R. Hartshorne

A property of A-sequences

<http://www.numdam.org/item?id=BSMF_1966__94__61_0>
A PROPERTY OF A-SEQUENCES

by

ROBIN HARTSHORNE (*).

Let A be a noetherian local ring with maximal ideal m, containing a field k (not necessarily its residue field). Recall ([1]; [7]) that an A-sequence is a finite set x_1, \ldots, x_r of elements of A, contained in the maximal ideal m, such that x_i is not a zero-divisor in A, and for each $i = 2, \ldots, r$, x_i is not a zero-divisor in $A/(x_1, \ldots, x_{i-1})$. We will show that for many purposes, the elements of an A-sequence behave just like the variables in a polynomial ring over a field. In particular, the sum, product, intersection and quotient of ideals generated by monomials in a given A-sequence are just what one would expect (see Corollary 1 below for a precise statement).

PROPOSITION 1. — Let A be a noetherian local ring containing a field k, and let x_1, \ldots, x_r be an A-sequence. Then the natural map

$$\varphi: T = k[X_1, \ldots, X_r] \to A$$

of k-algebras, which sends X_i into x_i for each i, is injective, and A is flat as a T-module.

Proof. — We show φ is injective by induction on r, the case $r = 0$ being trivial. Let $r > 0$ be given. Then x_2, \ldots, x_r is an $(A/x_1 A)$-sequence, so by the induction hypothesis, we may assume that

$$\bar{\varphi}: k[X_2, \ldots, X_r] \to A/x_1 A$$

is injective. Now let $t \in T$ be given and write

$$t = \sum_{n=0}^{\infty} X_1^n f_n(X_2, \ldots, X_r),$$

(*) Junior Fellow, Harvard University.
where each \(f_n(x_1, \ldots, x_r) \in k[x_1, \ldots, x_r] \). Suppose that \(\varphi(t) = 0 \). If \(t \neq 0 \), let \(f_s \) be the first of the \(f_n \) which is non-zero. Then

\[
\varphi(t) = x_1^s \left(\sum_{n=s}^\infty x_1^{n-s} f_n(x_2, \ldots, x_r) \right).
\]

Since \(x_1 \) is a non-zero-divisor in \(A \), we have

\[
\sum_{n=s}^\infty x_1^{n-s} f_n(x_2, \ldots, x_r) = 0.
\]

Reducing modulo \(x_1 \), we find \(f_s(x_2, \ldots, x_r) = 0 \) in \(A/x_1 A \). Now since \(\bar{\varphi} \) is injective by the induction hypothesis, \(f_s(x_2, \ldots, x_r) = 0 \), which is a contradiction. Hence \(t = 0 \) and \(\varphi \) is injective.

Now to show \(A \) is flat over \(T \), we use the local criterion of flatness ([3], chap. III, § 5, n° 2, theorem 1, (iii)) applied to the ring \(T \), the ideal \(J = (x_1, \ldots, x_r) \), and the \(T \)-module \(A \). We must verify the four following statements:

(a) \(T \) is noetherian (well-known).
(b) \(A \) is separated for the \(J \)-adic topology, i.e. \(\bigcap J^n A = 0 \). This is true since \(JA \) is contained in the radical \(m \) of \(A \), and \(\bigcap m^n = 0 \) by Krull’s theorem ([3], chap. III, § 3, n° 2).
(c) \(A/JA \) is flat over \(k = T/J \). This is true since anything is flat over a field.
(d) \(\text{Tor}_i^T(T/J, A) = 0 \). To calculate this \(\text{Tor} \), we use the Koszul complex \(K.(X_1, \ldots, X_r; T) \) ([4], EGA, III, 1.1) which is a resolution of \(T/J \) since \(X_1, \ldots, X_r \) is a \(T \)-sequence. \(\text{Tor}_i(T/J, A) \) is the \(i \)th homology group of the complex \(K.(X_1, \ldots, X_r; T) \otimes_T A = K.(x_1, \ldots, x_r; A) \).

But since \(x_1, \ldots, x_r \) is an \(A \)-sequence, this homology is zero in degrees \(i > 0 \) ([4], EGA, III, 1.1.4). In particular \(\text{Tor}_i^T(T/J, A) = 0 \), which completes the proof of the proposition.

Corollary 1. — With the notations of the proposition, let \(a \) and \(b \) be any two ideals in \(T \). For any ideal \(c \) in \(T \), denote by \(cA \) its extension to \(A \). Then

(i) \((a + b)A = aA + bA \);
(ii) \((a \cdot b)A = (aA) \cdot (bA) \);
(iii) \((a \cap b)A = (aA) \cap (bA) \);
(iv) \((a : b)A = (aA) : (bA) \).

(Recall that for any two ideals \(a, b \) in a ring \(R \), \(a : b = \{ x \in R \mid x \cdot b \subseteq a \} \).
Proof. — (i) and (ii) are trivially true for any ring extension and are repeated here for convenience. (iii) and (iv) are true for any flat ring extension. (iii) is proved in ([3], chap. I, § 2, n° 6, Prop. 6).

To prove (iv), let \(y_1, \ldots, y_r \) be a set of generators for \(b \). Then \(a : b = \bigcap (a : (y_i)) \), and so using (iii) we are reduced to the case where \(b \) is generated by a single element \(y \). Now \(a : (y) \) is characterized by the exact sequence of \(T \)-modules

\[
0 \to a : (y) \to T \to T/a,
\]

where the last map is multiplication by \(y \). Tensoring with \(A \) we have an exact sequence of \(A \)-modules

\[
0 \to (a : (y)) A \to A \to A/a A
\]

from which we deduce that \((a : (y)) A = a A : y A \) (Note that for any ideal \(b \) in \(T \), the natural map \(b \otimes T A \to b A \) is an isomorphism, since \(A \) is flat over \(T \), so we identify the two).

