^(^ec2;

^(°) = -zsin(9, ^(1) = cos (9, 0 C d
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HOLOMORPHIC PERIKERNELS ON THE COMPLEX HYPERBOLOID 179

and two real submanifolds Xi and *5i of X^. The hyperbola

Xi = {^ e R2 ; ^(0) - sinh^ z^ - ±cosh^; v C IR}

is obtained for 0 = iv -\- k^r, k ^ 1 and the circle 6'i in (zIR) x R
is defined by putting 0 = u € 1R in the equations of X^ ; we also
put Xf = {z = z(w) € Xi ; v > 0}. On X^, we introduce the
integration measure da^^z) = d0, and put da^ = dcr(z) = du and
do-Y^ = i da(z) = z dv.

Let us then consider :
i) the class of kernels K(z, z ' ) on S'i, represented by kernels K(u, u') =

K(^,2/) \^^^z'=z^u'^ equipped with the composition product :

(15) (Ki*K2)(^^)= f K^z^z^K^z^z^do- - (K, ̂ K_^u') ;
Js

ii) the class of "Volterra kernels" K { z , z ' ) on X^, represented by
Volterra kernels K(v, v ' ) = K(z, z ' ) | z=z{i'v^z'=z{iv') on IR+, equipped with
the composition product

(16) (K,oK^zf)= [ K^z^W^z^da^)
Jz"^X;z^z">z'

={K,oK^(v^f).

In the latter, the relation z > z" > zf (corresponding to v > v" > v ' ) can
be given an intrinsic meaning in the ambient space [R2 by introducing the
cone Q+ = {z = (z^°\z^) e H2 ; z^ ^ |^(i)[} and by putting z > z ' if
z — z ' e f^+ (see in [I], [2] and below in section 2, § 2.2, the generalization
of the o-product of "Volterra-kernels" in dimension d).

By using the results of § 1.2, we can then introduce algebras of "peri-
kernels" fC(z, z ' ) on the complex hyperbola x[^ which will provide an
analytic interpolation between appropriate classes of kernels K on 6'i
and Volterra kernels K on X^, according to the properties described
in PROPOSITION 3. We define P^(X^) (resp. P^X^)) as the set of
functions fC(z^ z ' ) holomorphic in the complex manifold

(17) A^ = {(^/) e x^ x x^ ; z = ̂ ), z/ = z(0/)^ (MQ e r^}

represented in ((9,6^-space by a perikernel /C^,^) = !C{z(0), z(e'})
belonging to P^ (resp. P^s).
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180 J. BROS AND G.A. VIANO

For all perikernels /C in these classes, a composition product /C =
/Ci *^ /C2 is defined by the formula :

(18) /C(zY)= / JC^z^W^z^da^^)
Jr{z,z'}

-aCi^^XW

In the latter, the cycle T ( z , z ' ) is such that F ( z , z ' ) |^^^^M =
7(W

Then, in view of PROPOSITION 3 and of Eqs. (15), (16) and (18), the
restrictions (or boundary values) K, Ki, K:2 of /C, /Ci, JC^ to 5'i x 6'i
and the corresponding discontinuity functions on X^ x X^~, namely the
Volterra kernels A/C, A/Ci, A/C2 on X^ (represented respectively by A^,
A/CI, A ̂ 2), satisfy the relations K = Ki * Ks and A/C = A/Ci o A/C2.

Similar classes of perikernels, denoted by P^X^) and ^^(X^),
can be introduced; these perikernels are analytic in a domain A+ (larger
than A^) obtained by replacing T^ by T^ in formula (17). A^ can
also be described as the full complex manifold X^ x X^ deprived from
the "cut" :

^= [ ^z l ) ^ x [ c } xX [ c } ,

(^(0) _ ^(0))2 _ ^(i) _ ^(i))2 > ^cosh/. - 1) ;

det(^) >ol .

The previous results on composition products (x^, * and o) hold
similarly for these perikernels, the discontinuity functions A/C, A/Ci,
A/C2 being now Volterra kernels on the whole branch of hyperbola
Y = X H [z ; ^(1) > 0}. The action of the connected complex Lorentz
group S0o(l, 1)^ (^ SOo(2,C)) on X^ can be denned as follows :

V^ = ge € S0o(l, 1)^, V^i = z(0,) e X^,
^2 =^0^1 = z{0^) with ( 9 2 = 6 ^ + ( 9 i ,

the corresponding actions of SOo(2,H) (resp. S0o(l, 1)) on 5'i (resp. Xi)
being obtained for 0 in IR (resp. in iH + k7r).

We can then consider for each previous class of perikernels /C, the sub-
class containing those perikernels which satisfy the invariance property :
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V^ G S0o(l, l)^, 1C{gz,gz') = /C(^ ^ /). Such perikernels /C(^ z ' ) are iden-
tified with analytic functions of a single complex variable / by the formula
!C(z(0), z{0')) = f{0 - 6 ' ) . By introducing the point ZQ = z(0) = (0,1)
of Xi, we can also write : !C(z{0),zo) = f(0). Then for these perikernels
(in particular for those in P^), our previous results concerning the *^-,
*- and o-products reduce exactly to our PROPOSITION 1 for convolution
products on JT" , and are thus interpretable as describing a convolution
on the complex group S0o(l, l)^.

2. The general case : geometry of the problem

2.1. The manifolds X^\ X, S^ and the related groups of
matrices.

For d ^ 3, we consider the space Cd of variables (^°\ z^\..., ̂ d-l^)
= (z^°\z') equipped with the minkowskian quadratic form :

^^(O)2.^!)2.....^-!)^

and we put: z ' 2 = z^ +• • •+^^~1^ , i.e. z2 = z^ —^2 ; the minkowskian
scalar product of two vectors z^ z ' is denoted by

z • z' = z^z'^ - z^z'^ - • • • - ̂ d-l)^(d-l) = z^z'^ - z - z\

The cone ^+ = {z G IR^; z2 > 0, ^(0) > 0} ("closed forward light cone")
defines on Hd the following partial ordering relation : z\ ^ z^ (or z^ ^ z\)
if^i-^2 ^ ^+. We call \ the symmetry : z = (^ (0)^) ̂  ^(2;) = (-^(0)^)
whose restriction to Hd inverts the light-cone ordering relation : z\ ^ z^ <^>
X(^2) > x(^i)'

We now introduce the following notations in which (for simplicity)
we omit the dimension-dependent subscript used in the introduction
(e.g. ^(c) = X^_\, etc.) :

i) the complex hyperboloid X^ = {z C C^ ; z2 = -1};
ii) the real one-sheeted hyperboloid X =Hd H X^ (see Figure 8);

iii) the "euclidean sphere" S = (i H x B^-1) H X^ (see Figure 8);
iv) the point ZQ = ( 0 , 0 , . . . , 1) of X H S ;
v) the following parametrization (II) of the set

(19) X^=X^\{z=(z^\z)^Cd^ ^- l)2=l, ^^O},

(n) z = z(0, (/9, a) = {^ ( 0 ) = -i sin 0 cosh (/?; ^(d-l) = cos (9 ;

[/?] = (z^\..., ̂ -^ = -zsin(9sinh^ [a]},
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with 0 e C, (p e C, a e S^^ (complex unit sphere), and the
identifications :

(20) (R) (^d)=(^+27r, ^ a)=(^+2z7r,a)

= (-6>, (p + nr, a) == (<9, -(^ -a).

In this representation, 5' is obtained for 0 = u € R, (p = ir], rj e R,
a G S(d-3). The subset X = X^ nHd of X can be stratified as'follows :'
X = V U V7 U Y " , where

r = {z e x; ^d-1) > 1} u {zo} = [z e x; (z - zo)2 > o},
Y ' = {z^ x ; ^d-1) < i} u {-^0} = {ze x ; (^ + ^o)2 > o},
y// - {^ ̂  ; l^^l < 1} = {z e X ; (^ - ̂ o)2 < 0, (z + zo)2 < 0}.

In the parametrization (II), Y and Y ' are respectively obtained for 0 == w
and 0 = TT + w, with -y, ^>, a real and arbitrary. Y " is obtained for
^=ne^=^± z^ ^ e R, a e S(d_3).

If we now introduce the closed sets X+ = {z e X ; z > zo} and
x- = X(^4") = {^ e X ; z < zo}, we then have the finer decomposition
of^the set Y = X+ U X- U {^o}, where the sets X+ = X+ n X and
x- = x- n x are respectively obtained by taking -y > 0 and v < 0 in
the parametrization (II) of Y.

We now introduce the following groups of matrices acting on C^ :
i7) A^) = {a(0) ; 0 e C}, where

( cos (9 0 -zsin(9'
(21) ^W- 0 J^_2) 0

-z sin 0 0 cos 6^

ii') B^) = {b(^) ; (^ C C}, where

(cosh^ 0 sinh(^ 0'
(22) b(^)= ° J(d-3) 0 °

sinh^ 0 cosh^ 0
0 0 0 1 .

iiiQ for d > 4, {c(a) ; a e S0(d - 2, C)}, where

/I 0 0'
(23) c(a) = 0 a 0

\0 0 1^
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By using formulae (21), (22), (23) one readily checks that the parametric
representation (19) can be rewritten as follows :

(24) W > 3 , z(0^,a)=m^ez^

(24') where : m^e = c(a)b(^)a(0).

(Note that for d = 3, c(a) can be chosen (in view of the relation R) equal
to the unit matrix.)

2.2. Kernels on 5', Volterra kernels on X and the composition
products * and o.

We represent X^ by the equation s(z) = 0, with

^)=^0)2-^1)2-...-^-1)2+1,

and define the invariant measure on X^ by the following (d — l)-form
(with the notation of [10]) :

(25) d^)^^^---^^
zds(z) ^(c)

We then introduce the real-valued measures : da{z) = da(-c\z)\s,
do-{z) = -id(T{c\z)\x and the following composition products * and
o, respectively on S and X.

With every kernel K(z,^) in C°(S x S) and function F(^) in C°(S),
we associate the function G = K * F in C°(S) by the formula :

(26) G(z) = I K(^,^)F(^)d(r(^).
J s

Following [I], [2] we can similarly associate with every kernel K { z , z ' )
in C°{X x X) and function F(z) in C°(X), such that supp K C S+ =
{{z , z ' ) G X x X ; z > z ' } and supp F c X + = { z e X ; z >_ zo}, the
following function G = K o F in C°(X) by the formula :

(27) G(z)= f K ( z ^ z f ) F ( z f ) d a { z f ) ^
Jo{z,zo)

where o(z, zo) represents the "double cone with diagonal [z, ZQ\ on X'\ i.e.
the compact set : {z' e X ; z ^ z ' > zo}.
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Functions K and F satisfying the previous support conditions are
respectively called (as in [I], [2]) Volterra kernels and Volterra functions
on X. The function G = K o F associated with the couple {K, F) is then
itself a Volterra function.

