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ABSTRACT. — We describe first-order logic elementary embeddings in a torsion-free hyperbolic
group in terms of Sela’s hyperbolic towers. Thus, if H embeds elementarily in a torsion free hyperbolic
group I', we show that the group I" can be obtained by successive amalgamations of groups of surfaces
with boundary to a free product of H with some free group and groups of closed surfaces. This
gives as a corollary that an elementary subgroup of a finitely generated free group is a free factor.
We also consider the special case where I is the fundamental groups of a closed hyperbolic surface.
The techniques used to obtain this description are mostly geometric, as for example actions on real or
simplicial trees, or the existence of JSJ splittings. We also rely on the existence of factor sets, a result
used in the construction of Makanin-Razborov diagrams for torsion-free hyperbolic groups.

RESUME. — On obtient une description des plongements élémentaires (au sens de la logique du
premier ordre) dans un groupe hyperbolique sans torsion, en termes de tours hyperboliques de Sela.
Ainsi, si H est plongé élémentairement dans un groupe hyperbolique sans torsion I', on peut obtenir
I' en amalgamant successivement des groupes de surfaces a bord a un produit libre de H avec des
groupes libres et des groupes de surfaces fermées. Ceci permet en corollaire de montrer qu’un sous-
groupe plongé élémentairement dans un groupe libre de type fini est un facteur libre. On considére
également le cas ou I est le groupe fondamental d’une surface hyperbolique fermée. Les techniques
utilisées pour obtenir cette description sont essentiellement géométriques : actions sur des arbres réels
ou simpliciaux, décompositions JSJ. On s’appuie également sur des résultats d’existence d’ensembles
de factorisation utilisés dans la construction de diagrammes de Makanin-Razborov pour un groupe
hyperbolique sans torsion.

1. Introduction

Tarski’s problem asks whether any two finitely generated non abelian free groups are
elementary equivalent, namely whether they satisfy the same closed first-order formulas over
the language of groups. In a series of articles starting with [26] and culminating in [31], Sela
answered this question positively (see also the work of Kharlampovich and Myasnikov [15]).
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Sela’s approach is very geometric, and thus enables him in [33] to tackle problems on the
first-order theory of torsion-free hyperbolic groups as well.

Another notion of interest in first-order theory is that of an elementary subgroup, or
elementary embedding. Informally, a subgroup H of a group G is elementary if any tuple
of elements of H satisfies the same first-order properties in H and G (see Section 2 for a
definition).

Denote by F,, the free group on n generators. To prove that finitely generated free groups
of rank at least 2 all have the same elementary theory, Sela shows in fact the following
stronger result:

THEOREM 1.1 ([31, Theorem 4]). — Suppose 2 < k < n. The standard embedding
Fy — [, is elementary.

In this paper, we use some of Sela’s techniques to give a description of elementary sub-
groups of torsion-free hyperbolic groups. Our main result is

THEOREM 1.2. — Let G be a torsion-free hyperbolic group. Let H — G be an elementary
embedding. Then G is a hyperbolic tower based on H.

Hyperbolic towers are groups built by successive addition of hyperbolic floors, which can
be described as follows. A group G has a hyperbolic floor structure over a subgroup G’ if it is
the fundamental group of a complex X built by gluing some surfaces X1, .. ., X,, along their
boundary to the disjoint union of complexes X7, ..., X/, such that G’ is the fundamental
group of a subcomplex X’ which contains the subcomplexes X, and whose intersection
with each surface ¥; is contractible (in particular G’ is isomorphic to the free product of
the groups 71 (X})). We require moreover the existence of a retraction r : G — G’ which
sends the fundamental groups 71 (X;) to non abelian images.

A hyperbolic tower over H is built by successively adding hyperbolic floors to a “ground
floor” which is the free product of H, closed surface groups and a free group (see Figure 1).
For a precise definition, see Definition 5.4.

Hyperbolic towers are defined by Sela in [26], and enable him to give in [31] a description
of finitely generated groups which are elementary equivalent to free groups. This structure
is also used in [33] to give a classification of elementary equivalence classes of torsion-free
hyperbolic groups. In fact, Proposition 7.6 of [33] shows that some particular subgroups of
a torsion-free hyperbolic group I (its “elementary cores”), over which I" has a structure of
hyperbolic tower, are elementarily embedded in I". According to Sela, the specific properties
of these subgroups (apart from the structure of hyperbolic tower I' admits over them) are not
used in the proof, which in fact shows that the converse of Theorem 1.2 holds [32].

In the particular case where G is a free group, we show that Theorem 1.2 implies the
converse of Theorem 1.1, so that we have

THEOREM 1.3. — Let H be a proper subgroup of F,,. The embedding of H in F,, is
elementary if and only if H is a non abelian free factor of F,,.
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FIGURE 1. A hyperbolic tower over H.

Let us consider the case where G is the fundamental group of a closed hyperbolic surface.
In the example represented on Figure 2, the element corresponding to -y can be written as a
product of two commutators in 7 (X), though not in 71 (X;). This is a property which can
be expressed by a first-order formula, and that + satisfies on 71 (X), though not in 7 (2;):
the embedding of 71 (X) in 71 (X) is not elementary.

%K_J
2

FIGURE 2. 71(X1) is not elementarily embedded in 71 (X).

This example seems to suggest that an elementary subgroup of the fundamental group of
a hyperbolic surface cannot be too big. In fact, we show that applying Theorem 1.2 gives

THEOREM 1.4. — Let S be the fundamental group of a closed hyperbolic surface 3. Suppose
H is a proper subgroup of S whose embedding in S is elementary.

Then H is a non abelian free factor of the fundamental group of a connected subsurface Y
of ¥ whose complement in 3 is connected, and which satisfies |x(Zo)| < |x(2)|/2 (with
equality if and only if ¥ is the double of ¥ ).

To prove Theorem 1.2, we need to uncover a decreasing sequence G = Go > G; >
G2 > --- of subgroups of G which contain H, each of the subgroups G; forming a floor
of a hyperbolic tower above the next subgroup G, .

Let us give an idea of the proof'in the special case where G is freely indecomposable relative
to H. For each decomposition of G as an amalgamated product or an HNN extension above
a cyclic group for which H lies in one of the factors, we consider the Dehn twists which
fix the factor containing H. We then define the modular group Mod g (G) as the group of
automorphisms of G generated by all such Dehn twists.
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The shortening argument of Rips and Sela gives the following result (this is a special case
of one of the two key results for the construction of restricted Makanin-Razborov diagrams
in [33]):

THEOREM 1.5. — Let G be a hyperbolic group which is freely indecomposable with respect
to a non abelian subgroup H. There exists a finite set of proper quotients of G, such that for
any non injective morphism h : G — G which fixes H, there is an element o of Mod g (G) such
that h o o factors through one of the corresponding quotient maps.

The key idea in the proof of Theorem 1.2 is to try and express this factorization result by
a first-order formula that H satisfies.

Suppose now that G does not admit any non trivial splitting over a cyclic subgroup in
which H is elliptic, so that the modular group Mod g (G) is trivial. Theorem 1.5 then implies
that any non injective morphism G — G fixing H factors through one of a finite set of
quotients. Note that if H is a proper subgroup of GG, a morphism G — H fixing H is in
particular a non injective morphism G — G fixing H. Let U be a finite set containing one
non trivial element in the kernel of each one of the quotient maps given by Theorem 1.5. If H
has a finite generating set {hy, . .., h,, }, we can express by a first-order formula ¢(h1, ..., hy)
satisfied by H the following statement: “any morphism G — H fixing the elements h;
sends one of the elements of U to a trivial image”. Since H is elementary in G, the formula
@¢(hq,. .., hy,) is satisfied by G, and its interpretation on G is the following statement: “any
morphism G — G fixing each of the elements h; sends one of the elements of U to a trivial
image”. This is obviously not true of the identity map G — G, so we get a contradiction.
Thus if H is elementary in G, there is at least one non trivial splitting of G over a cyclic group
in which H is elliptic.

In general, we do not know a priori that H is finitely generated (though this is a conse-
quence of Theorem 1.2), and thus we cannot express the fact that a morphism fixes H in a
first-order formula. We can in fact generalize Theorem 1.5 to show that any non injective
morphism G — G which fixes a large enough finitely generated subgroup Hy of H factors
after precomposition by a modular automorphism through one of finitely many quotients.
We also need to show that a morphism G — H which fixes a large enough finitely generated
subgroup Hy of H cannot be injective. For this, we prove that if G is freely indecomposable
with respect to a subgroup H, then it is freely indecomposable with respect to a finitely gen-
erated subgroup Hj of H, and we combine this with the following result:

THEOREM 1.6. — Let G be a torsion-free hyperbolic group. Let Hy be a non cyclic subgroup
of G relative to which G is freely indecomposable. Then G is co-Hopf relative to Hy, that is, if
a morphism ¢ : G — G is injective and fixes Hy then it is an isomorphism.

A more difficult problem is that of expressing precomposition by a modular automor-
phism even when the modular group is not trivial. To overcome this, we consider the cyclic
JSJ decomposition of G relative to H: it is a decomposition of G as a graph of group with
cyclic edge stabilizers in which H is elliptic, and which is maximal in some sense among all
such decompositions of this type that G admits. Some of the vertex groups of this decomposi-
tion are fundamental groups of surfaces with boundary. The point is that the modular group
preserves some of the structure of the JSJ. The JSJ decomposition gives some combinatorial
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structure to both G and Mod g (G), which enables us to partially express precomposition by
an element of the modular group in first-order.

If the JSJ decomposition of G relative to H does not contain any surface groups, precom-
position by a modular element can be completely expressed in a first-order formula, so that
the argument we gave in the trivial modular group case generalizes and we get a contradic-
tion. Thus if H is elementary in G, the JSJ decomposition of G relative to H must contain
some surface groups. It is precisely some of these surface groups which will appear in the
hyperbolic floor structure we will uncover.

As soon as the JSJ contains some surface group, we can only partially express precompo-
sition by a modular automorphism, and the first-order formula ¢(h1, ..., h,) satisfied by H
that we build expresses a result weaker than the factorization result. Its interpretation on G
does not give a contradiction, but a non injective morphism G — G which preserves some
properties of the JSJ: we call such a morphism a preretraction.

We then show that a non injective preretraction can be modified to get a retraction of some
of the surface groups of the JSJ onto a proper subgroup of G so as to form a hyperbolic floor.
This result is stated in Proposition 5.11, and is proved using arguments of low dimensional
topology and Bass-Serre theory. We then proceed by induction.

Section 2 recalls the definition of an elementary embedding. Section 3 gives some basic
but key results about surfaces with boundary and maps between such surfaces. These results
will be used later to deduce Theorem 1.4 from Theorem 1.2, and are crucial in the proof of
Proposition 5.11. Section 4 recalls known results about the existence of factor sets, such as
Theorem 1.5, and gives an outline of their proof. We also indicate how the same techniques
can prove Proposition 1.6. In Section 5, we prove Theorem 1.2, 1.3 and 1.4 assuming that
both Proposition 5.11 and Proposition 5.12 (another result concerning preretraction needed
for the induction step) hold. In Section 6, we prove that a preretraction A — A which satisfies
some injectivity conditions on some subgroups of A must in fact be an isomorphism. This
will be useful in the last section, which is devoted to the proof of Propositions 5.11 and 5.12.

Most of the results presented here are part of the author’s Ph.D. thesis. Many thanks are
due to Zlil Sela for suggesting this problem as well as for the many discussions that followed,
to Gilbert Levitt for his constant assistance, and to Thomas Delzant, Panos Papasoglu and
Vincent Guirardel for their helpful advice. We are also grateful to the referee for his helpful
remarks.

2. Elementary embeddings

We give only an informal definition of first-order formulas, for a precise definition and
more detailed background, the reader is referred to [6], or to [5].
The language of groups ¥ is the set of symbols consisting of

— the symbols -, 7!, and 1, standing for the group multiplication, the inverse and the
identity element respectively (these are specific to the language of groups);

— the usual first-order symbols: =, #, A (meaning “and”), V (meaning “or”), =, and the
quantifiers V and 3;

— variables z1, x2, . . .
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A first-order formula in the language of groups is a finite formula using these symbols. Note
that variables always stand for elements of the group, so that in a first-order formula, we can
only quantify on elements of the group and not on integers, say, or on subsets of the group.

A variable z is free in the formula ¢ if it is not bound by any quantifier, that is, if neither Vz

nor Jz appear in ¢. We usually denote a first-order formula by ¢(x1, ..., z, ) if the variables
which appear in it and are free are exactly z1, ..., x,.
If ¢(z1,...,x,) is a first-order formula and ¢4, . .., g, are elements of a group G, we say

that ¢(g1,. .., gn) is satisfied by G if its interpretation is true on G. Thisis denoted by G |= ¢.
ExaMPLE 2.1. — Consider the following formula:

¢(z) : Vy zy = yz.
Given an element g in a group G, we have G |= ¢(g) if and only if g lies in the centre of G.

Let H be a subgroup of a group G. Given a first-order formula ¢(x) and an element h
of H, we could have H = ¢(h) and G ~ ¢(h), that is, h could have different first-order
properties in H and in G. If this never happens, we say that H is elementary in G. More
precisely:

DerINITION 2.2 (Elementary embedding). — We say that the embedding of H in G is
elementary (or that H is an elementary subgroup of G) if for any first-order formula
d(x1,...,x,) and for any elements hq, . .., h,, we have

HE ¢(hy,...,h,) < GE ¢(hy,...,~hp).
This is denoted by H < G.

ExaMPLE 2.3. — Suppose H is an elementary subgroup of a group G. By considering the
formula given in Example 2.1, we see that an element h of H is in the centre of H if and only
if it is in the centre of G.

Note that if the embedding H <— G is elementary, in particular formulas without free
variables are satisfied by H if and only if they are satisfied by G (i.e. H and G are elementary
equivalent). So for example, we can see by considering the formula Vz Vy xy = yz that H is
abelian if and only if G is.

3. Some preliminary results on surface groups

All the surfaces we consider are, unless otherwise stated, compact, connected, and with
(possibly empty) boundary.

Let X be a surface, and denote by S its fundamental group. To each boundary compo-
nent of X corresponds a conjugacy class of maximal cyclic subgroups of S: we call these
subgroups maximal boundary subgroups, and their generators maximal boundary elements.
A non trivial element in a maximal boundary subgroup is called a boundary element, and the
cyclic group it generates is called a boundary subgroup.

The group S endowed with the set of its maximal boundary subgroups is called a surface
group. If ¥ and X’ are surfaces, a morphism f between their fundamental groups S and S’
is a morphism of surface groups if it sends boundary elements to boundary elements.
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We will denote by rk(F') the rank of a finitely generated free group F. We will need a
notion of complexity for surfaces with non empty boundary such that if we cut a surface
along a simple closed curve, the connected components we get have complexity strictly
smaller than that of the original surface. The rank of the fundamental group will not be
sufficient for this, as cutting a surface along a non separating simple closed curve preserves
it; we thus give

DeriNITION 3.1 (Topological complexity). — Let X be a surface with non empty boundary,
denote by S its fundamental group. The topological complexity k(X) of ¥ is the pair
(rk(S), —n), where n is the number of boundary components of . We order topological
complexities lexicographically.

Note that complexity determines a surface up to orientability.

3.1. Surface groups acting on simplicial trees

DEerFINITION 3.2 (Splitting A(S, &) dual to a set of simple closed curves)

Let X be a surface, and let G be a set of non null-homotopic, two-sided, disjoint simple
closed curves on % (note that we do not exclude pairs of parallel curves). We denote by
A(S, ©) the splitting of the fundamental group S of T dual to the set of curves G (given by the
Van Kampen Lemma). We call the corresponding S-tree Ty the tree dual to 6.

Theorem II1.2.6 of [16] states that if the fundamental group of a surface X acts minimally
on a simplicial tree T, in such a way that boundary elements are elliptic and edge stabilizers
are cyclic, then there exists a set & of non null-homotopic, two-sided and non boundary-
parallel simple closed curves on ¥ such that T is isomorphic to Ty (as an S-tree). This
is proved by building an equivariant map between a universal cover of ¥ and 7', which
we choose so that the inverse image of midpoints of edges of 1" gives us lifts of non null-
homotopic simple closed curves on X.

We will give in Lemma 3.4 a slightly different version of this result, which can be proved
in essentially the same way. One difference is that we do not assume that the edge stabilizers
are cyclic, so we get a surjective equivariant map Ty — T which is not necessarily injective.
Also, we restrict ourselves to sets & of simple closed curves which are pairwise non parallel,
so that we lose simpliciality of the map Ty — T

DeriNiTION 3.3 (Essential set of curves on a surface). — A set € of simple closed curves
on a surface is essential if its elements are disjoint, non null-homotopic, two-sided, non
boundary-parallel and pairwise non parallel. We consider such sets up to homotopy.

LEmMA 3.4, — Suppose that the fundamental group S of a surface with boundary . acts
on a simplicial tree T, in such a way that boundary subgroups are elliptic. Then there exists an
essential set of curves G on %, and an equivariant map t : Ty — T between the S-tree dual
to GandT.

