FRANÇOIS LAUDENBACH
VALENTIN POÉNARU

A note on 4-dimensional handlebodies

Bulletin de la S. M. F., tome 100 (1972), p. 337-344

<http://www.numdam.org/item?id=BSMF_1972__100__337_0>
A NOTE ON 4-DIMENSIONAL HANDLEBODIES

BY

FRANÇOIS LAUDENBACH AND VALENTIN POÉNARU

1. Introduction

We prove the following theorem:

THEOREM A. — Let X^p, Y^p be the following smooth 4-manifolds:

$$X^p = p \# (S^3 \times D_3), \quad Y^p = p \# (S^3 \times D_3).$$

Consider a diffeomorphism $h : \partial X^p \to \partial Y^p$ and the smooth closed 4-manifold obtained by gluing X^p and Y^p along $h : X^p \cup_h Y^p$. $X^p \cup_h Y^p$ is diffeomorphic to S^4.

Theorem A is clearly equivalent to the following:

THEOREM A'. — Let X^p be as before, and consider p handles of index 3, attached successively to X^p:

$$\varphi^i : S^2_s \times D_i^i \hookrightarrow \partial (X^p + (\varphi^3) + \ldots + (\varphi^{i-1})),$$

where $S^2_s \times D_i^i = \partial D_i^i \times D_i^i \subset \partial (D_i^i \times D_i^i)$ and $i = 1, \ldots, p$.

Assume that $\partial (X^p + (\varphi^3) + \ldots + (\varphi^i)) = S^3$, and consider a handle of index 4:

$$\varphi^4 : \partial D_i^i \hookrightarrow \partial (X^p + (\varphi^3) + \ldots + (\varphi^i)).$$

attached to $X^p + (\varphi^3) + \ldots + (\varphi^i)$. One has:

$$X^p + (\varphi^3) + \ldots + (\varphi^i) + (\varphi^4) = S^4 \quad \text{(diffeomorphism)}.$$
This result implies the following:

Corollary B. — Let X^p be as before, and consider p handles of index 3, attached successively to X^p:

\[\psi_i : S_i^1 \times D_i^1 \to \partial (X^p + (\psi_1^p) + \ldots + (\psi_i^p)) \quad (i = 1, \ldots, p). \]

If

\[H_i (X^p + (\psi_1^p) + \ldots + (\psi_i^p), Z) = 0 \]

then

\[X^p + (\psi_1^p) + \ldots + (\psi_p^p) = D_i \quad \text{(diffeomorphism)}. \]

2. The proof of theorem A

One has « canonical » identifications:

\begin{align*}
\partial X^p & \cong S^3 \\
(0) \quad (S_1^i \times S_1^i) & \neq \ldots \neq (S_p^i \times S_p^i) = p \neq (S_1^i \times S_1^i), \\
\partial Y^p & \cong \beta
\end{align*}

which will be given, once for all. It is obvious that

\[X^p \cup_{\beta - 1} Y^p = S_i. \]

Lemma 1. — The following two statements are equivalent:

(i) $X^p \cup_h Y^p = S_i$.

(ii) There exist diffeomorphisms: $G : X^p \to X^p$, $H : Y^p \to Y^p$, such that:

\[\beta^{-1} \alpha = (H | \partial Y^p) \circ h \circ (G | \partial X^p). \]

Proof. — If f_1, f_2 are two differentiable embeddings $f_i : Y^p \to S_i$, it is obvious that the pairs $(S_i, f_1 Y^p), (S_i, f_2 Y^p)$ are diffeomorphic. Hence, if $X^p \cup_h Y^p = S_i = X^p \cup_{\beta - 1} Y^p$, there exists a diffeomorphism $X^p \cup_h Y^p \to X^p \cup_{\beta - 1} Y^p$ sending X^p onto X^p and Y^p onto Y^p. This shows that (i) \Rightarrow (ii).

