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OBSERVATIONS ON HARMONIC
MAPS AND SINGULAR VARIETIES

BY BRENDON LASELL* AND MOHAN RAMACHANDRAN**

ABSTRACT. - Using facts about harmonic maps from Kahler manifolds to symmetric spaces, to buildings, and
to Hilbert spaces, we prove results about the homomorphisms of fundamental groups induced by certain kinds
of morphisms of Kahler manifolds. Our results are stated in terms of linear representations of these fundamental
groups. Our main result, theorem 4.1, may be viewed as a non-abelian generalization of a fact following from
the existence of functorial mixed Hodge structures on the complex cohomology of complex algebraic varieties.
Our work is also related to Shafarevich's question: "is perhaps the universal covering of a complete algebraic
variety holomorphically convex?" [14].

1. Introduction

If X and y are smooth complete varieties over the complex numbers, and (j) is a
morphism from Y to X with image Z, then the kernel of the map from ff*(X; C) to
fi^y; C) induced by (j> is the same as that of the map from ff*(X; C) to ff*(Z; C).
This follows from the theory of weights, as is explained in proposition 8.2.7 of Deligne's
'Theorie de Hodge, III" [4]. Though the primary conclusion of the theory of weights
over the complex numbers, that is the conclusion of the existence of functorial weight
nitrations on the complex cohomology of separated schemes of finite type over the complex
numbers, appears to be unrelated to analytic techniques, this appearance is illusory. In light
of the arguments used to establish this primary conclusion in [4], the theory of weights
appears as a partial adaptation of the view of geometry which sees its objects in terms of
abstract algebra and category theory to the perspective and results of Hodge's theory of
harmonic integrals. One can make explicit the analytic arguments implicit in the proof by
the theory of weights of the above assertion, insofar as this assertion relates to cohomology
of the first degree, and one views this cohomology from a perspective suitable to analytic
techniques. To be more precise, if X is connected, then H1^'^ C) is the set of all group
homomorphisms from 7Ti(X) to C. Each element of ^(X; C) corresponds to a flat line
bundle on X with structural group contained in C. Each such bundle has a "harmonic"
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136 B. LASELL AND M. RAMACHANDRAN

section, unique up to addition of a constant, the differential of which is the harmonic
one form on X representing the corresponding element of ^(X; C). If the element of
^(X; C) under consideration is in the kernel of the map to ff^V; C), the harmonic
section of the affine line bundle on X pulls back to give a harmonic function on V. Any
harmonic function on a Kahler manifold is harmonic in the usual sense when restricted to
a complex analytic curve, and therefore by the maximum principle this harmonic function
on V is locally constant. Consequently the original global harmonic section of the bundle
on X is locally constant on Z, the image of Y in X, and so provides a trivialization of the
pullback of the bundle to Z. Therefore the element of ^(X; C), which by assumption
is in the kernel of the map to H^{Y', C), is necessarily in the kernel of the map to
H1^', C). Our purpose in this paper is to offer generalizations of this argument using
more sophisticated harmonic map techniques discussed in Corlette's "Flat G-bundles with
canonical metrics" [2] and in Gromov and Schoen's "Harmonic maps into singular spaces
and j?-adic superrigidity for lattices in groups of rank one" [5].

The above argument uses the existence of a harmonic section of a flat bundle on X
corresponding to a group homomorphism from 7i-i(X) to C. Since C is abelian, each
homomorphism from 7Ti(X) to C forms a conjugacy class under the action of C. We
consider instead conjugacy classes of homomorphisms from 7Ti(X) to arbitrary general
linear groups. In fact, for each natural number n, we consider an affine scheme, contravariant
in X, which we denote by 5'Sn(7Ti(X)), and whose points over any field K correspond
naturally to isomorphism classes of n-dimensional semi-simple representations of 7Ti(X)
over that field; i.e., whose K-points correspond to conjugacy classes of homomorphisms
from Ti-i (X) to GLn(K) such that the Zariski closure of the image of 7Ti(X) is reductive.
Under the assumptions stated at the beginning, along with the assumption that X and Z
are connected, we prove the following:

THEOREM 1.1.- For each natural number n there is a finite quotient A^ o/TTi (Z) such that
for any field K, those points ofSSn(^(X))(K) that correspond to representations of TT^X)
that are trivial when pulled back to the fundamental groups of the connected components
ofY all pull back to points on SSn{7r^{Z))(K) corresponding to representations which
factor through A^.

This theorem implies that to say a semi-simple representation of 7Ti(X) is trivial when
restricted to each of the fundamental groups of the connected components of Y is almost
the same as to say it is trivial when restricted to 7Ti(Z). The results we prove in the body
of this paper are somewhat more general. See the beginning of the next section for our
general assumptions and theorem 4.1 for our main results.

