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ON THE IWAHORI-SPHERICAL DISCRETE SERIES
FOR p-ADIC CHEVALLEY GROUPS;

FORMAL DEGREES AND L-PACKETS

BY MARK REEDER

ABSTRACT. - We give a general formula for the formal degrees of those square integrable representations of a
p-adic Chevalley group which have both an Iwahori-fixed vector and a Whittaker model. They are worked out in
detail for small groups, using a computer. The results are interpreted in terms of L-packets.

1. Introduction

Let F be a non-archimedean local field, and let G denote the ^-rational points of
a Chevalley group G of adjoint type, defined over the ring of integers 0 in F. We
use similar notational distinctions between other algebraic groups over 0 and their F-
rational points. Let B be a Borel subgroup containing a maximal F-split torus A, and let
K = G(0) be the integer points of G. I denotes the Iwahori subgroup whose reduction
modulo the prime ideal in 0 is B(Fg), where Fq is the residue field of q elements. The
main goal of this work is to compute the formal degrees of generic square integrable
representations of G which contain a nonzero vector invariant under Z. Here, "generic"
means the representation has a Whittaker model (see below).

Our approach is straightforward, in principal. We compute the Z^-norm of a matrix
coefficient, using a formula for the coefficient due to J.-S. Li. The representations we
consider are never supercuspidal, so the matrix coefficents are not compactly supported.
The main difficulty however, is writing down the coefficient in a sufficiently explicit way.

Our result says nothing new for GLn, since the Iwahori spherical discrete series of GLn
consists only of twists of the Steinberg representation. Anyway, there is already the work
of Corwin, Moy and Sally [CSM], who computed the formal degrees of all discrete series
representatations of GLn in the tame case. To handle the nonsupercuspidal representations,
they use the matching theorem for division algebras. Recently, Bushnell and Kutzko [B-K]
have computed all formal degrees for GLn in the general case.

For more general groups even than those considered here, Borel [B] found the formal
degrees of representations whose spaces of Z-invariants are one dimensional. This relies
on some formulas of Macdonald [M] for generalized Poincare series of affine Weyl
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464 M. REEDER

groups. When G has adjoint type, the Steinberg representation and its twists are the
only generic representations with with one dimensional Z-invariants, so our results are
essentially disjoint from those of [B]. This is fortunate, because for small groups (rank^ 3)
our calculations combined with those of [B] give the formal degrees of all Z-spherical
discrete series representations.

The reader will quickly notice that our formula shares little elegance with the well-
known formula for the formal degree of the Steinberg representation. This is partly a fact
of life, and partly due to a missing idea. On the one hand, our formula applies to all
groups and representations (of the stated class) at once. Moreover, our representations have
more complicated Jacquet modules than those considered in [B], hence more complicated
matrix coefficients. We are able to integrate one of these coefficients because it transforms
nicely under K, but that means it involves the whole Jacquet module, so the value of
the integral, hence the formal degree, is a complicated sum. On the other hand, in any
specific example (several are given in section 7), the formula seems to reduce to a fairly
simple rational function in q, although I needed a machine to see this. (The computations
given here for PSPe, SOj, SOg, G^ and F^ were done with Mathematics installed on
a NeXT workstation.) Perhaps there is a way to rewrite or interpret our formula to make
this simplicity apparent.

Motivated by some remarks of Lusztig in [L], we use our computations of degrees
to define certain L-packets and suggest a refinement of a conjecture of Lusztig about
parametrizing certain square-integrable representations of G in terms of representations
of a certain finite group associated to unipotent elements in the dual group of G. See
(7.2) for all this. We only remark here that for SOs, G^ and ^4, the degrees of some of
our Z-spherical representations are also the degrees of supercuspidal representations. A.
Moy has also noticed this phenomenon. L. Morris has considered these L-packets from a
different point of view, and has proven several results on intertwining algebras [Mo] that
should be useful in the pursuit of Lusztig's conjecture.

B. Gross and D. Prasad ([GP, (2.6)]) have recently stated some conjectures about generic
L-packets which in some respects are much broader than the one made here, and which
are corroborated by our results.

I am grateful to P. Sally for his advice, informative discussions and encouragement in
these and other mathematical endeavors.

2. Notation and statement of the main result

(2.1) The set of unramified characters of A has the structure of a complex torus T, which
is in fact a maximal torus of the Langlands dual group G of G. Let W denote the Weyl
group of T in G.

For T G T, let ^M be the set of isomorphism classes of square integrable constituents
of the principal series representation

J(r) := IndJ(r) = [f G C-{G) : f(bg) = 6^b)r{b)f(g) for all b G B^ g 6 G}.

Here 6 is the modular function of B.

4s1 SERIE - TOME 27 - 1994 - N° 4



IWAHORI-SPHERICAL DISCRETE SERIES 465

For w G W and r € T, let TW be the unramified character of A given by
Tw(a) = r{waw~1). From [B], we know that S^rw) = £2^) for any w E TV, and
if T' G T is not IV-conjugate to r then ^(^Q n ^M = 0- Moreover, every square
integrable representation of G containing a nonzero Z-invariant vector belongs to some
<?2(^), and there are only finitely many such representations, up to isomorphism. We will
give a formula for the formal degree of a certain distinguished member of £ 2 (r), namely
the unique representation in ^M possessing a Whittaker model.

Recall that a Whittaker model for a representation V is a realization of V as a
subrepresentation of Ind^0 where TV is the unipotent radical of B and 9 is a character of
N which lies in the open A-orbit on the space of such characters. This orbit is unique,
since we are assuming G has adjoint type.

We now review the part of the classification given in [K-L] of Iwahori-spherical
representations which is concerned with the discrete series. First, £2^) is nonempty if
and only if r is constructed in the following way: Choose s G T so that its centralizer
H in G is semisimple (not just reductive). Let n be a distinguished nilpotent element
in the Lie algebra of H. This means the centralizer of n in H contains no nontrivial
torus. Let (f) : SL^C) —> H be the homomorphism arising in the Jacobson-Morozov
theorem, such that

^(s;)-
We can arrange that (f) maps the diagonal matrices in SL^ into T. Then set

A.(^ ° ^r = s^)( \ i .
V 0 q2 )

The actual parametrization of ̂ M involves the geometry of the flag manifold of G, and
goes as follows. Let X == G / B be the variety of Borel subgroups of G. Let X{r^n) be
the subvariety of Borel subgroups containing both r and exp n. Let Z(r, n) be the mutual
centralizer in G of T and n, and let ZQ be the center of G. Then Z(T,n)/Z^ acts on
X(r,n), and this induces a linear action of the component group A(r,n) of Z{r,n}/ZQ
on the homology of X{r^n). It is shown in ([K-L]) that there is a bijection between
£2^) and the set of equivalence classes of representations p of A(r,n) occuring in the
above representation on the homology of X{r^n}. (Throughout this paper, "homology"
means singular homology with complex coefficients.) We let M.r,p denote the square
integrable representation of G corresponding to p as above. The dimension of the space
of J-invariants in Mr,p equals the multiplicity of p in the A(T,n)-module H.{X{r,n)).

This is the way the classification was envisaged in [L], although its proof in [K-L]
requires that it be formulated differently, because one has trouble defining the Hecke
algebra action in terms of homology. Let us explain the above interpretation of Kazhdan
and Lusztig's result. They actually consider the complexified equivariant 7^-homology
group Ky{X(n)), where X(n) is the variety of Borel subgroups containing expn, and
M is the algebraic subgroup of G x Cx generated by (r, q). It turns out that K^(X(n))
is a module over the complex representation ring R of M, as well as the affine Hecke
algebra, and Mr,p is defined in [K-L, (5.12)] via its Z-invariants as

^ = HomA(.,n)(p, C ®^ K^{X{n)))^

ANNALES SCIENTIFIQUES DE L'fiCOLE NORMALE SUP^RIEURE



466 M. REEDER

where C is an ^-module via the homomorphism R —> C given by evaluation at (r,g).
Let R be the localization of R at the corresponding maximal ideal. The localization
theorem [K-L, 1.3(k)] says

R 0^ K^{X{n)) ^R^)H K^{X{^ n)).

