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CONFORMALLY RIEMANNIAN STRUCTURES, I ;

BY

F. BRICKELL ax» R. S. CLARK

(Southampton).

Introduction. — We define a conformally Riemannian structure on a
differentiable (') manifold M of dimension n to be a differentiable subor-
dinate structure of the tangent bundle to M whose group G consists of the
non-zero scalar multiples of the orthogonal n >< n matrices. The method of
equivalence of E. Cartax [1], as described by S. GHERrN [3], associates with
a given conformal structure a certain principal fibre bundle on which a set
of linear differential forms is defined globally. We obtain such a bundle
and set of forms explicitly and show their relation to the normal conformal
connection of E. Cartan [2].

The first paragraph contains an exposition of conformal connections in
the light of C. EnresMaNN’s general theory of Cartan connections [&]. In
the second paragraph we show how this leads to the normal-conformal con-
nection on a manifold admitting a conformally Riemannian structure. The
third paragraph summarises the method of Cartan-Chern and we apply this,
in the fourth paragraph, to the special case of a conformally Riemannian
structure. In the fifth paragraph we show how these ideas are related.

1. Conformal Cartan connections. -- We first collect together the
information we require on conformal space and on Cartan conneclions.

Conformal space of dimension 7 is defined to be the homogeneous space
K/K', where K is the linear group on n— 2 variables {£, &, ..., e
leaving invariant the quadratic form

oo
Y B b

i=1l...n

(') The word diflerentiable will always mean differentiable of class C =.
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and A’ is the subgroup of A leaving invariant the point {1, 0, ..., o].
Explicitly, A7 consists of matrices of the form

bop ¢

o A Agq

lo o «

where A4 is an orthogonal n < » matrix and the remaining elements satisfy
the relations
(L.1) ab =1, ap -+ q—o, a2ac 4+ Jg—=o

7 denoting the transpose of ¢.

The linear group of isotropy L), of the conformal space at {1,0, ..., 0] is
isomorphic with the group G of non-zero scalar multiples of the orthogonal
n > n matrices. We identify L), with & in such a way that the canonical
homomorphism ¢ of A" onto L), 1s

b p ¢~
o A Ag|%aA.
¢] o a

The Lie algebra £ K isisomorphic with the Lie algebra of the (1 + 2) < (n+2)
matrices of the type

o —m [
where the 1 > n matrix Q2 is skew-symmetric. A represenlation of the sub-
algebra £ K’ is obtained by imposing the condition v = 0. The translation
operations on these Lie algebras are obtained by matrix multiplication.
G. EnresMany [%] has given necessary and sufficient conditions for the
existence of a Cartan connection on M of type K/K', that is, a conformal

Cartan connection. These are :
(1) that the tangent bundle of M should admit a subordinate structure
with group L), ;

(ii) that there should exist a principal fibre bundle 3¢’ = /' (M, K') with
which the homomorphism ¢ associates the subordinate structure.

Since A’ is a subgroup of A, #¢' defines canonically a principal bundle
W =HM, K). A conformal Cartan connection on M is a connection on ¢,
in the usual sense, such that no horizontal directions on /7 are tangent to the
subspace #'.

We shall construct ¢’ from a cocycle A%g, whit values in A’ defined on an

. . . . U .
open covering [ U, } of M. Then H'is the quotient of the sum Z Uy < N

x
by the equivalence relation

(my, ky) ,~ (mg, K3) i my=ms, ka= (kagmy) k3.
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A Cartan conneclion can then be obtained from local 1-forms I', with values
in £ K defined on Uy, provided that on U, n Us they salisfy the relation.

(1.2) L= (Kyg) ' { Tokrg+ dhig ]

N> e .
and possess the further property that U'ymme £K' if and only if the tangent

vector m of U, is zero.

Denote by /' the projection //'— M and by /'* the dual mapping on the
differential forms in M. From the local product representation, we have
functions %5 with values in A" on (%) ' U,. The connection form I is

defined locally in /1’ by
(1.3) U= (Ay) " (R"Fy) K+ diy

and this extends uniquely to /7.