In addition to their relation with the theory of weights, our results have a connection
with the so-called "Shafarevich conjecture"(based on a question of Shafarevich on p. 407
of his book Basic Algebraic Geometry [14]), which asserts that the universal cover of a
complex projective variety is holomorphically convex, and with a question Nori asks in the
paper "Zariski's conjecture and related problems" [12]. The theorem stated above is related
to the Shafarevitch conjecture in that if 7i-i(Z) has infinite image in 7Ti(X), but TT^V)
has finite image, then the inverse image of Z in the universal cover of X would be an
analytic space whose connected components each have infinitely many compact irreducible
components. The universal cover of X could not then be holomorphically convex. Our
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OBSERVATIONS ON HARMONIC MAPS AND SINGULAR VARIETIES 137

theorem simply implies that it would be difficult to show such an example exists using
linear representations of the fundamental group of X. In the forthcoming article "Some
remarks on the Shafarevich conjecture for Kahler surfaces," Katzarkov and the second
author [7] use results from this paper, among others, to prove that if a smooth projective
surface has a fundamental group which admits a faithful semi-simple representation on
a complex vector space of finite dimension, then the universal cover of that surface is
holomorphically convex. For the relation of our work, in particular corollary 4.4, to Nori's
question, as well as a related result, see the paper "Complex local systems and morphisms
of varieties" [9] of the first author.

This paper is a modified version of our paper "Local systems on Kahler manifolds
and harmonic maps," which we have been distributing since March of 1994. The current
version differs from the earlier version primarily in organization, though theorem 4.1 in
this paper is more general than theorem 1.2 of the earlier version, in that the finite group
An in theorem 4.1 is independent of the field K.

Finally, we would like to thank Professor Deligne for his suggestions regarding the
introduction and for pointing out a more general and more elegant formulation of our
main result. Professors Korevaar and Schoen for discussing their work on harmonic maps
to non-positively curved spaces with us, and especially Professor Nori for listening to us
and offering helpful criticism.

2. Two lemmas using harmonic maps

The natural setting for the harmonic map techniques which we apply in lemma 2.1
and lemma 2.2 is somewhat more general than that introduced above. We introduce here
notation and assumptions which we conserve throughout the remainder of the paper:

Let M be a compact Kahler manifold, TT : M —> M be a Galois covering space with
group of covering transformations r, N be a connected analytic subspace of M, all of
the irreducible components of which are compact, and r' be a finitely generated subgroup
of r which acts by automorphisms on N.

One can consider these assumptions as a more general version of those made at the
beginning of the introduction if one replaces "M" by "X", "M" by the cover of X
corresponding to the normal subgroup of 7Ti(X) generated by TT^(Y), "TV" by the inverse
image of Z under the covering map, and 'T'" by the image of ^i{Z) in Y. The condition
that all the irreducible components of the inverse image of Z under the covering map under
consideration are compact follows from the fact that the map from the compact space Y
to X lifts to maps to the covering space of X, and the union of the images of these maps
contains the inverse image of Z under the covering map.

Suppose now that a : F —^ GLn(k) is a semi-simple representation of F defined over
a local field k. Assume that k is given an absolute value | • |, which induces a locally
compact topology on k. The topology on k induces a locally compact topology on GLn(k)
via the embedding

GL^(k) -^ M^{k) x M^(k)
M ̂  (M,M~1).
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138 B. LASELL AND M. RAMACHANDRAN

LEMMA 2.1. - The closure of (j(T1) in GLn(k) is compact.

Proof. - Denote by G the Zariski closure of a(T) in GLn(k). By assumption, it is
reductive over fe, the algebraic closure of k. Replacing F with a finite index subgroup
if necessary, we many assume that G is connected. Since G is reductive over fc, over
some finite extension A/ of k it is isogenous to the product of the connected component
of its center containing the identity (a torus defined over fc') and its connected almost
simple normal subgroups. (A group is almost simple if it is semi-simple and its quotient
by its center is simple). Since a finite extension of a local field is a local field with an
absolute value extending the given absolute value, we may assume that G is isogenous
to such a direct product over k itself. By considering each projection onto an almost
simple factor of G and the projection onto the center of G, we may assume that G is
almost simple or a torus.

THE ARCHIMEDEAN CASE. - If k is Archimedean, we may assume that it is C. In this case,
let H be a maximal compact subgroup of G. The homogeneous space G / H , which we
denote by X, is then a simply connected symmetric space with a non-positive curvature
operator. X is homeomorphic to an Euclidean space, and so is contractible, and therefore
there is a continuous r-equivariant map / from M to X. We can define such a map
as follows. Suppose we are given a triangulation of M. This triangulation induces a
triangulation of M. We define a continuous r-equivariant map fn from the n-skeleton of
this triangulation of M to X by induction on n. For /o we may take any equivariant map
from the zero-skeleton to X, and given fn-i, we choose one n-simplex in M over each
n-simplex in M, extend fn-i from the boundary of each of these n-simplexes across their
interiors using the contractibility of X, and extend this map in the only possible way to
a r-equivariant map from the n-skeleton to X.