We now wish to introduce Volterra functions and kernels with more
special support properties, and for this purpose, we define for every /^
^ ^ 0, the following subsets of X (see Figure 8) :

(28) X ^ = { z ^ X ^ ( z - zo)2 > ̂ ), z^ ^ 0},
= { ^ G X + ; ^d-1) ^cosh/4;

(28Q X^ = ̂ ) = {ze X- ; ^d-1) > cosh^},

(28'Q with $(^) = 2(cosh^ - 1).

In the parametrization (11) (see Eq. (19)), X^ (resp. X^) is obtained
for 0 = iv, v > 11 (resp v < -^), y e H and a G S^-3)' Now we
denote by V^ the class of functions F(z) in C°{X) satisfying the support
condition : suppF C X^. Similarly we consider the sets :

(29) ^ = {(^, z') G X x X ; (z - z'f > $(^), z^ - z^ ^ 0}.

Then we denote by W^ the class of kernels K{z, z ' ) in C^^X x X)
satisfying the condition : supp^f C S^

The following property holds :

PROPOSITION 4. — For every kernel K in W^ and every function F in
V^, the corresponding function G = KoF (defined by Eq. (27)) belongs
tov^^-

Proof. — One must check that the conditions z ' e X^, (z, z ' ) <E S+
imply z G X^^. The points z , z ' being such that z ^ z ' > ZQ,
the representation (II) (see Eq. (19)) of z, z ' is given in terms of real
"hyperbolic angles" v{0 = w), v ' { 0 ' = w7), (p, ^ (with a, a ' in 5^_3)).
We then obtain for the minkowskian scalar product of z and z ' the
expression :

(30) z • z ' = sinh v sinh v ' [cosh (/? cosh y/ — sinh (^ sinh ̂  a ' af]
— cosh v cosh v ' .

li z ^ z ' , one has : {z - z ' ) 2 = -2(1 + z • z ' ) > 0 and the hyperbolic
angle V between z and z ' can be defined by cosh V = -z • z ' ; Eq. (30)
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then yields the following "hyperbolic triangular inequality", valid for all
points z, zf in X such that z > z ' > ZQ : V < v - v ' . Since (in view of (28),
(29)), the conditions z ' G X^, (z.z^ <E S^ are respectively equivalent to
- z ' - Z Q > cosh/^ and - z ' z ' ^ cosh^i (with z > z ' > zo), i.e. v ' > ̂  and
V > /^i, it follows that v ^ V + v ' ^ p.i + ^2, and therefore ^ e ̂ +^,.

Similarly, we shall introduce the composition products * and o, respec-
tively for kernels on S and Volterra kernels on X :

• With every couple (Ki,K:2) with K, € C°(S x S) (i = 1,2), we
associate the kernel :

(31) K(^) = (Ki *K2)(^) ^ / K^z^K^z^z^da^).
J s

• With every couple of Volterra kernels (K^,K^) on X, we associate
(as in [I], [2]) the kernel :

(32) K { z ^ z ' ) = ( K . o K ^ z ^ z ' ) = f K^z^z")W , z t ) ^ { z ' l ) ^
JO{Z,Z')

where 0(2:, z ' ) denotes the compact set {z" e X ; z ^ z " > z ' } .
For all z ' in X+, we can write (in view of Eq. (24)) : z ' = m^/^o

with a7 e S0(d - 2;^?), (^/ e 1R, Q' G z[R+, and introduce the point
^ = ^ ^ ' a ' ^ ' e ' 2 " This matrix m^^/6>/ preserves the order relation > on X
and therefore the following formula holds : o(z, z ' ) = m^^e'[o{Z, zo)}.

Since the measure do- is invariant under the transformation
Z " ̂  z " = m ^ ' ^ e ' Z " , we can write Eq. (32) as follows :

(32^ K(m^^e'Z, m^^e'^o)

= / K^m^^e'Z.ma'^e'Z")
Jo{z,zo)

x ^2(m^^^Z//,m^^0^o)da(^//).

Now since

(32//) E^ = {(^^ / ) ^ X x X ; z= m,/^zy = m^^e'z^

a /eSO(d-2;J?), ^eR, ^ e z H , Z^X^\

(with i = 1,2) the assumptions of PROPOSITION 4 are satisfied by
the integrand at the r.h.s. of formula (32') (which is then of the form
of Eq. (27)); therefore the function Q(Z) = K{m^^e'Z, m^^e'zo)
belongs to the class V^+^ which (in view ofEq. (32"), written for S"̂
and X^^) implies that K ( z , z ' ) belongs to the class W^+^. We can
thus state :

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



186 J. BROS AND G.A. VIANO

PROPOSITION 5. — For every couple of Volterra kernels (K\^K^) with
KI G W^ (% = 1,2), the composition product K = K\ o K^ is a Volterra
kernel in "H^+^.

2.3. Holomorphic functions and perikernels on X^\

We introduce the following subsets of X^ :
i) the "cut"

= { z ^ X ^ ' ^ (^-^)2-^)>0}
= [z C X^ ; z^-^ = coshv ; v > 11} ;

-^ —

ii) the "cut-domain" D^ = X^ \ 5^. We also put D^ = X^ \ 2^.

Analogously we introduce in X^ x X^ the following subsets :
iQ the "cut" S^ = {(z, z ' ) G X^ x X^ ; (z - z1)2 - ̂ ) > 0} ;

ii7) the "cut-domain" A^ = (X^ x X^) \ S^. We shall also put
A^=(X^) xX^)\^\

We denote by V^ the subset of V^ whose elements F(z) are moreover
analytic (with respect to ((^,Q?), via z = z(0^^a)) in the full manifold
5^. Similarly we denote by W^ the subset of W^ whose elements K(z^ z ' )
have analytic continuation in the full manifold S ^ .

We now introduce the following classes of functions :
a) Vp, denotes the class of holomorphic functions ^F{z) in D^ which

are moreover continuous on the boundary set 2^ (from both sides of this
"cut");

b) H^ denotes the class of functions /C(^, z ' ) which are holomorphic
in A^ and continuous on the boundary sets S^ (from both sides of this
"cut"). Such functions will be called "perikernels" on X^.

Variant. — One can release the continuity condition on the boundaries
and replace it by a "slow increase condition", corresponding to the
existence of boundary values in the sense of distributions; for instance,
for any integer s (s > 0) one can define the spaces V^s and W^s of
holomorphic functions T(z) and /C(/z, z ' ) which are derivatives of total
order s of functions belonging respectively to the previous spaces Vp,
and W^.

Now, for every function T in V^, we shall put F = F\s (F be-
longs to C°(S)) and we consider the associated "discontinuity function"
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A.77 = z(J+ - y-) of .F, where .F+ and .77- denote the boundary values
of T on the analytic hypersurface {z e X^ ; lm{z - zo)2 = 0} from the
respective sides lm{z - zo)2 < 0 and lm(z - zo)2 > 0. We note that, in
the set X+ = {z e X ; 2; > 2;o}, parametrized (in view of Eq. (19)) by

{(^,a); ^ > 0 , ( ^eC , aeS^},

one can write (since Im(z - ̂ o)2 == 2Im cos(^ + iv) < 0, for e > 0) :

(33) ^±{^}= l im^^(w±£,^d)] .
^o

The function A.F has its support contained in the set 5^ and is analytic
on the complex submanifolds (z - zo)2 = p, p > ̂ ) (parametrized by
v = v(p) = cosh'^l + ^p], (p e C, a e §^3) which generate this set.
The corresponding function F(z) = A+^(z) = Y(zw)^J='\x{z) (where
Y denotes the Heaviside function) has its support contained in the set X+
and belongs to the class V^. One can also define in an analogous way
the function A^J='°(z) = Y(-z^)AJ='\x(z) whose support is contained
in the set X^ .

Similarly, for every kernel /C in W^, we put K == !C\sxS (K belongs
to C°(S x S)) and we consider the associated "discontinuity function"
A/C = ^(^C+ — /C-) of /C, where /C+ and K,- denote the boundary values
of /C on the analytic hypersurface {(z, z ' } G X^ x X^ ; lm(z - z ' ) 2 = 0}
from the respective sides lm{z — z ' ) 2 < 0 and lm(z — z ' ) 2 > 0. The
function A/C has its support contained in the set S^ and is analytic on
the complex submanifolds (z - z ' ) 2 = p, p > ̂ (^) which generate this set.
The corresponding function

(34) K{z^') =A+/C(^) =r(^°) -^A^xxM

is then a Volterra kernel on X with support contained in S^, which
belongs to the class W^ . One can also define similarly the function
A_/C(^,^) = Y(z^ - z^)^1C\xxx(z,z') whose support is contained
inS^.

The study of a general composition product *^ for perikernels will
be presented below in section 3 and will provide results similar to those
obtained for the classes of perikernels P^(X^) and P^(X^) of the case
d = 2 (see PROPOSITION 3 and § 1.3).
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Remark. — Comparing the set of perikernels W^ with the set V^{X^\
of the case d = 2, calls for the following comment. In the case d = 2, the
analogue of the holomorphy domain of the kernels in W^ can be described
as X^ x X^ \ (^c)+ US^-), where S^- = {(^ /); (z^z) C ^c)+}.
We then notice that the holomorphy domain (X^ x X^) \ S^0 + of the
kernels in P^X0) has no counterpart in the general case (d ^ 3), since
S^f and S^ then become a single analytic hypersurface S^ (due to
the extravariables (/? and [a]).

3. The composition product *^ for perikernels on X^

3.1. From the sphere to the hyperboloid : the analytic continu-
ation procedure.

We will establish the following result, valid for an arbitrary dimension d,
with d ^ 3.

THEOREM 1. — Let 1C belong to W^i, and T belong to V^. Then there
exists a unique function Q in the class V^, with ^ = [i\ + /-^ denoted by
JC *^ T which satisfies the following properties :

a)

(35) G \ s = J C \ S x s ^ ^ \ s .

b)

(36) A+^=A+K:oA+^.

c) For every point z in D^^ there exists a class of cycles F(^) in

^-1)(JD^^ where Dz^ = {zt e x(c); zf e b^ (^/) G A^}-
such that:

(37) G{z)= ( ^z^^Wda^^).
Jt{z)

The main part of the proof consists in constructing a representative
cycle r(z) of r(z) (relevant for formula (37)) and proving formulae (35),
(36) for all points z in the section D^o of D^ by the (^°\ z^~^)-
plane ((^°, ^d-l^) G C2), as specified in LEMMA 1 stated below. In
this statement, it will appear that the general d-dimensional case reduces
trivially to the 3-dimensional case. The remaining part of the proof of
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THEOREM 1, namely the extension of the results of LEMMA 1 to all points
z in D^, relies on short arguments of group theory and several complex
variable analysis; it will be given before the (longer) proof of LEMMA 1.

Let

X^ ={^=(^°\[0]^-1)); z^=-ism6^ z^=cos0^ 0 C C}.