2. The normal conformal connection. — Suppose now that a confor-
mally Riemannian structure is given on M, so that the tangent bundle of M/
admits a given subordinate structure with group G. We shall construct a
particular Cuartan connection on M called the normal conformal connection.

The first condition of EnresMann is satisfied since the linear isotropic
group L), isisomorphicto G. We have to construct a bundle 3¢’ = H' (M, K')
which gives rise to the above subordinate structure, using the homomorphism
o: A —G.

We are given a covering of M by open sets, U,, each admitting a coordi-
nale system z,=—={ %, ..., 4 | and a function X', with values in the general
linear group GL (n, R), such that on Uy n Ug the function

Sal— YoM a3 /I’{_i ]

where My3—= [dz&/dxé], has values in G. If dx, is the natural coframe on
U,. then the coframe

= Ay day,

is adapted to the (i-structure, since on Uy nUs :

wa== Xy dwy== Vo My drg=—=g1503.

From this adapted coframe, we define a local Riemannian metric 5ymy
on U,.

To construct a cocycle on M which will define a bundle ¢/, we remark
that any matrix of G can be expressed uniquely as @4, where 4 is an ortho-
gonal n > n matrix and the real number a is positive. If we split up the
functions g,3 in this way

(2.1) a8 ™= a8 A3,
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the following cocycle relations are satisfied

Ay == (a3 AR, Agy=

Aag Ay
We use these functions to define

bag pag  cay
Lag=] o Aaz Assqas |,
o o o

where ¢,3 is defined by the relation
(2.2) Gas3=d(loga,g)

and the remaining components are determined by the relations (1.1). These
new functions A3g on U,n Ug have values in A’ and it can be shown that
they satisfy the cocycle relations, consequently they define a bundle
#'=H'(M, K'). Since the cocycle g,3 is the image of the cocycle Ay
under the homomorphism ¢, this bundle ¢’ satisfies EHRESMANN'S second
condition. Infact, k&g has values in the subgroup K” of K’ defined by @>o.
We denote by #¢" — H"(M, K") the principal bundle with group A’ defined
by the cocycle A%4g. It is a sub-bundle of 5¢'.

We are now ready to construct on U, the local 1-form I’y with values in
£ K which will define the Cartan connection. We shall take this to be

o —U, o

.

| 06y Q, "1b1 s
0 — By O_

where the 1-forms €, and {, are still to be determined. We have, of
course, to verifiy that the choices for these remaining components are such
that ', satisfies the relation (1.2); the further condition on I’y is satisfied
already since the forms w} are linearly independent. CarTaN determines &,
and ¢, in terms of the local Riemannian metric @,w. on Uy, by imposing
certain conditions on the curvature of the Cartan connection and this will be
done by imposing conditions on the local curvature form

dly+Ty A T,

consistent with relation (1.2).

This local curvature form has values in £ A and so it has components

— B, — ba o
Tl C(l Dl
0 — Ta B,

where the values of the 2-form C, are skew-symmetric. The first condition
7Ty = o is consistent with (1.2); since

To=dwy+ Q; \ 0y,
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it implies that £, is the connection form of the local Riemannian metric
(calculated relative to the coframe w,). It now follows that on U,n U3 :

Cﬁ = 88 Ca/g'a&q.
Consequently if

| G .
Ca= 5 Cl//z/.»'ﬁg A 03,

the second condition Cf,; = o is consistent with (1.2) and, if 22> 3, it can
be shown to determine the form ¢, uniquely. Thus a Cartan connection
has been determined from the conformal structure of M ; it is the normal
conformal connection of E. CARTAN.
We shall necd to calculate {, explictly and we suppose that Yy == i,
Since
Coz= Ry — 0a \ ‘Tf:x - ‘-1»‘0: A Bay

where R, — dQ,— 2, )\ 2, is the curvature form of the local Riemannian
metric then, if

1
— /i k
1?1_. ;Rl/'hk(:)al/\ Wy,

it follows that

D N N s N
Cinp =Ry 4= 0¥ jn— Sy jr - 05 Yk — 0 Yin-

The condition (’j;;=— o then shows that, for n > 3,
R

Yaz= ——

S ) ___R. }_( I
T RO

where Rj,— Rj-,u. and R=— R;, d/*. Consequently C, is the Weyl conformal
curvature form for the local Riemannian metric.