By corollary 3.5 in [2], there is a r-equivariant homotopy of / with a harmonic map g
from M to X. According to Corlette's generalization of the Hodge theorem, theorem 5.1
in [2], any harmonic map from a Kahler manifold to a Riemannian manifold with non-
positive curvature operator is pluriharmonic; that is, the map is harmonic when restricted
to any complex analytic curve. It follows that the composite of g with the square of the
distance function from any given point on X is subharmonic when restricted to any curve
in M. Therefore, by the maximum principle, g must be constant on any compact analytic
subspace of M, and in particular g ( N ) is a single point, which due to the equivariance
of g must be a fixed point for the action of ^f on X. The stabilizers of points of X are
simply the maximal compact subgroups of G, and consequently the image of F' under the
representation a is contained in a compact subgroup of G.

THE NON-ARCHIMEDEAN CASE. - The results we use to prove the lemma in case k is not
Archimedean are drawn entirely from the paper [5] of Gromov and Schoen.

Associated to the almost simple group G over the non-Archimedean local field k is
a Bruhat-Tits building X. See Bruhat and Tits' article "Groupes reductifs sur un corps
local. I. Donnees radicielles valuees" [1] for the construction of X. The building X is
the geometric realization of a locally finite simplicial complex which is topologically
contractible. Each simplex of X has a Riemannian metric which is the restriction of a
metric defined on a neighborhood of a standard simplex with which it is identified, and
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OBSERVATIONS ON HARMONIC MAPS AND SINGULAR VARIETIES 139

there is an embedding of X into a finite dimensional Euclidean space which is an isometry
on each simplex. With this structure, X is a geodesic metric space with non-positive
curvature, as explained in section one of [5]. G acts on X by isometries, and the stabilizer
of any point in X is a compact subgroup of G.

As in the Archimedean case, since X is contractible there is a continuous F-equivariant
map from M to X. By using a Lipschitz triangulation of M and using geodesic homotopies
to extend a map from a boundary of an n-simplex to the entire n-simplex (see section four
in [5]), the construction we use in the Archimedean case gives a F-equivariant Lipschitz
map from M to X. This map has finite energy in the sense of [5], since M/T is compact.

If G is a torus, then X is simply a real Euclidean space and F acts by translations
on X. Therefore the argument in the archimedean case applies to give a fixed point of
r' acting on X.

If G is almost simple, then theorem 7.1 in [5] applies to give a harmonic r-equivariant
map g from M to X. By theorem 7.3 in [5], g is pluriharmonic, so that as in the
Archimedean case, the composite of g with the square of the distance function from any
given point on X is subharmonic when restricted to any complex analytic curve in M. It
follows that g is constant on any compact analytic subspace of M, and in particular g ( N )
is a point, which due to the equivariance of g must be a fixed point of F7. As noted above,
the image of F' under a is consequently contained in a compact subgroup of G. D

Note that nowhere in the proof of the lemma was the assumption that F' is finitely
generated used.

COROLLARY 2.1. - Under the assumptions of the lemma, ifk is non-Archimedean, then the
coefficients of the characteristic polynomials of the matrices in ^(F7) have absolute value
at most one. If k is Archimedean, then the coefficients of the characteristic polynomials of
the matrices in cr(T') have absolute value at most n.

Proof. -. If k is a non-Archimedean local field, then the maximal compact subgroups
of GLn(k) are all conjugate to the subgroup GLn(Ok\ where Ok is the compact subring
of k consisting of elements of k of absolute value at most one. So under the assumptions
of the lemma, the coefficients of the characteristic polynomials of the matrices in c^r')
are all in Ok'

Similarly, if k = C, then the maximal compact subgroups of GLn{k) are all conjugate
to the unitary group Un(C) defined by the usual metric on C71. So under the assumptions
of the lemma, the eigenvalues of all the matrices in cr(r') all have absolute value one.
Therefore the coefficients of the characteristic polynomials of the matrices in cr(r') all
have absolute value at most n. D

COROLLARY 2.2. - Suppose a : F —> GLn(K) is a semi-simple representation of F
defined over a field K -which is either

(a) a finite algebraic extension of either the field Fp(T) of rational expressions in one
indeterminate with coefficients in a finite field Fp, for some prime number p; or

( b ) a finite algebraic extension of the field of rational numbers.
Then a^r) is finite.
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140 B. LASELL AND M. RAMACHANDRAN

Proof. - According to lemma 2.1, o-(T') is contained in a compact subset of GLn(F^K),
where ftp is the group of Adeles associated to K\ i.e., the restricted direct product of a
set of representatives of all equivalence classes of completions Ky of K with respect to
a valuation v. (See Well's book Basic Number Theory [15] for a thorough discussion of
Adeles). Since a is by assumption defined over K, afT') is also contained in the discrete
subset GLn(K) of GL^K)' Therefore cr(r) is finite. D

Let T-L be a real Hilbert space and let

a: T-.0(H)

be an orthogonal representation of F on T-L.