Since M acts trivially on X(r,n\ the right side is R 0c KQ{X{r,n}) ([K-L, L3(m)]).
The ordinary K-group ATo(X(T, n)) is A(r, n)-equivariantly isomorphic to the even-degree
homology of X{r,n} ([K-L, 1.3(m2)]), which is the whole homology of X(r,n} by the
main result of [CLP]. It follows that

C®RKy{X{n))^H.(X{r^n))

as A(r, n)-modules.
Contrary to what is implied by the result announced in [G], not every representation of

A(r,n) occurs in the homology of X(r,n). This happens already for Sp^. Put another
way, the Iwahori-spherical representations do not fill up their L-packets. In [L], Lusztig
suggested a way to account for the missing representations, and we shall see that the formal
degrees fit in nicely with this, at least in our examples. Indeed we can use the formal
degrees to distribute the extra representations into the various L-packets already partially
occupied by Iwahori-spherical representations. It is not clear if the representations in a
given L-packet have any features in common, other than their formal degrees.

On the other hand, the trivial representation of A(r,n) always appears in HQ(X{r,n)\
which is just the permutation representation of A(r, n) on the set of connected components
of X(r,n), and the corresponding Iwahori spherical G-representation M.r,i has special
properties, which can be seen via another description of Mr,i, found in [R].

We can choose r G T in its WF-orbit so that J(r) has an injective Whittaker model (see
[R2,(8.1)]). Then the representation J(r) has a unique irreducible subrepresentation U(r\
appearing in J(r) with multiplicity one.

In [R], we showed that

Mr^^U[r\

hence M.r,\ is the unique member of ^M having a Whittaker model. Actually, one can
prove directly that U(r) is square integrable, using the geometric description of the Jacquet
module of U(r} given in [R], along with the elementary argument of Lusztig [L] which
gives a geometric interpretation of Casselman's criteria for square integrability.

We are going to compute the formal degree of U(r\ Our method rests on the fact that
U(r} is also the unique constituent of J(r) whose restriction to K contains the Steinberg
representation of G(Fq), pulled back to K.

(2.2) We need still more notation before we can state our formula for the formal degree
ofU(r). Recall that the dual group G is simply-connected, and we identify the group of
unramified characters of A with a fixed maximal torus T C G which is contained in a
Borel subgroup B = TU of G. Let fl and t be the Lie algebras of G and r, respectively.
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IWAHORI-SPHERICAL DISCRETE SERIES 467

Also let A, A~^, E be the roots, positive roots, and simple roots of t in Q. These are
determined by the pair (A,B). Let ( , ) be a nondegenerate TV-invariant inner product
on t*, where W is the Weyl group.

Let A C t* be the weight lattice of t. For any A € A, in particular a root, let
e\ : T —> Cx be the corresponding rational character of T. For each a G A there is
a one parameter subgroup

^ : Cx —— T,

defined by the condition e\{ha{t)) = t^^, where a = /^y. Since G is simply
connected, every T G T may be written uniquely as

T = IJ /^a).'I'a^a}
aes

There is an isomorphism of lattices

a i-̂  \a : A/A H K —> A,

such that if r = rLes^(^) G T' then

^a^n^-
Qi€S

Thus, CA,(T) = r(a).
The Weyl group W acts on everything in sight. In particular,

w\a=\waw-^ and ew\{r) = e\{rw).

Here we write rw to denote a right action of W on T. If w is represented by an element
w in the normalizer in G of T then rw is defined as W^TW.

For T € T, we set

A^- = {a G A+ : e,(r) = 1},

and let

^ - {w G IV : rw = r}, IV1 = {w G W : w-^ C A-^}.

Since G is simply connected, W1 is a set of representatives for Wr\lV.
Let

P{t) = ̂  ^(w)

wCW

be the Poincare polynomial of W. More generally set, for each subset of the simple
roots J C S,

PjW= ^ ^w),
w€V^j

where Wj is the parabolic subgroup of W generated by the reflections in J . So
P(t) = Ps(^), and ?0 = 1.
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468 M. REEDER

We also consider the distinguished representatives W3 for W/Wj, where

W'7 ={w(EW :w{J) CA+},

and put

PJ(t)= ^ ^(w).
wew'7

It is known that

Pj(t)P\t) = P(t), and P(t-l)=t-l/P{t)^

where
^IA^.

Let A4' C A be the set of dominant weights and for each J C E, put

Aj = {A G A4' : (A, a) = 0 <=>• a belongs to the span of J}.

In other words, Aj is the set of dominant weights whose stabilizer in W is exactly Wj.
In particular, A0 is the set of regular dominant weights and As = {0}.

For fixed r € T, consider the function M : A —> C first introduced by Macdonald:
n,-iz1 - q "Co

wew a>oM(A)=^w.(e.^-Tr7-)(T)•-„. ^ ^ -L ^cc

Here "w-" denotes the action of W on the space of rational functions on T. After summing
over TV, the poles cancel and the whole expression is really a polynomial on T, which
is being evaluated at r 6 T. Using a result of [Li], we will express a certain matrix
coefficient of U(r} in terms of the function M.

The next two results in tandem give an effective way to compute the formal degree
of U{r).

FORMULA A. - Let d{r) be the formal degree of U{r\ -where the Haar measure on
G is such that vol(Z)=l. Then

^-^Ep^Ew)!2-
TC-'T1 J Y - 1 / \c- \ ,

f
JCE " •'V'I/ A€AJ

This would not be of much use if we did not know how to evaluate M(A), and that
is the role of the next result. We define certain polynomials Fw on t*, one for each
w G W1, as follows.

MF,(A) - e(w)e,-^(T) ^ (V^(Q))(TW) J] (A-p,/3),
JCA^ l3e.A^-J

where
1 V-

^9 2^2 ^a '
a€A+

4° sfiRffi - TOME 27 - 1994 - N° 4



469IWAHORI-SPHERICAL DISCRETE SERIES

Q= Ft i-^eqr],
a€A+

and vj=nv,,
aeJ

where V^ is the derivation of the coordinate ring C[T] defined by

V^ = {^(3}e^.

Explicitly, we have

v^o)- ^(-^^(n^,"))^,
cr~ A + ^^c r ^5CA+ ^o-eJ

where ^5 is the sum of the roots in S. Finally, V0 is defined to be the identity operator.

FORMULA B. - For any dominant weight A, we have

M(A) = C ̂  F,(A)^(TW),
w€W1

where

c = (-^'f n ^'^ n (^M -1))1 (here ̂  = \ E ^ )•-1

| (here
^CA^ a€A+-A^ / ~ /36A^Y/ , , . , . 4 - - A _i_ * +• / ^ - * - 4 -

It is shown in [R] that the polynomials F^ determine the structure of the Jacquet module
oiU(r). They also have the following geometric interpretation. Let Gr be the centralizer
of r in G. This is a connected (because G is simply connected) reductive group which
contains T, and has Weyl group Wr. Let X(r) be the fixed points of r in the flag variety X,
and for w G W, let X^{r) be the G^-orbit of wB G X. Using the Bruhat decomposition,
one sees that X{r) is the disjoint union X{r) = LI^^ri X^(r), and each X^(r) is
isomorphic to the flag variety Gr/B D Gr. It follows that X(r, n) is the disjoint union

X(r,n)= ]J X^(r,n), X^n) := X(r,n) H ̂ (r).
wew1

It turns out that the term of highest degree in F^j is a harmonic polynomial on t* which
represents the fundamental class of X^(r,n) in ^(X^(r)). We define

W^={w€W1: X^(r,n)^0}.