On the other hand, the equality (1) tells us that G and H can be patched together so as to give diffeomorphism:

\[X^p \cup_h Y^p \leftrightarrow X^p \cup_{\beta - 1} Y^p. \]

Hence (ii) \Rightarrow (i).

Remark. — The implication (ii) \Rightarrow (i) holds whenever we glue two n-manifolds along their (diffeomorphic) boundaries, while (i) \Rightarrow (ii) is very exceptional.
We consider now \(\pi_1 Y^p = \) the free group with \(p \) generators, and we remark that, if \(i : \partial Y^p \rightarrow Y^p \) is the natural inclusion, then:

\[
i_* : \pi_1 \partial Y^p \rightarrow \pi_1 Y^p
\]

is bijective. Let \(\text{Diff} Y^p \) be the group of diffeomorphisms of \(Y^p \) and \(\text{Aut} (\pi_1 Y^p) \) the group of automorphisms of \(\pi_1 Y^p \). We have a commutative triangle of natural homomorphisms:

\[
\begin{array}{ccc}
\pi_0 (\text{Diff} Y^p) & \xrightarrow{\text{Aut} (\pi_1 Y^p)} & \pi_0 (\text{Diff} Y^p) \\
\downarrow & & \downarrow \text{id} \\
\text{Aut} (\pi_1, \partial Y^p) & \xrightarrow{\text{Aut} (\pi_1 Y^p)} & \text{Aut} (\pi_1, \partial Y^p)
\end{array}
\]

Lemma 2. — \(A \) and \(B \) are surjective.

Proof. — We consider a handle-decomposition, given once for all:

\[
Y^p = D_1 + (\varphi_1^p) + \ldots + (\varphi_i^p)
\]

where \((\varphi_i^p) \) corresponds to the handle \(D_i^p \times D_i^p \).

We orient the \(D_i^p \)'s and we chose a base-point \(x_0 \in \partial D_i = \cup_i \text{Image} (\varphi_i^p) \).

The spines \([D_i^p]\) will determine then a basis \(x^p, \ldots, x^p \) for \(\pi = \pi_1 (Y^p, x_0) \).

We define \(\Phi_1, \Phi_2, \Phi_3 \in \text{Aut} (\pi) \) by:

(i) \(\Phi_1 (x^p) = x^p \) if \(i \neq l, k \), and \(\Phi_1 (x^p) = x^p \); \(\Phi_1 (x^p) = x^p \);

(ii) \(\Phi_2 (x^p) = x^p \) if \(i \neq 1 \), \(\Phi_2 (x^p) = x^p \); \(\Phi_2 (x^p) = x^p \);

(iii) \(\Phi_3 (x^p) = x^p \) if \(i \neq 1 \), \(\Phi_3 (x^p) = x^p \).

In order to prove our lemma, it suffices to exhibit three diffeomorphisms \(H_i : (Y^p, x_0) \rightarrow (Y^p, x_0) \) \((i = 1, 2, 3) \) such that \((H_i)_* = \Phi_i \).

In the new handle-decomposition for \(Y^p \), induced by \(H_i \), the \([D_i^p]\)'s will determine the basis \(\Phi_i (x^p) \) of \(\pi \).

The construction of \(H_i, H_3 \) is an elementary exercise. In order to define \(H_3 \), we start by considering:

\[
\overline{Y}^p = (Y^p \cup \partial Y^p \times (0, 1))/x_0 \times (0, 1),
\]