Corollary 2 (Theorem of Rees). — Let \(A \) be a noetherian local ring containing a field, and let \(J \) be an ideal generated by an \(A \)-sequence \(x_1, \ldots, x_r \). Then the images \(\bar{x}_1, \ldots, \bar{x}_r \) of the \(x_i \) in the graded ring

\[
\text{gr}_r(A) = \sum_{n=0}^{\infty} J^n/J^{n+1}
\]

are algebraically independent, so that \(\text{gr}_r(A) \) is isomorphic to the polynomial ring \(A/J[\bar{x}_1, \ldots, \bar{x}_r] \).

Proof (see also [7], Appendix 6, theorem 3). — It is sufficient to show that for each \(n \), \(J^n/J^{n+1} \) is a free \(A/J \)-module, with the images of the monomials in \(x_1, \ldots, x_r \) of degree \(n \) for basis. It is clear that these monomials generate \(J^n/J^{n+1} \). To show they are linearly independent, let \(z \) be a monomial of degree \(n \) in \(x_1, \ldots, x_r \), and let \(J' \) be the ideal generated by all the other monomials of degree \(n \) and by \(J^n/J^{n+1} \). Then we must show that \(J' : z = J \), which follows from Corollary 1.

Corollary 3. — Let \(A \) be a noetherian local ring containing a field \(k \), and let \(x_1, \ldots, x_r \) be an \(A \)-sequence. Then any ideal of \(A \) generated by polynomials in the \(x_i \), with coefficients in \(k \), is of finite homological dimension over \(A \).

Proof. — Using the notations of the proposition, any such ideal can be written as \(a A \), where \(a \) is an ideal in the polynomial ring \(T = k[X_1, \ldots, X_r] \). Over \(T \), \(a \) has a finite projective resolution ([7], chap. VII, § 13, theorem 43)

\[
0 \to L_0 \to \cdots \to L_1 \to L_0 \to a \to 0.
\]
Tensoring with A gives an exact sequence
\[0 \to L_n \otimes A \to \cdots \to L_1 \otimes A \to L_0 \otimes A \to aA \to 0 \]
which is a finite projective resolution of aA.

Remark. — A refinement of the proof of proposition 1 due to D. Quillen allows one to dispense with the hypothesis that A contains a field, provided that one is interested only in ideals of A generated by monic monomials in the x_i. In particular this is sufficient for the result of Corollary 2, and of Proposition 2 below.

As an application we give the following:

Proposition 2. — Let A be a noetherian local ring containing a field. Let I be a radical ideal in A (i.e. an ideal which is a finite intersection of prime ideals), and let J be any ideal generated by an A-sequence whose radical is I. Then, to within isomorphism, the A/I-module
\[M = \text{Hom}_A(A/I, A/J) \]
is independent of J.

Example. — An interesting case (already known [2]) is that of a local Cohen-Macaulay ring A, with $I = \mathfrak{m}$ the maximal ideal. Then there are ideals J generated by an A-sequence with radical \mathfrak{m}, so that M is defined. Its dimension as an A/\mathfrak{m}-vector space is an invariant of A, which is equal to 1 if and only if A is a Gorenstein ring. (See [2], where if n is the dimension of M, then A is called a MC_n-ring. This number is also the "vordere Loewysche Invariante" of A/I in [6], p. 28, and is the number e of the exercises in [5], § 4, p. 67.)

Proof of Proposition. — Let J be generated by the A-sequence x_1, \ldots, x_r. Then r is the height of J, and so is independent of J. We consider the rth local cohomology group (see [5] for definition and methods of calculation)
\[H = H^r_J(A) = \lim_{\rightarrow n} \text{Ext}^r(A/J^{(n)}, A), \]
where $J^{(n)} = (x_1^n, \ldots, x_r^n)$. Using the Koszul complex $K.(x_1^n, \ldots, x_r^n; A)$ to calculate the Ext, we find an isomorphism
\[\varphi_n : \text{Ext}^r(A/J^{(n)}, A) \cong A/J^{(n)} \]
which transforms the maps of the direct system into the maps
\[f_n : A/J^{(n)} \to A/J^{(n+1)} \]
which are defined by multiplication by $x_1 \cdots x_r$.

I claim that the maps f_n are all injective. Indeed, it is sufficient to see that
\[J^{(n+1)} : (x_1 \cdots x_r) = J^{(n)}, \]
This follows from Corollary 1 and the fact that the analogous relation holds in a polynomial ring. Therefore we can write H as an increasing union

$$H = \bigcup_{n=1}^{\infty} E_n,$$

where E_n is the isomorphic image of $A/J^{[n]}$ in H. Furthermore, I claim that for each n, E_n is the set of elements of H annihilated by $J^{[n]}$. Indeed, we have only to observe that for each n, $k > 0$,

$$J^{(n+k)} : J^{[n]} = (x_1 \cdots x_n)^{k}$$

which follows from Corollary 1 and the analogous formula in a polynomial ring. Now since $J \subseteq I$, anything in H annihilated by I is annihilated by J. Hence

But by definition, H depends only on the radical of J [5], so we are done.

BIBLIOGRAPHY.

(Manuscrit reçu le 8 décembre 1965.)

R. Hartshorne,
Mathematics Department,
2, Divinity Avenue,
Cambridge, Mass. 02138 (États-Unis).