It follows that Fw is not the zero polynomial if and only if w e W^, and the sum in
Formula B is really a sum over the much smaller set W^.

ANNALES SCIENTIFIQUES DE L'fiCOLE NORMALE SUP^RIEURE



470 M. REEDER

(2.3) Some special cases are worth considering. If n is regular in H (hence distinguished),
then T is regular (Wr = 1). Let WH be the Weyl group of H. Then

W^ = {w G W1 : W^^H n A-^) C A+} = {w G W1 : Q{rw) / 0},

for each w E Wo1 the variety X^(r^n) consists of the single point {wB}, and F^ is
the constant polynomial

FwW = €{w)ep-^p(r)Q{rw),

so we have

w) = n1—^^ E ^(TW) n l^(7?•v / J.-L | _ p [ T\ / ^ JL-L n — p ( 7 - 1

a>o i ea{r' ^ew1 a>o q a{ '
0 w-^c^O

Moreover the group A(r, n) is just the center of H modulo the center of G (see section
6 below). It acts trivially on X(r,n). In this case U(r) is the only discrete series
constituent of I(r).

If A^ = {/?} for some root (3 then X^(r, n), if nonempty, either is a projective line left
invariant by A(r, n), or consists of finitely many points permuted transitively by A(r, n).
The first case occurs if and only if Q(rw) ^ 0 and then

F.(A) = e(w)e^(T)Q(Tw) ((A - p, w-^} - q-1 ̂  ̂ i67^).
\ ^o1 y ^\TW) /

The second case occurs if and only if there is exactly one positive root 77 such that
e^(rw) = g, and for this 77 we have {wr]^f3) -^ 0. Here ^w(A) is the constant polynomial

-Fw(A) = -e{w)ep^p(r){wrj,(3) JJ 1 - ̂ "^(Tw).
7?^7>0

In this situation the Fw's, and their connection with Jacquet modules, were found
by Rodier ([Ro]), and his work led me to seek their general form, as they arose from
certain Whittaker functions ([R]). Our explicit examples below are covered by this and
the regular case.

(2.4) For the record, we show how to express the formal degree in closed form, even
though the version above with infinite sums seems better suited to actual computations.

Let {uja '- a € E} be the fundamental dominant weights, where (a;o;,/3) == 6^/3 for
a, (3 C E. If we write a general A G A^ as

A = ̂  n^o,

4® sfiRffi - TOME 27 - 1994 - N° 4



IWAHORI-SPHERICAL DISCRETE SERIES 471

for nonnegative integers n^, then

Aj = {X: n^ =• 0 if a C J, n^ 1 if a E JJ,

where Jc = ̂  — J .
We now define, for a;, ?/ € W1 and p, G A"^, certain complex numbers C^ (independent

of A) by the equation

F,(A)^(A)= ^C^n"^'
/Lt€A+ <^eS

where "bar" denotes complex conjugation. It is clear that only finitely many C^y are
nonzero. When r is regular, C^y is nonzero only for ^ = 0.

Next we need some combinatorial notation: For 1 / z G C and any integer k > 0, we set

M /„ 9 V x I
= Mr—[fcj V 9XJ 1-X\^'

For fc ^ 1 we have

\z~\ _ ^ + l ) - - - ( ^ + f c - l )
[fcj (1-^)^1

Finally, here is the formula for the formal degree in closed form.

FORMULA C. - Assume that £2^) is nonempty. With Haar measure on G normalised to
give I volume one, the formal degree of U{r) is given by

d(r}-1 - a^Ci2 ^ 1 V^ c^ TT f^^^^ld[r) -q |G | ^ ^ G^ ^ I ^ ^ j ,
jcs J v y / ^ G A j aCE-J1- " ' / J

(.^,y)6Wo lXWj

vv/i^r^ (7 ^ as in Formula B.
When r is regular, the formula becomes

12 j ~r / ___ \ - ij( \-i ^ TT ^ - ̂  ^a^) v^ dxdy TT /r / \——7—\"i-i -^^ =^ n i _ e M s p^ n ^[^(Tr^)e^(^)] l- lj
Q>0 1 eQ;VT/ JCE rj^) ^Y.-J\ /

^(^Q^Cn/)]"1-! ,
11 1 - e fr^ 2-^ Prfo) 11 '
a>0 1 eavr/ I ^CE J^J(<^ /3€E-J

(x,y)€W^XW^

where
1 - ge^(T-)d^= nLl 9-e.(T)'a>0

LU-^C^O

Note that the sum over Aj is in fact a finite sum. Moreover, Casselman's square
integrability condition guarantees that |e^(Ta;)| < 1 for all x G Wo1- Formula C follows
directly from Formula A upon substituting the expansion

F,(A)^(A)= ^C^n"^
/^eA+ a€S

ANNALES SCIENTIFIQUES DE L'̂ COLE NORMALE SUP^RIEURE



472 M. REEDER

into Formula A and remarking that for any complex number z with \z\ < 1 and nonnegative
integer k, we have

E
n=l

nkzn

One can hope that Formula C has a topological interpretation, as is the case for the degree
of the Steinberg representation.

The proof of Formula A will occupy sections 3 and 4, and Formula B is proved
in section 5. In section 6 we make some remarks on computing the Kazhdan-Lusztig
parameters, in preparation for our computational examples in section 7, where we also
discuss Lusztig's conjecture.

3. The matrix coefficient

Let T-IQ be the convolution algebra of Z-bi-invariant functions on G which have support
in K. This is the Hecke algebra of the finite Weyl group W, and is a subalgebra of the
affine Hecke algebra associated to G. For a matrix coefficient of^/(r), we use a particular
function $ G U(rY which can be defined as the unique function in I{r)1 transforming
by the sign character T-IQ, taking the value one on e e G. To see $ explicitly, view the
group G as the disjoint union

G= \J Bwl.
w€W

For b G B,w G W,k € Z, we have

^{bwk)={-q)~€wr6^(b),

where t{w) is the length of w, and 8 is the modulus of B. In [R], $ was denoted by
<&- to distinguish it from the AT-spherical function. If Ts is one of the standard generators
of Ho then T,$ = -$.

Let <i> be the analogue of $ in I{r~1), which is the contragredient of J(r) via the
pairing J(r) x I{r~1} —> C given by

(<^)= / WWdk.
J K

Define F € C°°(G) by

r{g)={R^^)= ( ^{kg)Wdk^
J K

where Rg denotes the action of G on J(r) by right translation. Following Casselman [C],
who looked at the AT-spherical function, J.-S. Li has computed the following formula for F.

4° sfiRffi - TOME 27 - 1994 - N° 4



IWAHORI-SPHERICAL DISCRETE SERIES 473

(3.1) PROPOSITION ([Li]). - Let a C A be such that its corresponding weight \a is
dominant with respect to A4'. Then

F(a) = 8^a) ̂  w • (e^ ]^[ l—C^Vr) = ̂ (a)M(AJ.
w€lV v a>0 i e" /

Our task is to extend this formula to all of G and then make it explicit enough to
compute its Z^-norm. Since F is clearly I bi-invariant, and G is the disjoint union

G = |j Iwal,
WxA/AHK

we need only compute r{wa) for arbitrary w € W and a € A/A H AT.

(3.2) LEMMA. - Let g € G, <^ e J^, ^ G ^(T-1)^^. L^ T^ G C,°°(G') ^ the
characteristic function of Igl. Then

{R^^)=vo\{IgI)-\T^^).

(3.3) LEMMA. - In the previous lemma, if k E K then

(T^)=(^Tfc-iVO.

These two lemmas are easily proved by interchanging integrals.
Recall that the length function on W xi A/A H K is given by the equation

vo^ZwaZ)^^.

