James Glimm
 Two cartesian products which are euclidean spaces

Bulletin de la S. M. F., tome 88 (1960), p. 131-135
http://www.numdam.org/item?id=BSMF_1960__88__131_0
© Bulletin de la S. M. F., 1960, tous droits réservés.
L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

TWO GARTESIAN PRODUGTS WHIGH ARE EUCLIDEAN SPACES

BY
James GLIMM
(Princeton) (${ }^{1}$).

Whitehead has given an example of a three-dimensional manifold W which is not (homeomorphic to) E^{3}, Euclidean 3-space [3]. We prove the following theorem about W, the first statement of which is due to A. Shapiro.

Theorem. - If W is the manifold described below then $W \times E^{1}$ is homeomorphic to E^{\natural}. Also $W \times W$ is homeomorphic to $E^{3} \times W$ (which is homeomorphic to E^{6}).

That W is not homeomorphic to E^{3} was proved in [1], [2]. In [1] it is shown that no cube in W contains W_{0} (defined below), which implies W is not E^{3}. The homeomorphism $W \times E^{1} \approx E^{4}$ can be used to show the existence of a two element (and so compact) group of homeomorphisms of E^{4} onto itself whose fixed point set is W. The problem of showing that $W \times W$ is homeomorphic to $E^{\text {b }}$ was suggested to the author by L. Zippin.

Let $W_{0}, W_{1}, R_{0}, R_{1}$ be solid tori with W_{0} simply self-linked in the interior of W_{1} (see fig. i) and R_{0} trivially imbedded in the interior of R_{1}. Let I_{0} and I_{1} be closed bounded intervals of E^{1} with I_{0} contained in the interior of I_{1}. Let w (resp. r) be a 3 -cell in the interior of W_{0} (resp. R_{0}), let e (resp. f, g) be a homeomorphism of E^{3} (resp. E^{3}, E^{1}) onto itself with $e\left(W_{0}\right)=W_{1}\left[\right.$ resp. $\left.f\left(\boldsymbol{R}_{0}\right)=\boldsymbol{R}_{1}, g\left(I_{0}\right)=I_{1}\right]$ and $e \mid \omega($ resp. $f \mid r)$ the identity. Let

$$
\boldsymbol{W}_{n}=e^{n}\left(\boldsymbol{W}_{0}\right), \quad \boldsymbol{R}_{n}=f^{n}\left(\boldsymbol{R}_{0}\right), \quad I_{n}=g^{n}\left(\boldsymbol{I}_{0}\right)
$$

Let $W=\bigcup_{n=1} W_{n}$, we suppose that

$$
E^{3}=\bigcup_{n=1}^{\infty} R_{n}, \quad E^{1}=\bigcup_{n=1}^{\infty} I_{n}
$$

[^0]Let $S=\left\{h \mid A: A \subset E^{3}, h\right.$ is a homeomorphism of E^{3} onto itself which is the identity outside a compact set \}; we further suppose $e \in S, f \mid R_{i} \in S$ and $\lambda^{\prime}\left(R_{0}\right)=W_{0}$ for some λ^{\prime} in S.

Proof. - We prove both statements simultaneously. Let V_{n} denote I_{n} (resp. W_{n}), V denote E^{1} (resp. W). For each positive integer n, we construct a homeomorphism $h_{n}: W_{n} \times V_{n} \rightarrow R_{n} \times V_{n}$ with the properties
(1) $h_{n}\left(W_{n-1} \times V_{n-1}\right)=R_{n-1} \times V_{n-1}$;
(2) $h_{n}\left|W_{n-2} \times V_{n-2}=h_{n-1}\right| W_{n-2} \times V_{n-2}(n \geq 2)$.

Suppose we have constructed all the h^{\prime} s. Then we define

$$
\Phi: \quad W \times V \rightarrow E^{3} \times V
$$

as follows. If $(x, y) \in W \times V$, then for some $n,(x, y) \in W_{n} \times V_{n}$. Let $\Phi(x, y)=h_{n+1}(x, y)$. By (2) we see that Φ is well-defined, by (1) we see that Φ is onto. Since h_{n} is a homeomorphism, Φ is also.