REMARK 3.5. — The cyclic subgroups of S corresponding to curves in G stabilize edges
of T. The fundamental groups of connected components of the complement of € in % are
vertex groups of A(S, €), thus they are elliptic in T.
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It will be useful to know that an equivariant map is locally minimal in the following sense:

DEFINITION 3.6 (Locally minimal map). — Let G be a group which acts on (the
topological realizations of) simplicial trees T and T'. Let t be a continuous equivariant
map T — T', which sends vertices to vertices. Up to subdividing T, we can also assume that t
sends an edge to a vertex or an edge.

The map t is said to be locally minimal if for any vertex v of T all of whose adjacent edges
are sent to an edge €' of T', the stabilizer G of €' in T" is strictly contained in the stabilizer
Gy ofvinT.

Note that this is strictly weaker than being an immersion, as edges can be collapsed or
folded.

REMARK 3.7. — If there is a continuous equivariant map T — T’ between two G-trees,
there is a locally minimal equivariant map T — T'.

3.2. Maps between surfaces

Let X and ¥’ be surfaces with non empty boundary, and let ¢ : ¥ — X/ be a continuous
map which sends 9% into 9%’. We are interested in the corresponding map ¢, between the
fundamental groups S and S’ of ¥ and ¥’. Note that it is a morphism of surface groups.

We will now give two results which give sufficient geometric conditions on ¢ to guarantee
respectively the injectivity and the virtual surjectivity of the morphism ¢,. The first of these
results is Theorem 3.1 of [10]. An arc in a surface with boundary ¥ is a path « : [0,1] — 2
whose endpoints lie in the boundary, that is is said to be simple if « is injective, and boundary-
parallel if it can be homotoped into the boundary relative to its endpoint.

THEOREM 3.8. — Let X and ¥’ be connected surfaces with non empty boundary, and denote
by S and S’ their respective fundamental groups. Let ¢ : ¥ — X! be a continuous map such
that $(0X) C 9%'. If ¢ does not send any non boundary-parallel simple arc o in ¥ to a
boundary-parallel arc ¢ o o in X', then the corresponding map ¢ from S to S’ is injective.

Thus injectivity is guaranteed provided non boundary-parallel simple arcs are sent to
non boundary-parallel images. The next result guarantees virtual surjectivity of the map ¢,
provided non null-homotopic simple closed curves are sent by ¢ to non null-homotopic
images. We give

DEerINITION 3.9 (Non pinching map). — Let X be a surface, denote by S its fundamental
group. A morphism S — G is said to be non pinching with respect to . if its kernel does not
contain any element corresponding to a non null-homotopic simple closed curve lying on ..

We now have

LeEMMA 3.10. — Let S and S’ be fundamental groups of surfaces o and X' with non empty
boundary. Let f : S — S’ be a morphism of surface groups. If f is non pinching with respect
to X, and if f(S) is not contained in a boundary subgroup of S’, then f(S) has finite index
inS'.

To prove this result, we will use
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LemMma 3.11. — Let Q be the fundamental group of a surface = with non empty boundary.
If Qq is a finitely generated infinite index subgroup of Q, it is of the form

Q0=C1**Cm*F

where F is a (possibly trivial) free group, m > 0, each of the groups C; is a boundary subgroup
of Q, and any boundary element of Q contained in Qg can be conjugated in one of the groups
C; by an element of Q.

Proof. — By Theorem 2.1 in [23], there exists a finite covering p : Z; — Z, and a
subsurface £ of Z;, such that @ is the image by the injection p, of the fundamental group
of Bg. Let Q1 = m1(Z1), and identify @ to its isomorphic image in @ by p.. The covering
is finite, so = is compact, ) is of finite index in @), and the boundary elements of (); are
exactly the boundary elements of @ contained in Q. Since Qg is of infinite index in @Q, it
must be of infinite index in @);. Thus E is a proper subsurface of Z;, and at least one of its
boundary components is not parallel to a boundary component of Z;. In particular, there
is a basis of Qg as a free group which contains a maximal boundary element corresponding
to each boundary component of =y which is also a boundary component of =;. This basis
gives the required free factor decomposition of Q. O

We can now prove Lemma 3.10.

Proof. — Suppose f(5) has infinite index in S’. Then it admits a free product decompo-
sition Cy *- - - xC), % F' as given by Lemma 3.11, and m > 1 since boundary elements of S are
sent to boundary elements of S’. If £(.5) is not contained in a boundary subgroup of S’, this
decomposition contains at least two factors, so the corresponding minimal f(.5)-tree Tp with
trivial edge stabilizers is not reduced to a point. The group S acts via f on Ty and bound-
ary subgroups of S are sent to boundary subgroups of S’, thus they lie in conjugates of the
factors C; and are elliptic in 7. By Lemma 3.4, we get a set of simple closed curves on %
whose corresponding elements stabilize edges of Tj via f, i.e. have trivial image by f. This
contradicts the fact that f is non pinching. O

In the setting of Lemma 3.10, we can also deduce that the complexity of 3 must be greater
than that of ¥’ thanks to the following lemma.

LEMMA 3.12. — Let S and S’ be the fundamental groups of surfaces 3 and X' with non
empty boundary. If f : S — 8" is a morphism of surface groups such that f(S) has finite index
in S', then the complexity of ¥ is at least that of ¥/, that is

k(X) > k(X);
and we have equality if and only if f is an isomorphism of surface groups.

Proof. — A subgroup of finite index in a finitely generated free group of rank r is a
free group of rank at least r, with equality if and only if the index is 1. Thus rk(S’) < rk(f(S))
with equality if and only if f is surjective. Now rk(f(9)) < rk(S), and since free groups are
Hopfian, we have equality if and only if f is injective. Thus rk(S’) < rk(S), with equality
if and only if f is bijective. If this is the case, f sends non conjugate maximal boundary
subgroups of S to non conjugate maximal boundary subgroups of S’, so that ¥’ has at least
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as many boundary components as X, and k(X) > k(X'). If the number of boundary com-
ponents is the same, f induces a bijection between conjugacy classes of maximal boundary
subgroups, so the image by f~! of a boundary element is a boundary element, and f~! is
also a morphism of surface groups. O

By combining the previous results we can also get

LemMma 3.13. — Suppose that f : S1 — Sy is a non pinching morphism between surface
groups corresponding to surfaces with boundary 31 and ¥q. Assume moreover that f sends non
conjugate maximal boundary elements to non conjugate maximal boundary elements. Then f
is an isomorphism of surface groups.

Proof. — There exists a continuous map ¢ : X1 — X such that ¢, = f. The properties
of f imply that we can choose ¢ to be injective on 9%, to satisfy ¢(9%1) C 9%, and to send
non null-homotopic simple closed curve on ¥; to non null-homotopic images.

Suppose f is not injective: by Theorem 3.8, there is some non boundary-parallel simple
arc « in ¥ such that ¢(«) is boundary-parallel. Since ¢p(9%1) C 9%, up to restricting to
a subpath we may assume that « intersects the boundary in its endpoint only. Since ¢ is
injective on 0%, the endpoints of & must belong to the same boundary component of 31, so
they are joined by two non homotopic paths 3 and 3’ which lie in this boundary component.
Note that a3 and a3’ are both non null-homotopic simple closed curves. Since ¢ sends
0% into 8%, we see that the image of either a8 or a3’ by ¢ is null-homotopic in Xy: this
contradicts the properties of ¢. We deduce that f is injective.

Now f is non pinching, so by Lemma 3.10, the subgroup f (.5 ) has finite index in Sy. Thus
there is a finite cover p : £y — %o of X¢ such that p,(So) = f(S1), where Sp = m1(Z).
The map p; ! o f is an isomorphism between S; and Sy seen as free groups (without their
surface group structure). Moreover, it sends maximal boundary elements of S; to maximal
boundary elements of So.

Let M be a subset of S; containing one maximal boundary element for each boundary
component of ¥;: it does not extend to a basis of S; as a free group. Thus the image of M
by p; 1o f is a set of maximal boundary elements of Sy which does not extend to a basis of Sy.
This is only possible if p;! o f(M) contains an element corresponding to each boundary
component of ¢, so we deduce that 3y has at most as many boundary components as %.

Now f is injective on the boundary of ¥; so that ¥; has at most as many boundary
components as g; and 3 is a finite cover of g, so o has at most as many boundary
components as %, with equality if and only if p is a homeomorphism.

All these inequalities must therefore be equalities, so p, is an isomorphism and f(S;) =
Dy (5’0) = Sp, and X has the same number of boundary components as 3;. This implies first
that f is surjective, then that it is in fact an isomorphism of surface groups. O

4. Factor sets

In this section, we recall the result obtained in [33] of the existence of a factor set for non
injective homomorphisms into a torsion-free hyperbolic group I'. We then indicate how to
get a relative version (the “restricted” version of Sela).
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4.1. Modular groups

We want to define a subgroup of the group of automorphisms of a group G.

DEFINITION 4.1 (Dehn twist). — Suppose that the group G has a decomposition as an
amalgamated product G = A xc B, or as an HNN extension Axc = (At | tet™! = ¢(c)
for all ¢ € C) for some embedding ¢ : C — A. Let v be an element of the centralizer of C.

The automorphism of G which restricts to the identity on A, and which restricts to
conjugation by v on B (in the amalgamated product case) or which sends t to ty (in the HNN
case) is called the Dehn twist of G corresponding to .

We say that a group G is freely indecomposable if it does not admit any non trivial free
product decompositions. We will only use modular groups in the case where the group G is
torsion-free hyperbolic and freely indecomposable. In this case, the modular group of G is
generated by the automorphisms we just defined, together with inner automorphisms.

DEFINITION 4.2 (Modular group Mod(G)). — Let G be a freely indecomposable torsion-
free hyperbolic group. We define the modular group of G, denoted by Mod(G), to be the
subgroup of Aut(QG) generated by the Dehn twists of G and inner automorphisms.

Note that for such a G, the only non trivial Dehn twists correspond to splittings over cyclic
subgroups.

4.2. Factor sets for morphisms to a torsion-free hyperbolic group

We have the following result:

PROPOSITION 4.3. — Let T be a torsion-free hyperbolic group. Let G be a non cyclic freely
indecomposable hyperbolic group. There exists a finite set of proper quotients of G such that
for any non injective morphism f : G — T, there is an element o of Mod(G) such that f o o
factors through one of the corresponding quotient maps.

Such a set of proper quotients is called a factor set for non injective morphisms G — T.

This result can be seen as a consequence of [33, Theorem 1.26]. However, it can also be
proved directly by an argument similar to that of [33, Theorem 1.25], which states it in the
case where G is a I'-limit group.

We give in the rest of this subsection an outline of the proof, which follows that of [33,
Theorem 1.25]. It is based on the powerful but technical shortening argument.

The shortening argument was first used in [20], the reader is also referred to versions of it
exposed in [35] for the case where T is free, and [1] or [19] in general. The idea is to consider
sequences of morphisms f,, : G — I', and the sequences of actions of G on the §-hyperbolic
Cayley graph of T" via these morphisms. It can be shown that after proper rescaling, such
sequences converge to an action of G on a path-connected 0-hyperbolic space, namely a real
tree [17]. This limiting action is then analyzed using Rips theory (see [20], [3] and [1 1]). Rips
theory gives a decomposition of certain faithful actions on a real tree T' by finding a finite
set of subtrees T4, ...,Ts of T with the following properties: if ¢ # j or g is non trivial
then T; and ¢ - T intersect in at most a point; the translates of the subtrees T; cover T’; and
the global stabilizer of T; acts on it in one of a few types of actions which can be described
very precisely (see Theorem 10.8 in [20] or Theorem 5.1 of [11]). If the limit action obtained
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by the morphisms h,, was faithful, this information can then be used to deduce information
about the maps f,,, in particular it is possible to shorten the images by f,, of the generators
of G by precomposing f,, by an element of Mod(G).

DEFINITION 4.4 (Stable sequence, stable kernel). — Let G be a finitely generated group,
and let (hy,)nen be a sequence of morphisms from G to a group G'. The sequence (hy)nen is
stable if for any element g of G, either all but finitely many of the h,(g) are trivial, or all but
finitely many of the hy,(g) are non trivial. The set of elements g for which the former holds is a
normal subgroup of G, we call it the stable kernel of the sequence (hy)pnen.

Note that by a diagonal argument, one can extract a stable subsequence from any
sequence of morphisms. For the rest of this section, let I be a torsion-free hyperbolic group
endowed with a finite generating set D(T").

DEFINITION 4.5 (D-limit group). — A T-limit group is the quotient of a finitely generated
group G by the stable kernel of a stable sequence of morphisms h,, : G — T.

Although I'-limit groups are not necessarily finitely presented if I is not free, Sela shows
[33, Theorem 1.17]:

THEOREM 4.6. — If n : G — L is a I'-limit quotient of G corresponding to a stable
sequence h,, of morphisms G — T, all but finitely many of the maps h,, factor through n.

Theorem 4.6 also implies the following result, which will be of use later.

THEOREM 4.7. — If (L;)ien is a sequence of T'-limit groups such that there exist surjective
maps n; : L; — L;yq for all i, then all but finitely many of the maps n; are isomorphisms.

DEFINITION 4.8 (Short morphism). — Let G be a group endowed with a finite generating
set D(G). A morphism h : G — T is said to be short if
h < h -t
e Ih(9)Ipr) < e Ivh(o(9)7™" ()
for any element o of Mod(G) and y of T. Here |.|p(ry denotes the word length in T with
respect to D(T).

DEeFINITION 4.9 (T shortening quotient). — 4 T' shortening quotient @Q of a finitely
generated group G is the quotient of G by the stable kernel of a sequence of non injective short
morphisms hy, : G — T.

We order I" shortening quotients of a finitely generated group G by the following relation:
if Q1, Q2 are T shortening quotients of G with corresponding quotient maps n; : G — Q;, we
say that Q1 > Qs if there exists a morphism T : Q1 — Q9 such that n, = 7 o 7.

Sela shows, using Theorem 4.6, that every I" shortening quotient of G is smaller than a
maximal I shortening quotient, and that there are only finitely many maximal I" shortening
quotients 7; : G — M; (Propositions 1.20 and 1.21 of [33]).

Now suppose f : G — I is a non injective morphism, and let o and ~ be elements
of Mod(G) and I respectively, such that h = Conj () o f o o is short. The sequence (hy,)nen
of constant term h,, = h is a sequence of non injective short morphisms, so the quotient
of G by its stable kernel (which is just the kernel of h) is a I" shortening quotient. Thus it is
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smaller than one of the I' maximal shortening quotients M;, which means that f o o factors
through the corresponding quotient map ;. Thus to complete the proof of Proposition 4.3,
there only remains to show that these I' maximal shortening quotients are proper.

ProrosiTiON 4.10. — If G is a non cyclic and freely indecomposable hyperbolic group,
then T shortening quotients of G are proper quotients.

Theorem 1.25 of [33] claims that this holds for G a freely indecomposable I' limit group.
This is what allows Sela to then build Makanin-Razborov diagrams. The main difference
is that to show this more general result, Sela has to deal also with axial components in the
limit tree: when G is assumed to be hyperbolic, there are no such components. However,
since abelian subgroups of I'-limit groups are well behaved, the shortening argument can be
extended.

Outline of the proof of Proposition 4.10. — Let D be a finite generating set for G. Suppose
we have a stable sequence h,, : G — I of non injective morphisms whose stable kernel is
trivial. This implies in particular that G is torsion-free. Our aim is to show that the h,, cannot
be short.

For each n, consider the action of G on the Cayley graph X of I" via the morphism h,,.
Pick a point z,, in X which minimizes the displacement function  — maxgep dx (2, hrn(g) - x)
of this action. Rescale the distance on X by the minimal displacement ulh,] =
maxgep dx (zn, hn(g) - ). We get a sequence (X, x,) of pointed G-spaces.

Thanks to this rescaling, the sequence of actions (A, )nen converges in the equivariant
Gromov-Hausdorff topology [17] to an action A of G on a pointed metric space. This action
is non trivial by choice of base points.

The fact that the h,, are non injective and that their stable kernel is trivial implies that
they belong to infinitely many conjugacy classes. Thus, up to extraction of a subsequence,
the rescaling constant u[h,,] tends to infinity.

Now if X is §-hyperbolic, each X, is a §/u[h,]-hyperbolic space, and the limit is a path-
connected 0-hyperbolic space, i.e. a real tree.

Using the fact that G is torsion-free hyperbolic, and that the sequence of hyperbolicity
constants of the spaces X, tends to 0, we can show that the limit action satisfies some nice
properties, such as abelianity of arc stabilizers and triviality of tripod stabilizers.