The domain L^o = D^ H X^ of X^ is then represented in the (9-plane
by the set J^ = J^/27rZ, with

J^ = [0 e C ; 0 ̂  w + 2k7r, v\ > ̂  k e 1} ;

we also introduce the sections So, ^± of the sets S, X± by X^\
represented in the 6^-plane respectively by the sets [0 e R},

[0 = w (mod 27r) ; ±v > fi}.

For z = z(0) = (-z sin (9,0, cos 0) in D^^, we shall define the in-
tegral (37) by using the parametrization (II) for the integration vari-
ables z ' , namely by putting z ' = z ' ( Q ' , ̂ /, a7) according to formulae (19),
with { e ' ^ ' . d ' ) varying in C2 x S^/R (see Eq. (20)). This allows us
to represent a dense subdomain of the analyticity fiber of the integrand
D^ = {z' G X^ ; z ' C D^, {z{e),z') e A^} by the following "cut-
domain" (in view of the definitions i), ii), i'), ii7) in § 2.3) :

(38) D{0} = {(^ ̂ ) e C2 ; (0^ ̂ ) i S(^) U E(^i ; 0)} x S^/R

where :

(39) S(^) = {(0^ ^/) e C2 ; 0' = w1 + 2A^ v'\ ̂  ̂  k G 1}

and

(40) ^(^^{(^(^cC2 ; cos 0 cos 6 ' + sin 0 sin ff cosh ̂

>, cosh/^i = pi}.

Formula (40) is obtained by noticing that (in view of the representa-
tion (n), one has : z{Q}' z ' ( Q ' , ^ , a ' } = - (sin 0 sin Q' cosh ̂  + cos 0 cos 0 ' ) .

We can then state the following basic property, in which the integration
measure (involved in Eq. (41)) is the parametric expression of dcr^^')
(see Eq. (25)).
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LEMMA 1. — For every point z = z(0) in -D/^o o^ can define the
analytic function Q{z) of theorem 1 by an integral of the following form :

(41) G(z) = (-i^-2 ( /C^^^^^d'))^^^^^'))
Jre

(sin^-^sinh^-^ A^(a / ) A d^/,

where Te is a (d — 1)-cycle whose support is a compact subset of D(0) of
the form {(6^, ̂ '.a') ; 0' C 70, ^ G L^/, a7 C §^-3}, 70 anc? L^7 being
appropriate paths depending continuously on 6 and (O^O') respectively^ and
where uj(a') denotes the (SO (d— 2)-invariant) unit volume form on §^-3.

For z = z(0) in So, the integral (41) reduces to the expression
^|5ox5*^|^ obtained for 76'== 1R/27TZ and L^7 = % n (mod 27r); for ;z(0)
in X^Q, the corresponding discontinuity A+0 is given by formula (36).

Starting from this result, the proof of THEOREM 1 is achieved as follows.
In view of formula (24), one can write for each point z = z(0, (p, a) in X^ :

(42) z(0^^5) = c(a)b^)a(0)zo = c(a)b^)z(0),

with

(43) z(C) = a(0)zQ = (-i sin (9,0, cos 0) G X^.

Moreover z(0, (p, a) belongs to the domain D^ if and only if z{6) belongs
to D^ft, since one easily checks that (^(0, (^, a) — zo)2 = (z{0) — zo]2.

For any point z = z(0, (^, a) in D^, we then put :

(44) G{z)= I ^z^Wda^^
JY{Z}

with r(z(0^,a)) = c{a)b(^)re.
We shall first show that this function belongs to the class V^i, with

p, = ^1+^2- In view of the invariance of the domain D^ (resp. A^)
of T (resp. /C) under the set of transformations z ' ^-r c{oi}b{^)z1 (resp.
( z , z ' ) \—> (('((^((^^(Q;)^^)^), it follows that the support of the
(d — l)-cycle F(/z(0, (^, a)) is compactly contained in the analyticity fiber
D^^ = [ z ' G X^ ; z ' G D^, (z((9,(^a),^) e A^} of the integrand
of (44) at z = z{6, (p, a). Since Eq. (41) is defined in D^^^ the integral (44)
defines a germ of analytic function at each point z = z(0,99, a) in D^^ and
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since the cycle r(z(0,(^,o?)) varies continuously with z in the analyticity
domain V of /C(^, zf)J='(zf) (namely defines, in the sense of [7] or [8] a
continuous section of the homology bundle associated with P, considered
as a fiberbundle over D^), all these germs define Q as an analytic function
in D^. The extension of formula (35) from So to S follows directly from
the invariance of S and of the measure da under the transformations
z ' ^ c(a)b(^)zf, for all a <E S0(d - 2;J?), ^ e iH, z ' <E S, and from the
fact that

S = {z = c{a)b(^)z(0) ; aeSO(d-^R), ^ < E z R , z(0) e 5o}.

The extension of formula (36) from X^Q to X^ follows from the invariance
of the measure dcr under the transformations z ' \—> c{a)b((^)z^ a e
S0(d — 2; IR), ^p e IR, z ' e X^ and from the following properties :

VaeSO(^-2;.R), V(^eR, \/z=z(0^,a),
o(z^o)=c(a)b^)[o{z(0)^o)]

and X^ = {z = c(a)b^)z(0) ; a e S0(d - 2; J?), (̂  e R, ^(^) C X^},

Finally, it remains to establish that the function G{z} admits an
analytic continuation on the (d — 2)-dimensional subset D^\X^ of X^\
namely on the two cones C+ = {z C X^ ; z^^ = 1, z ^ zo} and
C- = {z e X(c) ; ^(d-l) = -1, ^ ^ -zo}, which are not represented by
the parametrization (11). From formula (41) written at z == ZQ (i.e. 0 = 0),
we know that G(z) is analytic in a neighbourhood A/'(-zo) of ZQ in X^ and
therefore in a certain open subset N ' = Af(zo) D C+ of C+. It then follows
from Bremermann's continuity theorem [II], applied to any family of one-
dimensional sections of X^ admitting as its limit an arbitrary linear
submanifold of C+ (which is adherent to ZQ and has therefore a non-empty
intersection with A/7) that the whole set C+ belongs to the analyticity
domain of Q (the set C- being treated similarly). The uniqueness of
the function Q satisfying the theorem is obvious since it is the analytic
continuation of the r.h.s. of Eq. (35) (6' being a (d — 1)-dimensional real
submanifold of D^).

Proof of Lemma 1 :

A) Construction of the cycle Yo
We first specify the prescriptions to be satisfied by the cycle 1 ,̂ i.e.

more precisely by the fiber bundle U^^ ̂ ' ^ LQQI\ ^or ^ belonging to the
cut-plane J^. As a matter of fact, it will be often convenient to construct

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



192 J. BROS AND G.A. VIANO

the image Lee' of Lee' in the complex plane of the variable C = cosh^/.
More precisely, we will use the biholomorphic mapping between the strip
{(^/ 6 C ; 0 < Im (^/ < TI-} and the cut-plane

{ C G C ; C-l^ -C-l^+}.
L^/ and L^/ will always be respectively contained in these sets (or
exceptionally on their boundaries).

a) The requirement that supp To should avoid the set S(/^) x S^l^/R
corresponds (in view of formula (39)), to the following condition : in the
^-plane, the contour 70 should always avoid the set

^ = [0' = iv1 + 2k7v; \v'\ > /^ k C I}.

b) The requirement that supp FC should avoid the set

S(^;0)xS^3/A

corresponds (in view of formula (40)) to a condition for the contour
Lee' in the (^/-plane to be satisfied for each 0 in J^ and 0f in 70; this
condition, more conveniently expressed in the ^-plane, is that 'Lee' should
avoid the trace 61 = 6^(0, 0 ' ) of S(/^i; 0) in the ^-plane which (in view of
formula (40)) is described by the following formula :

(45) 6i = { C € C; (,sm0sm0'+cos0cos0' - p = 0 ' , p> pi, (pi ^ 1)}.

For 0 or 0 ' ^ TrZ, 6\ is a half-line, also conveniently represented by the
following two (equivalent) formulae :

(A^ ^ 1 -COS^-^+P .
(46) C-^——— . n . n,———5 P^Pl^sm 0 sin 0 '

/ ^ . . . - cos((9 + 6') + p
47 C+l-—— \ ' n, ; P > P i -smOsmO'

We will also denote by See' the support of 6^{0,0'), namely

. . . _ f , - , - cos 0 cos 0' + p -1
(48) ^={^C;^ ^^, ^^R}.

i) T/ie initial situation : the choice of Te f^ Q ^o^
From Eqs. (46), (47), it readily follows that for 0 and 0 ' real, with 0

and 0 ' ^ TrZ, 6\ is contained in ] — o o , — l [ U ]+l,+oo[ (^i being empty,
in view of Eq. (45), for 0 or 6 ' e TrZ).
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The previous requirements a) and b) will then be fulfilled if the
chosen cycle Fe is the sphere S (equipped with its natural orientation),
represented in the space of variables ff, C, and a ' by the following sets

7, = R/27T1 = [-7T, +7T], C ^ [-1, +1], S1 G Srf-3,

with (^.C.a7) = { O ' ^ . - d ' ) (in view of (R) : see Eqs. (20)). With this
specification of Fe for 0 real, the integral (41) is equal to 1C\SoxS * ̂ \s
so that property a) of THEOREM 1 is "built in" in our definition.

ii) The continuous distortion of Te for 8 varying in the set : [0 =
'U + W G C ; U -=/=- 0, U ̂  71-}.

The distortion that we define will take place in the space C 2 , ^ (i.e. will
concern 70 and Lee'), but will not affect the real cycle {a ' C §^-3} which
will be kept fixed for all values of 0 in J^. The fact that the cuts E(^)
and S(/^i,0) are S0(d- 2)-invariant (i.e. that formulae (39), (40), do not
involve the variable a') implies that our construction is the same for all
dimensions d (d > 3).

We first investigate whether the half-line <^i may contain the points
C == 1 or -1. In view of formulae (46) and (47), this situation occurs in
the following subset of C(9//27rZ :

^={0' =0-^ iv' or Q' = -0 + i v ' , with \v' > /^}.

Since such a situation must be avoided (in view of the fact that C = 1 and
C = —1 ^e the end-points of Lee' in the specification of i)), we are led
to define a continuous distortion of 7^ such that for each (9, ^e avoids the
set î U ̂ 2 •

The construction of FC will also be simplified thanks to the following
symmetry properties which are immediately implied by Eq. (45) :

(^i) V(MQ, ^(MQ = ̂ i(-0, -e') = 6^ - e^ - e') = ̂ (W;
(^2) V((9,6> /), the sets 61 ((9, -0') and 6^0,0') are symmetric with

respect to the origin in the C-plane.