Suppose the following lemma is true. Using the lemma, we will construct the h_{n}.

Lemma. - If we are given a homeomorphism $\beta^{\prime}: \rightsquigarrow \times V_{0} \rightarrow R_{0} \times V_{0}$ (into), and if β^{\prime} has the form $\lambda^{\prime} \mid \propto \times I$ where λ^{\prime} is a homeomorphism in S of W_{0} onto R_{0}, then there is a homeomorphic extension β of β^{\prime},

$$
\beta: \quad W_{1} \times V_{1} \rightarrow R_{1} \times V_{1}, \quad \beta\left(W_{0} \times V_{0}\right)=R_{0} \times V_{0}
$$

and $\beta \mid \operatorname{Bdry}\left(W_{1} \times V_{1}\right)=\lambda \times I$ for λ some homeomorphism in S of W_{1} onto R_{1}.

Let λ^{\prime} be a homeomorphism in S mapping W_{0} onto R_{0}. Let $h_{1}=\beta$, the extension of $\beta^{\prime}=\left(\lambda^{\prime} \mid w^{\prime}\right) \times I$ given by the lemma. We suppose inductively that for n a positive integer greater or equal to $2, h_{n-1}$ has been constructed, and $h_{n-1} \mid \operatorname{Bdry}\left(W_{n-1} \times V_{n-1}\right)=\gamma \times I$, for γ some homeomorphism in S of W_{n-1} onto R_{n-1}. We note that h_{1} has this property. Observe that $\left(\gamma^{-1} \times I\right) h_{n-1}$ is a homeomorphism of $W_{n-1} \times V_{n-1}$ onto itself leaving the boundary pointwise fixed. Let h be the extension of this map to $W_{n} \times V_{n}$ which is the identity on $W_{n} \times V_{n}$-Interior ($W_{n-1} \times V_{n-1}$). Let r^{\prime} be a 3-cell with Interior $R_{n-1} \supset r^{\prime} \supset R_{n-2}$. Let $w^{\prime}=\gamma^{-1}\left(r^{\prime}\right)$. Let $k: W_{n} \rightarrow W_{n}$ be a homeomorphism in $S, k \mid\left(W_{n}\right.$-Interior $\left.W_{n-1}\right)=$ identity, $k\left(w^{\prime}\right) \subset w$. Let β be the extension of $\gamma k^{-1} \times I \mid \Phi \times V_{n-1}$ to a homeomorphism of $W_{n} \times V_{n}$ onto $R_{n} \times V_{n}$ as given by the lemma. Let $h_{n}=\beta(k \times I) h$. We check that h_{n} satisfies (1) and (2),

$$
h_{n}\left(W_{n-1} \times V_{n-1}\right)=\beta\left(W_{n-1} \times V_{n-1}\right)=R_{n-1} \times V_{n-1} .
$$

If $z \in W_{n-2} \times V_{n-2}$, then $(k \times I) h(z) \in \mathscr{\infty} \times V_{n-1}$ and

$$
\begin{aligned}
h_{n}(z) & =\beta(k \times I) h(z) \\
& =\left(\gamma k^{-1} \times I\right)(k \times I)\left(\gamma^{-1} \times I\right) h_{n-1}(z)=h_{n-1}(z)
\end{aligned}
$$

as asserted. Also

$$
\begin{aligned}
h_{n} \mid \operatorname{Bdry}\left(W_{n} \times V_{n}\right) & =\beta(k \times I) h \mid \operatorname{Bdry}\left(W_{n} \times V_{n}\right) \\
& =\lambda k \times I \mid \operatorname{Bdry}\left(W_{n} \times V_{n}\right)
\end{aligned}
$$

where the last equality arises from the form of β on $\operatorname{Bdry}\left(W_{n} \times V_{n}\right)$ and the fact that $(k \times I)\left(\operatorname{Bdry}\left(W_{n} \times V_{n}\right)\right)=\operatorname{Bdry}\left(W_{n} \times V_{n}\right)$. Thus h_{n} satisfies the induction hypothesis and all the h_{n} can be defined, if we prove the lemma.