LEMMA 2.2. - //r = r then H^F.o) = 0.

Proof. - Suppose that

( j ) : r^n

is a 1-cocycle for this representation, so that cj) defines an affine action of F on H by
isometries, which has a fixed point if and only if (f> is a 1-coboundary. The following
result is a consequence of the work of Korevaar and Schoen in the paper "Global existence
theorems for harmonic maps to non locally compact spaces" [8].

THEOREM 2.1. - If the affine action of F on T~i defined by (j) has no fixed point, then
there is a Hilbert space W on which Y acts by isometries without fixed points and a
pluriharmonic map

g : M^H

which is equivariant with respect to this action.

To assert that g is pluriharmonic in this situation is to assert that g is harmonic when
restricted to any analytic curve in M.

If the action of F defined by (j) has no fixed points, then, as in the proof of lemma 2.1,
the map g given by the theorem of Korevaar and Schoen must be constant on the analytic
subspace N. The point g ( N ) is then a fixed point in T-L' for the action of F' = F, which is
a contradiction. Therefore ff^F^cr) = 0 for any orthogonal representation a of F. D

Remark 2.1. - By a theorem of A. Guichardet (see [3]), it follows that F has
D.A. Kazhdan's "property T."

3. Moduli spaces of representations

In this section, making no claim to originality, we briefly define and denote certain affine
schemes whose points over fields correspond to linear repretations. Our understanding of
these schemes, as well as some of our notation, is due primarily to the article "Varieties of
representations of finitely generated groups" of Lubotzky and Magid [10].
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OBSERVATIONS ON HARMONIC MAPS AND SINGULAR VARIETIES 141

Let A be a group generated by { 5 i , . . . , S^} and defined by a set {rq}q^q of relations.
For any positive integer n, let Pn,d be the polynomial ring with indeterminate set
{x^f.y^^l < ij < n,l < p < d} and integral coefficients. We denote by X^ the
matrix in Mn(Pn,d) which has x^ in its %th row and jth column. Then we define An (A)
to be the quotient of Pn,d by the ideal generated by

{det(Z^)^)-^r,(^),. . . ,X^)^|^ < p < d,q G Q,l < z , j ^ n}.

Note that there is a natural representation

pn : A -^ G£n(An(^))
(^X^.

The ring An (A), as is evident from its definition, has the following universal property:
if S is a commutative ring and a : A —» GLn(S) is a group homomorphism, then there is
a unique ring homomorphism / : An (A) —^ S such that cr is the composite of the natural
representation pn : A —^ (?£n(An(^)) with the group homomorphism from GZ/n(An(^))
to GLn(S) induced by /. It follows that the ring An (A) is well-defined up to a unique
isomorphism, independently of the choice of presentation of A.

We denote by J2n(A) the scheme Spec(An(^)). In the language of schemes, the
universal property of An (A) implies that for any commutative ring S, the points of the
space I?n(A)(5) correspond naturally to the representations of A on 5^.

Let T be an indeterminate, and let M = pn(8) be an element in the image of the natural
homomorphism from A to GLn(An(A)). Define, for any s with 0 < s < n, c^ to be
the element of Ayi(A) such that

det(M- T ' I d ) = ^ T T C + • • • + ^ .

We define By, (A) to be the subring of A^(A) generated by

{ ^ |0<5<n^GA} .

If A^ (A)' is a ring defined as above for a different choice of generators and relations for
A, and ^(A)' is the subring of An (A)' defined as above, then the canonical isomorphism
from An (A)' to An (A) induces an isomorphism from Bn(Ay to Bn(A).

By a basic result using the density theorem (see for example exercise 18.1 in Serre's book
Linear Representations of Finite Groups [13]), two semi-simple representations of finite
dimension over a field K are isomorphic if and only if for each 8 in A, the characteristic
polynomials of the images of S under the two representations are the same. If a is any
representation of A in GLn(K), and a denotes a semi-simplification of a, then for any 8
in A, the characteristic polynomial of a(8) is the same as that of o~(8). Therefore, two ring
homomorphisms /, g : An (A) —^ K have the same restriction to Bn(A) if and only if the
semi-simplifications of the corresponding representations of A on K^ are isomorphic.

We denote by 55'n(A) the scheme Spec(Bn(A)). In the language of schemes, the
above property of Bn(A) implies that for any field K, the points of 5'5'n(A)(J^) in the
image of the map from Rn(^)(K) to 5'5'n(A)(J?) correspond naturally to isomorphism
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142 B. LASELL AND M. RAMACHANDRAN

classes of semi-simple representations of A on ^n, while the fiber of this map over
a point corresponding to a particular semi-simple representation corresponds to the set
of all representations of A on ^n with semi-simplification isomorphic to this particular
semi-simple representation.