Property (^i) suggests that it might be sufficient to define an appro-
priate distortion of FC for 0 varying in the subset

jW = {<9 = n + w e C ; 0 < u < JTT, v > 0}

of J^ and to complete the definition of this distortion in the rest of J^
by using the relevant symmetries.
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Property (62) suggests that one should first define the part 7^ con-
tained in the strip 0 <: Re0f < TT and the corresponding part

r^ = { { e ' ^ ^ a ' } ; e ' e 7^ ^ e suppL^/, a ' e Sd-s}/R
of suppF<9; then, the complement

IV = { { O ' ^ ' . a ' ) ; ^ e 70", ^/ e supply, a ' e Sd-s}/^

should be defined by the following prescription :

^e ={ef^ -°' ^^} and

supply = {C e C ; -C € suppL0(_^)}.

For each (9 in the set J^\ we adopt the following choice for 70
which satisfies in an obvious way our previous requirement, namely
supp76> D (<5i U 6-2) = 0. We define 7^" as the broken line consisting in the
three segments [0,^], [0,2u] and [2^,7r] and we put supp7^ = 7^ U 7^
(see Figures 3.a) and 3.b)). For u = Re (9 fixed and v = 1m 0 increasing
from the value v = 0, the path 70 thus defined is continuously distorted
from its initial situation (i.e. [-TT, +71-]) by dilatations parallel to the -y'-axis
and proportional to v.

We now have to implement our construction of Y~Q by specifying the
path Lee/ in the ("-plane, for all values of 0 ' in 7^". The following property
will be useful.

AUXILIARY LEMMA. — Let mee' = 6^e') H { C ; C e R}. Then, if 0 '
varies in the strip Oy = {9' = u' + iv' ; \v'\ < v\ (v = Im(9)}, the subset
of points ff for which mee' is a point between -1 and +1, is composed of
two rectangles^ namely :

[0' = u' + iv' ; [7/ < \v , \u' - J7r| < \u - ^7r|

or \u' + ^7r| < u - |,7r| (mod 27r)}
if 0 < u < TT, or

[0' = U' + W' ; \V'\ < \V , \U' - |,7r| < \U + |,7T

or [^/ + |,7r| < |̂  + |,7r| (mod 27r)}
if -TT < u < 0.

(Note that these rectangles correspond to the hatchings on Figures 3.a
and 3.b.)
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^ v '

Figure 3.a : Re0 < ^TT.

Figure 3.b : ^TT <Re0 < ^TT.

Figure 3. The path 70 in the ^-plane.

Prw/. — In view of formula (48), the abscissa ((mee') of mee' must be
a real solution of the equation : ((mee') x sin 0 sin 0 ' = — cos 6 cos 0' + p
(p real). Therefore we have :

Im(cos^cos^)
((mee') = -'5 \"vffa / T / • /i • /i/\^(smysin^)

The condition \((meef)\ < 1 is then equivalent to

Im cos((9 + <9') Im cos((9 - 6>7) < 0,
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> u'

Figure 3.d : 0 = -e + iv'

Figure 3. The path 70 in the ^'-plane.

which can be rewritten :

sin(n + u ' ) sm(u — u') sinh(^ + v1) sinh(z; — z/) < 0.

For O'm the strip Qy, one has |'?/ < \v , which implies

sinh(^ + v ' ) sinh(z; — v ' ) > 0 ;

we are thus led to the condition :

sin(iA + u'} sin(u — u ' ) < 0

which yields the regions described in the auxiliary lemma.

TOME 120 — 1992 — ?2



HOLOMORPHIC PERIKERNELS ON THE COMPLEX HYPERBOLOID 197

Remark. — The set of points 6 ' such that mee' is the real C-axis is
composed of the corners u — w, TT — u + w, —n + w, n — TT — w of the
previous rectangular regions.

Consequences

a) When 0' varies in the complement in Oy of the union of rectangular
regions described in the auxiliary lemma, the point mee' is outside
[—!,+!]; this is the case in particular when 0' belongs to the linear
segment [0, 0} and to the arc [0, TI-] of 7^", where 0 = TT—UI^U =ReO < -TT
and 0 = TT - u + w, with 0 e [6,2u\ if ^TT < u < ||TT. For all these
values of 0 ' , the path Lee' can thus be kept fixed and equal to [—1,+1]
(see Figure 3.a), 3.b) and 4.a)). Note that in order to yield the natural
orientation of the sphere 6' in the initial situation, this path is oriented
from +1 to —1 (since it is the image of the path (// = iip1', 0 < i^' < TT,
oriented from 0 to ZTI").

f3) When 01 belongs to the remaining part 7^~ of 7^" (i.e. the arc of 7^"
with end-points ^, 0 which is contained in the rectangular regions of the
auxiliary lemma), the situation in the ("-plane may necessitate a distortion
of Tjee^ since mee' is a point between —1 and +1.

^ee'
'^^^66'r^,+1
- ^

—i r^oe'

Figure 4.a : 0 ' G [TT - u, 71-]. Figure 4.b : Q ' E 7^

Figure 4. The path L^/ in the (^-plane.

We indicate the following way of implementing the continuous distor-
tion of Lee' when 0' varies on 7^"; its justification will be given just below.
We define Lee' as the broken path [-l,£ee'} U [£ee' + 1] oriented from +1
to -1 (see Figure 4.b)), where the point £00' is introduced by the following
formula :

(49) ^ = -cosgcos;/+^!^,
sm 0 sin 0'

with

(50) p { 6 , 0 ' ) = d(^ [cosh^ + 2/) + 1] - cosh(^ + v ' ) ;
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in the latter, d(^,(9) denotes the distance from 0 ' to 0 taken along the
path 7^. It is clear that at the end-points 0 ' = 0 and 6 ' = 0 of the latter,
formula (49), (50) yield tee = 1 and i^ = -1, so that l^ee' tends to
[—1, +1] at both ends (see Figure 4.c, 4.d)). Let us now check that :

(51) W e 7^ supply n 6^0, e ' ) = 0.

Figure 4.c : 0 ' = 6. Figure 4.d : 6 ' = 0.

Figure 4. The path L^/ in the (^-plane.

The point iee' has been chosen so as to satisfy Eq. (48) for the value
p = p(0^ ^ /), and since the latter varies between — cosh('y+i)) and 1 when 0'
moves on 7^ (see Eq. (50)), one concludes that :

W C 7^, ^ ^ <W and iee' i ^(MQ.

Therefore (since 600' does not contain the points ^ = =bl), the property
expressed by formula (51) is valid (see Figure 4.b)).

Finally we notice that completing the definition of Fe by supply =
r^ U r^ (according to the previous prescription suggested by (62)) is
consistent with the continuity requirement, since L^o and L^ coincide
with [—1, +1] (Note that the orientation on Fe is indicated in an obvious
way by the initial situation, when 0 is real).

So far, we have constructed the cycle F^ for 0 varying in the subset J^
of J^. This construction defines a section 0 —^ te of a homology bundle
with basis J^ associated with the analyticity domain IJ^^^(O)(^,D(^))
of the integrand of Eq. (41).

It follows (see e.g. [7]) that the function G{z(0)) defined by the
integral (41) is an analytic function of 0 in the set J^\ In order to
establish the analyticity of G(z(0)) in the domain J^, we proceed with
the following steps :
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1) By taking into account the relation 6^(0,0') = ^i((9,6>') of (5'i),
we can define Te for 0 in the set {0 e C ; 0 < u < |,7r, v < 0} by the
prescription : 7^ == 70 (with ^ e J ^ ) and L^' = L^,. The continuity
requirement between this new set and J^ is fulfilled in an obvious way
at v = 0 (with 0 ' C [-TT, +TI-], < G [-1, +1]).

2) By taking into account the relation 6\(jr — O^TT — 0 ' } = ^i(^, 0 ' )
of (5'i), we can define T~Q for 0 in the strip [0 c C ; ^TT < u < 7r} by
the prescription : 7^ = {0 ' ; TT - 0' e 7^L ^^ = ^-^-0^ ^d
complete again the definition of supp To = F^ U F^ as above (according
to (tSs)). The continuity requirement between the strips 0 < u < ^TT and
^TT < u < TT is fulfilled since 7+/2_^ is symmetric by itself with respect to
the line u = |,TT and since the corresponding path L^/s+w,^ is (fo1* all ^ /)
equal to [—1, +1].

3) By taking into_account the last relation 6\{—6,—0'} = 6^(0,0'),
we can define F^" for 9 in the whole strip {0 e C ; —TT < ZA < 0} by the
prescription 7^ = { 6 > 7 ; -^/ e 7+0}, L6>6>/ = L-^,-^ and complete again
suppr<9 as above (according to (S^)).

4) The continuity requirement for YQ is not satisfied across the lines
u = 0 and u = ±TT, except for v = 0 (i.e. at the points 0 = 0 or
0 = ±71-), since 70 = 7±7r = [-TT,+7r] and Loe^ = L±^ = [-!,+!]. This
is however sufficient for our homology section 0 -^ te, now defined in the
set [0 G C ; u -^ 0, u -^ 7r}U{0}U{7r}, to provide the analytic continuation
of the function G{z(0)) (via Eq. (41)) in an open neighbourhood of the
previous set. As a matter of fact, one shows directly (by using the real
cycle 0' e [-TT, +TI-], C <E [-1, +1]) that G(z{0)) is actually analytic at least
on the intervals {0 = iv ; \v\ < /^i} and {0 = TT + iv ; \v\ < /^i}.

A more complete analysis of the situations 0 = iv and 0 = TV + iv will
be given below in part B). It will include :

• The proof of the fact that G(z(0)) is analytic for 0 = iv, with
v\ < IJL = /^i + ̂ 2, and for 0 = TT + w, v <E IR, which will complete the first
part of LEMMA 1 stating the analyticity of Q(z) in D^^.

• The proof of the discontinuity formula (36) for Q{z(0}) across the
cut 0 = iv, v > [i.

B) Computing the discontinuity A+(?

The situation where u tends to 0 or to (±)TT will necessitate a passage to
the limit for the cycle TQ which, in particular, will generate the boundary
set (or "cut") X^Q for the domain of the function G(z) defined by Eq. (41).

We shall first consider the case when u tends to zero, and give the

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



200 J. BROS AND G.A. VIANO

detailed derivation of formula (36) for the discontinuity A+C?(^(w)) across
the half-line 0 = w, v > 0, namely :

(52) A+0(^(w)) = i Urn̂  [g{z{e + w)) - Q{z(-e + w))].
1^0

We make use of the previous construction of Ye (see A)) in the
corresponding limiting situations Re 9 = ±e -^ 0. These situations in
the 6^-plane are represented respectively on Figures 3.c) and 3.d).

Each term at the r.h.s. of Eq. (52) is expressed by an integral of the
form (41) which contains :

i) a contribution coming from the horizontal parts of 70, namely
[-7r,-2£] and [2^,7r];

ii) contributions coming from the broken lines of 7^ neighbouring the
line u' = 0, namely; [-2^, -E - w, 0, e + w, 2e} for the case 0 = £ + w
(see Figure 3.c)), and [~2e, -e + w, 0, e - w, 2e] for the case 0 = -e + w
(see Figure 3.d)).