The explicit formula is

^(wa)= ̂  |(A,,d}+l|+ ̂  |(A,,d)|.
Q:>0 Ct>0

w(x<^.0 wc<>0

Using this, it is easy to check that if s G W is the reflection for a simple root a and
sw > w for some w G W, then

,/ , f ^ ( w a ) + l , if ( w A a , d ) > 0
'(5wa) - V(wa) - 1, if (wA,,d}<0.

In the affine Hecke algebra H of smooth J bi-invariant functions on G with compact
support, we then have

^ f r,T^, if (wA, ,d )>0
^wa-^^-iy^^ ^ (wAa ,d )<0 .

(3.4) LEMMA. - For all a e A/A H AT, anrf w € W, we have

r{wa) = 6(w)^(a)-^wa)^(a),
where e(w) = (-1)^).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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Proof. - Induct on ^(w). Let s be the simple reflection for a G S, with sw > w
as above. Then

r(^wa) = q-^^T^^ $) by (3.2)
= (r'^WXa^)
-^^(T,^,^1^) by (3.3)
== -g-^^r^, ̂ ) by definition of <!>
= -g^wa)-^swa)^(wa)
= e^w)^-^0)^),

this last by induction.

(3.5) LEMMA. - For all w G W and a C A/A D K, we have
i(waw~1) = £{a).

Proof. - It is enough to prove this for the simple reflection s = Sa. We get

^a.)=^|(A^,/3)|=^|(A,,./3}|.
(3>0 /3>0

Since s permutes the positive roots other than a among themselves and [ (A^—^)! =
|(Aa,o;)|, the sum is unchanged.

(3.6) LEMMA. - For s = Sa as above and a € A/A D K, we have
_ fr^T,-1, if {w\a,a) ̂  0

lsas {T^T^ if < w A , , a ) < 0 .
Proof. - If <Aa,a) ^ 0 then £{sass) = £{sa) = ^(a) + 1 = £{sas) + 1, so

-^sas-^s — J- sass — -L sa — -^s-^a'

If (Aa,a) < 0 then ^(ssa) = £{a) = i{sa) + 1, so TsTsa = Tssa = Ta. Also,
i{sas) = i{sa) + 1, so T,aT, = T^. Putting these together gives T^s = T^TaT,,
as claimed.

Now we can compute F(a) for an arbitrary a e A/A D K. The next lemma would
be clear for the AT-spherical zonal function, but does not seem obvious for our F, which
is only Z-bi-invariant

(3.7) LEMMA. - For all a C A/A D K and w G W, we have
r{waw~1) = r(a).

Proof. - It is enough to prove this for w = s = s^ as usual. We have
r{sas) = vo^Z^Z)"1^^,^)

=q-^sas\T^lTaT;pl<S>^)
=-q-W^T^^)^

where the top row of signs occurs if and only if (Aa,a) >_ 0. Lemma (3.3) says that
Ts is self-adjoint with respect to ( , ). Hence T^~1 is also self-adjoint. Moreover,
^±1$ ^ _^ go

r{sas) = -q-^\T^^T^} = q-^\T^^) = r(a),
by (3.2).
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4. The integral of the matrix coefficient

We now modify our matrix coefficient a little, and view it as a function on the weight
lattice A. Recall that

M(AJ = ̂ (a)F(a) = ̂  w . (^ ]^ I^-^)(T).
wev^ a>o a

(4.1) FORMULA A. - Let d{r) be the formal degree ofU(r), where the Haar measure
on G is such that vol(Z)=l. Then

d^-1 = ̂  E p )̂ E W)!2-
JCS Jw AGAj

Proof. - The formal degree may be computed as

,(,)-. , !c\Wdg
' ' (<&,<1>)2

Let dk be the restriction of Haar measure on G to K. We first compute

($,$)= / ^(k)^>(k)dk
JK

= E / ^(fc)^(A;)dfc
„,6W/(BnJ'!')wz

= ̂  vol[(B n A^)w^]g-2^(w)

w€W

= ̂  ,-(-)

wGT^

=-P(9-1).

Next,
( |r(^)|2^ = ;̂ vol(ZwaZ)|r(wa)|2

VG WxA/ADK

= ^ ^(^a) . ̂ 2^(a)-^wa))lj./^M2

IVxA/AnJC

= ^ g^a)-^wa)|^(a)|2.
WxA/AHK

Every a e A/A n K is conjugate to a unique element of A4". (We are identifying
A/A n K = A here.) For a e Aj C A+, let W = W\ and Wa = Wj. Then
{waw~1 : w C W J } is the set of distinct ^-conjugates of a. Therefore we have
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f\^{g)\2dg= Y q^^-^^^r^ax-^2

JG ^
(w^^WxW0-

-E^t E 'r^ îwi2.
a^A+ (w^eWxW0-

We must work on the sum in the square brackets. I claim that in this expression, we have

£{wxax~1) = i{a) + i(wx) - £{x).

For w = 1 this is just (3.5), so we can induct on t(w). Suppose sw > w, where s = Sa is
the ubiquitous simple reflection. It is enough to prove that

i{swxax~1) = f.{wxax~1) + f.{swx) — i(wx).

We know that for any a' G A/A H K, we have

^^-?a')+l if < W A ^ d ) > o
€{8wa ) ~ \i{wa^ - 1 if ( w A a / , a ) < 0 .

Suppose now that swx > wx. Then {wx)~la > 0 so 0 <, (Aa, (wa;)"1^) = (^Aa;aa;-i,a)
so the claim is true in this case.

Now suppose swx < wx. To get the claim here, we need to show that (Aa, (wa;)"1^;) <
0. Since {wx)~la < 0, we at least have (Aa, (wx^^a) <, 0. If it actually were zero,
we would have —(wa;)""^ being a positive root in the span of J, where a G Aj. But
note that ^[-(wrc)"1^ = -w^a < 0 since sw > w. This contradicts the fact that
x G W01, and proves the claim.

Therefore,

V^ ^wxax-1) ̂  ̂ (a) V^ ^(^)+^)

(w^ewxw0- {w.x^wxw0-

=q~^ ^ q^ ̂  ^(wa7).
a-^Wa ^^^

We can get rid of x in the sum over W, and the above expression becomes

q-^P\q}P{q-1).

But P\q) = P{q)Pj{q)-1 = q^P^q-^PjW-1, where v = \^\ is the number of
positive roots, so

/ \^{g)\2dg=P{q-lfqv ̂  [^ ^)]-l^|^(a)|2.
JG a€A+ x€Wa

Finally, recall that 5(a) = ^-^a) for a G A+, so ^^(a)!2 = |M(Aa)|2.
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5. Proof of Formula B

This is a simpler version of a computation of certain Whittaker functions in [R, (2.4)].
The idea is to expand the product in M(A), apply the Weyl character formula in an explicit
form, and then put the product back together. The notation is that of section two.

We set, for any A £ A,

^(A) = ̂  E ̂ ^(A+P) e C[T],
wCW

where D = r[aeA+ (e^ ~ ^)* ^ ̂  ls dominant, this is WeyFs formula for the character of the
irreducible representation of G with highest weight A. We denote its value at r by ^(A, r).
It is easy to see, using the Weyl dimension formula applied to the centralizer of T, that

X^r)=e,{r){-iyC ^ e{w)e^^{r) J] <A+p,/3).
W^\W /3€A^

We rewrite M(A) as

M(A) = (-l)'(^ E e{w)w^,,Q)\r^
v w^W /

and expand

Q= E^)"'5'^'
5CA+

where 8s is the sum of the roots in 5, to get

M(A)=(-ir ^ (-g)-l^(A-2p+^r)
5CA+

= ep{r)C ̂  (-g)-l5! ^ e(w)e^_^)(T) n (A-p+^^)
5CA+ w€^r\H' /3€A^

=C ^ 6(w)e,-^(T)[^; (-g)-l^le^(T) n <A-p+^^)1e,,(T).
wGTVA^ L5CA+ /?eA^ J

The term in square brackets is

^ (-^-^^^(^(n^^Of n (A-^))
5CA+ ^eJ / ^aeA^-j /

JCA^w

- E (-^"^'^(^^(^f n (A-^a))
SCA+ 'a€A^-J
JCA^= E V^Q)(TW)( n (A-^a))-
JCA^ 'aeA^-J

as asserted in Formula B.
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6. Remarks on Kazhdan-Lusztig parameters

In general it is a difficult combinatorial problem to determine the varieties X{r,n).
In principle, one can always resort to the Bruhat decomposition, but this does not seem
practical for large groups. However, the number of cases to be considered can be greatly
reduced, as we show in this section. Along with an inductive procedure given in [CLP,
(3.9)] (which we discuss below in some examples), this will be enough for our purposes.

