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SUR LA COMPOSITION DES EXPRESSIONS DIFFÉRENTIELLES
LINÉAIRES ET UNE APPLICATION A LA THÉORIE DES SYS-
TÈMES D'ÉQUATIONS AUX DÉRIVÉES PARTIELLES ;

Par M. MAURICE JANET.

1. Appelons « expression différentielle linéaire d'ordre p en u »
toute somme de la forme

/ s V» ^-HX,+...-KX»^
y(^=^aa^.^^^^-^,

a

où les a sont des fonctions des *r, et où

o ^ ai -+- w.î +...-+- a^ ̂  /?.

Une telle expression correspond à un polynôme d'ordre p à
n variables, dont les coefficients dépendent de n paramètres.
Nous poserons

Saa,aî...a„toal(^l...coatn= 9(^1 , MS, . . •, ^n ; ̂ i, x^ . . ., Xn).

Soient donnés les polynômes y, ^ correspondant à deux expres-
sions différentielles linéaires 9, ^. Comment obtiendra-t-on le
polynôme correspondant à ̂  (9) ? Quand ^ se réduit à co^ &)^... ci);3",
la réponse résulte immédiatement de la formule de Leibnitz qui
donne la dérivée d'un produit

. ^P^-^cp _vrypp^ p^p.̂ ...-̂ ,̂,̂
0 ^ .̂..̂ ,3" -^[^^•••^ ^ .̂..̂

x (O^+^-P^^'-P-- ... ̂ ^+?"-PW^,

où ̂  indique qu'il faut donner aux p tous les systèmes de valeurs
P

entières telles que pour chaque ( on ait

o^p^p,
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et où ̂  a le même sens que dans l'expression de 9. On peiit
a

écrire la formule précédente

^^...^y ̂  ̂  ^ , ^ .̂..-.p̂
^P1^2...^71 ^ ^ ^ P" 1 2 • • • " ' / ( - ^P....^^

l̂ 1 ^p.4-p,+...-t-p,^^P.^^ . , ^ ^P^-

— ^ P l t p 2 f . . • p / ^ ! ^ c o P ' ^ c o ^ . ^ P "
p 1 2 - /(

^?t+p2-+-..-l-P«C?

^1 ... àx^ '

Si d'ailleurs un des p était supérieur au (3 de même indice, le
terme correspondant s'annulerait de lui-même; on peut donc
étendre le signe ï à tous les systèmes de valeurs positives (ou
nulles) des p.

Si ^ == ^^.^...^ûû131^2. . . of/1, il suffira, pour obtenir l'expres-
sion de ^(9) de multiplier par 6^ ̂ ...^ le premier et le dernier
membre de l'équation (i/ et de faire la somme de toutes les expres-
sions analogues.

D^où la formule simple :

(2) 4^= V l ^4-p.4-...+p4 ^P^----^ .

^J p i î p a ! ... p,J (W'(W<...d(»)P» ôx^^àx^ . . .^F"*
0 1 •a '* » "a /t

2. Considérons maintenant un système quelconque d'équations
aux dérivées partielles à une inconnue, linéaire sans seconds
membres. On peut déduire de ces équations, par dérivations,
multiplications par fonctions des variables, et additions, une infi-
nité d'équations (E) conséquences du système ( < ) .

Considérons l'ensemble des termes d'ordre le plus élevé de l'une
quelconque de ces équations; cet ensemble X(^) correspond à un
certain polynôme homogène en c«), X. 11 est clair que toutes ces
formes X constituent un module. C'est un module (2) de formes

( l ) Les équations données sont bien entendu comprises dans les (E) .
( 3 ) On dit qii'im système de formes en (Oi^.. .G),,, à coefficients fonctions de x^,

x^ ..., x^ constitue un module si, quelles'que soient les formes F^, F^, .••F\ du sys-
tème, toute forme A, F^ + A^F^-+- . . .+A^ F^ où les A sont des formes en M à
coefficients fonctions de x, fait aussi partie du système.
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en &), dont les coefficients sont des fonctions des x. Mais ce n'est
/ ) a s un module quelconque de cette espèce. Nous allons démontrer
en effet que si <î>, W sont deux formes quelconques du module
la forme

^( àW aï aï à^\
^\àwi ôxi à^i à x i )

appartient au module.
C» est l'ensemble des termes d'ordre le plus élevé/? d'une cer-

taine expression différentielle linéaire 9 déduite par dérivations,
multiplications par fonctions des x^ additions, des premiers membres
des équations données. On en peut dire autant en remplaçant
respectivement <ï>, <p, p dans la phrase précédente par y, ^, q .

Inéquation 4^? )—P^)^ 0 ^alt nécessairement partie des
équations (E). Il est clair que cette équation est au plus
d'ordre p -h q — i. L'ensemble des termes d'ordre p + q — i
de ^(?) est d'ailleurs le même d'après la formule (2) que l'en-
semble des termes d'ordre p + q — i de

T~ Y1 û̂  Û-Q

()(x>i à Xi^-'2^
et par suite l'ensemble des termes d'ordre p-\-q — i~de ^(9) — ?(^)
est le même que celui des termes d'ordre p-\-q — i de

^ / à^ ày ch à'if \
j^ \^i à Xi ôw i àx.i)

mais -J- est d'ordre q — i , -:-—• d'ordre p .à Xi •* ' à^i l _________
L'ensemble des termes d'ordre p + q — i d e ^ ( c p ) — ^^p) est

donc
\( à^ à^ ___ à^ àW\
^uà\()wi àxi à^i à x i )

Cela suffit à établir la proposition annoncée.
Cette démonstration est à rapprocher de celle qui a permis

à M. Gtinther de prouver que le système d'équations du premier
ordre^ auquel doivent satisfaire les multiplicités caractéristiques
à n — i dimensions d'un système d'équations aux dérivées par-
tielles quelconque^ est, en général, complètement intégrable.


