BULLETIN DE LA S. M. F.

JAMES GLIMM Two cartesian products which are euclidean spaces

Bulletin de la S. M. F., tome 88 (1960), p. 131-135

<http://www.numdam.org/item?id=BSMF_1960__88__131_0>

© Bulletin de la S. M. F., 1960, tous droits réservés.

L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France, 88, 1960, p. 131 à 135.

TWO CARTESIAN PRODUCTS WHICH ARE EUCLIDEAN SPACES

BY

JAMES GLIMM

(Princeton) (1).

WHITEHEAD has given an example of a three-dimensional manifold W which is not (homeomorphic to) E^3 , Euclidean 3-space [3]. We prove the following theorem about W, the first statement of which is due to A. SHAPIRO.

THEOREM. — If W is the manifold described below then $W \times E^1$ is homeomorphic to E^* . Also $W \times W$ is homeomorphic to $E^3 \times W$ (which is homeomorphic to E^6).

That W is not homeomorphic to E^3 was proved in [1], [2]. In [1] it is shown that no cube in W contains W_0 (defined below), which implies W is not E^3 . The homeomorphism $W \times E^1 \approx E^4$ can be used to show the existence of a two element (and so compact) group of homeomorphisms of E^4 onto itself whose fixed point set is W. The problem of showing that $W \times W$ is homeomorphic to E^6 was suggested to the author by L. ZIPPIN.

Let W_0 , W_1 , R_0 , R_1 be solid tori with W_0 simply self-linked in the interior of W_1 (see fig. 1) and R_0 trivially imbedded in the interior of R_1 . Let I_0 and I_1 be closed bounded intervals of E^1 with I_0 contained in the interior of I_1 . Let w (resp. r) be a 3-cell in the interior of W_0 (resp. R_0), let e (resp. f, g) be a homeomorphism of E^3 (resp. E^3 , E^1) onto itself with $e(W_0) = W_1$ [resp. $f(R_0) = R_1$, $g(I_0) = I_1$] and $e \mid w$ (resp. $f \mid r$) the identity. Let

$$W_n = e^n(W_0), \quad R_n = f^n(R_0), \quad I_n = g^n(I_0).$$

Let $W = \bigcup W_n$, we suppose that

$$E^{3} = \bigcup_{n=1}^{\infty} R_{n}, \qquad E^{1} = \bigcup_{n=1}^{\infty} I_{n}.$$

. S14

(1) Fellow of the National Science Foundation (U. S. A.).

Let $S = \{h \mid A : A \subset E^3, h \text{ is a homeomorphism of } E^3 \text{ onto itself which is the identity outside a compact set };$ we further suppose $e \in S$, $f \mid R_i \in S$ and $\lambda'(R_0) = W_0$ for some λ' in S.

PROOF. — We prove both statements simultaneously. Let V_n denote I_n (resp. W_n), V denote E^1 (resp. W). For each positive integer n, we construct a homeomorphism $h_n: W_n \times V_n \to R_n \times V_n$ with the properties

- (1) $h_n(W_{n-1} \times V_{n-1}) = R_{n-1} \times V_{n-1};$
- (2) $h_n | W_{n-2} \times V_{n-2} = h_{n-1} | W_{n-2} \times V_{n-2} \ (n \ge 2).$

Suppose we have constructed all the h' s. Then we define

$$\Phi: \quad W \times V \to E^3 \times V$$

as follows. If $(x, y) \in W \times V$, then for some $n, (x, y) \in W_n \times V_n$. Let $\Phi(x, y) = h_{n+1}(x, y)$. By (2) we see that Φ is well-defined, by (1) we see that Φ is onto. Since h_n is a homeomorphism, Φ is also.

Suppose the following lemma is true. Using the lemma, we will construct the h_n .