Recall the notation of (2.1). We have an element s G T whose centralizer H
is semisimple, n is distinguished nilpotent in the Lie algebra of H, with associated
homomorphism (f) : SL^ (C) —> H, and

^(^ ° ^T = S(^[ \ i .\ 0 q^ )

We show how to reduce the computation of X(r, n) and A(r, n), along with the homology
representation of the latter on the former, to the case s = 1, H == G. Since s,r,ex.pn
all belong to H we have analogous objects X^(r,n), A^(r,n). Let ZH and Z^ be the
respective centers of H and G. Let Z^(r,n} be the mutual centralizer in H of r and
expn. Since Zjf(r,n) contains no nontrivial torus yet is reductive by [Car, 5.5.9], it
must be finite. Hence we have

A H { r , n } = Z H { r , n ) I Z H .

Any element of G centralizing T must also centralize its elliptic part s, so we have

A{^n)=ZH^n)/Z^

and there is an exact sequence

1 —— Z H / Z Q —— A(r,n) —— An{r^n) —— 1.

For example, if n is regular in H, then Z^(r,n) = Z H , so A(r,n) = Z H / Z Q . Let WH
be the Weyl group of T in H, viewed as a subgroup of W.

(6.1) LEMMA. - The homology group H.{X{r, n)) is isomorphic, as an A(r, n)-module,
to the direct sum of [W : WH\ copies of H.{XH(r,n)), where A(r,n) acts on the latter
homology group via the above exact sequence.

Proof. - We will actually show that X(r,n} is Z^(T,n)-equivariantly isomorphic to
the disjoint union of [W : WH\ -copies of X^(T,n). Moreover, the hypothesis that n be
distinguished is not needed here.

Let X{s) be the fixed points of s in X. Using the Bruhat decomposition, one checks that

X(s) = i j HwB disjoint union.
W€WH\W
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Moreover, the stabilizer in H of wB is a Borel subgroup of H, because any positive
system of the roots of G meets the roots of H in a positive system of the latter. Letting
XH = H / H D B, we therefore have

TO^. U x
weWn\w

H

as ^-varieties. Take the mutual fixed points of h = <^( q 2 i ) and expn on both
sides. Since s acts trivially on XH, the right side becomes

U ^H^n).
weWn\w

The left side becomes X(s) H X(h) n X(n). The proof is completed by showing that
X{s) n X{h) = X(r). One containment is obvious. By uniqueness of expression in the
Bruhat decomposition, each point in X(r) can be written uwB, where u belongs to a
product of root groups for roots a e A^. On the other hand, ea(s) has complex modulus
one, and Co,(h) is positive real, so we must have e^^s) = e^(h) = 1, showing that uwB
is also fixed by s and h.

For example, consider those discrete series representations V of G with dimV^ = 1,
which are not twists of the Steinberg representation. We call these "Borel representations",
and they fit into the Kazhdan-Lusztig classification as follows. The representation M.r,p is
a Borel representation if and only if the irreducible representation p of A(r, n) appears with
multiplicity one in ff,(X(r,n)) (see (2.1)). By (6.1), we must have H = G because the
multiplicities are divisible by \W : WH\' Thus n is distinguished in 3, and determined by r
(see [Car, 5.6.2]). One now examines Borel's list [B, 5.8] and finds that for each r occuring
there, with corresponding n, one of two possibilities holds. Either there is a p appearing
in H.[X{r^n)) with multiplicity one, in which case this Borel representation is A4r,p, or
there is no such p. The latter case arises because Borel is considering p-adic groups which
are not necessarily adjoint, and several of his one dimensional representations may be be
packaged in a single non-Borel representation of the corresponding adjoint group G.

We describe all of this more explicitly in each case below.

7. Examples

We now give some explicit computations of formal degrees using Formulas A and B.
For rank at most three, our computations combined with the results of [B] will give all
formal degrees of Iwahori-spherical representations. We will use the formal degrees to
define L-packets whose members are either Iwahori-spherical representations, or certain
other representations in the discrete series of G.

We first discuss G^ in some detail. The computations of formal degrees for the other
groups are entirely analogous, so we just present the results in those cases.
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62

Let a and /3 be the simple roots of G^ with a the short root. Let s = Sa and r = s^
be the corresponding simple reflections in the Weyl group.

There are five Iwahori-sphencal discrete series representations of G^. We list them
according to the Kazhdan-Lusztig classification (§2).

H\ = G?2 '• ^i = ̂ a^"3)^/^"5)? ^(T!) = ̂ he Steinberg representation, W^ = {e}
H^ = G^ : T2 = h^q'^h^q'2), 712 = subregular, A{r^ n^ ^ 83, W^ = {e, r}
H, ̂  ?(0) x 5L2(C))/((-1, -1)) : TS = h^-q-^-q-2)^

713 = regular in H, A(r^, 713) 2^ Z/2, W^ = {e, 5, r}
ff4 ^ 5£3(C) : T4 = h^q-^h^q-2^

77,4 = regular in H, A(r4,714) ^ Z/3, TVo1 = {e? •s}'

In this last, C is a nontrivial cube root of unity. The conjugate root gives an isomorphic
representation.

There is another square integrable constituent U(r^y of I{r'z). It is the unique Borel
representation, and is placed as follows: There is a chain of subrepresentations

OCU{r^CJo,CJo,CVcI{r),

with
v/jo^u{r,y.

The subrepresentations Jod are attached to orbits of the centralizer of r in the q~1-
eigenspace of Ad{r) in Q ([R]). The subscript on 0 indicates the dimension. We have
dm^Z^y^ = 1, and

£2^) = {U^}MW}.

The variety X ̂ 2,712) consists of three points and a projective line. The group
A(r2,7i) ^ S^ has three representations: l=trivial, ^reflection, 5p77,=signum. This group
permutes the three points in X(r2,7i2) in all possible ways, and fixes the line. Thus
only the characters 1 and g appear in I?, (X ̂ 2,712)). In terms of the Kazhdan-Lusztig
parametrization,

U{r^ ^ Mr^

Based on formal degrees, we declare a certain supercuspidal representation of G^ to be
the "missing" representation, corresponding to sgn. All other ̂ (^'s are singletons, with
trivial action by A(T^T^), and these packets also have missing representations, which
we discuss below.

(7.1) PROPOSITION. - The formal degrees of the Iwahori-spherical representations of G^
are given as follows (recall vol(I) = I):
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( g 5 _ i ) ( g _ i ) 2
d(rl) = (^-1)(^1)

^)=^W= ^-^2 v ^ 6(g3- l)(g+I)2

<?(<?-1)2
d(T3) -

ri(T4) =

2(g3+l) (g+l)
(^-l)3(g-n)

v 4/ 3(g6 - 1) •
The formulas for c?(ri) and d(r'z)' are covered by the formulas in [B]. Before indicating
the computations of the others, we discuss the representations of Gy associated to the
representations of the groups A(r,n) which do not appear in the homology of X(r,n).