We first show that the contributions to the r.h.s. of Eq. (52) described
in i) cancel in the limit e —> 0. As a matter of fact in both contributions,
the same function !C(z(0), z ' ( Q ' , (//, a / ) ) ^ ( z / (0 f , ̂ , a ' ) } is integrated on
the same set

{(^.(//.cQ; 0' e[-7r,0]U[0,7r], (^esuppL^/, a 'GSd-s} ,

where supply is defined by its image suppL^/ = [-l^ee'} LJ [4»6»/,+1].
In fact, for 0 = lim^o(^ + zv) and 0 ' e [0,7r], the point tee' is defined by
Eq. (49) which yields :

— cosh v cos 6f + p(iv, 0'}
Ue' = —————.—. ^ ^ in-z smh v sm 0'

We then check that for 9 = lim^o(-e + w), the relevant definition
of Lee' (using the symmetries (^i) and (8-2), as described in A)) coincides
with the previous one, since in this situation iee' = — ^ e e ' - A similar check
holds for 0 ' e [-TI-.O].

We now analyse the contributions to the r.h.s. of Eq. (52) described
in ii) and show that they produce in the limit E —^ 0 the expression
A+/C o A+JF of the discontinuity A+(? of Q.

We shall first describe the contribution coming from the upper broken
line [0,£ + w,2e\ in the first term at the r.h.s. of Eq. (52). Since Re^ is
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L^ +1

Figure 4.e : 6 = e + w, 6'7 G [0, 6']. Figure 4.f : 6> = e + w, 6>7 G [6>, 2e].

Figure 4.g : 6 = -e + iv, 6 ' G [-2e, 6']. Figure 4.h : 0 = -e + w, 6^ e [0, 0].

Figure 4. The path L^/ in the (^-plane.

positive on this path (and ReO' —^ 0 with e —^ 0), the relevant limit of
T^z'^ff, (^/, a ' Y ) in the corresponding integrand of Eq. (41) will be ̂  (in
view of Eq. (33)).

Now, by taking into account the definition of Lee' given in A), we see
that :

a) For 0 ' e [0,^+w] with lm6f = v ' , Lee' is the set [-1, +1] oriented
from +1 to —1, denoted here by L^,, and the situation in the C^-plane is
the one represented on Figure 4.e).

b) For 0 ' e [e + w,2e] with 1m 6 ' = v ' , Lee' must be defined as the
distorted path L^, = [-\^ee'} U [^,+1] oriented from +1 to -1 (with
£ee' given for example by Eqs. (49), (50)), as indicated by Figure 4.f).

The limit of the situations pictured in Figures 4.e) and 4.f) for e tending
to zero yields (for the same limiting value 0' = i v ' ; 0 < vf < v) the
situation illustrated on Figure 5.a), after an appropriate distortion of the
path L^,. Figure 5.b) exhibits a clockwise contour L which is homologous
to L^, — L^, (in the domain of /C) and which encloses the linear segment
[1, Ci], Ci being the origin of the cut <^i, given (in view of Eq. (46)) by the
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following formula :

J. BROS AND G.A. VIANO

(53) Ci-l=cosh(^y)-l= cosh(z; — v ' ) — cosh/^i
sinh v sinh v '

Figure 5. a. Figure 5.b.

Figure 5. The <-plane : limiting situation for z = z(0)
(from Re0 = e > 0) in the cut X^o-

The corresponding contribution from the integral (41) to the r.h.s. of
Eq. (52) can therefore be written as follows :

(54) - f^a') /^(sinh^-W

f /C [z(w), z\w\ ̂  aQ]^ {z\w^ ̂ , a')] (sinh ̂ )d-3 d^
J L

where the clockwise path L enclosing the cut {(// e [0, ip[]} in the ^-plane
(see Figure 6)) is the inverse image of the path L of the C-plane.

Figure 6. The y/-plane.
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By using the parametrization (n), one then checks that the relevant
limits of /C^w),^^/,^,^7)] on the cut [0, (//i(^,?/)] from the sides
Im^' > 0 and Imy/ < 0 (or Im^ > 0 and Im^ < 0) are respectively
the boundary values /C+ and 1C- denned at the end of section 2 (since
lm[(z — z')2} == ^sinhvsinh^Im^).

We can therefore rewrite the integral (54) as follows :

(55) +z I^(cQ f (sinh^-^

I A+^C x ^(sinh^)^-^^.
JQ<^'^^{V,V')

Now we must consider the contribution coming from the upper broken
line [—2^; —£+w; 0] (see Figure 3.d)). By proceeding as before, we obtain
similarly :

(56) -i ( ^ { a ' ) f (sinh^-W

( A^JC x ^_ (sinh ̂ Q^-3 d^.
JQ^'<^^{V,V')

In fact, instead of the situation of Figure 4.e), 4.f), we now have
in the ^-plane the situation represented by Figure 4.g), 4.h), which
yields (in the limit e —^ 0) the contribution from the integral (41) to
the last term of Eq. (52) expressed by formula (56) (the limit of the
cycle L^, - L^, being the same as before, illustrated on Figs. 5, 6).
Finally, in view of formulae (55) and (56), the corresponding contribution
to the discontinuity AQ (given by Eq. (52)) is (in view of Eq. (33)) :

(57) I^(a') f '(sinh^)^2^'
J J ^2

I A+/C x A+^(smh (^Q^-3 d^
jQ<y'^^{v,v')

since A+^ = 0 for v ' < ̂ .
Now we must consider the contribution coming from the lower broken

lines, namely [-2^, -e - w, 0] (see Figure 3.c)) and [0,^ - w, 2e] (see
Figure 3.d)). The previous analysis in the ("-plane remains valid, the new
situation being now symmetric of the previous one under the symmetry
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0^0 ̂  (-^-0 or (since C = coshy/), ((9',(//) ̂  (-^/, ZTT - y/). So the
range of the integral (57) is now replaced by the set

{{e1^1)', 6' = - W ' , ^ < V ' <V-^ (/ /€ [Z7T, ZTT-^y)]}.

Then by using the identification (implied by (R)) (O1', ̂ f) = (—6^ ^ p ' — m)
we obtain the following expression for this new contribution to A+(? :

(58) - I uj{a'} ( ^(sinh^-^
J J ^2

p-^{v,v'}

\ A+/CA+^(sinh (^Y-3 d^.
Jo

Adding up the contributions (57) and (58) to A+(?, we obtain the complete
expression :

(59) I^(a') ( ^{smhv^dv' F1 ' A+/CA+^(sinh^)d-3d^.
J JIJL-Z J — ^ p ' { v , v ' )

In the general case d > 3, it follows from the identification ( 0 ' ^ ' ^ a ' ) =
((9',-^',-a') contained in (R) (see Eqs. (20)), that the integral (58)
reproduces the integral (57) if fuj{a') is understood as the integral on
the full sphere §^-3. Since the relation R must be taken into account,
Ju j (a ' ) has then to be understood as - L uj^a') in formula (59). In
the case d = 3, formula (59) holds with f u j ( ^ a ' ) put equal to 1.

In view ofEq. (19), the integration range of the integral (59) represents
a region 7^ of the real hyperboloid X (illustrated in Figure 7 by its
projection onto the space of coordinates z^°\ I t ^ ^ l ) which is contained in
the compact set o(/z(w), zo). This region, which is bounded by the sheets of
hyperboloid z ' 2 = ̂ |, with ^/(0) > 0 (i.e. v ' = /^) and {z-z1)2 = ̂  with
^(o) _ ^/(o) ^ o (i.e. ^ ' = (p\(v, v ' ) , a ' e S^-3, v ' < v — /^i) corresponds in
fact to the intersection of the subsets X~^ and {z' ; ( z ( w ) ^ z ' ) 6 ^+ } in
which the supports of A+^' and A+/C are respectively contained.

Formula (59) therefore represents (in terms of the parametrization (II))
the composition product A+/C o A+.77 and yields Eq. (36) for the case
z = z(w). The support of the function A+<? thus obtained, is then
determined by the condition that the region 7^ is non-empty, namely (as
easily seen on Figure 7) by the condition z = z(w) with v > /^i + ^2?
i.e. z G X^Q (which in fact corresponds to the result of PROPOSITION 4).
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^(0) f

^ = -^(v.vl)

Figure 7. Hatchings represent the region 7\L

We now come back to completing the proof of the fact that the
function Q{z(0)) is analytic in the domain J^. In view of the results of A),
it remained to prove that G(z(0)) is analytic on the sets {0 = w ; \v\ < jji}
and {0 = T T + W ; v C IR}.

Let us first consider the set {6 = iv}. Since the previous computation of
A+^(z(w)) is valid for all positive values of v, it follows from the support
property of the integral (59) that A+^(^(w)) vanishes in the interval
0 < v < ti. Now, by using the symmetry property D(0) = D(0), we could
give a similar computation for A_C?(^(w)) in terms of A_/C and A_^'
which would also imply that A_Q{z(iv)) vanishes for —^ < v < 0. It
follows that, for z = ^(w), with \v\ < /^, the boundary values Q^ and G-
of G from both sides Re 0 > 0 and Re 0 < 0 coincide (although defined
by different limiting cycles TO m the integral (41)); therefore, in view
of the Schwarz-Painleve [12] theorem (or "edge-of-the-wedge theorem" in
one variable), these boundary values define the same function G(z(iv)),
analytic on the interval \v\ < fi.

We now consider the set {0 = TT + iv}. The boundary values of G(z(0))
on this set from both sides Re 6 > TT (or ReO > —TT in view of the
periodicity condition) and Re 6 < TT are defined by taking limiting
cycles Fe in the integral (41), which are similar to those used above
(for Re0 tending to zero).

In fact (as a by-product of the analysis of 2) and 3) at the end of part A),
making use of the symmetry properties (6'i)), the corresponding paths ^e
contain broken lines neighbouring the line Re 0 = TT which allow the same

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



206 J. BROS AND G.A. VIANO

computation as above for the discontinuity function of Q across the line
z = TT + iv. However, the resulting expression, which would be similar
to the integral (59), would contain the discontinuity of ^ { z ' i O ' ^ ' ^ a ' ) )
across the set 6/ = TT+W' ; but, since this set is contained in the analyticity
domain V^ of^, the discontinuity of ^ and therefore that oiQ vanish. By
using as above the Schwarz-Painleve theorem (now on the line 0 = TT+W,
v G IR), we conclude that Q{z(0)) is analytic on this line. This ends the
proof of LEMMA 1.

3.2. The algebra of perikernels.

We shall now derive the following extension of THEOREM 1.