Proof of lemma. - Given $\beta^{\prime}=\lambda^{\prime} \mid \propto \times I: \propto \times V_{0} \rightarrow R_{0} \times V_{0}$, we can extend $\lambda^{\prime} \mid \omega$ to a homeomorphism in $S \lambda$ of W_{1} onto R_{1}. In fact let j be a homeomorphism in S of R_{1} onto itself which maps R_{0} onto R_{0} and $\lambda^{\prime}(w)$ into r. Let

$$
\lambda=j^{-1} f j \lambda^{\prime} e^{-1}
$$

Then λ is a homeomorphism in S of W_{1} onto R_{1} aud $\lambda\left|\mathscr{\omega}=j^{-1} f j \lambda^{\prime}\right| \mathscr{\omega}=\lambda^{\prime} \mid \omega$ so λ is the desired extension of $\lambda^{\prime} \mid \mathscr{W}$. It is now sufficient to construct a homeomorphism h of $W_{1} \times V_{1}$ onto itself which leaves $w \times V_{0}$ pointwise fixed with $h \mid \operatorname{Bdry}\left(W_{1} \times V_{1}\right)=\mu \times I$ for some μ in S which maps W_{1} onto W_{1}, and with $h\left(W_{0} \times V_{0}\right)=\lambda^{-1}\left(R_{0}\right) \times V_{0}$. In fact $(\lambda \times I) h=\beta$ is a homeomorphism of $W_{1} \times V_{1}$ onto $R_{1} \times V_{1}, \beta$ extends β^{\prime}, and

$$
\begin{aligned}
\beta\left(W_{0} \times V_{0}\right) & =\lambda \lambda^{-1}\left(R_{0}\right) \times V_{0}=R_{0} \times V_{0}, \\
\beta \mid \operatorname{Bdry}\left(W_{1} \times V_{1}\right) & =\lambda \mu \times I \mid \operatorname{Bdry}\left(W_{1} \times V_{1}\right) .
\end{aligned}
$$

The homeomorphism h will be given as the product of four homeomorphism Λ, Σ, Δ and P of $W_{1} \times V_{1}$ onto itself. Λ, Σ and Δ will each leave Bdry ($\left.W_{1} \times V_{1}\right) \cup\left(\omega \times V_{0}\right)$ pointwise fixed. Λ will lift the dark portion of $W_{0}, \mathbf{\Sigma}$ will slide this lifted part away from the link, and Δ will drop the image under $\mathbf{\Sigma} \Lambda$ of the dark part of W_{0} back into its original plane. We suppose W_{1} is $D \times C$ where D is the square $\{(u, v): 0 \leq u, v \leq 20\}$ and C is the circle $\{\theta: 0 \leq \theta<2 \pi\}$. We suppose that

$$
W_{0} \subset\{(u, v): 9 \leq u, v \leq 10\} \times C, \quad w \subset D \times\{\theta: 6 \leq \theta<2 \pi\}
$$

the link in $W_{0} \subset D \times\{\theta: .5 \leq \theta \leq 1\}$. Let $\alpha, \beta, \gamma, \delta$ be functions on C, let a, b, c be functions on $[0,20]$, defined as follows. Let

$$
\begin{gathered}
\alpha([0,2])=1, \quad \alpha([4,2 \pi])=0, \quad \beta(0)=0, \\
\beta([.5,4])=1, \quad \beta([6,2 \pi])=0, \\
\gamma([0,1])=0, \quad \gamma([2,2 \pi])=1, \quad \delta([0,1])=0, \\
\delta([1.5,3])=1, \quad \delta([5,2 \pi])=0,
\end{gathered}
$$