These conditions allow us to analyze the limit tree with Rips theory (see [24] or [11]), and
this gives us a decomposition of G as the fundamental group of a graph of groups. Note that
there are no Levitt components since G is freely indecomposable, and no axial components
since G is hyperbolic. We can thus use the shortening argument developed by Rips and Sela
in [20]: it shows that for any n large enough, we can find an element o,, of Mod(G) such
that the action \,, twisted by o, is strictly shorter than \,,, i.e. the displacement of the base
point by A\, o o, is smaller than by A,. By our choice of base point, this implies that the
morphisms h,, were not short. O

Note that the non injectivity of the maps h,, is only used to show that the rescaling
constant tends to infinity. Suppose now we are given an infinite sequence of pairwise non
conjugate short injective maps i, from G to I". The stable kernel of such a sequence is trivial.
We build (X,,, z,,) as above. The non conjugacy of the maps i,, is sufficient to ensure that
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the rescaling constant tends to infinity, so that by following the argument above, we get a
contradiction to the shortness of the maps 4,,. Thus no such sequence exists, i.e. there is a
finite number of conjugacy classes of short embeddings G — I'. This can be formulated as

THEOREM 4.11. — Let T be a torsion-free hyperbolic group. Let G be a non cyclic freely
indecomposable hyperbolic group. There exists a finite set {iy, ... ,ix} of embeddings G — T
such that for any embedding i : G — T, there is an index j with 1 < j < k, an element ~y of T,
and an element o of Mod(QG) such that

i = Conj () oi;j00.

4.3. Relative factor sets

One of the most important hypotheses in Proposition 4.10 is the fact that G is freely
indecomposable: this is required to show that the limit tree has no Levitt components, a
condition which is absolutely essential to make the shortening argument work. But in fact,
the absence of Levitt components is also guaranteed if G is only freely indecomposable
relative to a subgroup H, provided H is elliptic in the limit tree. To ensure this, we fix an
embedding H — T, and replace a few definitions and arguments by their relative versions.

We say that a group G is freely indecomposable with respect to a subgroup H if it does
not admit any non trivial free product decomposition of the form G = G’ * G” where H is
contained in G’. We start by giving

DEFINITION 4.12 (Relative modular group Mod g (G)). — Let G be a torsion-free hyper-
bolic group, and let H be a subgroup of G with respect to which G is freely indecomposable.
The modular group of G relative to H is the subgroup of Aut(G) generated by those inner
automorphisms and Dehn twists which restrict to the identity on H. We denote it by Mod g (G).

Note that if H is not abelian, its centralizer in G is trivial so the modular group is in fact
generated by Dehn twists. In the relative case, the factor set existence result is given by

ProPOSITION 4.13. — Let G be a hyperbolic group which is freely indecomposable with
respect to a non abelian subgroup H. Let T' be a torsion-free hyperbolic group endowed with
a fixed embedding j : H — T. There exists a finite set of proper quotients of G, and a
finite subset Hy of H, such that for any non injective morphism h : G — T which coincides
with j on Hy, there is an element o of Mod g (G) such that h o o factors through one of the
corresponding quotient maps.

The proof of this proposition is similar to the non relative case, we will thus only outline
the differences. For the rest of this section, let G be a hyperbolic group which is freely
indecomposable with respect to a non abelian subgroup H, fix D a finite generating set for G.
Let T" be a torsion-free hyperbolic group endowed with a fixed embedding j : H — I' and
with a finite generating set D(T"). We will say that a morphism G — T fixes H if it coincides
with j on H.

The notion of shortness of a morphism G — I' is now changed to
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DEFINITION 4.14 (Short morphism relative to H). — A morphism h : G — T is said to
be short relative to H if

h < h
gleagl (9)lpr) _Igfleagl (e(9)Ipm)

for any element o of Mod g (G).

The difference with the previous case is that we do not conjugate by an element of G: this
is because we will only be interested in maps which fix H.

DEFINITION 4.15 (Fixing H in the limit). — Denote by Bg(r) the set of elements of G
represented by words in D whose length is at most r. We say that a sequence of morphisms
hn : G — T fixes H in the limit if for any r, for all n large enough, the map h,, coincides
on Bg(r) N H with the fixed embedding j : H — T.

DEFINITION 4.16 (T shortening quotient relative to H). — A T shortening quotient of G
relative to H is the quotient of G by the stable kernel of a stable sequence of non injective
morphisms hy, : G — T which are short relative to H and fix H in the limit.

Note that I shortening quotients relative to H are in particular I'-limit groups. Thus, they
satisfy the strong descending chain condition given by Proposition 4.6, which is required to
prove that every I' shortening quotient relative to H is under a maximal such quotient, and
that maximal such quotients are in finite number.

Suppose that no finite set Hy satisfying the conclusion of Proposition 4.13 exists. Then
we can find a stable sequence (h,),.cn of non injective morphisms h, : G — T which
fix H on Bg(r) N T' and are short relative to H, yet do not factor through any of the
maximal I" shortening quotients. The quotient of G by the stable kernel of this sequence is
a I'-shortening quotient n : G — L, so it is smaller than one of the maximal I" shortening
quotient relative to H. Since by Proposition 4.6 all but finitely many of the maps A, factor
through 7, we get a contradiction.

As before, there only remains to show

ProprOSITION 4.17. — Let G be a hyperbolic group which is freely indecomposable with
respect to a non abelian subgroup H. Let T be a torsion-free hyperbolic group endowed with
a fixed embedding j : H <— T". Then T' shortening quotients of G relative to H are proper
quotients.

Outline of the proof. — Suppose we have a stable sequence h,, : G — I' of non injective
morphisms which fix H in the limit, and whose stable kernel is trivial. We want to see that
the h,, are not all short relative to H. The sequence (hy,),cn gives a sequence of actions of G
on the Cayley graph X of I". As before, we choose base points x,,, however the choice of
base points is different: here we take z,, to be simply the vertex corresponding to the identity
element of T', and we rescale the metric on X by the displacement of the base point which is
now maxgep |hn(9)| p(ry. We getin the limit an action A on a pointed metric space (X, Zr).

This change in the choice of base points matches the change in our definition of shortness
of a morphism, so that it is still true that if the h,, are short relative to H, the actions \,, are
short. However, the non triviality of the limit action is not immediate anymore: we can only
show that the base point z of the limit metric space is not a global fixed point.
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Again the non injectivity of the maps h,, implies that they belong to an infinity of conju-
gacy classes, so that the rescaling constant tends to infinity. Thus A is an action on a pointed
real tree (T, z), and since the morphisms h,, fix H in the limit, H fixes z in the action A.

As in the non relative case, the limit G-tree satisfies some nice conditions: in particular its
arc stabilizers are abelian. Now if A has a global fixed point y, it must be distinct from x, but
then H stabilizes both x and y so it stabilizes the arc between them. This contradicts the non
abelianity of H, and we deduce that the limit action is non trivial.

We analyze the action A with Rips theory. Since H fixes a point in A and G is freely inde-
composable with respect to H, there are no Levitt components, and since G is hyperbolic,
there are no axial components. The shortening argument gives us elements o,, of Mod g (G)
to shorten all but finitely many of the actions A,,. Thus at most finitely many of the mor-
phisms h,, are short relative to H. O

If we start with a sequence of pairwise distinct injective maps i, from G to I' which
fix H, and are short relative to H, the rescaling constants maxge p |hn(g)|nen still tend to
infinity. Thus we can apply an argument similar to that used in the proof above, and we get
a contradiction: this means that there are only finitely many such maps. We get

THEOREM 4.18. — Let G be a hyperbolic group which is freely indecomposable with respect
to a non abelian subgroup H. Let T be a torsion-free hyperbolic group endowed with a fixed
embedding H — T'. There exists a finite set {i1, ..., } of embeddings G — T such that for
any embedding i : G — T which fixes H, there is an index j with 1 < j < I, and an element o
of Mod g (G) such that

1=1;00.
Note that this is stronger than the result obtained in the non relative case.

4.4. Relative co-Hopf properties

From Theorem 4.18, we can deduce a relative co-Hopf property for torsion-free hyper-
bolic groups:

COROLLARY 4.19. — Let G be a torsion-free hyperbolic group. Let H be a non cyclic
subgroup of G relative to which G is freely indecomposable. If ¢ : G — G is injective and
fixes H then it is an isomorphism.

Note that this can in fact be shown to be true for any subgroup H. The proof in the case
where H is cyclic is almost the same, there is more work to do in the case where H is trivial
(see Theorem 4.4 of [25]).

Proof. — Suppose ¢ is a strict embedding: then the injective morphisms ¢" : G — G all
fix H, and their images are pairwise distinct since they are strictly embedded one into the
other: this contradicts Theorem 4.18. O

Now we can actually get a stronger statement by using the following lemma, suggested by
Vincent Guirardel.
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LeEmMA 4.20. — If a finitely generated group G is freely indecomposable relative to
a subgroup H, then H has a finitely generated subgroup relative to which G is freely
indecomposable.

Proof. — Suppose G’ is a subgroup of G. Denote by T'(G") the set of all simplicial G-trees
7 with trivial edge stabilizers in which G’ fixes a vertex v,. Define

AG)= (] Stab(v,).
TET(G")

To each 7 in T(G’), we associate the corresponding free product decomposition of G.
Since G is finitely generated, the number of factors of such a decomposition is bounded:
let mg(G') be the maximal number of factors that such a decomposition can have. A
decomposition with mg(G’) factors is clearly of the form

Ax By x---x B,

where By, ..., B, are freely indecomposable (possibly cyclic), and A contains G’ and is freely
indecomposable with respect to G’. Such a decomposition corresponds to a tree 7 in T'(G")
so A(G') < A. Butin any tree 7 of T(G'), A fixes the vertex v,, so A = A(G").

If G < G”, wehave T(G'") 2 T(G"), so that A(G') < A(G") and mg(G’) > ma(G"),
and if we have equality, a maximal decomposition with respect to G” is also a maximal
decomposition with respect to G’ so that A(G’) = A(G").

We can now prove the lemma. Let {hq,ho,...} be a generating set for H, and let
Hy = (h,...hg) of H. The sequence (mg(H))r>o 1S non increasing, so it must stabilize,
thus the sequence A(H}) stabilizes after some index ko. In particular H, < A(Hg) <
A(Hy,) for all k, so H < A(Hy,). But A(Hy,) is a free factor of G: since we assumed
G freely indecomposable with respect to H, we must have A(Hy,) = G, and G is freely
indecomposable with respect to Hy, . O

We get a partial relative co-Hopf property for hyperbolic groups.

PROPOSITION 4.21. — Let G be a torsion-free hyperbolic group. Let H be a non cyclic
subgroup of G, with respect to which G is freely indecomposable. There exists a finite subset Hy
of H such that if ¢ : G — G is an injective morphism which fixes Hy, then it is an isomorphism.

Proof. — Just take Hy to be a generating set for the subgroup H’ given by Lemma 4.20.
If ¢ fixes Hy, it fixes H' relative to which G is freely indecomposable. Thus we can apply
Corollary 4.19 to G with the subgroup H’, to deduce that ¢ is an isomorphism. O

5. Elementary embeddings in hyperbolic groups
5.1. Hyperbolic towers

We will use the notations and results of Bass-Serre theory exposed in [34].

DEFINITION 5.1 (Bass-Serre presentation). — Let G be a group acting on a simplicial tree
T without inversions, denote by T' the corresponding quotient graph of groups and by p the
quotient map T — T. A Bass-Serre presentation for T is a pair (T°,T°) consisting of

— a subtree T of T which contains exactly one edge of p~1(e) for each edge e of T,
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— a subtree TV of T° which is mapped injectively by p onto a maximal subtree of T.

DEFINITION 5.2 (Graph of groups with surfaces). — A graph of groups with surfaces is a
graph of groups A together with a set Vg of its vertices such that any vertex v in Vg satisfies:

— there exists a compact connected surface with boundary %, such that the vertex group
G, is the fundamental group S of ¥;

— for each edge e adjacent to v, the injection i. : G, — G, maps G, onto a maximal
boundary subgroup of S;

— this induces a bijection between the set of edges adjacent to v and the set of conjugacy
classes in S of maximal boundary subgroups of S.

The vertices of Vg are called surface type vertices. A vertex v of the tree T corresponding to A
whose projection p(v) to A is of surface type is also said to be of surface type. The surfaces
corresponding to surface type vertices of A are called the surfaces of A.

We define hyperbolic towers.

DEFINITION 5.3 (Hyperbolic floor). — Consider a triple (G, G',r) where G is a group, G’
is a subgroup of G, and r is a retraction from G onto G'. We say that (G, G’,r) is a hyperbolic
floor if there exists a non trivial decomposition T of G as a graph of groups with surfaces, and
a Bass-Serre presentation (I'°, T°) of T such that:

— the surfaces of T which are not once punctured tori have Euler characteristic at most —2;
— G is the free product of the stabilizers of the non surface type vertices of T°;

— every edge of T joins a surface type vertex to a non surface type vertex (bipartism);

— the retraction r sends surface type vertex groups of T’ to non abelian images.

DEFINITION 5.4 (Hyperbolic tower). — Let G be a group, let H be a subgroup of G.
We say that G is a hyperbolic tower based on H if there exists a finite sequence
G=G">G'> .- >G™ > H of subgroups of G where m > 0 and:

— for each k in [0,m — 1], there exists a retraction ry : G¥ — G**1 such that the triple
(G, G*+1 1) is a hyperbolic floor, and H is contained in one of the non surface type
vertex group of the corresponding hyperbolic floor decomposition,

— G™m=HxFx8;%---% S, where F is a (possibly trivial) free group, p > 0, and each S;
is the fundamental group of a closed surface without boundary of Euler characteristic at
most —2.

REMARK 5.5. — If Gy and Go are hyperbolic towers over subgroups Hy and Hs, then
G1 * Gq is a hyperbolic tower over Hy x Hy. If G is a hyperbolic tower over a subgroup G, and
G’ is a hyperbolic tower over a subgroup H, then G is a hyperbolic tower over H.

Recall that our main result, Theorem 1.2, says that if G is a torsion-free hyperbolic group,
and H is an elementary subgroup of G, then G is a hyperbolic tower based on H.

To prove Theorem 1.2, we need to construct successive retractions from subgroups of G to
proper subgroups until we get to H. The strategy will be to build by the mean of first-order
sentences some maps that we will call preretractions, which preserve some characteristics of
the cyclic (relative) JSJ decomposition of these subgroups of G (with respect to H). Then
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we will show in Section 7 that the existence of a preretraction implies the existence of a
hyperbolic floor.

5.2. JSJ decompositions

A JSJ decomposition A of a group G is a decomposition as a graph of groups which
encodes all possible splittings of the group G over a given class & of subgroups. The standard
reference for the case where G is finitely presented and one-ended, and & is the class of finite
and cyclic subgroups of G is [21]. This has been generalized in [7] and [9] to the case where
& 1is the class of slender subgroups of G. For a unifying approach, see [12, 13]. In the case
where G is one-ended hyperbolic, [4] gives a canonical construction. A JSJ decomposition of
a group G relative to a subgroup H is a graph of groups decomposition in which H is elliptic,
and which encodes all possible splittings of G in which H is elliptic and edge groups lie in &.

In the sequel, we will use JSJ decompositions in the case where G is torsion-free hyper-
bolic and freely indecomposable (respectively freely indecomposable with respect to a sub-
group H), and & is the class of cyclic groups. We call such a decomposition a cyclic JSJ
decomposition of G (respectively a relative cyclic JSJ decomposition with respect to H). In
this case, a (relative) cyclic JSJ decomposition admits a natural structure of graph of groups
with surfaces (see [4] or [12, Theorem 7.7], and [13, Theorem 1.5] for the relative case). More-
over, in the relative case, the subgroup H lies in a non surface type vertex group. It will be
convenient to consider as surface type vertices only those whose corresponding surface has
characteristic at most —2, or are punctured tori (i.e. surfaces admitting a pseudo-Anosov).
In particular, the JSJ of the closed surface of characteristic —1 will be considered to consist
of a single non surface type vertex.

An important property of such a cyclic (relative) JSJ decomposition A is that its vertex
groups are “preserved” under modular automorphisms, as given by

LEMMA 5.6. — Let G be a torsion-free hyperbolic group which is freely indecomposable
(with respect to a subgroup H ). Let A be a (relative) cyclic JSJ decomposition (with respect
to H). An element of Mod(QG) (respectively of Mod g (G)) restricts to conjugation on each
non surface type vertex group of A, and sends surface type vertex groups isomorphically on
conjugates of themselves.

This lemma is a consequence of the universal property of cyclic (relative) JSJ decompo-
sitions: recall that the modular group Mod(G) is generated by automorphisms of G which
preserve some cyclic splitting of G, and that a JSJ decomposition in some sense contains all
such splittings.

Following [12], a group G might admit several JSJ decompositions, but it is often possible
to choose one which admits nice properties by the tree of cylinders construction [14]. In the
case where G is one-ended torsion-free hyperbolic, for example, this construction gives a JSJ
decomposition which is 2-acylindrical [14, Theorem 2]. We will call it the cyclic (relative) JSJ
decomposition of G (with respect to H).

The properties of the JSJ decomposition that we will use (in addition to the fact that it
satisfies Lemma 5.60) are summarized in the following remark.
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REMARK 5.7. — Let A be the cyclic (relative) JSJ decomposition (with respect to a
subgroup H) of a torsion-free hyperbolic group G which is freely indecomposable (relative
toH). Then

(1) the edge groups of A are cyclic;

(1) an edge of A is adjacent to at most one surface type vertex, and to at most one vertex
with cyclic vertex group,

(ii1) (strong 2-acylindricity) if a non trivial element of A stabilizes two distinct edges of the
tree Ty corresponding to A, they are adjacent and their common endvertex has cyclic
stabilizer;

(iv) the surfaces of A are punctured tori or have characteristic at most —2.