Finally, we obtain a local formula for the connection form I'on #”.  From
the local product structure of A’ we have functions A% with values in A" on

(") U, and we put

by  pa Cy
(2.3) K= o Ay Auqa |,

o [} Qy
where A, is orthogonal and

Ay >0, Uy bgy==1, UyPo—+ o= 0, 20y Cy~+ oo == O.
Since
Ay e Cq
(A)"'=1] o Ay Pa |
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the formula (1.3) applied to 77" shows that

—p =% o
= ®» Q 4

~
) —

where the global forms are defined locally by

| SRR
0= — Ay (1" wy),
y,

da, .
o= — Wy,

(2.4) ! ! iy,
Q= A, | (K" Q) Ay~ dAy | — 0o+ ¢,

1 b=dy,+ Qs — pqa—+ uzﬂa(h”*%\ — (o) Yo + 1) (Gaqa) m-

3. The method of equivalence of E. Cartan and S. Chern. — In this
paragraph we shall suppose that ( is any closed subgroup of the linear
group and that the tangent bundle of a manifold M admits a subordinate
structure with group G. In the nomenclature of S. Cuern, M admits a
G-structure. In [3], Cnerx gives a procedure for constructing a sequence
of fibre bundles and differential forms for a G-structure. We give a short
account of his work.

From the definition of a subordinate structure, there exists an open
covering of M by coordinate neighbourhoods {/, on which are defined
functions X, with values in the linear group, such that on UynUg the
functions

gas= Ay Myg X'
have values in G. The coframe
wy= Xy dry,

on U, is adapted to the G-structure, since on U, n L,

Da == QB 03
The first fibre bundle in the sequence is the principal bundle @3 = B(M, G)
associated with the reduced structure and it is defined by the cocycle g,3.
As usual, we shall denote by & the projection B— M and by " the dual
mapping on the forms in M. Let g, denote the local functions with values
in G on V,=0"'U, defined by the local product structure, so that
on Von Vs,

$x=(b"%x3)83.
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Using the local r-forms o, on U, we construct on B a global 1-form 0
with values in R". It is defined on V, by

(3.1) = 8% (0" wq),
and its exterior derivative is given on V, by

d) = 3" b* (dwy) — 83" dga ND.
. i 1. . .
We can express £5' 6" (dwy) as 5 Cipi 0 A 0% and so, if we put

My =—=g3" dgo + e,

where ¢; = ¢/, 0% is a 1-form on ¥, with values in the Lie algebra £ G whose
coefficients are to be determined, the above formula for ¢ becomes

(3.2) dy + 10, \ 0:;

(El/\'/L - 31/1 k -+ Ci/l/f> 0/1 /\ O/‘A'

We impose as many linear relations with constant coefficients between the
. . | . 5 . B ..

quantities — (ks — ¢4 + Clir) as possible.  These quantities are then deter-

mined uniquely. This implies that if the coefficients of the form 7 A 0
satisfy the same linear relations, where 7 is any 1-form 7%, 0% with values
in £G, then n A 0 =o0. The relations may, or may not, determine the
coefficients ;. If they do and if the coefficients of 7 A 0 satisfy the same
relations, then 7 —o.