It turns out that each formal degree above is also the formal degree of a supercuspidal
representation. For the finite group G'2(Fg) there are four cuspidal unipotent representations.
Labelling them as in [Car, p.(460)], they are

G,[l] of dimension q{q -lw- 1)

6((7+1)

G2[-l] of dimension ^{q - l)(g3 - 1)
2f

&2 [C] of dimension ^{q2 - I)2
o

G'2[C2] of dimension ^(q2 - I)2.
o

(Recall that C is a cube root of unity.)
Let d[x} be the formal degree of the irreducible supercuspidal representation

V[x] = md^G^x},

with the same normalization vol(Z) = 1 as always. Then

M^_ ^gG^[x}d[x} =
P(9)

and we find

d(T2)=d[l], <T3)=d[-l], d(T4)=rf[C].

These results are consistent with the following conjecture, which is a refinement of one
due to Lusztig ([L, (1.5), (1.7)]).

(7.2) CONJECTURE. - Let r and n be as in section one. Let A be the set of irreducible
representations of the component group A(T,n). Then there is a finite set of square
integrable representations of G,

W = [Vp: p e A}
such that the following hold.
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(1) deg(V,) - dim^)deg(Vi).
(2) Yi c^ U{r), and is the unique member of £'z{r) with a Whittaker model.
(3) Vp has an Iwahori fixed vector if and only if p appears in the representation of

A(r,n) on the homology of the variety X{r^n).
(4) The union of all S^r)^ is exactly the collection of square integrable representations

whose invariants under the "unipotent radical" ofaparahoric subgroup contain a unipotent
representation of the corresponding Levi subgroup of G(Pq).

I have added the first two statements. The others are due to Lusztig. This is of course
in accordance with the examples computed here. In the C?2 case, we would have

<?2(n) = {Steinberg},
£^)={V,=U{r^^ V,=U{^)^ V,=V[1}} (here .4(T2,712)^3),

f2(T3) = {V, =^3), Y-i = V[-l]}, (here \A{r^n^\ = 2),

^(T4) = {V, = U(r^\ Yc = m Vc2 = ̂ [C2]}, (here \A(r^n^\ = 3).

To verify (2), one must show that none of the non-Iwahori-spherical members of
<?2(r) have Whittaker models. Suppose V[x] C Ind^O. By the Iwasawa decomposition
G = NAK, there exists / belonging to the G2[^]-isotypic component in the X-
decomposition of V[x}, and a € A such that /(a) -^ 0. Let K\ be the kernel of the
natural map TT : K —> G^Fg), and let A/i = N D K\. The invariance of / under TVi
implies 0 is trivial on aA^a"1. Consider the character ^(n) == 6(ana~1). We have a
(^-isomorphism Ind^0 —> Ind^O0' given by (f) \—> (^a, ^a(^) = (f>{ag), for g G G. Now
/"(I) / 0, ^"l^ = 1, and /a is K^ -invariant. It follows that the restriction of /a to K is
a nonzero function of the form ̂  OTT, where ̂  belongs to a Whittaker model of G?2[^]. This
is a contradiction, because cuspidal unipotent representations of finite Chevalley groups
do not have Whittaker models ([Car, p.379]).

We now show how our formula leads to the asserted formal degrees for G-z which are
not contained in [B]. We discuss d(r'z) in detail since that is the most tedious one. For the
others, we just give the explicit form of M(A) obtained from Formula B, after which it is a
long but completely mechanical process to compute the formal degree, using Formula A.

COMPUTATION OF d(r^) . - Normalize the inner product ( , ) on A so that (/3,/3) = 3,
so (a, a) = 1 and (a,/3) = —|. For an arbitrary weight A = auj^ + 6ci^, we have

< A , a ) = J ( A , a ) = | .

Set T = T2. We have ea(r) = 1, e^(r) = q~1, and A^ = {a}. Also

Q(r) = I] 1 - g-^(T) = q-12^ - l)(g2 - 1)V - 1),
7>0

1I] ^(T)-!^-6^-^!-^), I] {p,,a}=^
7€A+-A^ ae^t
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and
(a,7)e^(r) _ e^r) _ qE ^,7/e^T; ^

. 1 - (7-Wr)^l-^e^T) l-^aM 9-1'

In particular, the constant C of Formula B is

^C= ( l -g)4( i -^) '

Using the special cases in (2.3), one easily checks that only Fe and Fr are nonzero. The
corresponding generalized eigenspaces in the Jacquet module are two and one dimensional,
respectively. (The rest of the rr8^- eigenspace is taken up by U{r^y.)

For A = auja + buj^ as above, we have

e^r) - q——2^ ex{rr) = e^{r) = q-^.

Also by (2.3) we have

a^_\_ _ _\_\
T~^~\)'

F^W^Q^f0—^-^-\ 2 q-
-i O(T) _ 3 q-^r)

FrW=-e(rWa}q- , _ ,.^ - , ̂  _ ̂ y

Using Formula B, we get

<,3 _ i\2^2 _ i\4

|M(A)|2 = (g3^2(!2l)61)4 [{W - I)2 - 2°(<?2 - 1)(9 + I)2 + (9 + I)4)?-20-46

+ 6^(a(g2 - 1) - (q + l)2^-20-36 + {^q-2^}.

We next compute each sum ^^ |M(A)[2 separately. We abbreviate

^ (q3 - l)2^2 - I)4

g"(g _ 1)6 •

J = 0: We sum over all a, 6 ^ 1 and get

V \M(\}\2 - c'^-^+^+^-l+l2JM(A)1 - ° W^W^W^W2'
J =. {/?}: Here b = 0 and we sum over all a >_ 1 to get

Ew^^-^-
^/^

J = {a}: Here a = 0 and we sum over all b >_ 1 to get
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V- , ̂ ,2 _ ̂ -g+l^+^+l)
^|M(A)| -C (^-W+,+i) •

J = {a,/?}: Here a = b = 0. We get

IM^I^W-^+l)2 .

Using Formula A we find

^-i .6 v- 1 ^ Lvmi2-6^1^3"^
<72) =^ 1. p^ 2^ 1 ^ ) 1 - — — — ^ - 1 ) 3 — — — -

JC{a,/3} Jw AGAj 'vy /

as claimed.

COMPUTATION OF d{r^). - For T = TS = ha{-q~l)h/^{-q~2), we have

e,(r) = -1, e^(r) = -q-\ and A^ = 0.

Since T is regular, w C T̂ o1 ̂  an^ only if Q(rw) / 0, and one checks T̂ o1 :=: {e? •s?r}- ̂ so

Q(T) = q-12^ + l)(g4 - 1)V + 1), Q(T5) = Q(r), Q(Tr) = ̂ ),,

and
n ^(T)- l=2( l -9- 2 ) 2 ( l+g- 2 ) .

7€A+

For A = auja + ̂ b» we have

e,(r) = (-g-1)^-^-2)6, e,(r.) = (g-1)^-^-2)6, e,(Tr) = (-g-1)0^-1)6.

From (2.3) we get

^ ,(,+D(y^)^ ̂  (_i).](.-,).(_,-y ̂  ̂ -^y)').

Now we compute the sums ̂ ^ |M(A)|2 as before.

COMPUTATION OF d(r^). - For

r =r4= /^(C^"1)71/?^"2^

we have

e,(T)=C, ^(T)=^-\ e,(T) = (Cg-1)0^-2)6,

OM = ^^(g - C)(96 - 1)(^3 - 1)(92 - 1),
I] 1 - e,{r) = q-\l - C)(^3 - l)(g2 - l)(g - 1).
7>o

This T is again regular, and we have W^ = {e,g}. One checks that e\{rs) = e\{r)^ for
every A, dominant or not. In particular, Q{rs) = Q{r).
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This means

. 6 _ ^ f l + 9 - 1 if aE:0(3)
W) = -^——-^-(a+26)' where ^ = ^ -^-1 if a = 1(3)

9 ^ - u [-1 if a =-1(3).