Many of the results we will need about cyclic (relative) JSJ decompositions only use the
properties given by Remark 5.7. We thus give

DEFINITION 5.8 (JSJ-like decomposition). — Let A be a graph of groups with surfaces,
with fundamental group A. We say that A is a JSJ-like decomposition of A if it satisfies the
properties (1)—(iv) given in Remark 5.7.

Thus in particular a (relative) cyclic JSJ decomposition is a JSJ-like decomposition.

Note that distinct vertices of the tree corresponding to a JSJ-like decomposition have
distinct stabilizers. Also, since surface groups are restricted so that boundary subgroups are
malnormal, a JSJ-like decomposition is 1-acylindrical next to surface type vertices, that is,
no non trivial element stabilizes distinct edges adjacent to a same surface type vertex.

5.3. Preretractions

Preretractions are morphisms that preserve some of the structure of a JSJ-like decompo-
sition. We need to define them as maps A — G where A is a subgroup of G.

DEFINITION 5.9 (Preretraction). — Let G be a group, let A be a subgroup of G, and let A
be a JSJ-like decomposition of A. A morphism A — G is a preretraction with respect to A if its
restriction to each non surface type vertex group A, of A is a conjugation by some element g,
of G, and surface type vertex groups have non abelian images.

REMARK 5.10. — By definition of a JSJ-like decomposition, the restriction of a
preretraction to an edge group of A is also a conjugation by an element of G.

We will now give two results which are central in our proof of Theorem 1.2.

ProPOSITION 5.11. — Let A be a torsion-free hyperbolic group. Let A be a cyclic JSJ-like
decomposition of A.

Assume that there exists a non injective preretraction A — A with respect to A. Then there
exists a subgroup A’ of A, and a retraction r from A to A', such that (A, A’,r) is a hyperbolic
floor. Moreover, given a rigid type vertex group Ry of A, we can choose A’ to contain Ry.

The second proposition gives sufficient conditions to get a preretraction A — A from a
preretraction A — G, so that we can then apply Proposition 5.11. It will be needed for the
induction steps in the proof of 1.2.
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PROPOSITION 5.12. — Let G be a torsion-free hyperbolic group. Let A be a non cyclic
retract of G which admits a cyclic JSJ-like decomposition A. Suppose G' is a subgroup of G
containing A such that either G' is a free factor of G, or G’ is a retract of G by a retraction
r: G — G which makes (G,G’,r) a hyperbolic floor.

If there exists a non injective preretraction A — G with respect to A, then there exists a non
injective preretraction A — G’ with respect to A.

The proof of both these propositions is postponed until the last section of this paper.
Both results are intermediate steps in the proof of Proposition 6 of [31], though they are not
explicitly stated there. For now, we will assume these two results hold, and use them to prove
Theorem 1.2.

5.4. Using first-order to build preretractions

Suppose that H is a group with an elementary embedding in a torsion-free hyperbolic
group G. To show that G admits a structure of hyperbolic tower over H, we will try to build
non injective preretractions, as Theorem 5.11 can then be used to produce hyperbolic floor
structures.

This is what the two following results will enable us to do. They form the heart of the proof
of Theorem 1.2.

PROPOSITION 5.13. — Suppose that G is a non cyclic torsion-free hyperbolic group, and let
H be a subgroup whose embedding in G is elementary. Suppose A is a subgroup of G which
is hyperbolic, properly contains H, and is freely indecomposable relative to H. Let A be the
cyclic JSJ decomposition of A relative to H. Then there exists a non injective preretraction
A — G with respect to A.

Note that this implies in particular that A is non trivial.

PROPOSITION 5.14. — Suppose that G is a torsion-free hyperbolic group, and that H is
a subgroup elementarily embedded in G which is also a retract of G. Let B be a freely
indecomposable hyperbolic subgroup of G which is neither cyclic nor a closed surface group of
Euler characteristic at most —2. Let A be the cyclic JSJ decomposition of B. Suppose that no
non trivial element of B is conjugate in G to an element of H. Then there exists a non injective
preretraction B — G with respect to A.

An important point is that these two results do not require that any of the embeddings
H — A, A — G, or B — G be elementary. We only need the embedding of H in G to be
elementary.

Let us now prove Propositions 5.13 and 5.14. The idea of both proofs is to express (a
consequence of) the existence of a factor set by a first-order logic formula satisfied by H
whose interpretation on G then gives us a non injective preretraction.

We will use the following definition

DEFINITION 5.15 (A-related morphisms). — Let A be a group which admits a JSJ-like
decomposition A, and let f be a morphism from A to a group G. We say that a morphism
f'+ A — Gis A-related to f if
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— for each non surface type vertex group R of A, there exists an element ug of G such that
f! restricted to R is Conj (ug) o f;

— each surface type vertex group of A which has non abelian image by f also has non
abelian image by f'.

REMARK 5.16. — Suppose that A is a subgroup of G, that it admits a JSJ-like
decomposition A, and let f : A — G be a morphism. Then f is A-related to the embedding
A — G if and only if it is a preretraction with respect to A.

REMARK 5.17. — Let A be a torsion-free hyperbolic group which is freely indecomposable
(with respect to a subgroup H ), and let A be a cyclic (relative) JSJ decomposition (with
respect to H). Let f be a morphism A — G.

If o is an element of Mod(G) (respectively of Mod g (G) ), then f' = f o o is A-related to f
by Lemma 5.6.

The following lemma shows that A-relatedness can be expressed in first-order logic.

LEmMMA 5.18. — Let A be a group generated by a finite tuple a. Suppose that A admits
a JSJ-like decomposition A. There exists a formula Rel(x,y) such that for any pair of
morphisms [ and ' from A to G, the formula Rel(f(a), f'(a)) is satisfied by G if and only if
f'is A-related to f.

Proof. — We introduce some notation. Denote by Ry, ... R, the non surface type vertex
groups of A, and by S1, ... S its surface type vertex groups. For 1 < p < r, choose a finite
generating set p,, for R, and for 1 < ¢ < s, choose a finite generating set o, for S;. We take
the convention to denote tuples by bold font.

The elements of p, and o, can be represented by words in the elements a, we denote these
by p, = p,(a) and o, = 7,(a) respectively.

Now, if w is an element of A which can be represented by a word w(a), its image by the
morphism f : A — G extending a — g is represented by w(g).

The maps f and f’ extending a — g and a +— g’ respectively satisfy the relatedness
condition on the rigid type vertex groups of A if and only if

Juy ... Ju, /\ {p,(&") =upp,(g)u,'}.
p=1

To express the abelianity of a subgroup generated by a tuple z = (21, ..., 2%), we can use
the formula Ab(z) : A; ; {[z",27] = 1}. Thus the non abelianity condition about the image
by f and f’ of surface type vertex groups of A can also be expressed by

N {-Ab(&(g)) = ~Ab(54(g)} - 0

We can now prove the two key propositions.
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Proof of Proposition 5.13. — By Proposition 4.13, there exists a finite subset Hy of H,
and a finite family of proper quotients n; : A — L; for j € [1,m], such that any non
injective morphism 6 : A — A which fixes Hy factors through one of the quotients n; after
precomposition by an element of Mod g (A). Proposition 4.21 on the other hand shows that
an injective morphism 6 : A — A which fixes a big enough finite subset of H is also surjective.

Now a morphism 6 : A — H can be seen as a non surjective morphism A — A since we
assumed H # A. Thus, up to enlarging Hy, any morphism 6 : A — H which fixes Hj is non
injective, so there exists an element 7 of Mod g (A) such that 8’ = 6 o 7 factors through one
of the quotients ;.

Let A be the cyclic JSJ decomposition of A relative to H. By Remark 5.17, for any
morphism 6 : A — H which fixes Hy, there exists a morphism 6’ : A — H which is A-related
to 6 and which factors through one of the quotients n;.

Finally, for each { in [1, m], we fix an element v; in the kernel of n; : A — Q.

STATEMENT 1. — For any morphism 6 : A — H which fixes Hy, there exists a morphism
¢’ : A — H which is A-related to 6, and an index j in [1, m] such that ¢’ (v;) = 1.

We claim that Statement | can be expressed by a first-order formula satisfied by H.

The group A is hyperbolic, we choose a finite presentation (a | X 4(a)). Morphisms
A — H are in one to one correspondence with solutions to the system of equations X 4(x) = 1
in H. The elements v; can be represented by words 7;(a). Let Hy = {hi,...,h,}, each
element h; can be represented by a word h;(a).

Finally consider the formula v (hg, ..., h,) over £y given by

Vx [Za(x)=1A /“\ hi = hi(x)| = 3y [Za(y) =1] A Rel(x,y) A l\? v(y) = 1] .
I=1

=1

The interpretation of the first-order formula ¢ (hy, ..., h,) on H is exactly Statement 1,
so it is true on H. The formula ¢ (hq, ..., h,) is therefore satisfied by G. Let us look at its
interpretation on G.

If we take the “tautological solution” a to the equation ¥ 4 (x) = 1, it satisfies the formula
in the first square brackets: indeed, ¥4(a) = 1, and for each i, we have h; = h;(a) by
definition of h;. Thus, by the second part of the formula, we get a tuple y such thata — y
extends to a morphism f : A — G, which is A-related to the morphism a — a, and which
sends one of the elements v; to 1. By Remark 5.16, f : A — G is a preretraction, and since
the elements v; are non trivial, it is not injective. O

We now show the second key result.

Proof of Proposition 5.14. — We choose a presentation (b | £ (b)) for B. Let A be the
cyclic JSJ decomposition of B.

Since H is a retract of G, itis a quasiconvex, thus it is itself hyperbolic. By Proposition 4.3,
there exist proper quotientsn; : B — Lq,...,nm : B — Ly, of B such that any non injective
morphism B — H factors through one of the maps 7); after precomposition by an element
of Mod(B). Again we choose non trivial elements v1, . . . , vy, of B such that v; is in the kernel
of ;.
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If we proceed to the same weakenings as in the proof of Proposition 5.13, we see that for
any non injective morphism 6 from B to H, there is another morphism 6’ which is A-related
to 0, and which sends one of the v; to 1.

We now need to find a sufficient condition for non injectivity of a map B — H that is
expressible in first-order. Proposition 4.11, applied to B and H, tells us that there exist a
finite set iy, ...4; of embeddings of B in H such that for any embedding ¢ : B — H, there
exists an element o of Mod(B), an integer k in [1,¢] and an element h of H such that

Conj (h)oioo = iy.
By Remark 5.17, the map on the left hand side is A-related to i, so that if 6 : B — H is an

embedding, it is A-related to one of the maps iy.
Let 6 : B — H. Consider the following statement

S(0). — Any morphism 0" : B — H which is A-related to 0 satisfies 8" (b) # ix(b) for all
kin [1,t].

By the previous argument, S(0) is a sufficient condition for  not to be an embedding. We
finally get that the following statement holds.

STATEMENT 2. — If 0 : B — H is a morphism for which S(6) holds, then there exists a
morphism 0’ : B — H which is A-related to 0, and an integer | in [1, m] such that 0'(v;) = 1.

We claim that this can be expressed by a first-order formula. Let us first express S(6) by
a first-order formula:

t
Y(x,i1(b),..., (b)) : [Ep(x)=1] AVz { [£5(z) = 1 ARel(z,x)] = l/\ z # zk(b)] } .
k=1
Let x be a tuple in H. The formula ¢ (x,i1(b),...,i:(b)) is satisfied by H if and only if
the morphism § : B — H defined by b — x satisfies S(6). So if ¥(x,i1(b),..., (b)) is
satisfied by H, the morphism 6 defined by b — x is not injective.
We can now write the first-order sentence £(i1(b), . .., i;(b)):

l
Vx 1(x,i1(b),...,i:(b)) = Jy[Zp(y) = 1] A Rel(x,y) A [ 7i(y) = 1] .

The first-order formula £(i1(b),...,4:(b)) on H expresses Statement 2, so it is sat-
isfied by H. As H is elementarily embedded in G, it is also satisfied by G. As in the
proof of 5.13, we can apply it to the tautological solution b of £5(x) = 1. To see that
G = ¢(b,i1(b),..., (b)), note first that since we assumed that B is not the fundamental
group of a closed surface of characteristic at most —2, the JSJ decomposition of B admits
at least one non surface type vertex group R. A morphism g : B — G which is A-related
to the embedding b — b restricts to conjugation on R, thus u(R) cannot lie in H since by
hypothesis, no element of B can be conjugated into H by an element of G. This implies in
particular that for all &, the tuple p(b) is distinct from the tuple ix(b), so that G |= ¥ (b).

The second part of the sentence £(i1(b), ..., (b)) thus gives a morphism B — G which
is A-related to the embedding B — @ and kills one of the elements v;: it is a non injective
preretraction. O
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5.5. Proof of the main result

Assuming we have Proposition 5.11 and Proposition 5.12, we can now prove Theorem 1.2.

Proof of Theorem 1.2. — Note first that if G is infinite cyclic, its only elementarily embed-
ded subgroup is itself, and the theorem is trivial. Assume thus that G is a non cyclic torsion-
free hyperbolic group, and let H be an elementary subgroup of G. Note that H is not abelian
since G is not.

We will first show that G admits a structure of hyperbolic tower over a group G’ of the
form G’ = H = B{ * --- x Bl.. Once this is done, we will show that each of the B, has a
structure of hyperbolic tower over {1}, and this will give the result by Remark 5.5.

Set G® = G. We define by induction a finite sequence G = G° > G! > --- > GV of
subgroups of G, such that H is a free factor of GV, and G™ has a structure of hyperbolic
floor over G™*! for each m up to N — 1.

Assume G™ is defined, and write the Grushko decomposition of G™ relative to H as

Gm:Am*BI"*n-*B;’:n

where A™ is the factor containing H. If A”™ = H we are done, so assume A™ # H.

Note that A™ is freely indecomposable relative to H, and that, as a retract, it is a quasi-
convex subgroup of G, and thus it is hyperbolic. Denote by A the cyclic JSJ decomposition
of A™ relative to H.

All the hypotheses of Proposition 5.13 for A = A™ are satisfied, so we can apply it to get a
non injective preretraction A™ — G with respect to A. Note that we do not use the fact that
A™ is elementarily embedded in G: according to Sela, the converse of Theorem 1.2 holds, so
that this is true [32]. However, we do not need this for the induction step (or indeed at any
point in the proof), we only use the fact that the embedding of H in G is elementary.

We now apply Proposition 5.12 successively to the floors of the hyperbolic tower formed
by G over G™, and to the free product G™ = A™ * (B{" - -+ x B ), to get a non injective
preretraction A™ — A™ with respect to A. Finally by Proposition 5.11, we get a retraction
r: A™ — A{ on a proper subgroup of A™ such that (A™, Af*,r) is a floor of a hyperbolic
tower, and the rigid group of A which contains H is in AJ*. Now define G™*1 by

m+1 _ gm m m
G = Af' * B *~-~*Bpm.

Since A™ has a structure of hyperbolic floor over Af*, the group G™ has a structure of
hyperbolic floor over G™*1 as required.

For each m, the group G™*! is a strict retract of G™, and since the groups G™ are all
subgroups of G, they are G-limit groups. Thus by Proposition 4.7 the sequence is finite. At
the end of this process, we get a group G in which H is a free factor, and such that G has a
structure of hyperbolic tower based on GV .

If all the other factors of the Grushko decomposition of GV relative to H are surface
groups of characteristic at most —2 or free groups, we are done. So assume that there is a
factor B which is neither free nor a closed surface group of characteristic at most —2. Note
that as a retract of G, the group GV is hyperbolic, so as a free factor of GV, the group B is
itself hyperbolic. We will now show that B has a structure of hyperbolic tower over {1}.

Both H and B are free factors of GV, thus any two of their conjugates in GV intersect
trivially. But since GV is a retract of G, any two conjugates of H and B in G' must also
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intersect trivially. Hence the conditions of Proposition 5.14 are satisfied by B: by applying
it, we get a non injective preretraction B — G. We apply Proposition 5.12 iteratively to
get a non injective preretraction B — B, which by Proposition 5.11 gives us a retraction
r: B — B’, such that (B, B’,r) is a hyperbolic floor.

Note that since B’ is a retract of G, the number of factors in its Grushko decomposition is
bounded above by the rank of G. If any of the factors of the Grushko decomposition of B’ is
neither free nor surface, we can repeat the process above. This terminates, as before, because
the groups involved are G-limit groups and because the number of factors in the Grushko
decomposition of our groups is bounded. We finally get that B is a hyperbolic tower over {1}.

Thus all the factors of GV distinct from H are hyperbolic towers over {1}. By Remark 5.5,
the group G¥ is a hyperbolic tower over H. This finishes the proof. O

5.6. The case of free groups

In the special case where our hyperbolic group is free, we can use Theorem 1.2 to show
Theorem 1.3. To do so, we prove first

LEmMMA 5.19. — Let F be a free group which admits a structure of hyperbolic tower over a
subgroup H. Then H is a free factor of F'.