THEOREM V'. — Let /Ci, JC'2 be perikernels in the respective classes W^
and H .̂ Then, there exists a unique perikernel 1C in the class H ,̂ with
^ = /^i + ^2? denoted by 1C = /Ci *^ /Ca, which satisfies the following
properties

a)

(60) )c\SxS = ̂ l\sxs *ic'2\sxs•

b)

(61) A+/C = A+/CI o A+/C2.

c) For every (z,z') in A^, there exists a class of cycles r[z,z'] in
Ij(d-i)^^), where :

D^ = { z " € x(c); (^'zl) € A^; {z, z") € A^ }

such that:

(62) K ( z , z ) = ( 1C^z,z"}W,zl^(J{c\zll\
Jr[z,z']

THEOREM V can be presented as a corollary of THEOREM 1, thanks
to the following argument. We first prove property c) by determining
for every {z, z ' } in A^ the corresponding class of cycles r[z,^'] involved
in Eq. (62). Since z ' belongs to X^\ we can apply Eq. (24) and write
z ' == z'(oi1 ̂ ' , 0 ' } == m a ' ^ ' e ' z o with a' C §^3, ^ <E C, Q' e C; then
we define the point Z = m^1,^, which (as z) also belongs to X^
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and moreover satisfies the condition {Z — zo)2 == (z — z ' ) 2 -^- p , for all
P ^ <e(/^); this implies that Z belongs to the domain D^ and that (in view
of THEOREM 1) the corresponding class of cycles F(Z) is well-defined. We
then introduce the cycle F[z, z ' } by the following equation :

(63) r[^^]=m^^r(z)

where F(Z) is the representative of t(Z) described in the proof of
THEOREM 1 (see Eq. (44)).

Since F(Z) is contained in the domain

Dz^ = [ z l f ^ x{c^ Z " ^ D^ (Z.Z'O e A^},

it follows that F[z, z'\ is contained in the domain D^^ and, therefore, that
the integral Jp^^ /Ci(^ z")1C^z", z^da^^) defines a germ of analytic
function at the given point (z, z ' ) <E A^. Since (in view of Eq. (63) and
of the properties of F(Z)) r[^2/] varies continuously with (z, z1) in the
analyticity domain of /Ci(^ zf/)!C'2(z/l\ z ' ) (in (z, z ' , ̂ '^-complex space), it
follows that the previous integral defines an analytic function JC(z, z ' ) in
the domain A^. We also see that the defining equation for JC(z, z ' ) can be
rewritten as follows :

(64) 1C{m^^e'Z, m^/^o)

= / /C^mo;/^'^ ^ - a ' y ' e ' Z 1 ' )
Jr{z)

x/C2(m^^^^//, m^^0^o)dc7^(^//)

(in view of Eq. (63) and of the invariance of the measure da^ under the
transformation Z" ̂  z" = m ^ ^ e ' Z " ) . By putting

^{Z"} = IC^m^^e'Z11, m^^e'^o) and

Q(Z) = IC^ma'^e'Z.m^^e'ZQ),

we are led to the precise conditions for applying THEOREM 1, and we can
draw the consequences of Eq. (35) and (36). Since Eq. (35) corresponds
to putting r(Z) = S, Z G S and da^ = da in Eq. (64), (and since
r^,^] = S in this case) we readily obtain property a) of the theorem
(the operation * being explicitly defined by Eq. (31)). Similarly in view of
Eq. (36), we derive from Eq. (64) a formula for the discontinuity A/C
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in terms of A/Ci, A/Cs which is exactly of the form of formula (327)
(equivalent to Eq. (32)) which yields the proof of property b) (Note that
in view of PROPOSITION 5, A/C thus belongs to the class W^^^).

Finally, it remains to establish that the function /C(^, z ' } denned for
(z, z ' ) in A^ by Eq. (62) admits an analytic continuation on the subset
{ { z , z ' ) C A^ ; z € C± or z ' G C±}, where C+ and C- are the (d - 2)-
dimensional cones defined in the proof of THEOREM 1 (before LEMMA 1).
We can follow closely the argument given there, since we now know that
for each z ' in D^, /C(z,z') is analytic in a neighbourhood of the point
(ZQ, z ' ) in X^ x X^ \ S ^ . By then applying Bremermann's continuity
theorem [11] in the variable z (at z ' fixed) as in the proof of THEOREM 1,
we conclude that /C can be analytically continued in the subset

{ (z ,z ' ) ; z€C±, z'(.D^ (z,z')^^}.

By exchanging the roles of z and z ' ' , one would similarly obtain the subset
{(^,2/) ; z G Z)^, z ' € C±, (^^/) ^ ^ } • The remaining points to be
obtained in the analyticity domain of /C are then :

a) Points { z , z ' ) such that z 6 C± (i.e. z^~^ = ±1) and z'^-^ >
cosh/2 (or z^'^ > cosh^ and z ' G C±). Each of these points can be
shown to belong to the holomorphy envelope of two polydisk-type regions
contained in the previously obtained analyticity domain of /C (see [13],
[14] for such results based on a local application of the tube theorem).

/3) Points (^, z ' ) such that z G C^_ and z ' G C±. Since these points are
contained in a complex analytic submanifold of codimension 2 surrounded
by the domain previously obtained for the function /C(^, z'\ the latter can
be analytically continued at all these points.

3.3. The case of distribution boundary values.

THEOREM 1 (resp. I7) can be extended to the case where the function F
and the perikernel 1C (resp. the two perikernels /Ci, /Cs) belong respectively
to classes of the type V^^s-2 ^d W^i^i (resp. H^si, ^^2^2) introduced
in §2.3.

To be more specific, let us consider the definition of the function
Q{z) == (/C*^^)(^) of THEOREM 1, in the special subset J9^o of LEMMA 1.
For every z = z(6} in D^^, the definition of Q via Eq. (41) (with the
cycle r<9 constructed in the proof of LEMMA 1) remains valid, but one must
now treat the problem of the boundary values of this integral, when the
point z tends to the boundary of D^^, namely to the cut 2^. In order to
show that the boundary values <?+, Q- of Q on 2^ (and subsequently A(?)
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exist in the sense of distributions, it is sufficient to prove that \G(z)\ is
bounded by an inverse power of the distance from z to the set 2^. This
can be derived from the fact (implied by the assumptions F <E V^,,s2 and
1C C H^i,si) that l^^7)! (resp I/C^,^7)]) is itself bounded by an inverse
power of the distance of z ' from the set 5^ (resp. of {z, z ' ) from the
set S}f/). To see this, one just has to notice that when z = z(0) is at a
distance e from 5^ (i.e. when 0 = ±£+w), the integration cycle Ye remains
at a distance bounded by Cst. x e from the boundary of the domain of the
integrand of Eq. (41); in fact, as shown respectively by Figure 3.c), 3.d)
and Figure 4.e), 4.f), 4.g), 4.h), the cycle 70 remains at a distance C^
from the sets 6^ and 6\ in the ^-plane and the cycle L^/ remains at
a distance C^e from the set <^i (a detailed computation which confirms
this descriptive account can be given by using Eq. (45); in particular the
angle of ^i with the real (-axis is of the order of e/tsmhv + e'/tann^/',
i f ( 9 = ^ + w , 6 ' = £ ' +n/).

By using this geometrical study, one can also check that (as in the case
where /C and T admit continuous boundary values), the integral Q(z(0))
is analytic at all points 0 = w, with v\ < jji.

It thus follows from this analysis that ^\Q(z(iv)) = (z[^+ — G-\)
exists as a distribution whose support is contained in the set X^Q U X~o
(i.e. \v > ^i).

It remains to legitimate the formula A+(7 = A+/COA+.F (correspond-
ing to Eq. (36)) in the present case where A+^, A+/C and A+JF are
distributions. On the one hand, we can consider this formula as a simple
notation, which expresses the previous definiton of A+C? through the con-
struction of the analytic function Q. On the other hand, we can also try
to justify this notation by a limiting procedure starting from situations
where Eq. (27) is meaningful in the usual sense.

To this purpose, we consider the function T ^ z ' ( Q ' , (//, a ' ) ) and the func-
tion !C(z(0), z\01', (//, a ' } ) as limits of regularizing families of functions :

^(^'.^.a')) = I^{z\6' -w'^^a')}^1)^1 and

1C^z{0\ z\Q', y/, a')) = ( JC(z(0 - w), z\e^ (^/, a'))^) dv^

where {V^(^) ; r] > 0, T] -^ 0} denotes a family of C°° -functions with
support contained in the interval [-77, +7?] and tending (weakly) to the
Dirac measure 6.

By using the definitions of the singular sets ^2 and 61 of T and /C (see
in particular Eq. (45)), one can easily control (e.g. with the help of Figs. 3
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and 4) the small perturbations on these sets caused by the smearing out
with the test-function -0^. One then notices that the integration contour Fe
(for 0 == ±e + w) can still be chosen as in the proof of LEMMA 1, so that
the integral (41), with 1C and T now replaced by 1C^ and ̂  still defines
an analytic function Q^z (0)), whose boundary values (^)+ and (C^)_
on the line 0 = w are continuous.

The computation of the corresponding discontinuity function A+C?
can then be carried out along the same line as in part B) of the proof
of LEMMA 1 (since in the limit e -^ 0, the situation pictured in Fig. 5
remains valid, 6^ being along the real C-axis, for all v, with \v\ < rf).

One therefore obtains for A+^ an expression similar to that of
formula (36), namely :

A+^(z(6?)) = (A+/C^A+^)(^)).

Then, since the analytic function Q is obviously equal to the limit of
the family Q^ when T] tends to zero, it follows that A+^ tends (weakly)
to the distribution A+<7, so that we can write :

(65) A+^ = hm^(A+^ o A+^),

which fully justifies the notation A+X: o A+j^ for the r.h.s. of Eq. (65).
The previous analysis, which we gave for simplicity in the geometrical

situation of lemma 1, can be extended to the more general situations of
THEOREM 1 and THEOREM V by using the same matrix transformations
as in the case of continuous boundary values.

The microlocal version of Theorem 1.

For every F e V^s (and for any order s), the corresponding distribution
A+J^ has its support contained in X^ and is moreover analytically-
dependent on the variables ((^, a) via the parametrization z = z{0, ( p , a ) .
Let us now consider A+.F as a distribution on the space H^1 of the
variables z°\ [z\ = (z^\... ,2^-2)), whose support is contained in the
(one-to-one) projection X^ of X^, namely

X-^= {z = (^°), [z}) ; z2 = z(°)2 - [^ = (coshp)2, p ̂  ̂ }.

In these variables, the distribution A+JF thus considered is analytic along
the sheets z2 = (coshp)2. According to the theory of "singular spectra" [6]
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(or "essential supports" [5]) of distributions, one can assert that its
singular spectrum 55'(A+.F) is contained in the set

A^ = {(z,7/) GX^ x^"1 ; r j = \ z , X e H }

(provided we define the cotangent bundle to R^"1 via the minkowskian
bilinear form : $ • rj = ̂ T/0 - {[(], [rf}}).

