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DEGENERATIONS FOR
REPRESENTATIONS OF TAME QUIVERS

By Kraus BONGARTZ

_ ABSTRACT. — Let A be the path algebra of a quiver with underlying diagram of type An,Dn,Es,Eh or
Eg. We show that a finite dimensional A-module M degenerates to another A-module N if and only if
dimyHom 4 (M, U) < dimyHom 4(N, U) holds for all finite dimensional A-modules U.

1. Introduction

We fix an algebraically closed field k of arbitrary characteristic. If A is a finite
dimensional associative k-algebra with basis a; = 1,...,a,, we have the corresponding
structure constants defined by

a;a; = Z(Ii]‘kak.
The affine variety Mod § of d-dimensional unital left A-modules consists in the a-tuples

m=(my,...,My)

of d X d-matrices with coefficients in k£ such that m; is the identity and such that
mim; = Zaijkmk

holds for all indices  and j. The general linear group Gl, (k) acts on Mod § by conjugation,
and the orbits correspond to the isomorphism classes of d-dimensional modules. We denote
by O(m) the orbit of a point m in Mod % and by M the A-module on k? given by m.
By abuse of notation we also write M for the isomorphism class of M. Thus N is a
degeneration of M if O(n) belongs to the closure of O(m), and we denote this fact by
M <4eg N and not by N <., M as one might expect. It is not clear how to characterize
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648 K. BONGARTZ

the partial order <4, on the set of isomorphism classes of d-dimensional modules in
terms of representation theory.

However, there are two other partial orders <. and < on the isomorphism classes
which have been introduced by S. Abeasis, A. del Fra and C. Riedtmann. They are defined
in terms of representation theory as follows (see [1], [2], [16], [6]):

o M <.t N :& there are modules M;, U;, V; and exact sequences 0 — U; — M; —
Vi — 0 such that M = M;,M;y; = U; ®V, and N = M, are true for some natural
number n .

e M <N :& [M,X] < [N,X] holds for all modules X.

Here and later on we abbreviate dimjHom4 (M, X) by [M, X] and dim;Ext} (M, X)
by [M, X]*.Note that < is a partial order on the isomorphism classes by a result of M.
Auslander (see [3], [4]). Recall that the dimension vector dimM of a module M counts the
composition factors with multiplicities. If N and M have the same dimension vectors then
M. Auslander and I. Reiten have shown in [3] for all non-injective indecomposable U the
remarkable formula [N,U] — [M,U] = [TrDU, N| — [TrDU, M]. 1t follows in particular
that M < N is also equivalent to the inequalities [X, M] < [X, N] for all modules X.

It is easy to see that

MSextN = MSdegN = MSN

holds for all modules (see [6]). Unfortunately, the reverse implications are not true
in general, and it is interesting to find out when they are. Our main result in this
note asserts that M < N implies M <4, N for all modules over path algebras of
quivers whose underlying graph is an extended Dynkin diagram of type A, Dn,EG, E;
or Es. The representation theory of these algebras is reasonably well understood and all
indecomposables are known ([9], [15], [8]). Therefore these quivers are called tame. As
a special case of our main result one also has a complete description of the degeneration
behaviour of certain subspace configurations inside a given vector space. For instance the
variety of quadruples of subspaces with prescribed dimensions is in a natural way the
geometric quotient of certain representations of a D4-quiver.

In Section 2 we review some details of the representation theory of tame quivers, e.g. that
the indecomposables are divided into three types, namely into preprojective, preinjective
and regular modules. Then we present two types of extensions between indecomposables
in different connected components of the Auslander-Reiten quiver.

Section 3 contains the proof that < and <.y are equivalent for representations of an
oriented cycle. This has been shown by G.Kempken in her thesis [13], but we include a
more conceptual proof for the convenience of the reader. The representations of an oriented
cycle occur for regular modules over a tame quiver, and it is possible that < and <. are
equivalent for all representations of tame quivers as it is shown for the double arrow in [6],
Section 5 by a rather technical direct analysis. The main obstacle to carry through such
an analysis for the other tame quivers seems to be the combinatorial jungle of extensions
between preprojective modules. Therefore we introduce a technique in Section 4 which
allows to normalize the preprojective parts of the modules involved. Thereafter, the proof
is based on an inductive argument whose most difficult part is the beginning.