and let $\alpha, \beta, \gamma, \delta$ be linear on intervals for which they are not defined above. Let

$$
\begin{aligned}
\alpha(0)=\mathrm{o}, & a([9,10])=\mathbf{1}, & a(20)=0, \\
b([0, \mathrm{o}])=\mathrm{o}, & b([\mathbf{1 1}, \mathbf{1 2}])=\mathbf{1}, & b(20)=0, \\
c(\mathrm{o})=\mathbf{o}, & c([9,12])=\mathbf{1}, & c(20)=0,
\end{aligned}
$$

and let a, b, c be linear on intervals for which they are not defined above. Let ε be a continuous map of W_{1} into $[0, I]$ such that $\varepsilon(u, v, \theta)=\alpha(\theta)$ for (u, ρ, θ) in the dark part of $W_{0}, \varepsilon=0$ on the rest of W_{0} and on Bdry W_{1}. If $(u, v),(x, y) \in D, \theta, \psi \in C$, let
$\Lambda(u, v, \theta, x, y, \psi)=(u, v, \theta, x, y+2 \varepsilon(u, v, \theta) a(x) a(y), \psi)$,
$\mathbf{\Sigma}(u, v, \theta, x, y, \psi)=(u, v, \theta+\beta(\theta) a(x)$
$\times[(\mathrm{I}-\gamma(\theta)) b(y)+\gamma(\theta) c(y)] a(u) a(v), x, y)$,
$\Delta(u, v, \theta, x, y, \psi)=(u, v, \theta, x, y-2 \delta(\theta) c(y) a(x) a(u) a(v), \underset{\psi}{\psi})$.
If $V_{i}=I_{i}$, we identify I_{0} with $\{$ го $\} \times[9$, ıо $] \times\{0\} \subset W_{1}$ and I_{1} with $\{10\} \times[0,20] \times\{0\} \subset W_{1}$. Then $\Lambda, \mathbf{\Sigma}$, and Δ map $W_{1} \times I_{1}$ onto itself and $h^{\prime}=\Delta \Sigma \boldsymbol{\Lambda} \mid W_{1} \times I_{1}\left(\right.$ resp. $\left.h^{\prime}=\Delta \boldsymbol{\Sigma} \mathbf{\Lambda}\right)$ is a homeomorphism of $W_{1} \times V_{1}$ onto itself which leaves $\left(\operatorname{Bdry}\left(W_{1} \times V_{1}\right)\right) \cup\left(\omega \times V_{0}\right)$ pointwise fixed. For $(x, y, \psi) \in V_{0}, \Delta \mathbf{\Sigma} \Lambda\left(W_{0} \times(x, y, \psi)\right.$ is trivially imbedded in $W_{1} \times(x, y, \psi)$ and the projection W_{0}^{\prime} on W_{1} of $\Delta \boldsymbol{\Sigma} \boldsymbol{\Lambda}\left(W_{0} \times(x, y, \psi)\right)$ is independent of x, y, ψ in \boldsymbol{V}_{0}. To see this it is sufficient to compute $\Delta \mathbf{\Sigma} \Lambda(u, v, \theta, x, y, \psi)$ for (u, v, θ) in W_{0}, x, y in $[9$, ro $]$ and θ a point of non-linearity of α, β, γ or δ. Suppose we have a homeomorphism ρ^{\prime} of W_{1} onto W_{1} which leaves Bdry $W_{1} \cup \mathscr{w}$ pointwise fixed, and with $\rho^{\prime}\left(\boldsymbol{W}_{0}^{\prime}\right)=\lambda^{-1}\left(\boldsymbol{R}_{0}\right)$. Define $P=\rho^{\prime} \times I$: $W_{1} \times V_{1} \rightarrow W_{1} \times V_{1}$, define $h=P h^{\prime}$. Then h has the necessary properties.

