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SUR LA COMPOSITION DES EXPRESSIONS DIFFERENTIELLES
LINEAIRES ET UNE APPLICATION A LA THEORIE DES SYS-
TEMES D'EQUATIONS AUX DERIVEES PARTIELLES ;

Par M. Maurice JaNeT.

1. Appelons « expression différentielle linéaire d’ordre pen u »
toute somme de la forme

( ) A Jry o+ 40,
elu) = E Aoty . O T
- T 90z L L 0x%n

ou les a sont des fonctions des z, et ou
ofa;+ag+...~+ a,<p.

Une telle expression correspond a un polynome d’ordre p a
n variables, dont les coefficients dépendent de n paramétres.
Nous poserons

Xn

- 79N % ° .
M., .ofr=90(w1, g, ..., Ws; 21, X3, vy Tn).

Zaga,...0,w
Soient donnés les polynomes ¢, ¢ correspondant a deus expres-
sions différentielles linéaires ¢, ¢. Comment obtiendra-t-on le
polynome correspondant a (¢)? Quand ¢ se réduit a wb ol ...,
la réponse résulte immédiatement de la formule de Leibnitz qui
donne la dérivée d'un produit

0B1+B2+. +Bng _ 01 0 on 0Pt HPnag a,. . a,
) g =3, [Zcp, ...
P

drozt. . ozl L 028102 .. . )l

X w‘:‘. +B.i—ps w;‘z‘hﬁiﬂpe . 6,%n+5n_9n],

ou Z indique qu’il faut donner aux p tous les systémes de valeurs

)
entiéres telles que pour chaque ¢ on ait

0<piSP;
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et ou Z a le méme sens que dans l'expression de ¢. On peut

o
écrire la formule précédente

o OBBit g ‘ ¢ . 00t Pu 3
2 = 08 Gl wBitr e Bt :
“ t)x?‘d.cg’ cen0xpn 2 Ba B, 8. “2 ®n dzfr ... dufn

n

e
_ 2 | ()Pn"‘Pa“‘---*fPu(w?‘ mg’ ve mE")‘
- [IRT-TH 0l dwls . .. dorfn

Q2 Pt H+Pug
0zf1. .. dabe

Si d’ailleurs un des p élait supérieur au 3 de méme indice, le
terme correspondant s’annulerait de lui-méme; on peut donc
étendre le signe 2 a tous les systémes de valeurs positives (ou
nulles) des p.

Si¢= bei.{i,...(i,.“’?"”g’ ... P il suffira, pour obtenir I’expres-
sion de (¢) de multiplicr par bgg, g, le premier et le dernier
membre de I’équation (1) et de faire la somme de toutes les expres-
sions analogues. ‘

Do la formule simple :

~

T 1 0P1 Pt HPn JP1+Pa+. . +Pn
OEEIORSY L ?
P

palpa!l...pn! dufidwb: ... dwln Jufioxfr. .. dzf )

2. Considérons maintenant un systéme quelconque d’équations
aux dérivées partielles & une inconnue, linéaire sans seconds
membres. On peut déduire de ces équations, par dérivations,
multiplications par fonctions des variables, et additions, une infi-
nité d’équations (E) conséquences du systéime ().

Considérons 'ensemble des termes d’ordre le plus élevé de 'une
quelcoﬁque de ces équations; cet ensemble X («) correspond a un
certain polynome homogéne en w, X. 11 est clair que toutes ces

formes X constituent un module. C'est un module (2) de formes

(1) Les équations données sont bien entendu comprises dans les (E).

(*) Ondit qu’un systéme de formes en w, w,...w,, a coefficients fonctions de z,,
Z,, ..., x, constilue un module si, quelles'que soient les formes F,, F,, ... F, du sys-
téme, toute forme A,F, + A,F,+...+ A, F, ol les A sont des formes en v &
coefficients fonctions de 2, fait aussi partie du systéme.



— 9 —

en w, dont les coefficients sont des fonctions des x. Mais ce n’est
pas un module quelconque de cette espéce. Nous allons démontrer

en effet que si @, W sont deux formes quelconques du module

la forme ‘
2<:’E & dt f‘_">
do; dr;  dw; dx;
appartient au module.
® est 'ensemble des termes d’ordre le plus élevé p d’une cer-
taine expression différentielle linéaire ¢ déduite par dérivations,
multiplications par fonctions des z, additions, des premiers membres
des équations données. On en peut dire autant en remplacant
respectivement @, ¢, p dans la phrase précédente par W, ¢, ¢.
L’équation §(¢9) —¢(¢)=o0 fait nécessairement partic des
équations (E). Il est clair que cette équation est au plus
d'ordre p -+ g —1. L’ensemble des termes d'ordre p +q—1
de (¢) est dailleurs le méme d’aprés la formule (2) que 'en-
semble des termes d’ordre p + g — 1 de
-— I do
Yo+ ﬁi P
et par suite 'ensemble des termes d’ordre p 4 g — 1de $(9) —o ()
est le méme que celui des termes d’ordre p+ g — 1 de

CR
2 kdm,‘ ().Z‘i - ()_(;; d.’l‘i !

s Y ot dor 9% Por
mais 5= est d'ordre ¢ — 1, Forr d’ordre p.

L’ensemble des termes d’ordre p + ¢ —1 de (o) — o (¥) est

done
2(@ 9% 0D T
dw; dx;  Jdw; dx;,
Cela suffit a établir la proposition annoncée.
Cette démonstration est a rapprocher de celle qui a permis
a M. Giinther de prouver que le systéme d’équations du premier
ordre, auquel doivent satisfaire les multiplicités caractéristiques
an —1 dimensions d’un systénie d’équations aux dérivées par-
tielles quelconque, est, en général, complétement intégrable.