In Chapter 5 we extend the main result to all tame concealed algebras. We also show
how one can derive geometrically the equivalence of < and <., from the equivalence of
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DEGENERATIONS FOR REPRESENTATIONS OF TAME QUIVERS 649

< and <g4eg in certain cases. In particular, this argument proves again the equivalence of
< and <. for preprojective modules. This has been shown before in [6] by a somewhat
mysterious direct construction. At the end of the article we indicate how to decide by finitely
many rational operations whether a given representation over a tame quiver degenerates
to another representation.

We conclude this introduction by a general remark on this problem which explains the
geometric relation between < and <gegq.

ProPOSITION 1. — Let M be an A-module of dimension d. Then we have:

a) For any A-module U the set C(U) := {n € Mod§ | [M, U] < [N, U} is closed in
Mod §. In particular, Cy; := {n € Mod § | [M, U] < [N, U] forall U} is closed, and it
is a finite intersection of some C(U;) with indecomposable U;’s.

b) The Zariski-closure of the orbit of m is always an irreducible component of C(M),
whence a fortiori of Cyy. Thus Cyy is irreducible if and only if the conditions M < N and
M <4eg N are equivalent for all modules N. Furthermore, if m is given explicitely by
some matrices , one can write down a finite number of equations defining C(M).

Proof. — Most of this is well-known ([6], [10]). Suppose U belongs to Mod}. The
matrix-equations fn; = u;f defining an element of Hom (N, U) are equivalent to a system
of homogeneous linear equations with the entries of f as the unknowns. The matrix
B(n,u) of coefficients depends regularly on n and w. If the dimension of Hom(M,U)
equals ¢, the wanted set C'(U) is defined by the vanishing of all subminors of B(n,u)
of size rd — t + 1. This shows the first part of a) and the last part of b). The remaining
assertions of a) follow from Hilberts Basissatz.

By the above argument we see that S = {n € Mod$ | [M, M] = [N, M]} is open in
C(M). We look at the vector bundle V over S consisting of pairs (n, f) withn € S,
f € k%4 such that fn; = m,f. The open projection maps the open non-empty subset
Viets onto the orbit of m. Therefore, this orbit is open in S, whence in C(m). It is also
irreducible because Gl is so, and part b) follows.

Thus the geometric meaning of our main result is that for the path-algebra of a tame
quiver the varieties C); are always irreducible. It would be nice to have a description
of the finitely many test modules” in part a) of the proposition. For tame quivers we
give this in 5.4.

Let us end with an interesting consequence of the proposition. Namely, for certain fields
k, G. Hermann — building on earlier work of L. Kronecker, D. Hilbert, E. Noether and
especially K. Hentzelt — has described a finite algorithm using only rational operations
which determines for any ideal I with a given finite set of generators in a polynomial ring
over k the minimal prime ideals above I by producing finite sets of generators ( see [14]).
For these fields we obtain from the proposition a finite algorithm which decides whether
M degenerates to N or not. For instance,the method applies to the algebraic closures of
the prime fields provided one interpretes e.g. Q as the union of the fields Q; obtained from
the rationals by adjoining all roots of polynomials of degree i with integer coefficients
of absolute value at most i. Unfortunately this algorithm is quite impractical because the
number of involved operations grows exponentially with the dimension of the modules.
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650 K. BONGARTZ

2. Representations of tame quivers

2.1. Some known facts

All facts and definitions mentioned in the following section can be found in Ringels
book [17] or in the article [8]. The term module always means a finite-dimensional left
module. We do not distinguish between modules over the path algebra of a quiver and
representations of the quiver because both points of view are algebraically and geometrically
equivalent by [5]. The point set of a quiver is denoted by Q9. Two modules are called
disjoint if they have no common direct summand.

In this article, we call a module preprojective provided all its indecomposable direct
summands belong to preprojective components of the Auslander-Reiten quiver I' . There
is a partial order < on the (isomorphism classes of) indecomposable preprojectives with
U < V if there is a path in I' leading from U to V. There is the dual notion of a
preinjective module.

For tame quivers, an indecomposable representation is either preprojective or else
preinjective or else regular. Accordingly, any module M can be decomposed in an
essentially unique way into its preprojective part Mp, its regular part Mg and its
preinjective part M;. A very important fact is that there are no non-zero maps
from preinjectives to regular or preprojective modules and from regular modules to
preprojectives. The full subcategory R of all regular modules is an abelian subcategory
which breaks up into a direct sum of subcategories 7 (p), p € P!(k). Each of these
categories is equivalent to the category A (n,) of nilpotent representations of an oriented
cycle with n, points. In fact for all but at most three values of p we have n, = 1, i.e.
7 (p) has only one simple object and these categories are called homogeneous. In the
other cases the simples are conjugate under DT'r. Given a simple regular module F and a
natural number ¢ we denote by P(E,t) resp. I(E,t) the regular indecomposable of regular
length ¢ with E as its top resp. socle.