where the notation means that we glue \(\partial Y^p \times (0, 1) \) to \(Y^p \), along \(\partial Y^p = \partial Y^p \times 0 \) and afterwards we contract the fiber \(x_0 \times (0, 1) \) to a point. \(\overline{Y}^p \) collapses onto \(Y^p \), but on the other hand \(\overline{Y}^p \) and \(Y^p \) can be identified by a (more or less) canonical diffeomorphism leaving \(x_0 \) fixed.
Inside \overline{Y}^p we can slide the handle $D_1^i \times D_2^i$ (of Y^p) along $D_1^i \times D_2^i$ (using the positive orientation of D_1^i), without touching x_o. This changes Y^p into a new subset : $Y^p \subset \overline{Y}^p$, diffeotopic to $Y^p \subset \overline{Y}^p$. Y^p has a natural handle-decomposition [induced by (2) and by the slide] and since \overline{Y}^p collapses onto Y^p one gets a handle-decomposition of \overline{Y}^p (hence of Y^p):

\[(3)\quad Y^p = D_1 + (\psi_1^p) + \ldots + (\psi_2^p)\]

[where $x_o \in \partial D_1 = \cup_l \text{Image } (\psi_i^p)$]. Since

\[
\cup_l \text{Image } (\psi_i^p) (\cup_l \text{Image } (\psi_i^p))
\]

is just a collection of disjoint disks in $\partial D_1 = S_0$, we can find a diffeomorphism :

\[
C : D_1 + (\psi_1^p) + \ldots \rightarrow D_1 + (\psi_1) + \ldots
\]

such that $C (D_1, x_o) = (D_1, x_o)$, $C (D_1^i \times D_2^i) = D_1^i \times D_2^i$, C respects the orientations of the 1-handles. Combining (2), (3) and C, we get our H_*.

Remark. — The same argument holds for $p \neq (S_1 \times D_0) (n \geq 2)$. On the other hand, using a similar proof, we can show that $\text{Aut } (H_1(p \neq (S_1 \times D_0)))$ where $H_* = \text{integral homology}$, $n \geq 2$, is generated by $\pi_0 (\text{Diff } (p \neq (S_1 \times D_0)))$.

We will also need the following

Lemma 3. — Let

\[
f : p \neq (S_1 \times S_2) \rightarrow p \neq (S_1 \times S_2)
\]

be an orientation-preserving homeomorphism inducing :

\[
f_{\ast, \ast} : \pi_1(p \neq (S_1 \times S_2)) \rightarrow \pi_1(p \neq (S_1 \times S_2)).
\]

If $f_{\ast, \ast}$ is the identity then $f_{\ast, \ast}$ is also the identity.

Proof. — f lifts to the universal covering space :

\[
\begin{array}{ccc}
\tilde{X} & \xrightarrow{f} & \tilde{X} \\
\downarrow & & \downarrow \\
X & \xrightarrow{f} & X
\end{array}
\]
where $X = \rho \neq (S_1 \times S_2)$. One has a commutative diagram:

$$
\begin{array}{ccc}
H_\delta (\tilde{X}) & \xrightarrow{f_*} & H_\delta (\tilde{X}) \\
\cong \downarrow & & \cong \downarrow \\
\pi_2 (X) & \xrightarrow{f_*} & \pi_2 (X)
\end{array}
$$

(Hurewicz)

Lemma 3 follows now from:

Lemma 4. — Let X_n be a closed orientable topological manifold and $f : X_n \to X_n$ an orientation preserving homeomorphism, such that $f_1 : \pi_1 (X_n) \to \pi_1 (X_n)$ is the identity map. Then

$$
\tilde{f}_{\#} : H_{n-1} (\tilde{X}_n, Z) \to H_{n-1} (\tilde{X}_n, Z)
$$

is also the identity map.

Proof. — Since $H^1 (\tilde{X}_n, Z) = 0$ one has a canonical isomorphism $H^1_c (\tilde{X}_n, Z) \cong H^1 (\pi, Z [\pi])$, where $\pi = \pi_1 (X_n)$. This isomorphism is functorial, hence the following diagramm is commutative:

$$
\begin{array}{ccc}
H^1_c (\tilde{X}_n, Z) & \cong & H^1 (\pi, Z [\pi]) \\
\downarrow \tilde{f}^* & & \downarrow \tilde{f}^* \\
H^1_c (\tilde{X}_n, Z) & \cong & H^1 (\pi, Z [\pi])
\end{array}
$$

Since $f^* = \text{identity}$, it follows that \tilde{f}^* is the identity too. On the other hand, one has an isomorphism (the Poincaré duality):

$$
H^1_c (\tilde{X}_n, Z) \cong H_{n-1} (\tilde{X}_n, Z),
$$

which is functorial for maps preserving the fundamental class. Now one deduces easily that $\tilde{f}_{\#}$ is the identity map.