If T is a homomorphism from a finitely generated group E to A, then, given presentations
of the groups E and A, r induces a natural ring homomorphism n from An(E) to Ay, (A)
which takes Bn{E) to B^(A). For any ring 5', the induced morphism of schemes T* from
lin(A) to Rn(E) takes a point of Rn(^){S) corresponding to a homomorphism a from A
to GLn(S) to the point of Rn(E)(S) corresponding to the homomorphism a o r from E
to GLn(S). Consequently, for any field K, it takes a point of SSn(^)(K) corresponding
to an isomorphism class of an n-dimensional semi-simple representation a of A to the
point of SSn(E){K) corresponding to the isomorphism class of the semi-simplification
of the representation given by a o r.

Note that there is a natural action of the group scheme of finite type over the integers
GLn on -Rn(A). This action is that which for any commutative dug S induces the action
of GLn(S) on ^(A)(5) given by the formula

GL^S) x Rn{A)(S) -^ RnW(S)
(C,a)^(6^Ca(S)C-1),

if Rn(^)(S) is identified with the set of homomorphisms a from A to GLn(S).

LEMMA 3.1. - For an algebraic closure Q o/Q, the ring JE^(A)(g)Q is the ring of invariants
of the ^-algebra of finite type A^(A) 0 Q under the action ofGLnW defined above.

Proof. - If A is a finitely generated free group, this follows from the fact that the
ring of polynomial invariants with Q-coefficients of invertible matrices with entries in Q
is generated by the coefficients of characteristic polynomials. If A is simply a finitely
presented group, with a presentation given by a morphism from a finitely generated free
group E onto A, then the induced ring homomorphism from An(E) onto A^(A) is
compatible with both the definitions of Bn(E) and Byi(A) and the actions of GLn, so that
the identity ofJ3^(A)0Q with the ring of invariants of the action ofG?Z^(Q) on Ayi(A)0Q
follows from the corresponding identity for the finitely generated free group E. D

COROLLARY 3.1. - The ^-algebra B^(A) 0 Q is of finite type.

Proof. - This is special case of general fact which is prove in Mumford's Geometric
Invariant Theory [11]: if a reductive group G over an algebraically closed field of
characteristic zero acts on an affine scheme Spec(A) of finite type over that field, then the
ring of invariants of A is also of finite type over that field. D

Since J3^(A) 0 Q is of finite type over Q, so is B^(A) 0 Q, and therefore, there is
a finite set of prime numbers Qn(A) so that if Qn(^)~1! denotes the localisation of Z
with respect to the multiplicative subset generated by Qn(A), then J3n(A) 0 (^(A)"1!
is a Qn (A) ~ ̂ -algebra of finite type. (For a proof, see for example lemma 1.8.4.2 in
Grothendieck and Dieudonne's EGA IV [6]).
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OBSERVATIONS ON HARMONIC MAPS AND SINGULAR VARIETIES 143

4. Consequences of harmonic map lemmas in terms of moduli spaces

Our main result is the following.

THEOREM 4.1. - For any natural number n there is a finite quotient An ofT' and a finite
set Pn of prime numbers such that for any field K:

(a) each point in SSn^'^K) in the image of the natural map from SSn(T){K) to
SSn(f)(K) corresponds to an isomorphism class of semi-simple representations of T1

which factor through A^; and
( b ) if the characteristic of K is not in Pn, then the restriction of any semi-simple

representation of T to r' is itself semi-simple.

Given the definition ofBn(r') and SSn^) in section 3, corollary 2.1 implies that for any
local field k, the pull-back of any regular function on the affine scheme SSn^) x Spec(fc)
to Rn(T) x Spec(fc) is bounded in absolute value. If (j) : X -^ C7"' is a holomophic map
between analytic spaces such that every holomorphic function on C771 pulls back to a
bounded function on X, then by the maximum principle the image of (f) is finite, with at
most one point for every irreducible component of X. We model the following lemma and
its proof on this fact about analytic spaces.

LEMMA 4.1. - For any natural number n, any field K, and any minimal prime ideal p of
An(T) 0 K, the image of Bn{T') 0 K in A^(T) 0 K / y is a finite algebraic extension ofK.

Proof. - We denote by i the inclusion of F' in r, and by %* the induced map from
B,(r') to A,(r).

The AT-algebra A^(T) 0 K / p is an integral domain of finite type over K, and therefore
the algebraic closure of K in it is a finite algebraic extension of K. Since the ring Bn^)
is generated by

{cj|o < s < n^er'}

(using the notation of section 3), to prove the lemma, it is sufficient to show that for any
7 in r' and any s with 0 < s < n, the AT-algebra homomorphism

z j : K[T}^An{T)^K
T^z.(cJ)

is not injective. If this map is not injective for a field K, it is not injective for any subfield
or extension field of K, so we may assume that K is a non-archimedean local field.

