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INTRINSIC MICROLOCAL ANALYSIS
AND INVERSION FORMULAE

FOR THE HEAT EQUATION
ON COMPACT REAL-ANALYTIC

RIEMANNIAN MANIFOLDS

BY FRANCOIS GOLSE, ERIC LEICHTNAM AND MATTHEW STENZEL

ABSTRACT. - This paper is devoted to a new intrinsic description of microlocal analytic singularities on a
connected compact C^ Riemannian manifold {X^g}. In this approach, the microlocal singularities of a distribution
u on X are described in terms of the growth, as t —^ O^, of the analytic extension of e~t^u to a suitable
complexincation X' of X, identified with a tubular neighborhood of the zero section in T* X. First we show that
the analytic extension of the heat kernel of {X^g] to X' is an F.B.I, transform in the sense of Sjostrand. Then
we establish various inversion formulae for the heat semigroup e~tA analogous to Lebeau's inversion formula
for the Euclidean Fourier-Bros-Iagolnitzer transform.

0. Introduction

The purpose of this article is to use the complexification of a compact, real analytic
Riemannian manifold to give a new, intrinsic description of the analytic wave front set
of a distribution (*), and to prove an inversion formula for the heat equation analogous
to Lebeau's formula in the case of Euclidean space [L]. Our substitute for the Fourier
transform methods traditionally used to analyze microlocal singularities is the Fourier-
Bros-Iagolnitzer (F.B.I.) transform. The kernel of this transform is defined by the analytic
continuation of the heat kernel in the manifold variables. In order to extract useful
information from this transform, and prove the inversion formula, the main difficulty is to
understand precisely the singularity of its kernel as t -^ O"^.

NOTATION 0.0. -If P is a differential operator on a manifold Z and f is a smooth function
defined on Z x ... x Z, we denote by Pkf the action ofP on the k-th variable in f.

In the following (X, g) will be a compact, connected, orientable, real analytic,
n-dimensional manifold and p the leading symbol of the (non-negative) Laplace-Beltrami

(*) We recall that the C00 (resp. real analytic) wave front set of a distribution u is, roughly speaking, the
points at which u fails to be locally equal to a C°° (resp. real analytic) function together with the codirections
contributing to the singularity.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. - 0012-9593/96/067$ 7.00/© Gauthier-Villars



670 F. GOLSE, E. LEICHTNAM AND M. STENZEL

operator. There is canonically associated to (X,g) an integrable complex structure on
a sufficiently small tubular neighborhood U of the zero section in T*X (see [G-S1],
[L-S]). We complexity X by identifying it with the zero section in such a tube. To pass
from estimates on Riemannian objects in the real domain given in term of exponential
coordinates to estimates in the complex domain, it will be convenient to parameterize this
tube by the analytic continuation of the exponential map:

(x,v) G T'X -^ Exp^V^l^ G U,

where TeX is the set of tangent vectors of length less than e. For e sufficiently small this
is a diffeomorphism, and we will denote its image by Mg.

Let E(t,x,y) denote the heat kernel of (X,g). The F.B.I, transform is the map
u —> e^^u. It is well known that for every distribution u on X, e^^u is a real
analytic function. We will show that there is an e > 0, independent of u, such that e^^u
(resp. E(t, x, y)) can be analytically continued to Mg (resp. (0, oo) x Mg x MJ. We denote
by d2 the square of the Riemannian distance function and its analytic continuation to a
neighborhood of the diagonal Ax in Mg x M^. Our first main result is Theorem 0.1 (see
below). Part (i) gives the asymptotic expansion of E(t,x,y) as t tends to 0"^ modulo
an exponentially decreasing term for x and y complex near the diagonal, and part ii)
characterizes the analytic wave front set of u in terms of the growth of its F.B.I, transform
in the complex domain as t —)- O"^.