Remark. — Let $b \tilde{X}_n$ be the space of ends of \tilde{X}_n (which is a compact totally discontinuous space). Any homeomorphism $g : X_n \to X_n$ induces a homeomorphism $\tilde{g} : b \tilde{X}_n \to b \tilde{X}_n$. If f is like in lemma 4, $\tilde{f} : b \tilde{X}_n \to b \tilde{X}_n$ is the identity.

Now we can prove our theorem Λ. We consider the identifications α, β from the beginning of this section. Lemma 2 tells us that we can
always find \(H \in \text{Diff} (Y^p) \) such that, if \(H_1 = H \mid \partial Y^p \), the following diagramm is commutative:

\[
\begin{array}{ccc}
\pi_1 (\partial X^p) & \xrightarrow{\approx} & \pi_1 (p \neq (S_1 \times S_1)) \\
\downarrow h_* & & \uparrow \beta_* \\
\pi_1 (\partial Y^p) & \xrightarrow{(H_1)_*} & \pi_1 (\partial Y^p)
\end{array}
\]

(4)

Let us assume for the time being that

\[\beta \circ H_1 \circ h \circ x^{-1} : p \neq (S_1 \times S_1) \rightarrow p \neq (S_1 \times S_1) \]

is orientation-preserving. Consider \(x_1 \in S'_1 \) [see formula (0)] and the embedded 2-spheres:

\[\Sigma' = S'_1 \times x_1 \subset p \neq (S_1 \times S_1). \]

From lemma 3, it follows that \(\Sigma' \) and \(\beta \circ H_1 \circ h \circ x^{-1} (\Sigma') \) are homotopic. From [1], section 5, it follows now that there exists an isotopy \(H' \in \text{Diff} (Y^p) (t \in (0, 1)) \) such that \(H' = H \), and

\[\Sigma' = \beta \circ H'_1 \circ h \circ x^{-1} (\Sigma') \subset p \neq (S_1 \times S_1). \]

One can also remark that the diffeomorphisms \(H_2 (x) \) from [1], section 5.3, extend to elements of \(\text{Diff} (p \neq (D_1 \times S_1)) \). Hence, by [1], 5.4, there exists an \(L \in \text{Diff} (Y^p) \) such that : \(\beta \circ L \circ H'_1 \circ h \circ x^{-1} = \text{id} \). Since this means \(\beta^{-1} x = (L \circ H'_1 \mid \partial Y^p) \circ h \), lemma 1 tells us that \(X^p \cup_h Y^p = S_1 \) (mark that no diffeomorphism of \(X^p \) was needed here).

If \(\beta \circ H_1 \circ h \circ x^{-1} \) is not orientation-preserving, we can change (4) into :

\[
\begin{array}{ccc}
\pi_1 (\partial X^p) & \xrightarrow{\approx} & \pi_1 (\partial X^p) \\
\downarrow h_* & & \uparrow \beta_* \\
\pi_1 (\partial Y^p) & \xrightarrow{(H_1)_*} & \pi_1 (\partial Y^p)
\end{array}
\]

(5)

where \(F_1 = F \mid \partial X^p \), \(F \in \text{Diff} (X^p) \) with \(F \) orientation-reversing and \((F_1)_* = \text{id} \). From here on the proof continues as before.