The tame quivers are characterized by the fact that the associated quadratic form

glo) =Y @l - wa,

ieQo i—j

is positive semi-definite on R, Its radical admits a generator h in N%° with strictly
positive entries one of which is 1. The sum of the dimension vectors of all simple regular
modules in a category 7 (p) as above equals h. The global dimension of a quiver algebra
is at most one so that the map (M, N) — [M,N] — [M, N]! induces a bilinear form
on the Grothendieck-group Ko(A). Identifying Ko(A) and Z% by dim, its associated
quadratic form is gq.

There is a linear form O called defect on Ky(A) whose values on the dimension
vector of an indecomposable are strictly negative for a preprojective, zero for a regular
and strictly positive for a preinjective. Given any module £ with dimension vector h,
one has 9(dimU) = [U, E]' — [U, E]. Another definition of the defect uses the Coxeter-
transformation c. This is the unique endomorphism of R?° that sends dimU to dimDTrU
for each non-projective indecomposable U. In particular, h is fixed by ¢ which induces
on the quotient space an automorphism of finite order p(Q). In contrast to c itself this
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Coxeter-number p(Q) depends only on the underlying non-oriented graph of @ and there
is for any indecomposable U the formula

Q) (dimU) = dimU + 8(dimU )h.

2.2. Two types of short exact sequences

Throughout this section we are dealing with modules over a tame quiver.

LeEMMA 1. — Let P be a simple projective of defect —1, and let E1,Es, ..., E, be simple
regular modules in different T (p)'s such that [P, E;] # 0. Then there is for any natural
number t a short exact sequence

0— P — M(t)= P P(E;,t) — I(t) — 0,
where I(t) is indecomposable of defect 1.

Proof. — For any index 3, there is an injection f; : P — P(FE;,t) that does not factor
through the regular radical of P(F;,t). Define f : P — M(t) by these homomorphisms
and look at the cokernel C. Suppose that C' is not preinjective. Being a homomorphic
image of M(t) , C contains some P(F;,t') with 0 # t' < ¢ as a direct summand. Let
7 be the projection from M (t) onto C and let «; be the projection from P(FE;,t) onto
P(E;,t"). From 0 = 7 f we conclude 0 = =, f; because of [P(E;,t), P(E;,t")] = 0 for
j # 1. This contradiction to the choice of f; shows that C is preinjective, whence of
defect 1 and indecomposable.

LEMMA 2. — Let 0 — P, — Py — E — 0 be the minimal projective resolution of a
simple regular module E. Then there exists for all t a short exact sequence

0— P, — Ph®R— P(E,t) — 0,
where R is the regular radical of P(E,t).

Proof. — The pull-back of the minimal projective resolution under the projection
P(E,t) — E is the desired exact sequence.

It is easy to see that the orbit of P & I(t) has codimension one in the orbit-closure of
M(t), so that M(t) <qeg P @ I(t) is a minimal degeneration, i.e. there is no module L
satisfying M (t) <qeg L <aeg P @ I(t). In general, this is not true for the degeneration
Py® R <ag P ® P(E,1).

3. Degenerations for representations of an oriented cycle

3.1. A general strategy to prove the equivalence of <., and <
The main result in this section reads as follows:

PROPOSITION. — The partial orders < and <.y coincide for representations of an oriented
cycle.
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652 K. BONGARTZ

The proof is based on the following general strategy valid for any finite-dimensional
algebra. To a short exact sequence

Y 0—wX —Y —272—0

we associate the functions 6x(V) = [X @ Z, V|- [Y,V] and 6(V) = [V, X @ Z] - [V, Y]
from the set of (isomorphism classes of) indecomposables to the natural numbers. Then
S. Abeasis, A. del Fra and C. Riedtmann made the following useful observation whose
proof is obvious. Furthermore, there is a dual lemma.

LeMMA 3. — Let M < N be two modules and let ¥ : 0 — X — Y — 7 — 0 bea
non-split exact sequence such that 65(V') < [V, N]| — [V, M] holds for all indecomposables
V.

a)lf M = M'®Y holds we have M < M' ® X & Z < N.

b)If N =N & X ® Z holds we have M < N'®Y < N.