THEOREM 0.1. - For any Xo G X there exists €2, p > 0 and an open neighborhood W^
of Xo in Me such that:

(i) For any 0 < t < 1 and any ( x ^ y ) G W^ x W^ we can write:

E(t^ x, y ) = 7V(^ x, y^e-^^l^ + 0 {e-^ )

where the O(') is uniform with respect to ( x , y ) as t —> 0+, and N(t,x,y) is an analytic
symbol of order n/2 with respect to 1/t in the sense of [ S j ] (see definition 4.3). Moreover
if ^o ^ T^X \ {0} has length less than 62 then ^^/I:id2{x,y) is an FBI phase near
(Exp^^/'^l^Q^XQ) and the value at Exp^^^^l^o) of the associated weight is j|^o|2.

(ii) Let u be any distribution on X and let ^o G T^X \ {0} have length less than 62.
If there exists C, S > 0 and an open neighborhood Z ofExp^^^^1!^) in Mg such that

for all 0 < t < 1 and all x G Z,

M e-^^^u^^Ce-6^

then the covector (xo, Co) ^ T^X defined by Co ^i -^ g(^i, -$o) does not belong to the
analytic wave front set of u. Conversely if (a;o,Co) does not belong to the analytic wave
front set of u then for suitable Z, C and 8 the estimate (^) is satisfied.

By the definition of N ( t , x , y ) {see §4), Theorem 0.1 i) means that

(0.1) E^x^y) = (4^)-n/2e-d2^/)/4t ^ u^x.y^ + 0(e-^)
o^^
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INTRINSIC MICROLOCAL ANALYSIS 671

as t —> 04', where the Uk(x^y) are the analytic continuation of the coefficients appearing
in the formal solution of the heat equation on (X, g) (see [B-G-M]) and C is a constant
(defined in Definition 4.2) depending on the growth (see prop 3.1) of the ujc in the
complex domain. The formula (0.1) improves (for a real-analytic manifold) upon the result
of Kannai ([K]) which says that for two real points x, y of X close to each other and
any nonnegative integer I ,

E(t,x,y) = (4^)-"/2e-(^2^/4t ̂  u^y^ + o^-^e-^^'^ ).
0<k<l

Another intrinsic approach to microlocal analysis is through the following Toeplitz
correspondence (see [G], [G-S2]). Let uj be a holomorphic form of type (^,0) which is
smooth up to the boundary of Mg. We can integrate it along the fiber of the usual cotangent
fibration to get a smooth function u on X:

(0.2) q ^ x ^ u ( q ) = ( a;.
JTT \q)

Epstein and Melrose (see [E-M]) have proven that for e small enough the correspondence
uj G 0(Me; A71'0) —> u 6 C°°(X) is an isomorphism. When (X, g) is real analytic this map
extends to an isomorphism between distributions on X and the space of all holomorphic
(n,0) forms on Mg with temperate growth near 9Mg.

It can be shown that the microlocal regularity properties of u near a boundary point a of
<9Mg are equivalent to the local regularity properties of uj near a (see [G, §5]). The inverse
of the integral transform (0.2) is microlocally equivalent to the F.B.I, transform defined
by the square root of the Laplacian (see [G-S2], Theorem 5.3). Our approach seems to be
different because we work with F.B.I, transform associated to a differential operator. We
note that our method can also be applied to characterize C00 wave front sets.

To explain our next set of results we introduce some notation. For any q € X, let Y
denote the fiber 7^~l(q) in Mg (here TT is the usual cotangent fibration). Let ^+, resp. /^+,
be the holomorphic tensor obtained by analytic continuation of g, resp. the Riemannian
volume JLA, and let gY, resp. ^Y be the complex valued tensor field obtained pulling back to
y. For 6 sufficiently small, it is possible to define div^ and grac^ with respect to gY and
/^y, and to form the corresponding "Laplacian," Ay = —dh^grad^. (We emphasize that
generically gY is not real valued.) We again let Uk(x^y) denote the analytic continuation
of the coefficients in the formal solution of the heat equation, and let

H^ x, y) = (47^t)-n/Y2^/4t [u^x^ y) - tu^(x, y) + . . . + (-tfuk(x, y)).
We may now state our first inversion formula for e"^.