The microlocal extension of the previous class of distributions A+^7 is
then characterized as the class V^ ' of all distributions F on H^1, such
that suppF C X^- and S S { F ) C N^.

Similarly, for every perikernel /C e W^,s (and for any order 5),
the corresponding distribution A+/C (with suppA+/C C S.^) can be
considered as a distribution on the space H^1 x H^1 whose support
is contained in the projection S^ of S^, namely

^={(z,z'); (z-zQ^coshp)2, p>^}

and which is moreover analytic along the sheets (z — z') = (coshp)2. It
follows that the singular spectrum 5'S'(A+/C) of A-^/C is contained in the
set :

A^ = {(z.z'.^.r/) e ̂  x (^-1 x ^-1) ;
r] = A(z - z'), 77' = -A(z - zQ, A e R}.

The microlocal extension of the previous class of distributions A+/C is
then characterized as the class W ' 0 ' of all distributions K on IR^1 x R^1

\ z) { z )
such that supple C S^ and S S ( K ) C A^.

We can then state the following microlocal counterpart of THEOREM 1.

PROPOSITION 6. — For every couple of distribution (K, F) with K in
W^ and F in V^ ^ there exists a distribution G = K o F^ defined
formally by Eq. (27), which belongs to the class V^^ and satisfies the
property G = lim^o K^ o F^^ for any regularizing families of functions
Kp -^ K, Fp -^ F.

Proof. — We shall apply to Eq. (27) the theorems on products and
integrals of distributions given in [5-b] (theorems 10 and 11). Let (z,z7)
be any point in ^+ such that z' G X,^ . We then have :

^W|(z,z')C{(r7,^); »7=-^=Ai(z-z')} ,
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while S S ( F ) | (z,z7) C { (^y / ) ; rj = 0, y/ = A2Z7} (F being considered as
a distribution of (z,z7), constant with respect to z). We first easily check
that S S ( K ) | (z^) n [—5'^(F) Kz^)] = ^5 which entails that the product
K ^ z . z ^ F ^ z ' ) is well-defined and equal to the limit of K ^ z . z ' ^ F ^ z ' ) for
any families of regularizing functions K^^ F^. We now have :

(657) SS(K • F) | (,,,/) = S S ( K ) | ̂  + S S ( F ) | ̂
C { ( ^ y / ) ; r^A^z-z7) ,

y/ = -Aiz + A^z', Ai e n, \[ e R}.

The integral (27), now written as

G(^,-!)-/ ^.z-)^)-'^,^""2'
^z^z^O Vl + Z'2

is then defined as a distribution (equal to lim^o f K ^ F p ) whose singular
spectrum satisfies the following formula :

SS(G) | ^ = \ J S S ( K ' F ) |(^)^=o

(with z' varying in the integration domain).
In view of formula (65'), we must distinguish two cases :

i) if z7 is non-colinear to z, SS{K • ^Kz^^n^o reduces to 77 = 0.
ii) if z7 is colinear to z, SS(K ' ^[(z^^yr^ ls contained in the fixed

subset {77 = Az ; A G IR}.
It then follows that SS(G)^ C {77 = Az ; A c R}. On the other hand,

it still results from PROPOSITION 4 that supp(7 C X^-\-^ and therefore
we conclude that SS(G) C A^+^, i.e. that G C V^°^.

4. The algebra of crossing-symmetric perikernels on X^

In this last section, we shall consider classes of holomorphic functions ^
(resp. perikernels /C) defined in domains D^ of X^ (resp. in domains A^
of X^ x X^) bordered by two cuts, and we shall present properties of
composition products for these classes which are the analogues of those
stated in THEOREMS 1 and V ' .

^ ^i ^v c) (resp. in domains A^

TOME 120 — 1992 — N° 2



HOLOMORPHIC PERIKERNELS ON THE COMPLEX HYPERBOLOID 213

4.1. Notations.

i) Together with the subset S^ of X^ defined in § 2.3 i) (also
described as {z e X^ ; z^~^ > cosh^}) we now introduce the subset :

s^^ex^); (^+^)2-^)>o}
= { ^ e x ^ ; ^d-1) <-cosh^}

and the "cut domain" D^ = X^ \ (5^ U 5^) of X^; we also put
D, :X(C)\(5^U5^.

Similarly, together with the real subsets :

^±= ^ n X ± = { z e X ± • , 2^-1) > cosh/,} c V,

we introduce the corresponding subsets (see Fig. 8) :

x^ = ̂  nx^ = {z e ̂ /± ; ^d-1) < -cosh/.} c Y\

Figure 8. The hyperboloid X and the regions X^~, X^~ (in hatchings)

and X^", X^~. A typical point Re z + %Im z of X^) and the sphere 5'
are illustrated via the "arrow representation" of complex points.
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where

x+ = [z e x; z > zo}^ x- = [z e x; z < zo}^

X^ = [z C X ; z < -zo}, X ' - = {z G X ; z > -zo}.

Note that, according to the parametrization (II) (see Eq. (19)), the
sets X^ and X'^ correspond respectively to the ranges {6 == w ; ±z; > /^}
and {0 = TT + w ; =Lv > /4, with (/? and a real.

ii) Together with the subset S^ of ^c) x X^ denned in § 2.3 i'),
we now introduce the subset

^c) = {(^/) G ̂ c) x ̂ c) ; (z+^)2 -^) > 0}

and the "cut domain" A^ = X^ x X^ \ (S^ U S^) of X^) x X^.
We also put A^ = X^) x X^) \ (S^ U S^^).

Similarly, together with the real subsets S^ (see Eq. (29)), we introduce
the corresponding subsets :

^ = {M e x x ̂ ; (^+^)2 ^ ̂ ), ^(o) +^(o) ^ o},

and we note that for all real { z , z ' ) in S^ (resp. S^-, S^-, S^-), the order
relation z - z ' ^ 0 (resp. 2; - z ' <, 0, ^ + z ' < 0, ^ + z ' > 0) is satisfied.

ni) We denote by V^ the class of functions J='(z) which are holomorphic
in D^ and have continuous boundary values on the set 5^ U S7 (from
both sides of each of these cuts). For every function F in V^, we
put F = T\s and we consider the associated "discontinuity functions"
AJ^ = z(^+ - J=-_) and A^ = %(J^_ - ̂ ) of .F, respectively across the
analytic hypersurfaces

{z € X^ ; Im(^ - 2;o)2 = 0} and {z e X^ ; Im(^ + ^o)2 = 0}.

The boundary values J^., ^_ of J^ are defined as in § 2.3, and J^, ̂
are defined similarly as boundary values of T (on the latter hypersurface)
from the respective sides lm(z + zo)2 < 0 and lm(z + zo)2 > 0. Note that,
together with formula (33) we also have :

(66) ^(^)=Hni^(w+7r+^, ^ a)]
i-̂ o
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(since Im(z + zo)2 = -2Im cos(7r + e + iv) < 0).
The functions A.77 and A'^ have their supports respectively contained

in the sets 5^ and S^ and are analytic on all the corresponding subman-
ifolds (z - zo)2 = p , p> <^) and (z + zo)2 = //, p ' > ̂ ).

By taking the restrictions of these functions to the real hyperboloid X,
we can give the following definitions : A±^(z) = y(±;^°))A.Fj^(z), and
A±^) = y^^A^^). The functions A+^, A-^-, A^, A^
have their supports respectively contained in the sets X^ X~, X ' ^ , X'".

iv) We denote by W^ the class of functions 1C{z, z ' ) (again called "peri-
kernels") which are holomorphic in A^ and have continuous boundary
values on the set E^ U S^ (from both sides of each of these cuts). For
every perikernel 1C in W^, we put K = 1C\sxS and we consider the associ-
ated "discontinuity functions" A/C = z(/C+ -/C_) and A'/C = i{JC^ -JC'_)
of 1C respectively across the analytic hypersurfaces

{(z, z') G X^ x X^ ; lm(z - z1}2 = 0} and

{(z.z^^X^ xX^ ; Im(z+^)2=0}.

The boundary values /C+, 1C- of 1C are defined as in § 2.3, and /C^, /C'. are
defined similarly as boundary balues of/C (on the latter hypersurface) from
the respective sides Im(^+z')2 < 0 and Im(^+^ /)2 > 0. The functions A/C
and AX have their supports respectively contained in the sets S^ and
S^ and are analytic on all the corresponding submanifolds ( z — z ' ) 2 = p,
P ^ <?(/^) and (z + z')2 = p'\ p ' > ^(/^). By taking the restrictions of these
functions to X x X, we can give the following definitions :

A±/C(^) = Y[±(z^ - ̂ °))]A/C|xxx(^^),

^}C(z^zf)=Y[^o^zfW)}Af!C\x.x^zf).

The kernels A+/C, A_/C, A'^/C, A'./C have their supports respectively
contained in the sets S^-, S^, S^+, S^-.

v) In § 2.2, we defined the o-composition product (see Eq. (32)) for
kernels J^i, K^ with supports contained in S^, S^ (i.e. Volterra kernels).
In the present case, we are led to extend this o-product to classes of
kernels with the more general support properties described above. One
can easily see that eight possibilities emerge for defining a composition
product by integration on a o-like region; these possibilities correspond
to the following order relations ez ^ z " > e ' z ' and e ' z ' > z" > ez^
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with £, e ' = ±1, which express the various ways of combining the support
properties \z,z"} e S^ or ̂  and \z" , z ' } e S^ or S^. In the
following, the notation K^ o ̂ 2 will mean either

/ K^z^^K^z^z1)^1) or
Jo{ez,£'z')

[ K^z^W^z1}^1^
J o i e ' z ' e z }Jo{e'z',ez}

the relevant choice of e, e ' being given by the support properties of the
kernels J^i, K^ considered. Moreover, as in PROPOSITION 5, each of the
various kernels K^ o K^ thus obtained will have its support contained in
one of the sets S^ or S;̂ .

All these considerations hold of course similarly for products of the
form K o F, if F denotes any function whose support is contained in one
of the sets X^, X^ (the variable z ' being then replaced by the fixed
point ZQ in all the previous formulae).

4.2. The composition product *^.

We can now state the following properties.