LEMMA. — If we are given a homeomorphism $\beta' : w \times V_0 \to R_0 \times V_0$ (into), and if β' has the form $\lambda' | w \times I$ where λ' is a homeomorphism in S of W_0 onto R_0 , then there is a homeomorphic extension β of β' ,

 $\beta: \quad W_1 \times V_1 \to R_1 \times V_1, \qquad \beta(W_0 \times V_0) = R_0 \times V_0,$

and $\beta | Bdry(W_1 \times V_1) = \lambda \times I$ for λ some homeomorphism in S of W_1 onto R_1 .

Let λ' be a homeomorphism in S mapping W_0 onto R_0 . Let $h_1 = \beta$, the extension of $\beta' = (\lambda' | w) \times I$ given by the lemma. We suppose inductively that for n a positive integer greater or equal to 2, h_{n-1} has been constructed, and $h_{n-1} | Bdry(W_{n-1} \times V_{n-1}) = \gamma \times I$, for γ some homeomorphism in S of W_{n-1} onto R_{n-1} . We note that h_1 has this property. Observe that $(\gamma^{-1} \times I) h_{n-1}$ is a homeomorphism of $W_{n-1} \times V_{n-1}$ onto itself leaving the boundary pointwise fixed. Let h be the extension of this map to $W_n \times V_n$ which is the identity on $W_n \times V_n$ -Interior $(W_{n-1} \times V_{n-1})$. Let r' be a 3-cell with Interior $R_{n-1} \supset r' \supset R_{n-2}$. Let $w' = \gamma^{-1}(r')$. Let $k : W_n \rightarrow W_n$ be a homeomorphism in S, $k \mid (W_n$ -Interior $W_{n-1}) =$ identity, $k(w') \subset w$. Let β be the extension of $\gamma k^{-1} \times I \mid w \times V_{n-1}$ to a homeomorphism of $W_n \times V_n$ onto $R_n \times V_n$ as given by the lemma. Let $h_n = \beta(k \times I) h$. We check that h_n satisfies (I) and (2),

$$h_n(W_{n-1} \times V_{n-1}) = \beta(W_{n-1} \times V_{n-1}) = R_{n-1} \times V_{n-1}.$$

If $z \in W_{n-2} \times V_{n-2}$, then $(k \times I) h(z) \in w \times V_{n-1}$ and

$$h_n(z) = \beta(k \times I) h(z)$$

= $(\gamma k^{-1} \times I) (k \times I) (\gamma^{-1} \times I) h_{n-1}(z) = h_{n-1}(z)$

as asserted. Also

$$h_n | \operatorname{Bdry}(W_n \times V_n) = \beta(k \times I) h | \operatorname{Bdry}(W_n \times V_n) \\ = \lambda k \times I | \operatorname{Bdry}(W_n \times V_n),$$

where the last equality arises from the form of β on $Bdry(W_n \times V_n)$ and the fact that $(k \times I) (Bdry(W_n \times V_n)) = Bdry(W_n \times V_n)$. Thus h_n satisfies the induction hypothesis and all the h_n can be defined, if we prove the lemma.

PROOF OF LEMMA. — Given $\beta' = \lambda' | w \times I : w \times V_0 \rightarrow R_0 \times V_0$, we can extend $\lambda' | w$ to a homeomorphism in $S \lambda$ of W_1 onto R_1 . In fact let j be a homeomorphism in S of R_1 onto itself which maps R_0 onto R_0 and $\lambda'(w)$ into r. Let

$$\lambda = j^{-1} f j \lambda' e^{-1}.$$

Then λ is a homeomorphism in S of W_1 onto R_1 and $\lambda | w = j^{-1} f j \lambda' | w = \lambda' | w$ so λ is the desired extension of $\lambda' | w$. It is now sufficient to construct a homeomorphism h of $W_1 \times V_1$ onto itself which leaves $w \times V_0$ pointwise fixed with $h | Bdry(W_1 \times V_1) = \mu \times I$ for some μ in S which maps W_1 onto W_1 , and with $h(W_0 \times V_0) = \lambda^{-1}(R_0) \times V_0$. In fact $(\lambda \times I) h = \beta$ is a homeomorphism of $W_1 \times V_1$ onto $R_1 \times V_1$, β extends β' , and