THEOREM 0.2. - Let k be a nonnegative integer. There exists e' > 0 such that, for all
0 < 6 < e' and all real analytic functions f on X such that f^ f JJL = 0,
(0.3)

y^oo /.

(V^rfW = dt T/^.^A^^.)^
Jo JY

r+°° r r -,
+ / dt [Tf(t^ .) i^YH^^ - W ̂  <rad^(t,)^J

v 0 </ QY

with Y = Tr"^) C Mg.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



672 F. GOLSE, E. LEICHTNAM AND M. STENZEL

The condition J^- f p. = 0 means that / is orthogonal to the space of harmonic functions
(that is, the constants since X is connected and compact). The integral over 9Y in (0.3)
makes sense if / is "only" C°° (see Lemma 5.7), but we do not know if Theorem 0.2
is true in this case.

We will see that for t > 0, (t^m) —> Hk(t^q^m) is an approximate parametrix for the
operator 9f — Ay on Y (Proposition 3.0), whereas (^m7) —^ H^—t^m^m') is (up to
the constant factor (\^:l)n) an approximate parametrix for the heat equation 9f + A on
X (see [B-G-M], page 208).

In Theorem 3.4 we will prove that, for e sufficiently small, there exists a "pseudo-heat
kernel" in Y for 9f - ̂ Y: a function K(t,p, m) e C°(R^ x Y x V), C1 with respect to
t > 0 and G2 with respect to m G Y such that for all p G V, (9t - ̂ )K(t,p, m) ^ 0,
and for all continuous complex-valued functions u G C^d?, 1] x V),

lim / uit^m^K^t^q^m]?^ (m) = u{0^q)
t^0+ JY

Moreover we will show that K satisfies certain growth estimates as t —->• O4'. These will
allow us to prove our second inversion theorem:

THEOREM 0.3. - For e sufficiently small, -we can find a pseudo-heat kernel K such that:
1] K(t,q,m} ~ (^Tr^-^/V2^)/4* as t -> 0+, uniformly with respect to m € Y.
2] For all ^ > 0 and all f G C°°(X} such that j^ fp, = 0,

f(q) = fdt ( [Tf^^^^^ - K^q^^^^}
J o JQY
+ / Tf^^K^q^)^.

JY

Note. - Unlike in Theorems 0.2 and 0.4 (below), we do not know whether K(t^ g, m)
is bounded for t > 1, hence we cannot let t^ —^ +00 in the formula above. Furthermore,
Lemma 7.2 and Proposition 2.4 show that this formula still holds if / belongs to H^^^X).

The idea of the proof of theorem 0.3. is the following. Since we have:

(A^ -9t)K^q^m)^Q

an integration by parts and a Green's formula on Y show that for 0 < i\ < t'z :

Q= F dt ( K(t,q,m)(^ -}-9t)Tf{t,m)pY(m)
Jt-L JY

= I Tf^m^K^q.m}^^- [ Tf(t^m)K(t^ q,m)^JY(m)
JY JY

+ Fdt I [Tf^ <^^,,) ̂  - K^ q. •^ad-T^,)/^]
J t\ JoY

then we let t^ goes to zero.
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INTRINSIC MICROLOCAL ANALYSIS 673

The definition of the pseudo-heat kernel K (see (3.37) and the proof of Theorem 3.4)
combined with the estimate (3.37) shows that K has the following asymptotic expansion
as t -> 0+:

(0.4) K(t,x^ ~ (-^-"/V^^ ^ (-t)^(^) + 0{e-2^t)
0<k<l/Ct

for some 77 > 0, uniformly for x, y in Y. A comparison between (0.1) and (0.4) suggests,
heuristically, that K can be thought of as the heat kernel of X at points {t,x,y) in
] - oo, 0[ x V x V. Thus we obtain a kernel for the "inverse" of the heat operator, at the
expense of working in the fiber Y in complexified manifold Mg (essentially because for
q e X, ^ G r6^, ^((^Exp^v^U) = -|$|2 < 0). In general, it makes no sense to write
j ^ gtA^-tA^j because it is not possible to define the heat kernel associated to X at a
point ( — t ^ x ^ y ) in R*. x X x X. For instance, in the case of X = S1 endowed with the
usual metric (by embedding S1 C R2), one has:

Trace (e"^) = / E(t, m, m)d^(m) = ̂  e"^2, t > 0
j x nez

but this function cannot be extended for t < 0 because the imaginary axis A/^TR
is a barrier for the analytic continuation (see [D-G] p. 45). The same is true for
X = S l x S l x . . . x S l (we think that it would be nice to have a proof that for
any compact X the singular support of Trace e~^^=:lt^ fills the real line).

Finally we study the case when X is locally symmetric. We show that this is true if
and only if —gY is a field of real, positive definite quadratic forms on all of the fibers Y
(Proposition 1.17). In this case we can simplify our inversion formula.

THEOREM 0.4. - Assume that —gY is a field of real, positive definite quadratic forms
on Y. Then:

1] —Ay is the Laplacian of the Riemannian manifold (V, —gY).
2] There exists a solution K(t, m) € (^(R^ x V) of the "heat" equation (Qf - ̂ )K =

0 which is bounded on [1, +oo[xy and such that:
a] For all m <E V, K(t,m} ~ (-^T^)-71/^2^)/4* as t -^ 0+.
b] For all f G C°°{X) such that ^ fp. = 0,

/*+oo /.

(0.5) f(q) = dt [Tf^ < .̂̂ ,) ̂ y - K(t^ <ad^(t,)^1 •
JO JQY

In §8 we show that if X is a complete (not necessarily compact, but still connected and
orientable) locally symmetric space, then, for e small enough, the Riemannian manifold
(V, —gY) is isometric to a neighborhood of the identity coset in a symmetric space dual to
the universal cover of X, and the restriction of the analytic continuation of —d2 (= —d^)
to y x y is equal to the square of the distance function of (V, —gV). This allows us to
show in Theorem 8.8 that if X is a compact locally symmetric space and K ^ ( t , x ^ y ) is

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



674 F. GOLSE, E. LEICHTNAM AND M. STENZEL

any good heat kernel for (V, -gY) (see Definition 8.7), then, after possibly shrinking V,
K^ has the following asymptotic expansion as t —^ O"^:

(^ir-K^x^y) = (^Tr^-^e-^^ ^ {-t)kuk{x^)^0(e-6/t)
0<k<l/Ct

for some 6 > 0, uniformly with respect to x, y in V. We note that if e is small enough,
then a good heat kernel for (V, —gY) exists. A comparison with the equation (0.1) shows
that, heuristically, up to an exponentially decreasing term, (^/I:l)~nK^(t^x,y) may be
considered as the value at (—^ x^ y) G ] — oo, 0[xV x Y of the heat kernel of X.

In §9 we assume that X is a compact Riemannian globally symmetric space of rank one.
We show that both the heat kernel and the formal solution of the heat equation depend
only on (^d2^,^/)), and we give a simple and constructive proof of Proposition 3.1 in
this situation. Our proof provides an algorithm which allows us to compute inductively
the coefficients of the formal solution from three invariants of the root system associated
with X.

The outline of this article is as follows. In §1 we review some facts about totally
real submanifolds, and show that the complex structure on TeM induced by the analytic
continuation of the exponential map is the same as the adapted complex structure of [L-S]
and [G-S1]. We construct the tensors gY and /^y, the differential operators grac^ and
div^ and discuss the relationship between ̂  and the Laplacian of X (Theorem 1.16).
We show that gV is real valued if and only if the geodesic symmetry about Y is a local
isometry (Proposition 1.17).

In §2 we give some estimates on the growth of eigenfunctions of A in the complex
domain (Proposition 2.1), and prove some preliminary estimates on the growth of the F.B.I.
transform (Proposition 2.3). In §3 we construct the "pseudo-heat kernel" in Y (Theorem
3.4), and prove a crucial estimate on the growth of the coefficients Uk in the formal solution
of the heat equation in the complex domain (Proposition 3.1).