Proof. — If the tower has at least one floor, there exists a subgroup F’ of F, and a
retraction r : F — F’sothat H < F’, and (F, F’,r) is a hyperbolic floor built by
amalgamating some surface groups with boundary to free factors of F'. Pick a maximal set
{71, ...7} of pairwise non conjugate maximal boundary elements of these surface groups.
We know, from the standard presentation of a surface group with boundary, that the product
of the elements ~; is equal in F' to a product of commutators and squares.

By Lemma 4.1 in [2], since both F and F’ are free groups, there is a decomposition of F’
as Z x F"" where Z is an infinite cyclic group generated by one of these maximal boundary
elements (say 1), and all the other maximal boundary elements ; lie in conjugates of F”.
Now let « : F/ — Z/2Z be the map which kills "’ and the squares in Z. The image of v,
by a o r is the generator of Z/2Z, and for ¢ # 1, the image of ~; is trivial. However, squares
and commutators of F' have trivial image by cor, so we get a contradiction. This shows that
the only structure of hyperbolic tower that a free group can have over one of its subgroup is
a trivial one, where the subgroup is a free factor of the free group. O

Proof of Theorem 1.3. — We only need to show that an elementary subgroup of a free
group is a non abelian free factor, since the converse is given by Theorem 4 in [31].

By Theorem 1.2, if H is an elementary subgroup of F', then F has a structure of hyperbolic
tower over H. By Lemma 5.19, H is a free factor in F'. O
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5.7. The case of surface groups

All the surfaces we consider are compact and connected.

DEFINITION 5.20 (Minor subsurface). — Let X be a closed hyperbolic surface. Let 3¢ be
a proper connected subsurface of ¥ which is not a disk. Denote by £ the closure of ¥\ Zy.
We say that g is a minor subsurface of ¥ if

— X§ is connected and is either a punctured torus, or has characteristic at most —2;
— [x(Z0)] < |x(2)|/2, with equality if and only if g and ¥ are homeomorphic,
— if' X is not orientable, neither is ¥§.

REMARK 5.21. — Note that if %2 is the connected sum of three or four projective planes, it
does not admit any minor subsurface.

THEOREM 5.22. — Let S be the fundamental group of a closed hyperbolic surface . If H
is a proper elementary subgroup of S, then it is a non abelian free factor of the fundamental
group of a minor subsurface of .

Note that Theorem 1.4 that we gave in the introduction is a direct consequence of
Theorem 5.22. Theorem 5.22 follows immediately from Theorem 1.2, which tells us that
S has a structure of hyperbolic tower over H, and from one direction of the following
equivalence result:

PROPOSITION 5.23. — Let S be the fundamental group of a closed hyperbolic surface 3,
and let H be a non trivial proper subgroup of S. Then S admits a structure of hyperbolic tower
over H if and only if H is a free factor of the fundamental group of a minor subsurface of 3.

Suppose S has a structure of hyperbolic tower over a non trivial proper subgroup H. Note
that S is freely indecomposable, so if H # S, the tower has at least one hyperbolic floor.
Thus there exists a retraction r from S to a subgroup R containing H such that (S, R, r) is
a hyperbolic floor, and R itself has a structure of hyperbolic tower over H. Denote by I' the
graph of groups decomposition of S and by Ry, . . ., Ry, the free factors of the decomposition
of R associated to the hyperbolic floor structure (S, R, r). We may assume H < Rj. Choose
representatives S, . .., .S; of the conjugacy classes of surface type vertex groups of T'.

By Theorem I11.2.6 of [16], the splitting I" of S is geometric, namely it is dual to a set of
non null-homotopic simple closed curves on the surface . Thus each of the groups S;, R; is
the fundamental group of a connected subsurface of X that we denote by 3J;, Z; respectively.

Let us first prove Proposition 5.23 in a particular case

LeEMMA 5.24. — Suppose that for some i, the map r|s, is non pinching with respect to 3;
(recall Definition 3.9). Then Eq is a minor subsurface of X.

Proof. — First we show that (.S;) lies in a conjugate of one of the subgroups R; in R.
Indeed, consider the R-tree T, with trivial edge stabilizers corresponding to the free factor
decomposition R = Ry * - - - * R.. The group S; acts on this tree via r, and in this action, its
boundary elements are elliptic: by Lemma 3.4, we get a set of simple closed curves & on X;
whose corresponding elements stabilize edges of T, and thus have trivial image by r. Since
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r|s, is non pinching, & is empty and r(S;) is elliptic in T,. This proves the claim. Up to
replacing S; by a conjugate, we may assume r|g, : S; — R;.

Note also that r sends non conjugate maximal boundary elements of S; to non conjugate
maximal boundary elements of R; since it is a retraction. Lemma 3.13 then implies that r|g,
is an isomorphism of surface groups between S; and R;.

This implies that 3J; and =; have the same number of boundary components: by connect-
edness of X, this implies that the complement of Z; in X is exactly 3J;: we thus have 2; = &y
and X; = X;. Note that by the restrictions on surfaces in the definition of a hyperbolic tower,
3, is either a punctured torus, or it has characteristic at most —2.

Now we have x(Zo) = x(21) and x(Z) = x(Eo) + x(X1), so that x(Zo) = x(¥)/2. O

If none of the maps r|g, is non pinching, the idea to prove Proposition 5.23 is to write | s,
as r’ o p, where r’ is non pinching with respect to some suitable surface groups contained
in p(Sl).

DEFINITION 5.25 (Pinching map pg). — Let Sy be the fundamental group of a surface ;.
Let € be an essential set of curves on 1. Denote by N(E) the subgroup of S1 normally
generated by elements corresponding to the curves of 6. The pinching map pg is the quotient
map S1 — S1/N(G).

The pinching map pg is injective on each boundary subgroup. If A(Sy, &) is the graph
of groups decomposition of S; dual to &, its edge groups have trivial image by pg, and its
vertex group are quotiented by some of their boundary subgroups.

DEFINITION 5.26 (Graph of groups I'(S1, ©)). — Let Sy be the fundamental group of a
surface 1. Let G be an essential set of curves on ¥1. We denote by T'(S1, G) the graph of
group decomposition of pg(S1) obtained by replacing, in the decomposition A(S1, G) of S1
dual to G, each vertex and edge group by its image by pe.

DEFINITION 5.27 (Interior and exterior surfaces of I'(S1, ©)). — 4 vertex of T'(S1, ) is
said to be interior if its fundamental group does not contain the image by py of a boundary
subgroup of S1. Otherwise it is said to be exterior. By extension, a vertex of the tree Tt
corresponding to I'(S1, G) is said to be interior (respectively exterior) if its image by the
quotient map Tr — T'(S1, ©) is interior (respectively exterior).

Note that a vertex group S2 of A(S;, €) is the fundamental group of a subsurface £
of ¥;. The image of S£ by pg is the fundamental group of the surface ¥ obtained by
gluing discs to the boundary components of £ corresponding to curves of & (see Figure 3).
If X1 corresponds to an interior vertex of I'(S;, €), all the boundary components of
correspond to curves of &, so the image of S by py is the fundamental group of a closed
surface. On the other hand, exterior vertex groups are fundamental groups of surfaces with
boundary.

REMARK 5.28. — If 2 is a surface corresponding to a vertex of T'(S1, ©), then x (1) is
at least x(X1), with equality if and only if G is empty.

We can apply this construction to find a factorization of f.
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F1GURE 3. The construction of the graph of groups I'(S1, ©).

5 %1, 6) ['(Z1, 6)

DEerINITION 5.29 (Essential set of curves pinched by f). — Let S1 be the fundamental
group of a surface 1. Let f : S1 — G be a group morphism whose restriction to each
boundary subgroup is injective.

Let v be the homotopy class of a simple closed curve on X. If the elements of Sy
corresponding to ~y lie in the kernel of f, we say ~y is pinched by f. Let € be an essential set of
curves. If all its elements are pinched by f, we say it is an essential set of curves pinched by f.

REMARK 5.30. — Suppose f : S1 — G is injective on boundary subgroups of S1. If € is a
maximal essential set of curves pinched by f on X1, the map f factors as f' o pg, and f' is non
pinching with respect to the surfaces corresponding to vertices of T'(S1, ).

We can now prove Proposition 5.23.

Proof of Proposition 5.23. — Suppose H is a free factor of a minor subsurface X, of X,
and denote by Sy the fundamental group of ¥g. If 3 is a cylinder or a Mobius band, X is
the double of one of its subsurface 3; containing ¥y. The corresponding retraction r of S
on the fundamental group S; of 3; gives the required hyperbolic floor (.S, S, ).

Thus we may assume that Sy is not abelian. Denote by X the closure of ¥ — ¥3. By
definition, 37 is either a punctured torus, or has characteristic at most —2. Since Xy has the
same orientability as Yo, the same number of boundary components, and characteristic at
most as great, we can find an essential curve v on ¥; such that the graph of groups I'(S1, {v})
has a unique exterior surface ¥1', which is homeomorphic to ¥ via some homeomorphism ¢
restricting to the identity on 90X .

Consider the map defined to be the identity on Sy, and ¢. on the vertex group ST
corresponding to ¥1': it can be extended to a retraction 7 : py(S) — So. Thenr = 7/ 0 py
is a well-defined retraction S — Sy which makes (.S, S, r) a hyperbolic floor. Thus S is a
hyperbolic tower over H.

Conversely, suppose that S is a hyperbolic tower over H. Since S is freely indecompos-
able, S admits a structure of hyperbolic floor (S, R, r) with corresponding graph of groups
decomposition A. We know that H is contained in a non surface type vertex stabilizer Rg
of Ty, and that Ry is a hyperbolic tower based on H. Let S; be a surface type vertex stabi-
lizer of T\ adjacent to Ry.
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By Theorem I11.2.6 of [16], A is dual to a set of simple closed curves on ¥. Denote by g
and X, the subsurfaces of ¥ corresponding to Ry and S; respectively, so that both Ry and Sy
are endowed with a structure of surface group with boundary. In particular, Ry is free. It is
enough to show that X is a minor subsurface of X, since by Lemma 5.19 H is a free factor
of Ro.

Note that the intersection of Ry and S; is an infinite cyclic subgroup Z. The morphism
r1 =r|s, : S1 — R restricts to the identity on Z. Let & be a maximal essential set of curves
on X pinched by 1. The map r; factorsasrjopg. Let ST be the exterior surface type vertex
group of I'(S1, €) containing Z, denote by X! the corresponding surface. Then 74| ST is non
pinching with respect to ¥}, has image in R = Ry * - - - * R,,, and sends boundary elements
of S to conjugates of elements of the subgroups R;: the image of ST by 7/ is contained in a
conjugate of a subgroup R;, and since it contains Z, it is contained in Ry. Now 7} sends non
conjugate maximal boundary elements of S} to non conjugate maximal boundary elements
of Ry. We can thus apply Lemma 3.13 to conclude that 71 |gr is an isomorphism of surface
groups between ST and Ry.

In particular, Xy and X} have the same number of boundary components. This implies
that the complement X§ of ¥y in ¥ is connected.

Since ¥y and X} are homeomorphic, we have x(Xo) = x(X!). On the other hand, by
Remark 5.28, we have x(X7) > x(X1), with equality if and only if & is empty, in which
case we have ¥ = %, and % and %; are homeomorphic. Now x(Z;) > x(Z§), and
if we have equality, 31 = X§. On the other hand we have x(X) = x(Zo) + x(Z§), so
Ix(Z0)| < |x(¥)|/2, and if we have equality, £, and X§ are homeomorphic. Finally, if ¥ is
not orientable, neither is ¥} and thus neither are $; and X§. Thus 3 is a minor subsurface
of . O

6. A property of JSJ-like decompositions

In this section, we show that if a preretraction G — G relative to a cyclic JSJ-like
decomposition of G satisfies some strong injectivity conditions on the vertex groups, it must
be an isomorphism. This will be used in the last section to prove Propositions 5.11 and 5.12.

PROPOSITION 6.1. — Let G be a torsion-free hyperbolic group, and let A be a JSJ-like
decomposition of G. Let 0 : G — G be a preretraction with respect to A which sends surface
type vertex groups of A isomorphically to conjugates of themselves. Then 0 is an isomorphism.

Call Z type vertices the vertices of A which have infinite cyclic vertex group, and call rigid
type vertices the vertices which are neither of Z type, nor of surface type. We will also say that
a vertex in the tree T’ is of type Z or rigid according to the type of its image by the quotient
map Ty — A.

Proof. — First note that if G is cyclic, the only JSJ-like decomposition it admits is the
trivial one, for which the result is immediate. We may thus assume that G is not cyclic.

Denote by T the Bass-Serre tree T corresponding to A. To prove the proposition, we will
construct a bijective simplicial map j : T — T, such that j is equivariant with respect to 6.

4¢ SERIE - TOME 44 — 2011 — N° 4



ELEMENTARY EMBEDDINGS IN TORSION-FREE HYPERBOLIC GROUPS 661

The stabilizers of an edge e of T" and of a vertex v of T" in the standard action of G on T’
are denoted by G, and G, respectively.

1. Construction of the map j on vertices. — By hypothesis, for each vertex v of T, there is
an element g, of G such that 6(G,) = g,G.g, '. We set the image of v by j to be g, - v. Its
stabilizer is exactly 8(G,), and since distinct vertices of the tree corresponding to a JSJ-like
decomposition have distinct stabilizers, this defines j(v) uniquely. The image of g - v by j
is the unique vertex whose stabilizer is 8(g)8(G,)0(g~!), namely 6(g) - j(v), and the map
v — j(v) is equivariant with respect to . Note that j(v) is in the orbit of v, and thus is of
the same type. Note also that G,y = 0(G,) ~ G,.

2. The map v — j(v) can be extended to a simplicial map j : T — T. — We need to check
that adjacent vertices are sent on adjacent vertices. Suppose v, w adjacent: without loss of
generality G, is not a surface type vertex group. The image C = g,(G,NGy)g,; ! of G,NG,,
by 6 is non trivial and fixes both j(v) and j(w), thus j(v) and j(w) are at a distance at most 2
by 2-acylindricity. We will first show that it cannot be 2, then that it cannot be 0.

— Assume the distance is 2. The vertex u between j(v) and j(w) is a Z type vertex, so
j(v),j(w),v and w are not Z-type vertices. Note that C fixes the vertex g, - w, which
is at a distance 1 from j(v), thus it is distinct from j(v) and from j(w). Its stabilizer is
not cyclic, thus it is distinct from w. This is a contradiction.

— Assume now j(v) = j(w), so v and w are in the same orbit (in particular they must
be of rigid type, since they are adjacent). Let a € G be such that w = a - v. We have
Gy = aGya™',and a ¢ G,. We see that 6(a) € 6(G,), since 6(a) stabilizes j(v), so
there exists a’ € G,, such that §(a’) = 6(a).

Let C; := G, N Gy, and let C < G, be such that C; = aCsa~!. Note that C;
is maximal abelian in G since it is the stabilizer of an edge which connects two rigid
vertices. Now (Cy) = 8(a=1)8(C1)8(a) so that §(Cy) = 6(a’~1C1a’). By injectivity
of # on G, Cy = a'~'Cia’. Thus we have a’'a! € C; < G,. Butd € G, so we
deduce a € G,,. This is a contradiction.

Thus we can extend v +— j(v) to a simplicial map j : T — T.

3. Injectivity of j. — It is enough to show that there are no foldings, i.e. that no two edges
adjacent to a same vertex are sent to the same edge by 7. Suppose that two vertices w, w’ of T'
are adjacent to a vertex v, and that the edges e with endpoints v, w and e’ with endpoints v, w’
have the same image by j. Let g., go- be generators of the stabilizers G, of e, and G, of ¢’
respectively.

Both 6(g.) and 6(g.-) fix j(e), so they commute. As 6 is injective on G, the elements g,
and g.- of G, also commute. Thus they have a common power which fixes both e and e’: by
strong 2-acylindricity, v is a Z type vertex. This implies that w, w’, and j(w) are not type Z
vertices.

There exists an element v of G such that w’ = v - w, and v does not lie in G,,. Now 4(7)
stabilizes j(w) thus there is an element a of G,, such that 6(a) = 6(v).
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Let g be an element of G, which stabilize both e and ¢’: then g is both in G, and
in vG,,v~!. Let ¢’ be an element of G, such that g = yg’v~1. We have

0(g) = 0(7)0(g")0(~ ")
=0(a)0(g")0(a"") = O(ag'a™").

Since 6 is injective on G, we deduce that g = ag’a='so ¢’ = v gy = a 'ga. This
shows [ya~1!,g] = 1, so ya~! preserves the set Fix(g) of fixed point of g. But Fix(g) has
diameter 2 and is centered on v, so ya~! fixes v, and ya~! lies in G,. Now a was chosen
so that 6(y) = 6(a), so 8(ya—') = 1. By injectivity of # on G,, we get v = a. Thisis a
contradiction since « is not in GG, but a is.