$$\beta(W_0 \times V_0) = \lambda \lambda^{-1}(R_0) \times V_0 = R_0 \times V_0,$$

$$\beta | Bdry(W_1 \times V_1) = \lambda \mu \times I | Bdry(W_1 \times V_1).$$

J. GLIMM.

The homeomorphism h will be given as the product of four homeomorphism Λ , Σ , Δ and P of $W_1 \times V_1$ onto itself. Λ , Σ and Δ will each leave Bdry $(W_1 \times V_1) \cup (w \times V_0)$ pointwise fixed. Λ will lift the dark portion of W_0 , Σ will slide this lifted part away from the link, and Δ will drop the image under $\Sigma\Lambda$ of the dark part of W_0 back into its original plane. We suppose W_1 is $D \times C$ where D is the square $\{(u, v) : o \leq u, v \leq 20\}$ and C is the circle $\{\theta : o \leq \theta < 2\pi\}$. We suppose that

$$W_{0} \subset \{(u, v) : 9 \leq u, v \leq 10\} \times C, \qquad w \subset D \times \{\theta : 6 \leq \theta < 2\pi\},$$

the link in $W_0 \subset D \times \{\theta : .5 \leq \theta \leq I\}$. Let $\alpha, \beta, \gamma, \delta$ be functions on C, let α, b, c be functions on [0, 20], defined as follows. Let

$$\begin{aligned} \alpha([0, 2]) &= \mathbf{I}, \quad \alpha([4, 2\pi]) = \mathbf{0}, \quad \beta(\mathbf{0}) = \mathbf{0}, \\ \beta([.5, 4]) &= \mathbf{I}, \quad \beta([6, 2\pi]) = \mathbf{0}, \\ \gamma([0, 1]) &= \mathbf{0}, \quad \gamma([2, 2\pi]) = \mathbf{I}, \quad \delta([0, 1]) = \mathbf{0}, \\ \delta([1.5, 3]) &= \mathbf{I}, \quad \delta([5, 2\pi]) = \mathbf{0}, \end{aligned}$$

and let $\alpha,\,\beta,\,\gamma,\,\delta$ be linear on intervals for which they are not defined above. Let

$$\begin{array}{ll} \alpha(0) = \mathbf{0}, & a([9, 10]) = \mathbf{I}, & a(20) = \mathbf{0}, \\ b([0, 10]) = \mathbf{0}, & b([11, 12]) = \mathbf{I}, & b(20) = \mathbf{0}, \\ c(0) = \mathbf{0}, & c([9, 12]) = \mathbf{I}, & c(20) = \mathbf{0}, \end{array}$$

and let a, b, c be linear on intervals for which they are not defined above. Let ε be a continuous map of W_1 into [0, 1] such that $\varepsilon(u, v, \theta) = \alpha(\theta)$ for (u, v, θ) in the dark part of W_0 , $\varepsilon = 0$ on the rest of W_0 and on Bdry W_1 . If $(u, v), (x, y) \in D, \theta, \psi \in C$, let

$$\begin{split} \Lambda(u, v, \theta, x, y, \psi) &= (u, v, \theta, x, y + 2\varepsilon(u, v, \theta) a(x) a(y), \psi), \\ \Sigma(u, v, \theta, x, y, \psi) &= (u, v, \theta + \beta(\theta) a(x) \\ &\times [(1 - \gamma(\theta)) b(y) + \gamma(\theta) c(y)] a(u) a(v), x, y), \\ \Delta(u, v, \theta, x, y, \psi) &= (u, v, \theta, x, y - 2\delta(\theta) c(y) a(x) a(u) a(v), \psi). \end{split}$$