THEOREM 2. — Being given any kernel 1C in >V^ and any function T
in ̂ 3, there exists a unique function Q in the class V^, with IJL = ̂  +^2,
denoted by K.^ F which satisfies the following properties :

a)

(67) G\s = fC\sxs ^^\s-

b)

(68) A+^ = A+/C o A+^ + A'./C o A^;

(69) A^ = A-^C o A^ + A^ o A+^.

c) For every point z in D^, there exists a class of cycles F(z) in

^-l)(^), ^here D^ = {z' G X^ ; z' G D^ ^ z') C A^},
such that:

(70) G(z)= (. ^(z^z^Wda^^).
Jr{z)
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THEOREM 27. — Being given any couple of perikernels (/Ci,/C2) in the
respective classes H^, H^, there exists a perikernel K, in the class H ,̂
with [i = /^i + /-^ denoted by JC = /Ci ̂ c) /Cs, i^zc/i satisfies the following
properties

a)

C71) ^|5'x5 = ^l|5x6' * ̂ 2 |5x6'-

b)

(72) A+^C = A+^i o A+/C2 + A^ o A^ ;

(73) A^/C = A_/Ci o A^ + A^i o A+/C2.

c) For every (z,^) in A^, there exists a class of cycles T[z,z'} in
H^^D^), where

^(^/) _ \ J I c. y(c) . ( J l J\ r^ A . ( y Jl\ (- A 1
^1^2 ~ I- ^ yv 5 V^ 5 z / v= ZA^25 ^5 ^ J ^ ^ / X l J ?

such that

(74) /C(^)= / JC^z^W^z^da^^).
Jr[z^]

Since the proofs of these theorems are very similar to those of
THEOREMS 1 and V\ we shall only sketch the proof of THEOREM 2,
THEOREM 2' being then derived from the latter in the same way as
THEOREM V was derived from THEOREM 1.

As in the proof of THEOREM 1, we can reduce the general geomet-
rical situation of Eq. (70) to that of LEMMA 1, in which z = z{0) =
(-z sin (9,0, cos (9), and we are thus led to construct an appropriate (d-1)-
cycle te (in place of To) for the integral (41).

The cycle To is now submittedj.0 the condition that its support is
contained in the following domain D(0) (instead of D(6)) :

^(^{(^(^ec2; (0/^/)^s(^2)us/(/,2)uE(/.l;0)us/(^;0)}

x ^(c) //?x ^rf^/^
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with 2(^2) and S(^i,6Q defined by Eqs. (39), (40) and
(75) ^(^^{(^ec2;

0' == W' + (2k + 1)7T, V'\ > ^2, k C 1}

(76) ^\^0)= {(^.y/) e C 2 ; cos 0 cos (97 + sin 0 sin (97 cosh ̂

< —cosh/^i = —pi}.

The cycle Fe will again be taken of the form

{(^W); ^e^, ^e^/},
but in order to satisfy the previous condition, it is required that :

a) 7(9 should avoid not only 6^ (as 70) but also the subset
^ = [0' = iv' + (2k + I)TT, [^ > ^2, A; € Z}.

b) The image L00/ of Lee' in the ("-plane should avoid not only 6\
(see Eq. (45)) but also the set :
(77) 6 [ = { z ^ C ; C sin 0 sin 0 ' + cos 0 cos (9' - p, p < -pi},

which for 0 OT 0' ^ TrZ is a half-line with the same support 6ee' as <^i.
The initial situation of Ye (for 0 real) can still be chosen to coincide with

that of Te (namely to represent the sphere S) since 6[ U 6^ is contained
in]-oo,-l[u]+l, +00 [ (or empty) for all 0 and 0 ' real; Eq. (67) is then
fulfilled.

The distortion % is now submitted to the condition that 70 should
avoid not only the subset ^2 U ̂ , (as 70 in section 3) but also the subset
^2 U^ , where

^i = {(97 = 0 + TT + w' or 6>7 = -6> + TT + n/, with v'\ >. ̂ }

(the latter set corresponding to situations where 6[ contains the points
C = + : l - o r C = : — l and therefore violates condition b) above).

A convenient choice consists in defining 70 as the (periodic) broken line
whose vertices are at the points 0' = -0, 0 - TT, TT - 0, 0, 27T - 0, 0 + TT, etc.
(see Figure 9.a)). For every 0, % is seen to contain the real points Q' = 0,
JTT, TT, JTT etc.. The continuous distortion of 70 from its initial situation
(i.e. for example [-a, 27T - a]) by dilatations parallel to the ^/-axis and
proportional to v is similar to that of 70 in section 3.

The following definition of the path L00/ (for all 0' in 70) can be here
again motivated by the auxiliary lemma given in the course of the proof of
LEMMA 1. Lee' is kept fixed and equal to the segment [-1.+1] (oriented
from +1 to -1) when 0 ' belongs to the linear segments of 70 which do
not contain the points -TT and |TT.

TOME 120 — 1992 — ?2



HOLOMORPHIC PERIKERNELS ON THE COMPLEX HYPERBOLOID 219

e.

-a 27i--a

Figure 9. a : the general situation.

Figure 9. The path 70 in the ^'-plane.

When 0 ' belongs to the remaining linear segments of % (containing the
points JTT, ITI-), 'Loe' must be continuously distorted; a convenient choice
consists in defining Lee' as the broken line [-1, IQQ>\ U [iee', 1] (see Fig. 10)
oriented from +1 to -1, with for instance (for 0 ' in [(9,7r - (9]),

., -cos6cos0/ + pe^)
w = — — — — — — andsin 0 sin 0'

n (^ \e~el\ M ̂  ~ ° - et

^'-^-^^^T-

(since pe(0) = 1 and pe(^ - 0) = -1, and therefore £ee = 1 and
^-e) = -1).
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v'

2 - j r - a

Figure 9.b : 0 = 6f.

Figure 9. The path 70 in the 6''-plane.

The previous construction of to holds for every 0 = u + iv such that
-^ 0, JTT, TT, JTT. The integral (70), written in the form (41) with z = z(0)u

and P(z) = Pe, therefore defines an analytic function G(z(0)) in the
following subset of the ^-plane :

-60,0 = [0 = u + w ; u -^ JA-TT, k G 1} U IR/27rZ.

It remains to show that G{z{0)) can be analytically continued on the
lines u = |,TT and ^ = JTT and to compute the discontinuity functions of
G(z(0)) across the lines u = 0 and u = TT, which will yield respectively
formula (68) and (69) (for z = z(0)).

Let us first show that for u = JTT, the limits of the cycle f^, although
different from below and from above |,TT, yield the same value for the inte-
gral G(z(^7r-^-w)) so that (in view of the Schwarz-Painleve theorem [12])
this common limit will be analytic on the line u = JTT (the case of the line
u = JTT would be treated similarly).

Let G+(z(0o)) = lim^o G(z(0f)) and G-(z(0o)) = lim^o ̂ (Q,
where OQ = JTT + w, (9^ = |>7r + e + w and ̂  = JTT - ̂  + iv. For ^ = 0^~
and 0 = 6 ' ; , the contour 70 of Fig. 9.a) can be replaced by the broken
lines indicated respectively on Fig. 9.b) and Fig. 9.c).
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Figure 9.c : 0 = 0^ .

Figure 9. The path 70 in the 0'-plane.

—1 cosV?i +l^Si

Figure 10.a : 0 ' = 6'/+. Figure 10.b : 0 ' = 0 ' - .

Figure 10. The path L^/ in the <-plane for 0 = 0^ .

These pictures and the argument below correspond to the case when v
is positive; the case v < 0 would be completely similar.

In view of the auxiliary lemma, the choice of l^ee' equal to [—1,+1]
remains valid for all 0' on the horizontal (real) parts of^+ or 7^,- and the
corresponding contributions to the integral (70) written in the parametric
form (41) have the same limits when 0^~ and Oj tend to the same point
OQ = ^TT + iv.

We now have to compare (in this limiting situation) the contributions
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of the broken vertical parts of % centered at u' = ^TT and u' = JTT. It is
sufficient illustrative to consider the case when Re Q' —> JTT and to compare
the contributions (from 0~^ and 0^) of the upper parts of the broken line.
In the ^-plane, the cuts ^i and 6[ tend to a horizontal position when Re 0
and Re07 tend to JTT, since (in view of Eqs. (45) and (77)) their support
is then described by the real equation

/ . _ sinh v sinh v ' + p
cosh v cosh v '

For 0 = 0^ , ^i and 6[ have their supporting line in a situation 6- above
the corresponding path L^,+ = [-1, +1], when 6^+ = (9~ <E [^Tr-2^, (9^];
this supporting line is in a situation 6^- which crosses the corresponding
path L^,_, when 0' = 0 ' ~ e [0^ , ^7r], as illustrated on Fig. 10.

By taking the limits 0^ —^0o, one obtains the following contribution
to Q_(z(0)) coming from the upper broken lines (see Figure 9c)) :

(79) /^(cQ I ^(cosh^-2

/ lA/C^(^o)^ /(^+w /,^ /,a /))
Jo

F(z\\-K + iv', i^, a/)) (sin ̂ /)d-3 d '̂

where the limit '0i corresponds to the origin of the cut 6\ (i.e. (j = cos '0i)
in [-1, +1] (in view of Eq. (78),

_ cosh(z' — v1) — cosh/^i ^
cosh v cosh v' 1 5

and where A/C denotes the discontinuity of /C across the set S(/^i; 0).
By a similar analysis of the situation for 0 = 0^~, one would obtain, in

the limit 0^ —> 0o, the corresponding contribution to the expression of^+
coming from the upper broken lines near R,e0f = -TV (see Fig. 9.b). One
then easily checks that this contribution is identical with the integral (79).
The analysis would be similar for the lower broken line contributions and
also for the broken lines around Re^ = JTT. It follows that Q^,(z(0o)) =
G-(z(po)) for all points OQ = ^TT + iv.

We shall not repeat the detailed analysis of the discontinuity of Q(z(0))
across u = 0, since it is completely similar to the analysis given in the
derivation of the discontinuity formula (36) of THEOREM 1, except for

TOME 120 — 1992 — ?2



HOLOMORPHIC PERIKERNELS ON THE COMPLEX HYPERBOLOID 223

the following point. For 6 = ±e + w, the path 70 of Figs. 3.c), 3.d)
must be replaced by a path % which now exhibits two "folded vertical
parts", namely a first one in the neighbourhood of the line u' = 0 (as
for 7<9) and an additional one in the neighbourhood of the line u' = TT
(corresponding to a "pinching configuration" for the sets 6[ and 6^).
While the first folded vertical part yields the first term at the r.h.s. of
the discontinuity formula (68) (corresponding to the result of Eq. (36) in
THEOREM 1), the second folded vertical part gives rise to the last term of
Eq. (68) (the exact form of the latter being obtained by a computation
which is strictly similar). On the other hand, the analysis of Q{z(0)) for
6 = TT d= e + iv (which produced no discontinuity at u = TT in the case
of THEOREM 1) now yields a situation in the ^-plane involving again (as
for u = 0) two folded vertical parts of % (corresponding respectively to
"pinching configurations" for the sets ((^i, 6^) and (^, ^2) '- these two parts
respectively give rise to the two terms at the r.h.s. of Eq. (69).

Remark. — The extension of THEOREMS 2 and 1' to the case when
the functions F and perikernels JC have boundary values in the sense of
distributions, respectively on the sets S^, 5^ and on the cuts S^7 , S^ ,
can be treated by the method described at the end of section 3 with similar
results.
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