4. Injectivity of 6. — The injectivity of j implies the injectivity of 6.

5. Surjectivity of j. — We prove this by showing that if a vertex v is in the image
of j, all the edges adjacent to v are also in the image. Let g* be an element of G such that
j(g¥ -v) = v. Pick ey, ..., e, some representatives of the orbits of edges adjacent to v. The
image e}, of g¥ - e; by j must be adjacent to v.

We claim that if e, and ¢; lie in different orbits, so do e}, and e]. Indeed, if there exists «
in G, such that - €}, = €], a must fix v. As v is in the image of j, its stabilizer is in the image
of 6 so there exists an element a of G such that (a) = «, and by equivariance of j we get
jlag® - er) = j(g” - e;). By injectivity of j this means e; and e; are in the same orbit: this
proves the claim. Thus the edges e} form a system of representative of the orbits of edges
adjacent to v.

Now let e be an edge adjacent to v: there is an element 3 of G such that 8 - e} = e for
some k, and 8 must fix v. We know G,, is in the image of 6 so 8 = 6(b) for some b. Thus
J(b-(g"-er)) = 0(b)-j(g"-ex) = B-€}, = e,soeisin theimage of j. Hence all the vertices which
neighbor v are in the image of j. This local surjectivity condition implies global surjectivity
of j.

6. Surjectivity of 8. — Let g be an element of G, and let v be a vertex of T with non cyclic
stabilizer. By surjectivity of j there exists w such that j(w) = v, and w’ such that j(w') = g-v,
50 Gy = hGyh~! for some h. We see that

9Gug ™" = Gy = 0(Gur) = 0(h)0(G)0(h™") = 0(R)G,O(h ™).
We get G, = g~ 0(h)G,0(h)~1g. Thus G, stabilizes both v and g~16(h) - v. Since G, is not

cyclic, v = g~ 10(h) - vso g~t(h) is in G,. Since we know that G, is in the image of 6, we
get that g is in the image of 6. O

7. From preretractions to hyperbolic floors

The aim of this section is to prove Propositions 5.11 and 5.12. In both cases, we are given
a preretraction f : A — G from a group A which admits a JSJ-like decomposition A, and we
want to modify it to get a hyperbolic floor if G = A, or a preretraction to a proper retract G’
of Gif A # G. Let us give an outline of the proofs.

In Section 7.1, we give a decomposition Ag for the group pg(A) obtained by quotient-
ing A by the elements representing curves of a set & of simple closed curves on the surfaces
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of A. If © corresponds to the curves pinched by the preretraction f : A — G, then f will
factor as f = fg o py. Moreover, we obtain a free product decomposition of pg(A) as
Aj *---x Apx Ry, and some decompositions A; of the subgroups A; as graph of groups with
surfaces with respect to which fy is non pinching. The aim of this construction is to enable
us to work with non pinching maps: indeed, the property of non pinching maps described
by Lemma 3.10 will be crucial. We also classify surfaces of A in three types (A), (B), and (C)
according to the images of the corresponding vertex groups under the map py.

The idea is that we want to work with the non pinching maps f¢| 4, to build the retraction
or the preretraction we are looking for. However we need to worry also about preserving non
abelianity of the images of surface type vertex groups: for this, we will use the factor Ry and
choose suitable maps Ry — G. In Section 7.2, given a morphism h4 : Ay — G, we give a
way to choose hg : Rg — G so that (h4 * hr) o pg sends surface type vertex groups of type
(C) to non abelian images.

In Section 7.3, we describe what happens to surface type vertex groups of type (A)
under fy. This already enables us to prove Proposition 5.12 in Section 7.4.

In Section 7.5, we show that if a surface type vertex group S of A intersects one of the
subgroups f¢(A;) in more than a boundary subgroup, then in fact there must be a surface
type vertex group S’ of A such that f(5’) N S has finite index in S. Here the fact that fy is
non pinching on the surfaces of A; is crucial.

We want to generalize this to the case where S intersects f¢(A; * - - - * A;) in more than a
boundary subgroup, however, this might not hold since S could intersect the images by fy¢ of
distinct factors A; in distinct boundary subgroups. We define a special class of preretractions
called minimal preretractions, and show that this does hold for them. Thus, up to replacing f
by a minimal preretraction, we may assume that if S is in the set S(f) of surface type vertex
groups which intersects fz(A1*- - -xA;) in more than a boundary subgroup, there is a surface
type vertex group S’ of A such that f(S’) N S has finite index in S.

It will be useful to replace f by a power of itself, however, a power of a preretraction is
not necessarily a preretraction. In Section 7.7, we are interested in preretractions for which
this holds, which we call stable. We prove two lemmas which indicate conditions on A and
on the initial preretraction f under which one can build stable preretractions.

Section 7.8 is devoted to dealing with the cases which are not covered by these lemmas.
We show that in such cases, we can find directly a structure of hyperbolic floor in A.

We finish the proof of Proposition 5.11 in Section 7.9. By the previous sections we can
assume that we have a non injective preretraction f which is both stable and minimal. We
deduce from this that up to replacing f by a power of itself, it sends surface type vertex
groups which are in S(f) isomorphically onto conjugates of themselves. We then consider
a subgroup G’ of G which is spanned in some way by these vertex groups and by the non
surface type vertex groups, and we show using in particular Proposition 6.1 that up to a last
modification, f restricts to the identity on G’. Moreover, we can ensure that the surface type
vertex groups which are not in S(f) intersect f(A) (and not just fg(Aq * - - - * A;)) at most
in a boundary subgroup, so that their images are in G’. These surfaces will be precisely the
surfaces of the hyperbolic floor decomposition, and f is the corresponding retraction.
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7.1. Pinching decomposition

Recall from Definition 3.3 that an essential set of curves on a surface ¥ is a set of disjoint,
two-sided non boundary parallel simple closed curves on %, considered up to homotopy. By
extension, if A is a graph of groups with surfaces, we will call a union of essential sets of curves
on the surfaces of A an essential set of curves on I'. Similarly, we extend Definition 5.25 by

DEerINITION 7.1 (Pinching map pg). — Let A be a group which admits a decomposition as
a graph of groups with surfaces A, and let G be an essential set of curves on A. Let N(G) be
the subgroup normally generated in A by the elements of the surface type vertex groups of A
which represent curves of G. The quotient map pg : A — A/N(G) is called the pinching map
corresponding to 6.

The group pg(A) admits a decomposition pg (A) obtained from A by replacing each vertex
and edge group by its image by p¢.

Let ¥ be a surface of A and let S be one of the corresponding surface type vertex groups.
Denote by G'x the set of curves of & which lie on ¥. Recall that we defined the pinching
decomposition I'(S, €'s) of pg(S) in Definition 5.26. Denote by T),sy the pg(S)-tree asso-
ciated to I'(S, €'x): its edge stabilizers are trivial. Recall that the image by p¢ of a boundary
element of S fixes a vertex in T),(5), and that such a vertex (as well as its image by the quotient
map T,s) — ['(S, Gx)) is called an exterior vertex (Definition 5.27).

DEFINITION 7.2 (Graph of groups Ag). — We refine pg(A) at each surface type vertex
with corresponding vertex group S by the graph of groups T'(S, Gx). The graph of groups thus
obtained is denoted by Ag. It admits a structure of graph of groups with surfaces, where the
surface type vertices correspond to the exterior vertices of the subgraphs of groups T'(S, €x).
The pg(A)-tree corresponding to Ay is denoted by T.

For each surface type vertex group S of A, the p¢(S)-tree T),(s) embeds simplicially and
equivariantly in Ts. We will identify it to its image under this embedding.

DEerFINITION 7.3 (Graphs of groups Ay, ..., A.). — Wedenote by A+, ..., A, the maximal
connected subgraphs of groups of A whose edge groups are non trivial.

We now build the graph of groups Ay by collapsing each subgraph A; to a point. We
denote by T the corresponding py (A)-tree: it is obtained from T by collapsing all the non
trivially stabilized edges, so that each subtree T),(5) of T embeds in T via the collapse map.
The graph of groups Ay has trivial edge groups.

DEFINITION 7.4 (Pinching decomposition associated to ©). — Given an essential set of
curves on the surfaces of A, a pinching decomposition associated to G is a Bass-Serre
presentation (Tg,, A%) of A such that for any subtree Ty (s), the tree Tg intersects at most one
translate of Ty (s in more than a point.
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F1GURE 4. Building the graph of groups Ag from A.

The choice of a pinching decomposition gives a free product decomposition of pg(A) as:
Ay s ApxSykeo xSy Uy v x Uy

where the subgroups S; are the stabilizers of vertices of Tg which are interior vertices of one
of the subtrees T),(s); the subgroup A; is the stabilizer of the vertex of T% which is the image
of A; by the collapse map Ag — Ag; and the subgroups Uy, are infinite cyclic and correspond
to edges of T which are not edges of AY..

The graph of groups A; can be seen as a decomposition of A; in a canonical way. In what
follows, we will thus identify vertex and edge groups of A; naturally with subgroups of A;.

REMARK 7.5. — The choice of an essential set of curves G on the surfaces of A uniquely
defines py, the graph of groups N and its subgraphs of groups A;, and the graph of groups Ay.
The choice of a pinching decomposition determines the subgroups A;, S;, and Uy, of pg(A).
We will moreover denote by Ag and Ry the free factors Ay x -+ % Ay and Sy % -+ % Sg x F
of pg(A) respectively.

We now classify surfaces of A in three different types: for each type we will later have a
different way of ensuring non abelianity of the image of the corresponding surface groups
under the various morphisms we will build.

LEMMA 7.6. — Let G be an essential set of curves on the surfaces of A, and choose a
pinching decomposition associated to G.
Let 3 be a surface of A, and let S be a surface type vertex group corresponding to 3. One
of the following is satisfied:
(A) T'(S, Gx) is a tree of group which admits a single infinite vertex group;
(B) S has two boundary subgroups Z1 and Zs all of whose conjugates in A intersect trivially,
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(C) S has a conjugate S’ such that pg(S’) intersects one of the subgroups A; in an edge
group Z of A;, and contains also a conjugate gZg~' of Z by an element g of one of the
factors Q = S; or Q = Uy of Rg. Moreover, there exists an epimorphism 7 : Q — 7
such that g ¢ Ker .

According to this, we will say that a surface X of A (and any of its corresponding vertex
groups) is of type (A), (B), or (C).

Proof. — Suppose ¥ is neither of type (A), nor of type (B). We see T),(s) as a subtree of T,
recall it embeds in T under the collapse map. Up to replacing S by a conjugate we may
assume that no translate of the embedded image of T),(s) in T intersects T in more than a
point.

Pick an exterior vertex v, of T),(s) whose image v in T lies in [_x%.

Let z be a vertex of T adjacent to v., such that the corresponding edge group Z is the
image by p¢ of a boundary subgroup of S. Note that z = v, so Z lies in A; for some ¢, and
is an edge group of A;.

If T(S, €x) has interior vertices with infinite stabilizer, there is a vertex v of T3 N Ty,
stabilized by one of the subgroups S; with S; infinite. This means S; is a subgroup of p¢(S).
Infinite surface groups surject non trivially onto Z: we pick an element g of S; outside of the
kernel of such a surjection. The conjugate gZg~* also lies in p(.5).

If T'(S, ©x) is not a tree of groups, there is an edge e of T¢ N T),(s) which is not in AY,.
Let g be the corresponding Bass-Serre element: it generates one of the factors Uy, and g - v,
lies in T,(sy. Thus gZg~" also lies in p¢(S).

If T'(S, Gx) is a tree of groups and all its interior vertices have finite groups, it must
have at least two exterior vertices since we are not in case (A). By our choice of Bass-Serre
presentation, T),(gy N T{; contains a vertex in each orbit of vertices of 7),(s) under the action
of pg(S). Thus there exists an exterior vertex w, of T),(g) distinct from v, whose image w.
in T lies in TQ.

Now since X is not of type (B), all the boundary subgroups of .S are conjugates in A, so by
strong 2-acylindricity of A, all the edges adjacent to the vertex corresponding to ¥ in A are
adjacent to a common vertex with cyclic vertex group. This implies that the exterior vertex
groups of T'(S, Gx) are all adjacent to a single vertex with cyclic vertex group. Thus w, is
adjacent to a vertex g - z for some element g of p¢(A4), and the corresponding edge group is
non trivial, so ¢ - z and w, have the same image under the collapse map Ty — Tp. We get
We = g - Ue. Since ¥, and @, lie in T, the element g corresponds to an edge of T which is
not in A9, so it generates one of the factors Uy. O

7.2. Non abelianity for surfaces of type (C)

SETTING 7.7. — Let G be a torsion-free hyperbolic group which admits a decomposition
as a graph of group with surfaces T, and let A be a subgroup of G endowed with a JSJ-like
decomposition A. Assume non surface type vertex groups of A (and thus edge groups of A) are
ellipticin T
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Note in particular that if A, A and G satisfy the hypotheses of Proposition 5.12, and if I’
is the graph of groups associated to the free product G = G’ x G”, or the decomposition
corresponding to the hyperbolic floor (G, G’, r) respectively, then we are in the setting above.
Similarly, if A and A satisfy the hypotheses of Proposition 5.11, then we are in the setting
above withG = AandI' = A.

The following lemma shows that from a morphism h4 : Ag — G which satisfies some
weak conditions, we can build a morphism A — A which sends surface type vertex groups
of type (C) to non abelian images.

LemmA 7.8. — Suppose G, T, A, and A are as given in Setting 7.7. Let G be an essential
set of curves on the surfaces of A. Choose a pinching decomposition associated to 6.

Suppose ha : Ag — G is a morphism which is injective on the edge group of the graphs
of groups N;. Let Gy be a non abelian subgroup of G. Then there exists a morphism
hr : Rg — Go, such that any surface type vertex group of A of type (C) has non abelian
image by (ha * hg)opg : A — G.

Proof. — 1f ¥ is a surface of A of type (C), let S be the corresponding vertex group such
that p¢(S) contains both an edge group Z of one of the subgraphs of groups A;, and a
conjugate gZg~! of Z by an element g of a factor Q of Ry.

By hypothesis, h4(Z) is non trivial. It is enough to choose hr so that hgr(g) is not
contained in the maximal cyclic subgroup containing h4(Z): indeed, then h4(Z) and
hr(9)ha(Z)hr(g)~! will intersect trivially by malnormality of maximal cyclic subgroups
in torsion-free hyperbolic groups.

Note that for each factor @ of Ry, the morphism hg|g is subjected to at most one such
restriction since the vertex or the edge corresponding to @ lies in only one of the subgraphs of
groups I'(S, Gx). Since Gy is non abelian, we can find an element lying outside of the cyclic
group h4(Z). We define hg|g to be the map surjecting @ onto the cyclic subgroup generated
by such an element. O

We will need in fact a more precise version of this lemma in the particular case where
G = A and A is complex enough.

LEMMA 7.9. — Suppose A is a torsion-free hyperbolic group endowed with a JSJ-like
decomposition A. Suppose moreover that if A has only one non surface type vertex group, this
vertex group is non cyclic. Let G be an essential set of curves on the surfaces of A. Choose a
pinching decomposition associated to 6.

Suppose ha : Ag — A is a morphism which sends edge groups of the graphs of groups A;
injectively to edge groups of A. Let Gy be a non abelian subgroup of G.

Then there exists a map hgr : Rg — Gy, such that for any surface type vertex group S of A
of type (C), the image of S by h = (ha * hr) o pg contains an edge group Z of A, and a
conjugate uZu"" of Z by an element u of a non surface type vertex group V such that one of
the following holds

— any two conjugates of Z and V intersect trivially;
— Z intersects V non trivially and (u) N Z = {1}.
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Proof. — Let S be a surface type vertex group such that pg(S) contains both an edge
group Z' of one of the subgraphs of groups A;, and a conjugate gZ’g ! of Z’ by an element g
of a factor @ of Re.

Let Z = h4(Z'): it is contained in h(S), and by hypothesis, it is an edge group of A.

Suppose first that any non surface type vertex group containing a non trivial subgroup
of Z is cyclic. Since A is JSJ-like, there is at most one such vertex group. By hypothesis, A
has at least one other non surface type vertex group V, so that any two conjugates of Z and V'
intersect trivially. We define hg|q to be the map surjecting () onto an infinite cyclic subgroup
of V. Then the first alternative is satisfied.

Otherwise, let V be a non abelian non surface type vertex group of A such that ZNV is not
trivial. We define hg|g to be the map surjecting @ onto the infinite cyclic group generated
by an element of V' which does not centralize Z. Then the second alternative is satisfied. [

7.3. Non abelianity for surfaces of type (A)

DEerINITION 7.10 (Essential set of curves pinched by f, morphisms f¢, f4 and fr)

Let f : A — G be a morphism. An essential set of curves G on the surfaces of A is said
to be an essential set of curves pinched by f if f factors through pg. We denote by f¢ the
morphism pg(A) — G such that f = f¢ o pg.

For a given pinching decomposition associated to G, we denote by f4 and fg the restrictions
of fe to Ag and Ry respectively.