If $V_i = I_i$, we identify I_0 with $\{10\} \times [9, 10] \times \{0\} \subset W_1$ and I_1 with $\{10\} \times [0, 20] \times \{0\} \subset W_1$. Then Λ , Σ , and Δ map $W_1 \times I_1$ onto itself and $h' = \Delta \Sigma \Lambda | W_1 \times I_1 (\text{resp. } h' = \Delta \Sigma \Lambda)$ is a homeomorphism of $W_1 \times V_1$ onto itself which leaves $(\text{Bdry}(W_1 \times V_1)) \cup (w \times V_0)$ pointwise fixed. For $(x, y, \psi) \in V_0$, $\Delta \Sigma \Lambda (W_0 \times (x, y, \psi)$ is trivially imbedded in $W_1 \times (x, y, \psi)$ and the projection W_0 on W_1 of $\Delta \Sigma \Lambda (W_0 \times (x, y, \psi))$ is independent of x, y, ψ in V_0 . To see this it is sufficient to compute $\Delta \Sigma \Lambda (u, v, \theta, x, y, \psi)$ for (u, v, θ) in W_0, x, y in [9, 10] and θ a point of non-linearity of α, β, γ or δ . Suppose we have a homeomorphism ρ' of W_1 onto W_1 which leaves Bdry $W_1 \cup w$ pointwise fixed, and with $\rho'(W_0) = \lambda^{-1}(R_0)$. Define $P = \rho' \times I$: $W_1 \times V_1 \to W_1 \times V_1$, define h = Ph'. Then h has the necessary properties.

134

Since $\lambda^{-1}(R_0)$ is trivially imbedded in W_1 , it is in a 3-cell in the interior of W_1 . There is a homeomorphism g' of E^3 onto itself leaving $E^3 - W_1$ pointwise fixed and such that $g'(W_0)$ and $\lambda^{-1}(R_0)$ both lie in a 3-cell u in the interior of W_1 . It is evident that there is a homeomorphism in Smapping W_0 onto W_0' and so there is a homeomorphism g'' in S of E^3 onto itself mapping $g'(W_0)$ onto $\lambda^{-1}(R_0)$. We can find a 3-cell U outside of which g'' is the identity and a homeomorphism φ mapping U onto u which is the identity on $\lambda^{-1}(R_0) \cup g'(W_0')$. Define g =identity outside $u, g = \varphi g'' \varphi^{-1}$ on u. Then h = gg' is a homeomorphism leaving boundary W_1 fixed and mapping W_0' onto $\lambda^{-1}(R_0)$. Since $w \subset$ Interior W_0' , $h(w) \subset$ Interior $\lambda^{-1}(R_0)$ and since $w \subset$ Interior $\lambda^{-1}(R_0)$ there is a homeomorphism i of E^3 onto itself leaving $E^3 - \lambda^{-1}(R_0)$ fixed and mapping h(w) into w. Let U_0, u_0 be 3-cells, with $U_0 \supset W_1, \lambda^{-1}(R_0) \supset u_0$, Interior $u_0 \supset w$ and let φ_0 be a homeomorphism of U_0 onto u_0 leaving w pointwise fixed. Let $j = \varphi_0(ih)^{-1} \varphi_0^{-1}$ on $u_0, j =$ identity on $W_1 - u_0$. Then $\rho' = jih$ is a homeomorphism of W_1 onto W_1 ,

$$\rho'(W_0) \equiv ji\lambda^{-1}(R_0) \equiv \lambda^{-1}(R_0),$$

 $\rho' | Bdry W_1 = identity$ and $\rho' | w = \varphi_0(ih)^{-1} \varphi_0^{-1} ih | w = \varphi_0 | w = identity$. This completes the proof.

BIBLIOGRAPHIE.

[1] BING (R. H.). — Necessary and sufficient conditions that a 3-manifold be S³, Annals of Math., t. 68, 1958, p. 17-37.

[2] NEUMAN (M. H. A.) and WHITEHEAD (J. H. C.). — On the group of a certain linkage, Quart. J. of Math. t. 8, 1937, p. 14-21.

[3] WHITEHEAD (J. H. C.). — A certain open manifold whose group is unity, Quart. J. of Math., t. 6, 1935, p. 268-279.

3**0**6

(Manuscrit reçu le 30 novembre 1959.)

James GLIMM, Institute for advanced Study, Princeton (États-Unis).