Since $\lambda^{-1}\left(R_{0}\right)$ is trivially imbedded in W_{1}, it is in a 3 -cell in the interior of W_{1}. There is a homeomorphism g^{\prime} of E^{3} onto itself leaving $E^{3}-W_{1}$ pointwise fixed and such that $g^{\prime}\left(\boldsymbol{W}_{0}^{\prime}\right)$ and $\lambda^{-1}\left(\boldsymbol{R}_{0}\right)$ both lie in a 3-cell u in the interior of W_{1}. It is evident that there is a homeomorphism in S mapping W_{0} onto W_{0}^{\prime} and so there is a homeomorphism $g^{\prime \prime}$ in S of E^{3} onto itself mapping $g^{\prime}\left(\boldsymbol{W}_{0}^{\prime}\right)$ onto $\lambda^{-1}\left(\boldsymbol{R}_{0}\right)$. We can find a 3 -cell U outside of which $g^{\prime \prime}$ is the identity and a homeomorphism φ mapping U onto u which is the identity on $\lambda^{-1}\left(\boldsymbol{R}_{0}\right) \cup g^{\prime}\left(\boldsymbol{W}_{0}^{\prime}\right)$. Define $g=$ identity outside $u, g=\varphi g^{\prime \prime \prime} \varphi^{-1}$ on u. Then $h=g g^{\prime}$ is a homeomorphism leaving boundary W_{1} fixed and mapping W_{0}^{\prime} onto $\lambda^{-1}\left(\boldsymbol{R}_{0}\right)$. Since $\mathscr{C} \subset$ Interior $W_{0}^{\prime}, h(\mathscr{w}) \subset$ Interior $\lambda^{-1}\left(\boldsymbol{R}_{0}\right)$ and since $\omega \subset$ Interior $\lambda^{-1}\left(R_{0}\right)$ there is a homeomorphism i of E^{3} onto itself leaving $E^{3}-\lambda^{-1}\left(R_{0}\right)$ fixed and mapping $h(\mathscr{w})$ into Φ. Let U_{0}, u_{0} be 3-cells, with $U_{0} \supset W_{1}, \lambda^{-1}\left(R_{0}\right) \supset u_{0}$, Interior $u_{0} \supset \mathscr{w}$ and let φ_{0} be a homeomorphism of U_{0} onto u_{0} leaving ω pointwise fixed. Let $j=\varphi_{0}(i h)^{-1} \varphi_{0}^{-1}$ on $u_{0}, j=$ identity on $W_{1}-u_{0}$. Then $\rho^{\prime}=j i h$ is a homeomorphism of W_{1} onto W_{1},

$$
\rho^{\prime}\left(\boldsymbol{W}_{0}^{\prime}\right)=j i \lambda^{-1}\left(\boldsymbol{R}_{0}\right)=\lambda^{-1}\left(\boldsymbol{R}_{0}\right),
$$

$\rho^{\prime} \mid$ Bdry $W_{1}=$ identity \quad and $\quad \rho^{\prime}\left|\omega=\varphi_{0}(i h)^{-1} \varphi_{0}^{-1} i h\right| \omega=\varphi_{0} \mid \omega=$ identity. This completes the proof.

BIBLIOGRAPHIE.

[^1](Manuscrit reçu le 30 novembre i959.)

James Glimm,

Institute for advanced Study, Princeton (États-Unis).

[^0]: (${ }^{1}$) Fellow of the National Science Foundation (U. S. A.).

[^1]: [1] Bing (R. H.). - Necessary and sufficient conditions that a 3-manifold be S^{3}, Annals of Math., t. 68, ı958, p. 17-37.
 [2] Neuman (M. H. A.) and Whitehead (J. H. C.). - On the group of a certain linkage, Quart. J. of Math. t. 8, 1937, p. 14-2ェ.
 [3] Whitehead (J. H. C.). - A certain open manifold whose group is unity, Quart. J. of Math., t. 6, ェ935, p. 268-279.