§4 gives the proof of Theorem 0.1, §5 the proof of Theorem 0.2, §6 the proof of Theorem
0.4, and §7 the proof of Theorem 0.3. §8 considers in more detail the case where X is
locally symmetric, and §9 deals with the rank one case.

Table of Contents

1. Geometric Constructions.
2. Growth of the F.B.I. Transform.
3. Construction of a "Pseudo-Heat Kernel" in V.
4. Characterization of the Analytic Wave Front Set.
5. Proof of Theorem 0.2.
6. Proof of Theorem 0.4.
7. Proof of Theorem 0.3.
8. The Case of the Symmetric Spaces.
9. Appendix. The Rank One Case.
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INTRINSIC MICROLOCAL ANALYSIS 675

Finally, we have gathered in the following table some nonstandard notations adapted
to the problem considered in this article: for each symbol we refer to the place in the
article where it first appears.

Table of Notations

^+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition and Definition 1.13
^+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition and Definition 1.13
A4' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proof of Theorem 1.16
gY . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition and Definition 1.13
grad^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 1.15
^y . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition and Definition 1.13
dr^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 1.15
Ay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 1.15
As, A|f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Notation 0.0

1. Geometric Constructions

Let M be a connected complex manifold of (real) dimension 2n with complex structure
denoted by J and X be a C^ submanifold of M of dimension n. The complexified
tangent space of X at q G X is denoted by T^X; T^°M (resp. T^M) is the space of
holomorphic (resp. antiholomorphic) tangent vectors of M at m G M. Similarly, T ^ ' - M
(resp. Tr^'^M) is the space of holomorphic (resp. antiholomorphic) tangent covectors
of M at m G M.

We first recall some elementary facts concerning totally real submanifolds of M which
will be used constantly in the sequel.

DEFINITION 1.1. - X is said to be totally real in M if and only if

T^X n T^°M = T^X n T^M = {0} for all q G X.

The following lemma is classical and can be found for example in Guillemin's paper
on Toeplitz operators [G].

LEMMA 1.2. - The'two following conditions are equivalent:
[a\ X is a totally real C^ submanifold of M;
[b] for all q G X there exists an open neighborhood W of q in M and a holomorphic

coordinate system on W, (^ l , . . . ,^n) such that

(1.1) XnW= {mG W s.i. (Szl{m)= ... = Sz"(m) = 0}

and ( x 1 ^ ...^r^) is a local coordinate system on W H X.

Lemma 1.2 means that in a complex manifold, totally real submanifolds play the same
role as R/1 or ^^fR^ in C71. In particular. Lemma 1.2 b) shows that the following
analogue of the analytic continuation principle holds.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



676 F. GOLSE, E. LEICHTNAM AND M. STENZEL

COROLLARY 1.3. - Let X C M be a totally real submanifold of the complex manifold M,
Mf be a complex manifold and f : X -^ M' a C^ mapping. Then, there exists a connected
open neighborhood W of X in M and a unique holomorphic mapping /+ : W —^ M'
such that f^ = f.

Remark 1.4. - That X is totally real is necessary to ensure that the extension /+ is unique.
Any compact C^ manifold can be viewed as a totally real submanifold in some complex

manifold, as shown by the

THEOREM (Bmhat-Whitney [B-W]).
1) Let X be a compact C^ manifold of dimension n. There exists a complex manifold

M of dimension 2n and a C^ embedding j : X — M such that j{X) is a totally real
submanifold of M.

2) Let ji : X —^ Mi and j^ '. X —> M-z two such embeddings. There exists an open
neighborhood W\ ofj^{X) in Mi, a neighborhood W^ ofj'z(X) in Ms and a biholomorphic
one-to-one mapping (f) : W\ —> W^ such that j^ = (j) o j\.

3) There exists an open neighborhood W of X in M and a unique antiholomorphic
involution a- : W -^ W such that X = [m G W s.t. (j{m) = m}.