Thus if one can find for any disjoint pair M < N an exact sequence as in the lemma an
obvious induction on [N, N] — [M, M] (use [6], Lemma 1.2) proves the equivalence of <
and <.y. In that case there even exists such an exact sequence with indecomposable ends
by [7], Theorem 4. But since the description of these extensions between indecomposables
can be quite difficult even for representation-finite algebras (see Section 5.3) and since it
is usually even more difficult to single out an exact sequence satisfying the assumptions
of the lemma, the above strategy is hard to apply directly except for some simple cases,
e.g. for the representations of an oriented cycle. The proof we give is an adaptation of
Riedtmanns nice combinatorial proof in [16] for quivers of type A, .

3.2. The universal covering of an oriented cycle

Let Z, be an oriented cycle with point set Z/(n) and arrows pointing from 7 to ¢ + 1.
Here i is the residue of 4 in Z/(n). By Fittings lemma any finite dimensional representation
V of Z, admits a canonical decomposition V' = @&V (A). On V(A) the composition of
the n arrows from V5 to Vg has A as its only eigenvalue. Thus the category of finite-
dimensional representations is the direct sum of categories C(\) which are all equivalent
to the category of nilpotent representations of the loop Z; except for C(0) which is the
category of nilpotent representations of Z,,. To study the degenerations of these nilpotent
representations we can clearly fix the order [ > 2 of nilpotence. Thus we are looking at
modules over the finite-dimensional algebra A obtained from the path algebra kZ, by
factoring out all the paths of length > [. The universal covering A of A is the ”path
category” of the quiver Q with point set Z and arrows pointing from 7 to ¢ + 1 divided
by all paths of length > 2. Note that both A and A are self-dual. The covering functor
7 induces the canonical projection on the point sets. We refer the reader to [11] for all
basic facts and notions concerning coverings that are used before and later on. If we
denote by (4, ) resp. (,j) the indecomposable A- resp. A-module of dimension j with
top at ¢ resp. 4, then the Auslander-Reiten quivers I' resp. I' have Z x {1,2,...,1} resp.
Z/(n) x {1,2,...,1} as underlying set. All points with second component [ are projective
and injective. On the other points DT'r = 7 increases the first component by one. The
push-down functor induced by 7 is denoted the same way. Recall the fundamental relation
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DEGENERATIONS FOR REPRESENTATIONS OF TAME QUIVERS 653
Hom (7 M, N) ~ @ Hom ;(M, N). Here M~is an arbitrary fixed A-module, N is a fixed
A-module and the direct sum goes over all N which project onto N.

Now we have [M,N] < 1 for all A-modules. The support of Hom z((%,5),—) is the

possibly degenerated quadrilateral with vertices (¢, j), (¢,1), (¢ +j —,1) and (s + 1 —1,1)
(see Fig. 1).

(i/+j-l,l) (i+1-1,])
(i+j+1-11-1)

(iJ)

/

Fig. 1.

(i,1)

Since we are interested in short exact sequences we also want to know the support of
Ext!(—, DTr(i,5)) which coincides by a useful formula of M. Auslander and I. Reiten
with the support of Hom ;((4, 5), —) where Hom ;(M, N) is the quotient of Hom ;(M, N)
gotten by annullating maps factoring through projectives. This support is the possibly
degenerated rectangle with vertices (%, 7), (¢,1),(i+j+1—=10,l—1)and (i+j5+1—-1,1—7)
(see Fig. 1). Note that any two non-split exact sequences with indecomposable A-modules
at the ends are proportional, whence have isomorphic middle terms.

The following easy result will be used in the next section. Its proof is based on the fact
that all indecomposable A- and A-modules are uniserial.

LEMMA 4. — Let V be an indecomposable A-module and V = (i,7) be a lifting. Set
ev(X) = [V, X] — [V/socV, X]. Let X = &U;** be a decomposition into pairwise non-
isomorphic indecomposables Uy. Then we have ey (X) := Y my, where the sum runs over
all indices k such that V' embeds into Uy or equivalently over all k such that V embeds
into a lifting of Uy. In particular we have ey (X ) = 0 if and only if no point on the straight
line between (i,5) and (i + j — 1,1) projects onto a direct summand of X.