Assume the map i] is injective for some 7 in r' and some s with 0 < s < n. Let x
be an element of K of absolute value greater than one. Then %J(T - x) is contained in
a maximal ideal m of An(r) 0 K. There is therefore a finite algebraic extension Kf of
K, and a homomorphism / from An(T) 0 K to K ' with z*(cj) - x in its kernel. We
denote by a the homomorphism from F to GLn{K') corresponding to /. Since the image
of ^n(r') 0 K under ^ in An(T) 0 K is in fact contained in Bn(T) 0 K, there is an /
so that a is semi-simple. The image of %*(cJ) in K ' under / is x. But this means that the
coefficient of T8 in the characteristic polynomial det(a^) - T ' id) is rr, an element of
K ' of absolute value greater than one, contradicting corollary 2.1. D
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144 B. LASELL AND M. RAMACHANDRAN

COROLLARY 4.1. - Any semi-simplification of the restriction to F' of a representation ofT
on a finite dimensional vector space over afield K is isomorphic to a representation defined
over a finite extension of the prime field of K. (By the "prime field" we mean the minimal
subfield ofK; i.e., Q if the characteristic ofK is ^ero, and F p if the characteristic ofK is p).

Proof. - We denote by F the prime field of K.
Clearly we may assume K is algebraically closed.
According to the universal properties of the rings A^(F) and B^F') described in

section 3, for any natural number n and any field K, the set of isomorphism classes
of semi-simple representations of F' on K71 which contain a semi-simplification of the
restriction to F' of a representation of F on K71 corresponds exactly to the set of F-algebra
homomorphisms from Bn{r'}^F to K which are pull-backs of F-algebra homomorphisms
from An{T) 0 F to K. Lemma 4.1 implies that for any minimal prime p of An{T) 0 F, the
image of Bn^) 0 F in A^(T) 0 F/p is a finite algebraic extension F' of F, so that if g is
an F-algebra homomorphism from A^(T) 0 F/p to K, corresponding to a representation
a of r, then the restriction of g to F ' is an isomorphism of F ' onto a subfield KQ of K.
Since A^(T) 0 F/p is an integral domain of finite type over F', this isomorphism extends
to an F-algebra homomorphism g ' from Ay,(T) 0F/p to a finite algebraic extension Ko of
KQ in K. As the restriction of g ' to F', the image of B^(r') 0 F, is the same as that of g
to F', g ' corresponds to a representation a ' of r on K^, such that any semi-simplification
of the restriction of a' to F' defines a representation over K isomorphic to that defined by
g. Since any F-algebra homomorphism from An(F) 0 F to K must contain some minimal
prime ideal of An(T) 0 F, this completes the proof of the corollary. D

COROLLARY 4.2. - Any semi-simplification of the restriction to F' of a representation of
T on a finite dimensional vector space over a field K has finite image when considered as
a homomorphism from ^f to GLn(K).

Proof. - This is an immediate consequence of corollary 4.1 and, when the characteristic
of K is zero, corollary 2.2. D

COROLLARY 4.3. - For any natural number n and any field K, there is a finite set of
semi-simple representations of F' such that any semi-simplification of the restriction to F'
of a representation of F on an n-dimensional vector space over K is isomorphic to some
representation in this finite set.

Proof. - Again we denote by F the prime field of K.
As in the proof of corollary 4.1, we identify the set of isomorphism classes of semi-

simplifications of restrictions to F' of representations of F on n-dimensional vector spaces
over K with the set of F-algebra homomorphisms from B^fT') 0 F to K which are
pull-backs by %„ of F-algebra homomorphisms form A^(T) 0 F to K. We show this
latter set is finite.

For any minimal prime p of An(T) 0 F, since the image of ^(T') 0 F in A^(T) 0 F/p
is a finite algebraic extension of F, there are only finitely many F-algebra homomorphisms
from this image to K. Since A^(T) 0 F is of finite type over F, it has only finitely many
minimal primes, and since any F-algebra homomorphism from An(T) 0 F to K must
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have a kernel which contains some minimal prime, it follows that the set of F-algebra
homomorphisms from Bn(r') 0 F to K described above is finite. D

The above lemma and its corollaries presuppose the choice of a field, but theorem 4.1
does not presuppose such a choice. We must therefore turn to the study of the rings Bn(r')
and A^(T) themselves.

LEMMA 4.2. - For any natural number n there is
(a) a finite set of prime numbers Sn,
( b ) a finite finite integral extension 0 of the localisation Sn~1^- ofl away from the set

of primes Sn, and
( c ) a finite set Hn of homomorphisms from T ' to GLn{^),

such that for any algebraically closed field K with characteristic not in Sn and any group
homomorphism a- ofT to GLn{K\ there is a group homomorphism r in Hn and an Sn~1^--
algebra homomorphism f from fl to K such that any semi-simplification of the restriction
of a to r' is isomorphic to the homomorphism to GLn(K) induced by r and f.