Now we compute as before.

S02k+i(F)

We now turn to the groups SO-2k+i{F). We will use matrix notation. The dual group is
G = 5p2fc(C). If we choose coordinates so that the matrix of the symplectic form is

( ° -Ik}[h o r
we can choose T to be the diagonal matrices in G and an element r G T can be represented
by the fc-tuple r = ( ^ i , . . . ,^), consisting of the first k diagonal entries in T. We denote
the simple reflections in the Weyl group by 5 i , . . . , Sk where Sk inverts the ^th coordinate
of T and Si swaps the 1th and (% + 1)^ coordinates, for 1 < i < k — 1.

For 0 <, i < [|], let Hi be the centralizer of (1, . . . , 1, -1..., -1) (with i negative
ones). Then

Hi ^ Sp^k-i) x Sp^i.

These are the groups H appearing in the Kazhdan-Lusztig classification.
The distinguished nilpotent elements in sp^ are parametrized by partitions of k with

distinct parts, and can be constructed as follows. Let A = Ai > A2 > • • • > Xd(\) be a
partition of k. Let (V(m), cj)m} be the irreducible S'I/2 ((^-representation of dimension 2m.
Then V(m) carries a nondegenerate SL^(C) -invariant symplectic form and the orthogonal
direct sum V = V(Ai) 9 • • • 9 ^(Ad(A)) is a symplectic space of dimension 2k. The
homomorphism (f): SL^{C) —> Sp(V) is the direct sum of the (/)\^s. Then we can take

.fq^ 0 \ , , /0 1\
"^O q . ) - ^^fo 0}

The mutual centralizer Z{r,n} of n and r is the collection of symplectic automorphisms
of V acting by ±1 on each V(A,). Hence Z{r,n) ^ (Z/2)^).

The following observation will suffice to compute X(r, n) in our examples. By (6.1) we
can assume n is distinguished in sp^(C). The flag variety X is the variety ofisotropic flags

F = Fi C • • • C Fk

with dimFi = %. Then F G X(r) if and only if each Fi is spanned by r-eigenvectors.
Let TT : X —> P(V) be the map sending F to Fi. If F G X{r, n) then Fi C kern. Since
n is distinguished, the eigenvalues of r on ker n are distinct, so the image of TT is finite,
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and each connected component of X(r,n} is contained in an A(T, n)-stable fiber of TT.
In turn, each fiber is an X^\n') for a proper Levi subgroup L of Sp^k(C) (see [CLP,
3.9]). In our examples, either n' is distinguished, so we can repeat the process, or k is
very small and the computation of X(r, n) is elementary.

To illustrate, we give the parameters of the Borel representations. Up to twisting by the
order two character of SO'zk-\-i(F) corresponding to -I G 5^2fc(C), there is one Borel
representation for k > 3. It occurs when H = G,

2fc-3 2fc-5T = (9 2 ^ 2 , ' " , q ^q 2 ) ,

and n is subregular in 5^, with partition (fc - 1,1). The above inductive procedure
reduces us to the case k = 2, where n' e 5^4 (C) is no longer distinguished, but
XL^T'\n') C X(r^n) is easily seen to be a union of a projective line and two points,
the latter being interchanged by a nontrivial element of A(r,n). We find that the variety
X(r,n) consists of k points and a projective line. The group A(r,n) has order two, and
permutes two of the points while fixing the other components. Hence the unique nontrivial
character p of A(r,n) appears with multiplicity one in ff»(X(r,n)), the unique (up to
twist) Borel representation of SO^k-^i{F) is Mr,p, and we have £2^) = [U(r), Mr,?}.

We now give some computations of formal degrees and L-packets.

S05(F)

The parameters for the Iwahori-spherical discrete series are as follows.

(z =0) TI = (q~^q~^), m = regular, A(ri,ni) = 1, Wj = {e}

(% =1) T2 = {-q~^q~^), n = regular in sf^ x s^, A^,?^) ^ 2/2, Wo1 = {^1}

In the latter case, the action of A(r2,712) on X^^n^) is trivial, because r^ is regular.
The Iwahori spherical discrete series of SO^{F) is therefore given by

<?(=Lri) = {Z^(±Ti)} (the Steinberg representation and its twist),

f(±T2) = {^(±T2)}.

The formal degrees rf(±Ti) are in [B] and d(±r'z} is easily computed by hand using
Formulas A and B (note that r^ is regular). We find

(7.3) PROPOSITION. - With the Iwahori subgroup having mass one, the formal degrees of
the Iwahori-spherical discrete series representations of SO^(F)are given by

w^& ^)= ̂v i/ 2 (g2+l ) (g+ l )2 ' ^ 11 2 ( g 2 + l ) ( g + l ) 2 -

We note ([Car]) that the finite group SOs(Fy) has exactly one cuspidal unipotent
representation K, and with the same normalization of Haar measure as above, one finds
that the formal degree of K := ind^n equals d(r^). Thus if we set

£(±Ti) = <f(±Ti), f(±Ti) = {^(±T2), ± 0 k},

4° sfaOE - TOME 27 - 1994 - N° 4



IWAHORI-SPHERICAL DISCRETE SERIES 487

where dL0 denotes twisting by the character of SO^(F) corresponding to ±1 G 5j4(C),
we see that (7.2) is verified for SOr,{F).

S(MF)

Here the parameters are as follows.

( % = 0 ) TI = (q~^q~^q~^), m = regular, A(Ti ,n i )= l , Wj = {e}
( % = 0 ) T2 = (q~^q~^q~^), ^2 = subregular, A(T2,n2) ^ 2/2, Wo1 = {e, 5i, 53}
( z = 1) T3 = {q~^q~^-q~^), n = reg. in 5(14 x sp^,

A(T3,yi3) ^ Z/2, Wo1 = {e, 52,5253}.

The variety X(r2,n2) consists of three points and the projective line through B and
53^ in X = G / B . The group A(r2,n2) permutes two of the points, leaving the other
components fixed. The group A(r3,n3) acts trivially on X(r^^n^}. Thus we have

£^±n) = {U(±n)} for i=l,3,

£^±r^ = {U[±^\U{±r^}.

The Steinberg representation and its twist are Z^(±Ti) and the Borel representations are
U^r^y'. The formal degrees of these are found in [B]. As before we let d(±r^y denote
the formal degree of U(±r^y'.

(7.4) PROPOSITION. - With the volume of the Iwahori subgroup equal to one, the formal
degrees of the Iwahori-spherical discrete series representations of S07{F) are given as
follows.

(g5-!)^-!)2

<Ti) =
'v '^ 2 (g3+ l ) ( ^+ l ) (g+ l )

d(T2) = <T2)/ == 4(^Tl^)+ 1)3

M ^__^^)V_llL
V 3 ; 4(93+l)(g2+l)(9+l)'

Since the computations are just like those for G^, we omit the details.
I believe, but have not proven, that (7.2) can be verified in the following way. There is

only one representation of an A(r, n) not accounted for by Iwahori spherical representations
of SO^{F\ This corresponds to the nontrivial representation of A(r3,n3). Likewise,
the only Levi subgroup of SOj^q) which has a cuspidal unipotent representation is
SO^(Fq) as mentioned above. Let k be the supercuspidal representation of SO^(F) already
considered. Let L be the unique Levi subgroup of SO-j{F) isomorphic to F^ x SO^{F),
and let P be a parabolic subgroup with Levi equal to L. Then the representation

I n d ^ l - l ' ® ^
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is reducible for exactly one positive SQ € R ([S]). According to [C2], this induced
representation will then have a unique square integrable subrepresentation V. Note that V
is not generic, since k is not generic. We set

f(±T3)={^(±T3),±(8)y},

along with

£{±n) = £{±n)

for i = 1,2. If the formal degree of V is ^^^(^^^, then conjecture (7.2) will
be verified for SO^F). According to [Sl,(5.5.4.3)] and [S], the formal degree of V is
given by the residue at SQ of a certain rational function in one variable s. Thus, knowing
the reducibility point SQ is equivalent to knowing the formal degree. Unfortunately we
cannot use the results of Shahidi ([Sh]) to determine SQ since the inducing representation
is not generic.