3. The proof of corollary B

Corollary B follows from theorem A' and the following :

Lemma 5. — Let \(X^p, (\psi_i^p) \) be as in the statement of corollary B. Then :

\[\partial (X^p + (\psi_1^p) + \ldots + (\psi_5^p)) = S_2 \quad (\text{diffeomorphism}). \]
Proof. — The condition on H_2 implies that $X^p + (\psi_1^i) + \ldots$ is contractible. ψ_2^i stands for the attaching map:

$$\psi_2^i : S^i \times I \hookrightarrow \partial (X^p + (\psi_1^i) + \ldots + (\psi_{-1}^i)).$$

For each i, $\psi_2^i \left(S^i \times \frac{1}{2} \right)$ is a 2-cycle of $\partial (X^p + (\psi_1^i) + \ldots + (\psi_{-1}^i))$ not homologous to 0. [Otherwise (ψ_2^i) would introduce a 3-cycle in $X^p + (\psi_1^i) + \ldots + (\psi_{-1}^i)$ which could never be killed by adding 3-cells, only.]

Hence, the $\psi_2^i \left(S^i \times \frac{1}{2} \right) \subset \partial X^p = p \neq (S^i \times S^i)$ are embedded, disjointed, homologically independent. It follows easily that

$$(p \neq (S^i \times S^i), \cup \psi_2^i \left(S^i \times \frac{1}{2} \right))$$

is diffeomorphic to $(p \neq (S^i \times S^i), \cup_i S^i \times x^i)$ a.s.o. (Caution: This diffeomorphism does not necessarily extend to X^p.)

4. Final remarks

We will place now corollary B, which is the starting point of our investigation, in its proper context.

If $n \geq 4$, $n - 2 > \lambda \geq 1$, let $C_{n, \lambda}$ denote the class of smooth manifolds of the form

$$X = D_n + (\varphi_1^i) + \ldots + (\varphi_\lambda^i) + (\varphi_{n+1}^i) + \ldots + (\varphi_{n+1}^i)$$

such that X is contractible.

The h-cobordism theorem of Smale implies that : $X \in C_{n, \lambda} \Rightarrow X = D_n$ provided that : $n \geq 6, n - 3 > \lambda$. On the other hand, $C_{n, 1}$ (and in general $C_{n, n-3}$) contains elements with non-simply-connected boundary.

Here are some conjectures for the cases which are not settled:

- **C (1)**: $X \in C_{4,2} \Rightarrow X = D_4$,
- **C (2)**: $X \in C_{4,2} \Rightarrow \pi_1 \partial X = 0$,
- **C (3)**: $X \in C_{6,1} \Rightarrow X = D_6$,
- **C (4)**: $X \in C_{6,1} \Rightarrow \partial X = S_4$.

$C (2)$ is a very modest version of $C (1)$, while $C (3)$ and $C (4)$ are clearly equivalent. Our corollary B is just the simplest case where we can hope to check $C (1)$. From [2], [3] and very easy arguments, it follows that $C (1) \Rightarrow$ the Poincaré conjecture in dimensions 3 and 4. Also $C (2)$
and the Poincaré conjecture in dimensions 3 and 4 implies the following weak version of the Poincaré conjecture in dimension 4: if \(\Sigma_4 \) is a smooth oriented homotopy 4-sphere, then:

\[
\Sigma_4 \not\cong (\Sigma_4) = S^4 \quad \text{(diffeomorphism).}
\]

The Poincaré conjecture in dimension 4 is equivalent to (6) and the smooth 4-dimensional Schoenflies conjecture.

REFERENCES

(Texte reçu le 22 mars 1972.)

François LAUDENBACH,
Centre de Mathématiques
de l'École Polytechnique,
17, rue Descartes, 75-Paris 05
et Département de Mathématiques,
Bâtiment 425,
Université de Paris-Sud,
91405 Orsay.

Valentin POENARU,
Département de Mathématiques,
Bâtiment 425,
Université de Paris-Sud,
91405 Orsay.