Proof. - According to the definition of Qn(T'), given near the end of section 3,
Bn(r') 0 OnfT')"1! is of finite type. According to lemma 4.1, applied to the field Q,
for any minimal prime p of An(F) 0 Qn{Y'Y1!, the image of Bn(T) 0 O^F)"1! in
An(T) 0 Q^r')'"1!/? is contained in a finite algebraic extension of Q. Consequently,
there is a finite set of primes, which we provisionally take for Sn, such that for each
minimal prime p of An(T) 0 S'n"1!, the image of Bn(r') 0 Sn~1^- in An(T) 0 S^Z/p
is a finite integral extension of Sn~1^-. We choose embeddings of each of these finite
extensions of Sn~1^- in an algebraic closure of Q, and denote by ^ the compositum of
the images of these embeddings.

If K is a field with characteristic not in Sn, then the set of group homomorphisms
from r to GLn{K) corresponds exactly to the set of Sn~ ̂ -algebra homomorphisms from
Ayi(T) 0 Sn~1^- to K. If a is a homomorphism from r to GLn(K), corresponding to an
Sn~ ̂ -algebra homomorphism /, then the isomorphism class of a semi-simplification of
the restriction of a to F' corresponds to the pull-back of the Sn~1'^. -algebra homomorphism
/ to 5n(r') 0 Sn~1^-' Such a pull-back is determined by the restriction of / to the image
of Bn(r') 0 Sn~1! in An(r) 0 Su'^l. The kernel of / must contain one of the minimal
primes of Ayi(r) 0 Sn~1^-, and given a choice of such a prime p, / defines a unique
Sn~ ̂ -algebra homomorphism from the image of Bn(r') 0Sn~ lZ in An(T) 05n-lZ/p to
K. Since ^ is isomorphic to a finite integral extension of this image, if K is algebraically
closed there is a Sn~ ̂ -algebra homomorphism g from ^ to K extending the restriction of
/ to the image of B^(r') 0 Sn~1^ Therefore the pull-back / o ̂  of / to Bn(r') 0 Sn~1!
factors as the composite of a Sn~ ̂ -algebra homomorphism, given by %„ and the choice
of p, from Bn(r') 0 Sn~1^. to ^, and the Sn~ ̂ -algebra homomorphism g from ^ to K.

To define the set Hn, we choose for each minimal prime p of Ayi(T) 0 Sn~1^- an
Sn~ ̂ -algebra homomorphism /p from An(r) 0 fin"1! to an algebraic closure Q of Q
with kernel containing p. The restriction of each f^ to An(F) 05n-lZ has image in a finite
extension of ^. For each such restriction, we choose a 5n~ ̂ -algebra homomorphism g^
from An(r') 0 Sn~1^- to Q corresponding to a semi-simple representation of F which
is isomorphic to a semi-simplification of the restriction to F' of the representation of F
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corresponding to f^. The image of each g^p in Q is then a finite extension of ^. After
replacing Sn by a larger finite set of primes, we may assume this extension is integral. We
take for fi the compositum of all integral extensions of ^ obtained in this way, and for Hn
the set of homomorphisms from T ' to GLn(^) corresponding to the set of Sn~1^ -algebra
homomorphisms g? from A^(r') 0 Sn~1^ to 0.

According to the above argument, for any algebraically closed field K, a semi-
simplification of the restriction to F7 of any homomorphism from F to GLn(K) is
isomorphic to a semi-simplification of the composite of a homomorphism from F' to
GLnW in Hn and a Sn~ ̂ -linear homomorphism from fl to K. But all the representations
of r' of Q71 corresponding to elements of Hn are themselves semi-simple, so that the same
is true for the corresponding representations on K^\ this follows from the fact that a
homomorphism from F' to GLn(^) defines an irreducible representation on Q71 if and
only if its image is Zariski-dense in G£^(Q). Indeed, for a subset of GLn(^) to be dense
in GLn(Q) is the same as for it to be dense in GLn(^) itself, and hence for its image
in GLn{K) to be dense for every homomorphism induced by a ring homomorphism from
n to a field K. D

Proof of theorem 4.1. - We take for the group An in the statement of part (a) of the
theorem the quotient of F' by the intersection of the following subgroups:

(a) the kernels of the homomorphisms in the finite set Hn defined above in the proof
of lemma 4.2; and

(b) the kernels of the homomorphisms from V to GLn(K) corresponding to the semi-
simplications of the restrictions to F' of representations of F defined on n-dimensional
vector spaces over K, where K is any field with characteristic in the set Sn defined above
in the proof of lemma 4.2.

According to corollary 4.3 and lemma 4.2, this is a finite set of subgroups of F', and
according to corollary 4.2, each of the subgroups in this set of F' is of finite index.
Therefore the quotient An of F' so defined is a finite group. Finally, lemma 4.2 and
corollary 4.1 together imply that if K is any field, and a is a representation of F on
K^, then any semi-simplification of the restriction of a to F' factors through An. When
written in terms of the schemes S S n ^ T ' ) and 5'5n(T),this is the statement we make in
part (a) of the theorem.