Note that f4 sends edge groups of A; isomorphically to edge groups of A, and non surface
type vertex groups of A; isomorphically to non surface type vertex groups of A.

REMARK 7.11. — If G is a maximal essential set of curves pinched by f, then f¢ is non
pinching on the surfaces of Ag.

The following lemma shows what happens to surface type vertex groups of the graphs of
groups A; which have non abelian image under a morphism Ay — G. In particular, it will
be helpful to guarantee non abelianity of surface groups of type (A) under the preretractions
we will build (see Remark 7.13).

LEMMA 7.12. — Suppose G, T, A, and A are as given in Setting 7.7. Let f be a morphism
A — G, and let € be a maximal essential set of curves pinched by f. Let S be a surface type
vertex group of Ag.

If fg(é’ ) is non abelian, then it contains either a finite index subgroup of a surface type
vertex group of T', or a non abelian subgroup of a non surface type vertex group of T.

Proof. — Denote by 3 the surface associated to S. Its boundary subgroups are sent
to edge groups of A by fg¢, so they are elliptic in I' and we can apply Lemma 3.4 to find
an essential set of curves &1 on ¥ such that vertex groups of the dual graph of group
decomposition A(S’ , €+) are sent to vertex groups of I'. Since fy is non pinching on 3, the
edge groups of A(S’, ©7) are sent injectively to edge groups of T by fq.

We will now show that one of the vertex groups of A(S, §) must have non abelian image
by fz. If not, we get from A(S’ , E?Jr) a graph of group decomposition for f‘p(g) all of whose

vertex and edge groups are infinite cyclic, that is, f¢(S) is a generalized Baumslag-Solitar
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group. In such groups, the centralizer of an element is the whole group [8]. Since f¢(S) lies
in the torsion-free hyperbolic group G, it must be cyclic. This contradicts its non abelianity.

Let thus S, be a vertex group of A(S, §) such that fi(S,) is not abelian. Either f¢(S)
is a non abelian subgroup of a non surface type vertex group, or it is a non abelian subgroup
of a surface type vertex group S; of A: by Lemma 3.10 it has finite index in Sj. O

REMARK 7.13. — Suppose G, T', A, and A are as given in Setting 7.7. Let f be a
preretraction A — G, and let G be a maximal essential set of curves pinched by f. Let S be
a surface type vertex group of type (A), and let S be a surface type vertex of Ag which lies

in pg(S).

Then f¢(S) = f(S) so it is not abelian, and by Lemma 7.12, it contains either a finite index
subgroup of a surface type vertex group of T', or a non abelian subgroup of a non surface type
vertex group of T.

7.4. Proof of Proposition 5.12

Proof of Proposition 5.12. — Let G be a maximal essential set of simple closed curves
pinched by the non injective preretraction f : A — G. Choose a pinching decomposition
associated to &.

Let I" be the graph of groups decomposition associated to the free product decomposition
G = G’ * G” or to the hyperbolic floor (G, G’, r) respectively; in the first case denote by r
the retraction of G — G’ which restricts to the trivial map on G”.

The morphism hg = 7o f4 is injective on edge groups of A, so by Lemma 7.8 we can find
a morphism hg : Ry — G’ such that under the morphism h = (h 4 * hg) o pg, surface type
vertex groups of type (C) have non abelian images.

The morphism A restricts to a conjugation on non surface type vertex groups of A. In
particular, if S is a surface type vertex group of type (B), h(S) contains conjugates in G of
edge groups Z; and Zs of A whose conjugates in A intersect trivially. But A is a retract of G,
so conjugates of Z; and Zs in G also intersect trivially, and the subgroup they generate is not
abelian.

Let now X be a surface of A of type (A). By Remark 7.13, there is a corresponding surface
type vertex group S, such that f(.5) either contains a finite index subgroup of a surface type
vertex group S; of I, or a non abelian subgroup of a non surface type vertex group V of I'. If
we are in the first case, h(S) contains a finite index subgroup of r(S;) which is non abelian,
so it is itself non abelian. In the second case, r restricts to conjugation on V, so h(S) is not
abelian either.

Thus h is a preretraction. If & is non empty, h is non injective since it factors through pg.
If & is empty, f4 = f is non injective, hence so is h. O
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7.5. Elliptic refinements

Let A be a torsion-free hyperbolic group which admits a JSJ-like decomposition A. Let
f A — Abe a preretraction. Let G be a maximal essential set of curves pinched by f, and
choose a pinching decomposition associated to &.

We consider the minimal subtree of A; in its action via f4 on the tree Ty corresponding to
A. If a surface type vertex v with stabilizer .S lies outside of this minimal subtree, in particular
the intersection of S with f4(A;) is contained in a boundary subgroup. The aim of this
section is to examine the case where v lies in this minimal subtree.

Non surface type vertex groups of A; are sent to non surface type vertex groups of A by f4,
so they are elliptic in the action of A; on T via f4. Boundary subgroups of a surface type
vertex group S of A; are elliptic, so by Lemma 3.4, there exists an essential set of curves i?;
on ¥ such that vertex groups (respectively edge groups) of the graph of groups A(S, 6;) dual
to i?; are sent to vertex groups (respectively edge groups) of A by f4.

DEFINITION 7.14 (Elliptic refinement A;"). — We refine the graph of groups A; at each
surface type vertex with corresponding group S by the graph of groups A(S, i‘?;) The graph
of groups thus obtained is called an elliptic refinement for A; with respect to fa, and is denoted
by Af. It admits a structure of graph of groups with surfaces where the surface type vertices
are the vertices of A(S, 8;) for all S. We denote the corresponding tree by T;.

REMARK 7.15. — The map fa sends edge groups of A injectively to edge groups of A, and
non surface type vertex groups of A} isomorphically to non surface type vertex groups of A.
Moreover, it is non pinching on the surfaces of A}

All the vertex groups of A} are elliptic in the action on T via f4, hence by Lemma 3.7,
there exists a locally minimal f4-equivariant map ¢; : T;% — Tj.

LEMMA 7.16. — Let vg be a surface type vertex of T with stabilizer S. If vg lies in ¢; (Tf),
then there is a surface type vertex group So of A such that fa(So) has finite index in S.

Proof. — Recall that a JSJ-like decomposition is 1-acylindrical next to surface type ver-
tices, that is, if an element stabilizes two distinct edges adjacent to vg, it must be trivial. Let v
be a point of T;" such that ¢;(v) = vg.

Suppose first that v is a surface type vertex of T;". Then fa is a morphism of surface
groups S, — S between the surface group S, corresponding to v and S. By local minimality
of ¢;, the image f4(S,) is not contained in a boundary subgroup of S. Since f4 is non
pinching on the surface type vertex groups of A}, by Lemma 3.10 the subgroup f4(S,) must
have finite index in S.

Since f4 sends non surface type vertex groups of A isomorphically to non surface type
vertex groups of A, if v is a non surface type vertex of 7", it must have cyclic stabilizer Z.
Thus v has an open neighborhood which is stabilized by a non trivial element. Similarly, if v
is a point of the interior of an edge of T;r, it has a non trivially stabilized open neighborhood.

By 1-acylindricity next to vg, the image by ¢; of this open neighborhood of v is contained
in an edge of 7. But this contradicts local minimality of ¢;. O

We can deduce from this
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LEMMA 7.17. — If f is not injective, the subtree ¢;(T;") is a proper subtree of T.

Proof. — Suppose not. By Lemma 7.16, for any surface type vertex group S of A, there
is a surface type vertex group Sy of A;" such that f4(Sp) has finite index in S. Thus by
Lemma 3.12, the complexity of the surface ¥ corresponding to S is at most that of the sur-
face ¥g corresponding to Sy, and if we have equality the map f4 sends Sy isomorphically
onto S. Now X is a surface of A(Sy, 6;1) for some vertex group S; of Ay with correspond-
ing surface ¥, and in turn ¥ is a surface of I'(Sz2, s, ) for some vertex group Sz of A with
corresponding surface ¥5. We have k(Xg) < k(X,), with equality if and only if 8;1 is empty,
and k(2;1) < k(X3), with equality if and only if Gy, is empty.

Thus we have k(2) < k(X2), and if we have equality f sends S; isomorphically onto S.
The map j : ¥ — 3, is a map from the set of surfaces of A to itself which increases
complexity, and if k£(X2) = k(X) no other surface is mapped by j to 3, since then f(S2) = S.

The set of surfaces of A being finite, we conclude that we must have k(X)) = k(X2) for all
the surfaces X of A, so that f sends surface groups of A isomorphically onto surface groups
of A. Some power f* of f sends surface type vertex groups isomorphically onto themselves:
by Proposition 6.1, f* is an isomorphism, which contradicts non injectivity of f. O

7.6. Minimal preretractions

Let A be a torsion-free hyperbolic group which admits a JSJ-like decomposition A. Let
f A — Abe a preretraction with respect to A. Let & be an essential set of curves pinched

by f.

DEFINITION 7.18 (Set S (f)). — We let S (f) be the set of surfaces of A for which there
exists a corresponding surface type vertex group S such that f4(Ag) NS is not contained in a
boundary subgroup of S.

DEFINITION 7.19 (&-minimal preretractions). — We say that f is G-minimal if there is
no preretraction h : A — A which factors through py such that  ( f) strictly contains J,(h).

An essential property of &-minimal maps is given by

PRrROPOSITION 7.20. — Let f : A — A be a preretraction. Let G be a maximal essential
set of curves pinched by f. Assume f is non injective and G-minimal.

If X lies in S (f), then there is a surface type vertex group Sy of one of the graphs of groups
A such that f4(So) has finite index in a surface type vertex group corresponding to .

We build elliptic refinements A;" with respect to f4 for the graphs of groups A; as in the
previous section. Recall that we have a locally minimal equivariant map ¢; : T;F — Tj,
where T is the tree corresponding to Aj, and that (by Lemma 7.16) if a surface type
vertex vg with vertex group S lies in one of the trees ¢;(7;"), then there is a surface type
vertex group Sp of A such that f4(Sp) has finite index in S.

If vg does not lie in ¢;(T;"), its intersection with f4(A;) is at most a boundary subgroup,
so if there is only one factor A;, Proposition 7.20 is proved. The problem when there are at
least two factors A; is that S could intersect several subgroups f4(A4;) in distinct boundary
subgroups. By 2-acylindricity of A, this would require in particular that the trees ¢;(T;") be

close in T'. The idea is thus to find a preretraction f’ which restricts to Conj(g;) o f4 on
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each A;, where the elements g; are chosen so that the trees g; - ¢; (T;r) are far away from each
other. This will imply that the surface corresponding to vg is not in J(f’), but this will
contradict ¢-minimality of f.

We first prove a lemma which shows that we can find a preretraction from a morphism
A¢ — A which coincides up to conjugation with f4 on each subgroup A;.

LEMMA 7.21. — Let A be a torsion-free hyperbolic group endowed with a JSJ-like
decomposition A. Let f : A — A be a non injective preretraction with respect to A.
Let G be a maximal essential set of curves pinched by f on the surfaces of A, and choose a
pinching decomposition associated to G.

Suppose ha : Ag — A restricts to Conj(g;) o fa on A;. Then there exists a morphism
hgr : Rg — A such that h = (ha % hg) o pg is a non injective preretraction. Moreover if
ha(Ag) is not abelian, we can assume that h(A) is contained in ha(Ag).

Proof. — Note that h 4 sends edge groups of A; injectively into edge groups of A, since f4
does. We can thus choose h g according to Lemma 7.8, and h sends surface type vertex groups
of type (C) to non abelian images. Clearly h restricts to conjugation on each non surface
type vertex of A. In particular, this implies the non abelianity of the image of surface type
vertex groups of type (B). Finally, by Remark 7.13, for any surface of type (A), there is a
corresponding surface type vertex group S and a subgroup S of pg(S) which lies in A; for

some ¢ and such that f4(.5) is not abelian. Hence h 4(.5) is not abelian, so neitheris A(S). O

We will also need the two following lemmas about actions on trees. Recall that a G-tree
is said to be irreducible if none of its ends are fixed by G.

LEMMA 7.22. — Let G be a finitely generated group, and let T be a minimal irreducible
G-tree. If T and 7' are proper subtrees of T, for any integer D there is a translate of T’ by an
element of G which lies at a distance at least D of T.

Proof. — By Lemma 4.3 in [18], the hypotheses allow us, for any two distinct vertices v
and w of T', to find an element of G which is hyperbolic in the action of G on T" and whose
axis contains the path between v and w.

Suppose first that the smallest tree 7y containing 7 U 7’ is a proper subtree of T'. Let K
be a connected component of the complement of 7 in 7', and let u be the vertex of T" such
that K N 79 = {u}. By minimality and irreducibility of the action, K is not a line, so we can
find points v and w in such a component such that the tripod formed by v, w, and u is non
trivial. We pick a hyperbolic element g whose axis contains the path between v and w. The
projection of 7 and 7/ on the axis of g is reduced to a point. Thus ¢” -7 is at distance greater
than D of 7.

If on the other hand 7 = T, we pick vertices v, w of the tree which are in 7/ but not
in 7, and in 7 but not in 7’ respectively. Now 7 lies in the connected component of T' — {v}
containing w and 7’ lies in the connected component of T — {w} containing v. Thus the
intersection 7N7’ lies in the connected component of T'— {v, w} containing the arc between v
and w. Pick a hyperbolic element whose axis contains the path between v and w. By applying
a suitable power of this element we can translate 7/ away from 7. O
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LeEmMA 7.23. — Let G be a finitely generated group, and let T be a k-acylindrical minimal
G-tree. Suppose Gy and G4 are subgroups of G which generate G, and whose minimal subtrees
Ty and Ty in T are joined by an arc D of length at least 2k + 3. Then for any vertex v of T

— either Stabg (v) stabilizes an edge adjacent to v;
— orw lies in a translate of T; by an element of G, and in this case Stabg (v) stabilizes this
translate.

Moreover, any vertex of D which is at distance greater than k + 1 of both Ty and Ty has
valence 2 in T, and we have G = G1 * G.

Proof. — The tree 7 is the union of translates of T3, T and D by elements of G. Let T,
for i = 1,2 be the set of points whose distance to 7} is at most k + 1: note that 7} and 75 are
disjoint. Denote by D the subsegment of D which joins 7} and T5. Let B; be the complement
in 7 — T} of the connected component containing the interior of Dfori=1,2.

By k-acylindricity, an element of G sends points of f), of Ty and of B, into B, and an
element of G5 sends points of D, of Ty and of B; into Bs.

If v € D, its image by a non trivial element of G lies in B; U B,. This implies that v is not
contained in any translates of T} or T, so that it has valence 2 in T, but also that Stabg(v)
is trivial. Moreover, if u is a non trivial word in G; and G5, then u - v is distinct from v, so u
represents a non trivial element of G. Thus G = Gy * Ga.

If v lies in 7} and g ¢ G4, then g - v lies in By U Bs. This implies that the stabilizer of v
is contained in G;. If v lies in Ty — T, the stabilizer of v also stabilizes the path between v
and T1, so it stabilizes an edge adjacent to v. We get a similar result if v lies in T%. If v lies in

a translate g - D of D, or in a translate g - T} of T}, we apply the results above to =% -v. O

We now prove Proposition 7.20. We denote by HY the conjugate of a subgroup H by an
element g.

Proof of Proposition 7.20. — We will show by induction on k, for 1 < k < [, that we can
find g1, ..., g; in A such that if 7 is the minimal subtree in T of the subgroup G}, generated
by fa(A1)%,..., fa(Ax)9% we have:

= G = fa(A1)7 %% fa(Ag)?;

— Ty 1s a proper subtree of Ty;

— if v is a vertex of 7y, either v lies in a translate of ¢;(7;"), or the intersection of the

stabilizer of v with G, stabilizes an edge.

For k = 1 we let g; = 1. Note that the minimal subtree 71 of f4(A;) is exactly <;51(Tfr ),
which is a proper subtree of 7" by Lemma 7.17. The other properties are immediate.

Suppose we have found ¢y, ..., gr_1 satisfying these properties. The subtrees 7,_; and
Tr = ¢x(T;") are both proper subtrees of T by induction hypothesis and Lemma 7.17
respectively. By applying Lemma 7.22, there is an element g, of A such that 7,1 and gy - T}
are at a distance at least 20 from each other.

Lemma 7.23 shows that the subgroup Gy, generated by G_1 and fa(Ag)% is in fact
their free product, and that the third property holds as well. Moreover, any vertex of D far
from 7,_; and T} has valence 2 in 7. Since D is long, by strong 2-acylindricity of T} there
exist such a vertex of whose valence in T is greater than 2. Hence 7 is a proper subtree
of TA.
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Now let Fy : Ay — A be defined by Conj(g;) o fa oneach A;. By Lemma 7.21, we can
choose Fr : Ry — Asuch that F = (F4 % Fr) o pg is still a preretraction.

Let S be a surface type vertex group of A whose intersection with F4 (Ag) is not contained
in a boundary subgroup, so that the corresponding surface X lies in J ,(F'). The vertex vg it
stabilizes in T, must lie in the minimal subtree 7; of F4(Ag), so it lies in a translate of ¢; (T;")
for some 7. By Lemma 7.16, up to replacing S by a conjugate, one of the surface type vertex
groups of A; is sent by Fy4 to a finite index subgroup of S. Since f4 and Fj4 differ by a
conjugation on A,, this is still true for f4, and in particular 3 lies in J(f).