Let now X be a compact connected C^ manifold of dimension n endowed with a C^
Riemannian metric g . Denoting by B(0,p) the ball centered at 0 with radius p in TqX
equipped with the metric gq, for all q G X there exists po{q) > 0 such that

Exp,: B{^pQ(q))cTqX^X

is a C^ diffeomorphism onto its image. Moreover the function q i-̂  po{q) can be chosen
lower semicontinuous on X. Let (M,j) be a Bruhat-Whitney complexification of X (we
shall identify X and j(X) from now on). It follows from Corollary 1.3 that, for all q G X,
there exists a connected open neighborhood Wq of 0 in T^X and a unique holomorphic
extension of Exp^ (still denoted by Exp ) as a map Wq C T°X —^ M. Hence one can
define the C^ map

(1.2) < t > : ^ M , c^Q^Exp^v^O;

on Q = {(^ ,<0 s.t. ^ G TqX , \^\q < pi(q)} where the function pi can also be chosen
lower semicontinuous on X. (For ^ G TqX, we shall use the notation \^\q = \/^(<^0).

THEOREM 1.5. - There exists 0 < eo < ^fqex Pi{q) such that, for all 0 < e < eo,
1)

^ : r^-^M, ^0-Exp,(^0

with TeX = {(g,0 s.t. ^ G TqX , \^\q < e} is a C^ diffeomorphism onto its image.
2) the map

TT : M, = ̂ X) -^ X, Exp^V^O ̂  q

is a C^ fibration with totally real fibers.

4e SERIE - TOME 29 - 1996 - N° 6



INTRINSIC MICROLOCAL ANALYSIS 677

Proof. - 1) We first compute the differential of <1> on the zero section of TX. Let J°
be the complex structure of T^X, i.e. the multiplication by \/~=\\ for all q G X, the
following identification is understood: T^(TX) ~ TqX C To(TqX) ~ TqX C TqX and

W(,,o) : r^o)(TX) ̂  T,M, (^)(,,o)(C + ̂ ) = ̂  + ̂  •

The submanifold X being totally real in M, TgM = TqX C Jq{TqX) and hence d^
has rank 2n on the zero section of TX. Statement 1) for some small enough eo follows
since X is compact.

Remark 1.6. - The relation (dExp^)o(^ + J°0 = $ + Jg^ V$ G TgX (identified with
To{TqX)) shows that TgTr-1^) = JgTgX.

2) That TT is a C^ fibration follows from 1). Let q G X and V = Tr"1!^). One
has T^Y H r^°M = Jq{TqX) H r^°M = {0} since X is totally real in M. But
yCy F) 7^1,0^ ^ ^^^. d7^p)c n (ker(Jp - V^Jd)^ for all p G V and this intersection is
{0} at q and hence in some neighborhood of q by continuity. Likewise T^Y^T^M = {0}
for p in some neighborhood of q. Using again the compactness of X and reducing eo if
necessary shows that for all q G X, Tr"^) is a totally real submanifold of M. D

At this point, we digress a little in order to discuss the relation between our constructions,
those of Guillemin-Stenzel [GS] and the adapted complex structures of Lempert-Szoke [LS].
Statement 1] of Theorem 1.5 associates to a C^ Riemannian metric on X a canonical
complex structure on T^X which does not depend on the choice of M. We will show
that this complex structure is nothing but the "adapted" complex structure of Lempert and
Szoke [L-S]. As 7 runs over all geodesies in X, the images of the maps

(t^)^(7(^7W)

for s ^ 0 define a smooth foliation of TX\0^, called the Riemannian foliation. The leaves
of the Riemannian foliation carry a natural complex structure: one simply identifies R2

with C in the usual way. A complex structure on T ' ^ X is said to be adapted if the leaves
of the Riemannian foliation, together with their natural complex structure, are (immersed)
complex submanifolds of TeX. One of the main results of [L-S] is that for any compact
Riemannian manifold and any 6, 0 < e < oo, there is at most one adapted complex
structure on TeX (see [L-S], Theorem 4.2).