There seems to be an obvious way to prove Proposition 2: Given two A-modules with
M < N one lifts them to two A-modules with M < N. They live on a finite-dimensional
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654 K. BONGARTZ

simply connected algebra (in the sense of [12]), whence we have M <ext N by Section 5.2.
Since 7 is exact we obtain also M <.y N. This argument is wrong because it might be
impossible to lift M and N in such a way that M < N holds. In fact the algebra given by
an arrow a — b and a loop « at b with a? = 0 as the only relation admits a degeneration
U <4eg V between indecomposables. This example due to C. Riedtmann shows that there
is no lifting U < V. On the other hand our proof of Proposition 2 consists in showing
that for an oriented cycle one can always lift minimal degenerations. It is an interesting
problem to find out those representation-finite algebras, where this is possible.

3.3. The proof of proposition 2

We keep all the notations from 3.2. Fix two disjoint A-modules satisfying M < N. A
rectangle is a convex subset R(a,d) of I with vertices a = (4,5),b1 = G+ J — q,9),
bo = (i,p) and d = (i+j —¢q,p+¢q—j) such that 1 < p < j < ¢ <[ holds. Following
C.Riedtmann the rectangle R(a,d) is admissible (for M and N) provided we have for
all indecomposables U the inequality

[Ua N] - [Ua M] 2 IW_I(U) n R(a‘vd”

Now, choose an indecomposable direct summand U of N of maximal dimension and
lift it to an A-module (z, 7). Then we have by the equality 7 (3, j)/socn(3,5) = 7(i,5 — 1)
and by Lemma 4

[r(¢,1), N] = [x(i,l = 1),N] = ...[x(4,5),N] > [x(s,5 — 1), N].
From dimM = dimN and from M < N we get
[r(i,0), M] = [x(3,1), N] > [x (3,5 — 1), N] > [x(¢,j — 1), M].
Thus by Lemma 4 the triangle 7' in Figure 2 with lower vertex (i,7) contains a W

with M = M’ & n(W).

(1) (i-1,]) (i+i-1])

(i)
Fig. 2.

Because M and N are disjoint and because A and A are self-dual, we even can assume
that W belongs to the triangle 7" with lower vertex (¢ — 1,5 + 1). Put a = (i — 1, 7).
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Descending the straight line with first component ¢ — 1 and applying at each step Lemma 4,
we see that R(a,a) is admissible. By construction 7(7a) is a direct summand of N. We
choose j’ minimal with the property that the degenerated rectangle R(a,(i — 1,7)) is
admissible and we set a’ = (i — 1,5’). Then we have j' = 1 or else we have

(1) [w(b2), N] = [r(b2), M]

for the point by = (¢ — 1,7’ — 1). Finally let R(a,d) be the maximal admissible rectangle
that contains R(a,a’) (see Fig. 3).

by

Fig. 3.

Now we claim:
a) R(a,d) contains a point e with N = N’ @ w(e)
b) R(a,d) even contains a point e with N = N’ & 7(e) @ n(ra)

If this is true we can choose a point e as in b) and we look at the exact sequence
0—Ta—c:=c1®cy — e — 0.

Here ¢, is missing for e = (¢ — 1,1) (see Fig. 4). Part b) of Lemma 3 applies to
the push-down ¥ of this exact sequence. Namely for any indecomposable V' we have
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656 K. BONGARTZ

65(V) = |==Y (V)N R(a, e)| because of the shape of the supports of Hom(—, M) (see 3.2).
Since R(a,d) is admissible we find 6%(V) < [V, N] — [V, M].

C1

/.

TAQ a

Cz a’

Fig. 4.
Suppose now that claim a) does not hold. Then we construct on the dashed line in
figure 3 a point b; satisfying [w(b1), N] = [m(b1), M]. If the dashed line hits the upper

border of I" we can take that point. In the other case the rectangle R(a, d’) is not admissible.
Therefore there is a point b; on the dashed line with

0 < [m(b1), N] = [n(by), M] < |7~ (x(b1)) N R(a, d')].

From 0 < [(by), N] — [w(b1), M] it would follow 2 < |7~ 1(n(b1)) N R(a,d’)|. But then
R(a,d) would contain a preimage of m(7a). Thus we have

(2) 0= [r(b1), N] = [r(b1), M].
Now we consider (see Fig. 3) the exact sequence
E:0—a —bi=b;®by — 71d — 0.

Here b, is missing for 7 = 1. Arguments dual to the ones used above imply now for
any indecomposable V' the relation

[r(a1) ® n(t71d), V] = [x(b), V] = |7~ (V) N R(ay,d)|.
Thus we find
[x(77d), N] = [x(b), N] + [r(a1), N] = 0,
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