Thus on ¥V, we have the formula

di + T, A\ 0 =1,

and on Vg
do + H@ N0 =18,

where the coefficients of 7, and 73 are deterinined by the imposed linear
relations.  Since on V,n Vg,

Tu—‘:g:(““—ﬂ{j) A0,

the coefficients of the form (II,— IIg) A 0 also satisfy these linear relations.
But the form II, — I3 has values in £ G and, since

(3.3) &' dgy— 83" dgg=g3' b" (82} dga3)83,

it is linear in 0/. Consequently

(Ha-—ﬂg)/\ 0=—=o0
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and we have a global 2-form v on B defined on V', by v=7,. If theimposed
relations determine the coefficients ¢/, then II, = ll3 and we have a global

i-form Il on B defined on V, by I —=1II,.

But in the general case,
Hz»—llgzrf).;cg \, (vt oo, dy)

where A, are a basis for Lhe «,-dimensional vector space of i-forms on /3,
with values in £ G, which satisfy the equation 7 /A ) == o and whose compo-
nents are linear in 0! with constant coefficients. The functions 7,3
on Von Vg form a cocycle on B with values in the additive group R" and so
they define a principal bundle

@B — B! (B, R ).

Denote by &' the projection B'— Band by A, ihe local functions with values
in Rfvon Vi —=(b')"'1",. Sinceon Vin Vi,

ha— hg==0" hys,

we have global t-forms 0', Il' on 73' defined by
0' =00,
="M, — 25 (O A).

We now use the same procedure to construct a decomposition for 0
and dII' and thus obtain further local forms y, on V3. Defining a third

bundle
@®2== B> (B!, R"),

we then construct global forms 02, II2, 4> on B2, And so on. If the new
forms are defined globally at any stage, the process terminates. The final
bundle space B’ then carries a structure whose group is the identity. This
solves the problem of local equivalence in the sense now to be explained.

Suppose that M’ is a second manifold carrying a (i-structure and denote
quantities arising from M’, corresponding to those already defined for A/,
by an accent. The two (-structures on M and M’ ave locally equivalent at
points m and m' if there exists a local diffeomorphism of some neighbour-
hood U, of m onto a neighbourhood U, of m' such that

()= 20

where * denotes the dual mapping defined by the diffeomorphism and g is
some differentiable function on U, with values in (. Two such diffeomor-
phisms are said to give the same local equivalence of the structures at mn,
m’ if they coincide in some neighbourhood of m. It follows from the work
of E. Carran [1] that the local equivalences for the G-structures on M, M’
can be obtained from the local equivalences for the identity-structures on 53",
B'r. CARTAN gives a finite algorithm for finding the latter.
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k. Application of the method of Cartan-Chern to conformal structure.
— We now return to our original notation and suppose that G is the group
of non-zero scalar multiples of the orthogonal n<n matrices. Its Lie
algebra £ (i is isomorphic with the algebra of n > n matrices A such that

A—{—-,;I':lol,

where p is any scalar.

We first construct the bundle @ = B(M, G) and the form 0 on B as in
the preceeding paragraph. 'We can then find local forms II, on ¥, in many
ways so that the equation (3.2) becomes

df +TI, A 0=o.

In order to make a definite choice, we put
(. 1) = 23" dgo-+ g3 (0" R4a) g

where, as in paragraph 2, Q, is the connection form of the local Riemannian
metric &y0, on U,. II, is then the corresponding local connection form
on V,.

Suppose that n — ‘01,'/‘ 0% is any local 1-form with values in £G and such
that A 0 ==o. Then

i J oo 2. . b
f)/-h -+ LA 2 A 6,/, ]

.
T Mg == 0

These equations show that

0y, = ; ("',{L/ -+ "12/ - 7'];'1‘ —nj,+ Tl[/'/l “+n/,)
= M 0y — N jp—+ M 0y,
andso it follows that
n=0%— 20+ (%0)I.

Thus any such form is determined by a function % with values in R". In
particular, I, — IIg will be determined by functions A.3 on Vo Vg,

(fe.2) I, — Mg =673 — 230+ (7a30) 1.

We do“not”calculate these functions explicitly at present. They form a
cocycle on B and this defines a principal bundle 3'= B' (B, R").