PROPOSITION 1.7. - The adapted complex structure on T^X is the only complex structure
for which the complexified exponential map defined in Theorem 1.5

r6^^)^^?,^!^^^

is a biholomorphism for all 0 < e <_ 60.

Proof. - Fix (<7,$) G T^X and let L€ denote the intersection of the leaf of the
Riemannian foliation through (g, ^) with T^X. Let 7(1) denote the geodesic with initial
conditions (7(0), 7(0)) = {q^). We must show that the map

t + V^is ̂  Exp^V^T s-/{t) G M
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is holomorphic; then for s sufficiently small this will parametrize an (immersed) complex
submanifold of M. Let /3(r) be the geodesic with initial conditions (/?(0),/3(0)) =
(7(^),57(^)). We have defined Exp ^^^Is^^t} to be the analytic continuation of the
map r -^ f3{r) G X C M at r = A/^T. Since /3(r) = ^(t + rs) for all real r,
by uniqueness of analytic continuation we conclude that /^(v^T) = ^(t + ^/^T^),
L^., Exp ^V^^W = ^/ ( t + V^^T5)- Since the map t + V^^T^ -^ ^{t + V^^T^) is
holomorphic we are done. D

We can identify TX with T*X by the map L^ : TX -^ T*X, where Lg(q^) is the
linear form on T^X, Lg(q, ̂ )(rj) = gq{^, 77). Via Z/^ the adapted complex structure induces
an integrable complex structure on T^X, where T^X is the set of covectors of length less
than e. Lempert and Szoke prove the following facts about the adapted complex structure
on T^X ([L-S], Theorem 5.7 and Corollary 5.5):

1. The involution (g,Q i—^ (^, —0 is antiholomorphic.
2. ^s9{L'gCr) = L*a, where a is the canonical one-form on T*X and a is the principal

symbol of the Laplacian.
It follows immediately from the uniqueness part of the theorem on p. 568 of [G-S1] that

the pushforward of the adapted complex structure by Lg is the complex structure described
in [G-S1] (which we will refer to as the "adapted" complex structure on T^X). It is easy
to see that the embedding of X in T^X as the zero section is totally real.

THEOREM 1.8. - Consider in the definition of $ ( 1 . 2 ) the Bmhat-Whitney embedding
of X as the z.ero section in T^^X = M (with the adapted complex structure). Then
$(^Q = Exp,^!^ = Lg(q^).

Proof. - Proposition 1.7 (with M = T^X) shows that Lg and $ are holomorphic maps
from r6^ to T*6^ (with their respective adapted complex structures). Then L'g1 o ^> is
holomorphic from T^X to itself, and is equal to the identity on Ox- Since Ox is totally real
in the connected complex manifold T*eX, it follows from the uniqueness of the analytic
continuation as in Corollary 1.3 that Lg1 o ^> must be the identity on all of TeX. D

Remark. - This result shows that the fiber one integrates over in the inversion formula
for the heat equation (0.3) is the same as the one in the Toeplitz correspondence (0.2).

In the sequel, we shall construct on each fiber Tr"^) various objects corresponding to
analogous objects defined on X. The first step in this direction is an analytic continuation
principle for C^ covariant tensors on X analogous to Corollary 1.3.

PROPOSITION 1.9. - Let r be a C^ section of (T^X)^171. There exists an open connected
neighborhood W C M ofX and a unique holomorphic section r^ (^(T^W)*^ such that

(1.3) V ^ G X andv^...^^T^M, r^{v^ ...,̂ ) - T,(P î, ..,P )̂,

where P^ is the projection on T^X in the decomposition T^M = T^X 9 T^M. (In
(1.3), Tq has been extended in the natural way to a C—multilinear form on {^X)^171).

Proof. - Let (W^ z\^..., z^) a local holomorphic coordinate system on M at q as in b)
of Lemma 1.2, with x\ = ̂ z[ and y[ = ^sz[ (1 ^ i < n). (W^ H X',x\, ...,^) is a local
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