Thus J,(F) C Jg(f), but by &-minimality of f, we must have equality. This proves the
result. O

7.7. Stable preretractions

Let A be a torsion-free hyperbolic group which admits a JSJ-like decomposition A.

DEFINITION 7.24 (Stable preretraction). — Let f be a preretraction A — A with respect
to A. We say that f is stable if f* is a preretraction for all k > 0.

Even if we know that there exists a non injective preretraction f : A — A, we cannot
always guarantee the existence of a stable non injective preretraction. However, this will be
possible under some restrictions on A, or if f satisfies some extra conditions.

LeEmMA 7.25. — Suppose that if A has only one non surface type vertex group V., then V is
non abelian. Let f : A — A be a non injective preretraction, and let G be a maximal essential
set of curves pinched by f. Choose a pinching decomposition associated to 6.

There exists a morphism hg : Rg — A such that h = (fa xhg) o pg is a stable non injective
preretraction and h(A) < fa(Ag).

Proof. — Note that the subgroup f4(Ag) is not abelian: indeed, it contains conjugates of
all the non surface type vertex groups of A, but by assumption A admits either a non abelian
non surface type vertex group, or two non conjugate non surface type vertex groups.

We choose a morphism hgr : Rg — fa(Ag) according to Lemma 7.9. In particular, if S
is a surface type vertex group of type (C), its image by A is not abelian.

The morphism h restricts to conjugation on non surface type vertex groups of A, and thus
surface type vertex groups of type (B) have non abelian image by h. If X is a surface of A of
type (A), h(S) is not abelian by Remark 7.13. If & is not empty, h is non injective since it
factors through p¢, and if & is empty, h = fa4 = f is also non injective. Thus A is a non
injective preretraction.

Suppose h*~1 is a non injective preretraction. The morphism H = h* factors as Hy o p¢,
and the restriction H4 of Hy to Ay is exactly h¥~1 o h 4. Clearly H restricts to conjugation
on non surface type vertex groups and edge groups of A, so in particular surface type vertex
groups of type (B) have non abelian image by H.

Let S be a surface type vertex group of type (A): by Remark 7.13, its image h(S) contains
either a subgroup of finite index of a surface type vertex group S; of A, or a non abelian
subgroup of a non surface type vertex group V of A. In the first case, note that h*~1(S;)
is not abelian by induction hypothesis, so H(S) is non abelian. In the second case, h*~1
restricts to a conjugation on V' so H(S) is non abelian.
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We chose hr according to Lemma 7.9, so if S is of type (C), the group A(S) contains an
edge group Z of A and a conjugate uZu ! of Z by an element u of a non surface type vertex
group V such that one of the following holds

— any two conjugates of Z and V intersect trivially;
— Z intersects V non trivially, and (u) N Z is trivial.

In the first case, since h*~! sends Z and V' to conjugate of themselves, H(S) contains both
hk=1(Z) and a conjugate of h*~1(Z) by an element h*~!(u) which lies in a conjugate of V,
and as such does not centralize h*~1(Z). In the second case, k¥~ restricts to a conjugation
on V, so h*~1(Z) and h*~1({u)) intersect trivially. In both cases H(S) is not abelian. [

If the conditions on A are not satisfied, we can still get a stable non injective preretraction
provided there exists a non injective preretraction which satisfies some good properties.

LEMMA 7.26. — Let f : A — A be a non injective preretraction, and let € be a maximal
essential set of curves pinched by f. Choose a pinching decomposition associated to G.

Suppose that for any surface type vertex group S of A, at least one of the exterior vertex
groups S of T'(S, Gx) has a non abelian image by f.

Then the morphism h = (fa x 1) o pg is a stable non injective preretraction.

Note that we also get h(A4) < fa(Ag).

Proof. — Clearly h restricts to conjugation on non surface type vertex groups of A, and
for any surface type vertex group S, we have S < pg(S), so f(S) contains fA(g) and is not
abelian. This shows h is a preretraction. Since f is not injective, neither is h.

Suppose h*~1 is a non injective preretraction. By Lemma 7.12, if S is a surface type vertex
group of A, then f A(S’ ) contains either a non abelian subgroup of a non surface type vertex
group, or a finite index subgroup of a surface type vertex group. Since h*~1 is a preretraction,

in both cases H(S) contains a non abelian subgroup. O

REMARK 7.27. — Note that being G-minimal only depends on f4. Thus if f is €-minimal,
and we are in the setting of one of the two lemmas above, we may assume without loss of
generality that f is stable and that f(A) < fa(Ag).

7.8. A special case

In Section 7.9, we will prove Proposition 5.9 with the extra assumption that there exists
a stable and ©-minimal non injective preretraction. However, there are cases which are
covered neither by Lemma 7.25 nor by Lemma 7.26, so that we cannot guarantee that such
a preretraction exists. We will now prove directly the existence of a hyperbolic floor in these
cases.

PRrOPOSITION 7.28. — Let A be a torsion-free hyperbolic group which admits a JSJ-like
decomposition A, and let f : A — A be a non injective preretraction with respect to A.
Suppose that A and f satisfy neither the hypotheses of Lemma 7.25, nor those of

Lemma 7.26. Then there exists a retractionr : A — A’ to a proper subgroup of A such that
(A, A’ r) is a hyperbolic floor.
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Assume that the hypotheses of Lemma 7.25 do not hold: A has a unique non surface type
vertex w, and the corresponding vertex group Z = (z) is maximal cyclic. We assume without
loss of generality that f is the identity on Z.

Let & be a maximal essential set of curves pinched by f. Choose a pinching decomposi-
tion associated to &. Let v be a surface type vertex of A. If the corresponding surface X is
orientable, we fix an orientation. We choose maximal boundary elements by, . . . , b,, of S cor-
responding to boundary curves (with positive orientation if X is orientable). For each edge e
adjacent to v, let k; be such that the edge group G, has a generator which maps to b; and z*:
under the embeddings G, — G, and G, — G, = Z respectively. We call the integers k; the
boundary exponents of 3.

LEMMA 7.29. — Under the hypotheses of Proposition 7.28, there exists a surface ¥ of A
with boundary exponents k1, . . ., ky, such that the sum ki + - - - + ky, is even. If moreover % is
orientable, we have in fact ky + - - - + ky, = 0.

Proof. — Since the hypotheses of Lemma 7.26 are not satisfied, there exists a surface type
vertex group S of A with corresponding surface 3, such that any exterior surface type vertex
group S of I'(S, Gx) has abelian image by f¢. Note that f¢ is non pinching on the surface by
corresponding to S.

The only surface groups which admit a map to an abelian group which is non pinching
and injective on boundary subgroups correspond to punctured spheres, punctured projective
planes, and punctured Klein bottles. Indeed, any other surface has a simple closed curve
represented by a product of commutators.

The product of the elements p¢(b;) which lie in a common exterior surface type vertex
group S of '(S, ) is thus either trivial, or a square, or a product of squares. In the cyclic
group ffg(g), the product of the corresponding elements f(b;) is either trivial, or a square.
Since f(b;) is conjugate to z¥¢, the sum of these boundary exponents is even, and equal to 0
if ¥ is orientable. O

We will deal separately with the case where such a surface ¥ has a single boundary
component.

LEmMA 7.30. — Suppose A admits a surface Y which satisfies the conclusion of Lemma 7.29.

If' 3 has only one boundary component, then A admits a structure of hyperbolic floor.

Proof. — Note that k; # 0, so X is not orientable and k; is even, say k; = 2k.
The subgroup of A generated by S and z* is the fundamental group S’ of the closed non
orientable surface ¥’ obtained by gluing a Mobius band M along the unique boundary
component of ¥. Since X is non orientable, ¥’ can be seen as the double of a surface ¥
which contains M. This gives a retraction of S’ onto a subgroup Sy containing z* which
extends to a retraction A — A’. O

We can finally prove Proposition 7.28.
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Proof of Proposition 7.25. — Let X be the surface of A obtained in Lemma 7.29. By
Lemma 7.30, we may assume X has at least two boundary components.

We can find (see Figure 5 for the orientable case) a set C' which is the union of one
or two disjoint simple closed curves on ¥ such that ¥ can be written as the union of two
subsurfaces ¥; and X5 with

- 2X1NYy=0C;

— X; is orientable and contains exactly one boundary component of X;

— X5 is homeomorphic to an (m — 2)-punctured copy of ¥; (if ¥ is orientable), or to the

(m—2)-punctured connected sum of a projective plane with ¥ (if ¥ is non orientable).

21 )32

FIGURE 5. The even genus case is represented on the left, the odd genus case on the right.

In the even genus case, this means we have a presentation for the fundamental group S
of 3 with generators {z;, y;, z}, y; }1<i<r U {b1, ..., bm } U {d}, and relations

byt T [, 9] = ba .. bpd® T [, /)]

and d = 1 if ¥ is not orientable, and such that the fundamental group S; of X, is generated
by {zi,yi}1<i<r U {b1} and the fundamental group S of 3 by {z}, ¥ }1<i<r U {ba,...,bm } U {d}.

We then define the retraction r to be the identity on Sy, and defined on Sy by r(z}) = =,
r(y}) = yi, and r(b;) = 2% fori > 2, and if ¥ is non orientable, we set 7(d) = 2° where J is
such that ky + ko + - - - + ky,, + 26 = 0. This extends to A, and (A4, r(A),r) is a hyperbolic
floor. We can proceed similarly in the odd genus case. O

7.9. Proof of Proposition 5.11

Let A be a torsion-free hyperbolic group which admits a JSJ-like decomposition A. Let
f + A — Abe anon injective preretraction with respect to A. We want to show that there
exists a hyperbolic floor (4, A’, 7).

Let & be a maximal set of essential curves pinched by f. Up to replacing f by another
non injective preretraction, we may assume that ¢ is not contained properly in any essential
set of curves pinched by a preretraction. We choose a pinching decomposition associated
with G.

Recall that J(f) is the set of surfaces one of whose corresponding vertex groups inter-
sects fa(Ag) in more than a boundary subgroup, and that f is G-minimal if for no prere-
traction h factoring through pg does J(f) properly contain J(h).
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Without loss of generality, we may assume that f is &-minimal. By Remark 7.27 and
Proposition 7.28, we may also suppose that f is also stable and that f(A) < fa(4g).

LEMMA 7.31. — We have Jo(f*) = S (f) for all k > 0.

Proof. — Since f is stable, f* is also a preretraction. The set & is an essential set of curves
pinched by f*. Now (f¥)a = f*" ' o fa so (f¥)a(Ay) is contained in f(A), which is
contained in f4(Ag) by assumption on f. In particular J,(f¥) C J(f). By G-minimality
of f, this inclusion is an equality. O

REMARK 7.32. — Note that this implies that f* is also ©-minimal. Moreover, f* is also
stable, and f*(A) < (f*)a(Ag).

Let § be a maximal essential set of curves on the surfaces of A whose corresponding
elements are sent to edge groups of A by f. Note that the elements corresponding to curves
of & are also sent to edge groups of A by any power of f. Up to replacing f by f* for some k,
we can assume ' is a maximal essential set of curves whose corresponding elements are sent
to edge groups of A by f. By Remark 7.32, we see that none of the properties of f are affected
by this modification.

With the set €, we can build elliptic refinements A;" of the graphs of groups A; with
respect to f as in Section 7.5.

LEMMA 7.33. — Some power of [ sends surface type vertex groups whose corresponding
surface is in J(f) isomorphically onto conjugates of themselves.

Proof. — Let ¥ be a surface in J(f) = Ju(f?). Let S be a surface type vertex group
corresponding to ¥ which intersects (f2?) 4(Ag) in more than a boundary subgroup. Note
that (f2)A = fo fa.

By hypothesis on f, the set & is in fact a maximal set of essential curves pinched by f2.
Since f? is ¢-minimal, by Proposition 7.20, there is a surface type vertex group Sy in one of
the graphs of groups A" such that (f2)4(So) has finite index in S. Now f4(Sp) is elliptic
in A: if it lies in a non surface type vertex group V of A, then (£2)4(So) = f(fa(So)) lies
in a conjugate of V, but V N S is at most cyclic which contradicts (f2) 4(Sp) having finite
index in S. Thus f4(Sp) lies in a surface type vertex group S; of A. By Lemma 3.10, since
f4 1s non pinching on the surfaces of Aj, fa(So) has finite index in S;. In particular, the
surface ¥; corresponding to Sy is in J(f).

Now f(.S1) has a subgroup of finite index, namely f(fa(So)), which is elliptic in A. Thus
it is itself elliptic in A. Since f(fa(So)) is not abelian and is contained in S, f(S1) must be
contained in S. Hence f(S1) has finite index in S. By Lemma 3.12, this implies that the
complexity k(X;) of ¥, is greater than that of ¥, and if we have equality f|s, : S1 — Sisan
isomorphism of surfaces.

Consider the application 3 — X; from J () to itself. It is injective since f(S;) < S, and
it increases complexity: since J(f) is finite, it is a bijection and we have k(X;) = k(X) for
all ¥. Thus f sends each surface type vertex group whose corresponding surface is in J - ( f)
isomorphically onto such a vertex group. This proves the result. O
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We replace f by the power given by Lemma 7.33.

Let I be the graph of groups decomposition obtained from A by collapsing all the edges
except those adjacent to surface type vertices whose corresponding surfaces are not in J,(f).
It naturally inherits a structure of graph of groups with surfaces from A. Note that any edge
of T" is adjacent to exactly one surface type vertex and one non surface type vertex.

Denote by I'y, ..., I'; the subgraphs of groups of A which are inverse images of the non
surface type vertices of I' under the collapse map A — TI'. Note that I'; is a JSJ-like
decomposition. Any surface X of I'; is in J(f), thus f is injective on the corresponding
surface type vertex groups by Lemma 7.33. In particular, no curves of & lie on 3. Thus
under the refinement of A to A, I'; embeds naturally in A;, for some i;.

We can thus choose non surface type vertex groups Hi,...,H; of I' such that
pe(Hj) < A

LEMMA 7.34. — For each i, the group fa(A;) is contained in a non surface type vertex
group of T.

Proof. — By Lemma 7.16, if a surface type vertex vg of T} lies in ¢;(T;"), the correspond-
ing vertex group S intersects f4(A4;) in a finite index subgroup, so the surface corresponding
to vg isin Jy(f). So the tree ¢;(T;") does not contain any vertices which are sent to surface
type vertices of T under the collapse map T — Tr. By bipartism of 7T, this implies that
f(A;) is contained in a non surface type vertex group of I'. O

We now show

LemMA 7.35. — Each Hj is sent isomorphically to a conjugate of itself by f, and fa(As;)
is a conjugate of H;.

Proof. — We start by remarking that bipartism of I" and 1-acylindricity at surface type
vertices imply that distinct non surface type vertex groups of I' intersect trivially.

Now pg(Hj) < A;;,and by Lemma 7.34, f4(A;,) liesin g; Hy, gj_1 for some k. Any vertex
group V of I'; is sent to a conjugate ofitselngVg‘j1 by f,so f(H;) intersects gijg‘_,1 non
trivially. Thus we must have k; = j, so that fa(4;,) < ngjgj_l, and gj_lgv € H;.

The map F' = Conj (gj_l) o f|u; is a morphism H; — H; which restricts to conjugation
by an element of H; on non surface type vertex groups of I';, and sends surface type
vertex groups of I'; isomorphically to a conjugate of themselves by an element of H;. By
Proposition 6.1, F'is an isomorphism, hence so is f|,. Thusin fact fa(4;,) = ngjgj_1 O

We can finally finish the proof of Proposition 5.11. By Lemma 7.35, fa(A;;) = ngjgj_l,
so the map j — i; is injective. Each A; contains at least one non surface type vertex group,
so ¢ = 4; for some j, and up to renumbering we can assume 3; = j.

The group f(A) acts on Tr. We assumed f(A) = fa(Ag), so the intersection of f(A)
with any surface type vertex group of I' is contained in a boundary subgroup. Thus in the
action of f(A) on Tr, a surface type vertex of I' has at most one non trivially stabilized
adjacent edge. This implies that f(A) is the free product of subgroups of conjugates of the
groups H; with possibly a free group. But f4(Ay) is generated by the subgroups f4(A;), so
fA)=giHig™ %+ x g Hg .

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



680 C. PERIN

Denote by A’ the subgroup of A generated by the subgroups H;. The morphism
flar + A — giHig™' % --- % gyH;g; " is injective on each H;, and distinct subgroups
H; are sent to distinct free factors of the image. This implies that A’ is in fact the free
product of the subgroups H;.

The morphism r = (f|a) ™! o f restricts to the identity on A’, so it is a retraction A — A’,
and it is not injective since f is not. Moreover, it sends surface type vertex groups of I to
non abelian images since f does. Thus (A4, A’, r) forms a hyperbolic floor with respect to the
decomposition I'. This finishes the proof.
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