On B' we define global forms 0!, II' where

0=
{ M= b I, — 01 R+ 2, 00— (To00) 1.
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A calculation of their exterior derivatives gives
dit=—TI"A\ 0",
A= dly \ B 00 N dhy— (ddo A BYT — 0 AT+ (@) + (),

where @ involves mixed products of components from II' and 0! and @
involves products of components of O'. Following the general method,
we put

Sa== dhoy—+ Yt 7,

where y5 and y; are 1-forms on V' with values in R* which are linear in the
components of 0t and II' respectively. We can show that y5 and 5 arve
uniquely determined by requiring that

A== 7 AT 00 A G (Fa A O] — T A T @,

I ; . .
where the form ® — - @ 01 )\ 0% satisfies the relations

i J—
jhi == 0«

Explicitly, we find that

o= 0 (Fa (0a)) = (Ta01) 2o - (T O,

%l E— | Ay

and that ® = 0" (g3' (0*Cy)gs). The local forms g and C,, which arise
from the Riemannian metric on U, have been defined in paragraph 2

From the general theory of paragraph 3, the local forms y, define a global
form 7' on B' and hence @ is also defined globally. The forms 0', II', !

. 1 . .
contain n + —n(n —1) -+ 1 -+ n linearly independent components and so
5 )

they define an identity-structure on B'. This structure, as explained in
paragraph 3, solves the problem of local equivalence.

5. The relation between the two theories. — Starting from a given
conformally Riemannian structure on M, we constructed, in paragraph 2,
global forms o, p, £ and ¢ on /I” which defined a normal conformal
connection. In paragraph &, we carried out the Chern process for the
conformal structure and obtained global forms 0!, II' and %' on B'. We shall
set up a diffeomorphism mapping /" onto B' and then find the relation
between these two sets of forms.

We must first calculate the functions 7,3 on 1,nT35 explicitly.
From (%.2), we have

(5.1) wace (I, — Tg) = n7.,40.
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Since the values of £, are skew-symmetric matrices, it follows from (%.1),
(3.3) and (2.1) that
trace (I, — Hlg) == trace (g3' dgou— 53" dgp)
== trace b*(gap dgx8)
==trace 0" (d(logaag)l + Ay dAy3)
=nb*(d(logaag)).

Then using (2.2) and (3.1), we find that

trace (T, — Tg) = nb* (Fagwg) = n(b'Fag) g39.
Comparing this result with (5.1), it follows that
(3.2) hag = 53(0"qa3),

We recall from paragraph 2 that the bundle a¢” is defined by means of the
cocycle A3 on M. Consequently /1" is the quotient of the sum ZU"‘ =< K’

by the equivalence relation

(Mg, ky) ~ (mg, k3) if mg=mg, Ky = Kag k3.
In paragraph & we defined & by means of the cocycle &3 on M and @' by
means of the cocycle 2,3 on B. Combining these definitions and using (5.2),
it follows that B! is the quotient of the sum ZUaxGxR" by the equiva-

lence relation

(”la, g:h ."1> ~ ("l{j, g‘ﬁa 7‘{'})

W mg=mg, $x== 2858, ho— h3+Zpgas- The functions Ayg, ga3 and g4
are all 1o be evaluated at my = mg.

We now set up a local diffeomorphism of U, >< K" onto Uy < G < R".
(my, k) —> (my, ay Ay, qa)

where a,, A, and ¢, are obtained from the decomposition (2.3) for any
element A, of A”. It can be shown that these local diffeomorphisms
commute with the above equivalence relations and so they define a global
diffeomorphism of A" onto B!. Denoting the dual mapping on the forms
in B! by %, it follows that

‘ * Ay Gy
* (bVgy) == ag Ay,
l * (0 Ly) = A", for any form ¢, on U,.

BULL. SOC. MATH. — T. 90, FAsc. 1,

ot
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Using the definitions of the forms 0', 11!, %' on B' from paragraph & and the
definitions of the forms w, 1, £, & on /1" from paragraph 2, it is then easy to
see that

*x 0=, Al =Q + 1, * ' —=.
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