As for part (b) of the the theorem, lemma 2.1 implies, in the case k = C, that, for an
algebraic closure Q of Q, the image of the natural map from J?n(r)(Q) to ^(r^Q)
contains only points corresponding to semi-simple representations of F'. According to part
(a) of the theorem, this image is the union of a finite set of orbits of the natural action of
GLnW) on ^(r'^Q). Each of these orbits is a closed subscheme over Q (see [10] or
[11]). Consequently there is a finite set of prime numbers, which we take for Pn, a finite
integral extension <I> of the localisation Pn"^, and a quotient CnfT') of the ring AnfT')^,
such that for any ^-algebra E, the <t>-algebra homomorphisms form CnfT') to S correspond
exactly to the representations of F' on E71 which are restrictions of representations of F.
Since the ^-algebra homomorphisms from C^F') to Q correspond only to semi-simple
representations of F' on Q", for any field K the ^-algebra homomorphisms from C^F')
to K correspond only to semi-simple representations of V on K, for the reason involving
Zariski-density given at the end of the proof of lemma 4.2. Any algebraically closed field
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with characteristic not in the set Pn is a ^-algebra, and therefore this completes the proof
of part (b) of the theorem. D

Our observations permit a simpler formulation in the case when F = F'. In the situation
described in the introduction, this occurs for example when Z is a hyperplane section
of X. The group F' is then the quotient of the fundamental group of X by the normal
subgroup generated by the fundamental group (or groups) of V. It has certain properties,
which would be quite peculiar if it is not a finite group.

COROLLARY 4.4. - If F = F, then for each natural number n there is a finite quotient
An ofT and a finite set of prime numbers Pn such that for any field K:

( a ) any representation ofF on K71 which is semi-simple factors through A^; and
(b) if the characteristic of K is not in Pn, then any representation of F on ^n is

semi-simple.
Furthermore, F has D. A. Kazhdan's "property T."

Proof. - The first assertion is a special case of theorem 4.1, and the second is remark 2.1
at the end of section 2. D

REFERENCES

[I] F. BRUHAT and J. TITS, Groupes reductifs sur un corps local. I. Donnees radicielles valuees (Publ. Math.
I.H.E.S., Vol. 41, 1972, pp. 5-251).

[2] K. CORLETTE, Flat G-bundles with canonical metrics ( J . Diff. Geom., Vol. 28, 1988, pp. 361-382).
[3] P. DE LA HARPE and A. VALETTE, La propriete ( T ) de Kazhdan pour les groupes localement compacts

(Asterisque, Vol. 175, 1989, Soc. Math. de France).
[4] P. DELIGNE, Theorie de Hodge, HI (Publ. Math. I.H.E.S., Vol. 44, 1974, pp. 5-77).
[5] M. GROMOV and R. SCHOEN, Harmonic maps into singular spaces andp-adic superrigidity for lattices in groups

of rank one (Publ. Math. I.H.E.S., Vol. 76, 1992, pp. 165-246).
[6] A. GROTHENDIECK and J. DIEUDONNE, Elements de Geometric Algebrique IV (Publ. Math. I.H.E.S., Vol. 20,

1964).
[7] L. KATZARKOV and M. RAMACHANDRAN, Some remarks on the Shafarevich conjecture for Kdhler surfaces, to

appear.
[8] N. J. KOREVAAR and R. M. SCHOEN, Global existence theorems for harmonic maps to non locally compact

spaces, to appear.
[9] B. LASELL, Complex local systems and morphisms of varieties, to appear in Compositio Mathematica.

[10] A. LUBOTZKY and A. MAGID, Varieties of representations of finitely generated groups (Memoirs of the AMS.,
Vol. 58, no. 336, 1985).

[II] D. MUMFORD, Geometric Invariant Theory, Ergebnisse der Mathematik und iherer Grenzgebiete 34, Springer
Verlag, Berlin, 1965.

[12] M.V. NORI, Zariski's conjecture and related problems (Ann. Sci. de I ' E . N . S . ( 4 ) , Vol. 16, 1983, pp. 305-344).
[13] J.-P. SERRE, Linear Representations of Finite Groups, Translated by Leonard L. SCOTT, Springer-Verlag,

New York (1977).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



148 B. LASELL AND M. RAMACHANDRAN

[14] I. R. SHAFAREVICH, Basic Algebraic Geometry, Translated by K.A. HIRSCH, Springer-Verlag, Berlin, 1977.
[15] A. WEIL, Basic Number Theory, Springer-Verlag, Berlin, 1967.

(Manuscript received February 21, 1995.)

Brendon LASELL
Institute for Advanced Study,

E-mail address: lasell@math.ias.edu

Mohan RAMACHANDRAN
Department of Mathematics,

State University of New York at Buffalo,
Current address: Department of Mathematics,

University of Utah,
E-mail address: ramac@math.utah.edu

4e SERIE - TOME 29 - 1996 - N° 2