S09(F)

Here G = Sps{C), and the parameters for the Iwahori spherical discrete series are
as follows.

(% =0) TI = (g'^g'^g^.g"^), ^i = regular, A(ri,ni) = 1, TVj = {e}
(% =0) T2 = (g'^g'^g'^g"^), n^ = subregular,

A(T2, ri2) ^ 2/2, W^ = {e, 54, 52, 525i}

(i = 1) TS = (g'^g'^g'^-g"^), yi3 = regular e s^xsp i ,
A(T3, ̂ 3) ^ Z/2, Wo1 = {e^ ^3, 5352, 53525i}

(% =1) T4 = (g~2 ,g~^ , g ~ 2 , —g" 2) ,^ = subregular + regular G 5^3 x sp^,
A(T4 , r i4 )^Z/2x Z/2, |̂ o1! = 12

(% =2) TS = (g -^,-g -^,g -?,-g -?,-g -^),n5 = regular in sp^ x sp^,
A(T5,n5) ^ Z/2, Wo1 = {e,5i , 52,53,5153,515352}.

The nonregular characters are r^ and T4. The variety X ̂ 2,72,2) consists of four points
and the line joining B and 53-8. The group A(r2,n2) permutes two of the points and
fixes the remaining components. Using (6.1), we find that the variety X(r^n^) consists
of twelve points and four lines. The lines join the points J3,53!?, s^s^B^ 535251 B to their
respective translates by 52. We can choose generators e and 6 for A(r4,n4) so that e
swaps four pairs of points and fixes the remaining eight components, while 8 acts trivially
on X{r^n^).

The Iwahori-spherical discrete series is therefore given by

£^±r,) = {U{±r,)} for i= l ,3 ,5 ,

£,{±r,)={U(±r,)^{±r,)f} for i = 2 , 4 .

I have only computed the degrees for regular T'S. They are
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( < f _ l ) ( g 5 _ l ) ^ _ l ) 2

C((±Tl) = 2(g 4 +l)(g 3 +l)(g 2 +l) 2 (g+l) 3

, / , . g^-lKg-l)3

" l ± T 3 ; ' -4(g4+l)(g3+l)(g+l)3

, / , . W-l)2^-!)2
d(±r^ = oT^2(g 4 +l ) (<? 2 +l ) 2 (<^+l ) 4 •

The Borel representations U(±r'i)' correspond to the nontrivial character of A(r2,n2)
and have degree

^+ y ^-iXg-i)3
al±T2; - 4(g 3 +l ) (g 2 +l ) 2 (g+ l ) 3 •

For TS, T4 and TS we have one, two and one missing representation(s), respectively.

PSp2k(F)

Next we consider the group PSp2k{F), with dual group G = S'pm2fc+i(C). We
return to Chevalley group notation for elements of G. Denote the simple roots of G
by 01,02,... ,afc with o^ being short. Let hi be the one-parameter subgroup ha^ The
semisimple centralizers of semisimple elements are of the form

Hi = [Spin^k-i} x Spin^i} /Z,

where Z is a central subgroup of the direct product of order two, and 0<i<,k,i^k-l.
The center of Spin^k-i) maps isomorphically onto the center of Hi, which has order four.

The Borel representations arise as follows. For k > 3 the representation U{r)
corresponding to Ho = Spin^, ^ regular in Ho, has ^\mU{rY = 2. Here the variety
X{r,n) consists of two points and the group A(r,n) has order two, acting trivially on
X(T,n).

Let Go be the image of Sp2k{F) in G = PSp^k{F) under the natural isogeny. Then Go
has finite index in G, and the restriction ofU{r) to Go splits into two representations, each
having one-dimensional Zn ^o-invariants. These are Borel representations of Sp^F),
but not of PSp2k{F).

For k >_ 4 there is a Borel representation of PSp2k{F) with parameters H = Hk = G,
n regular in Hk-2' The latter is a distinguished nilpotent element in 502^+1 (C) having
Jordan blocks of sizes 1,3,2k - 3. This is distinquished because k > 4. The variety
X(r,n) consists of the following components: Xi ^ P1 x P1, X^ ^ P1, X^ ^ P1,
Xi = {xi,x[}, for 4 ^ i ^ k + 1, Y = [ y , y ' } .

The group A(r, n) is a product of two cyclic groups of order two with generators a and
6, where a permutes the points y and y ' , while b permutes xi and x'^ and both a and b act
trivially on the other components. Let p be the character of A(r, n) which is nontrivial on
a and is trivial on b. Then the unique Borel representation of PSp^k(F) is Mr,p-
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PSp6(F)

We now take k = 3 and consider G = PSp^F) with G = Spin'j{C}. All T'S with
nonempty ^(r) are regular, and the corresponding nilpotent elements are regular in their
H. There are three pairs of them:

Ho = SL^ r^ = h^-q-^h^q-^h^iq-^, A^^o) ^ Z/2, W^ = {e,^}
H, = (SL^ x SL^ x S L ^ / { { - I , - I , -J)), rf = h^-q-^h^-q-^h^q-1),

A{r^ ni) ^ 1/2, W^ = {e, 51,52,53,5153, 5352}

H,=G, T3±=^(9-3)^2(^-5)^(±9-3), A^.r^l, W^ = {e}.

(7.5) PROPOSITION. - The formal degrees of the Iwahori-spherical discrete series
representations of PSpQ(F), with the volume of the Iwahori subgroup equal to one, are
given as follows.

d^} - ^-1)3
"V 'O ) — O/^ , 1 W ^ , 1 \9 .2(g3+l ) (9+l )2

d^- ^-1)3
2(g3+l ) (^+ i ) (^+ i )2

d^= (^-^-D2
v j / 2(g3+l)(g2+1)^+1) '

For r^ and r^ we have one missing representation each.

F4

We have only one new formal degree to offer for F^ so we shall be brief. The
possible semisimple centralizers H of semisimple elements are of type F^ B^ Ai x C^,
A'2 x A2, and A3 x Ai. Up to conjugacy there is a unique distinguished nilpotent element
n in F4 which has A(r,n) = 54. Let r be the unique three dimensional irreducible
representation of 64 containing an vector invariant under 63. Let e be the sign character
of 54. Then the Borel representation has parameters (r,n,r 0 e). This is verified by the
procedure mentioned in section 6, using the description of X(r,n) given in [CLP]. The
missing representation corresponds to e. If we inflate and induce the cuspidal unipotent
representation F^[l} ([Car,p.461]) ofF4(Fq), we get a supercuspidal representation whose
degree is one third that of the Borel representation, in agreement with (7.2). It seems
difficult to compute the degree of the generic member of this packet using our formula.
Alien Moy has independently noticed the concurrence of the above two formal degrees.

We can implement our formula for the representation with H = B^ n regular in H,
r = ha,(q~7)h^{q~13)h^{-q~9)ha^{-q~5), where a, are the simple roots numbered
sequentially across the Dynkin diagram, and ai and 02 are long. We find, with the
volume of Z = 1, that

q{qlo-l){q7-l){q3-l){q-l)3

deg^(r) =
2(gl2 - l)(g8 _ l)(y» + l ) (g+l )2-
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This is not the formal degree of the inflation and induction of a cuspidal unipotent
representation of F4(Fq).
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