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A CLASSIFICATION OF MONGE-AMPERE
EQUATIONS

BY V. V. LYCHAGIN, V. N. RUBTSOV AND I. V. CHEKALOV

ABSTRACT. - A classical problem of a local classification of non-linear equation arising in S. Lie works is
studied for the most natural class of Monge-Ampere equations (M.A.E.) on a smooth manifold M".

We solve this problem for a generic classical (n = 2) case and give full proofs of S. Lie classical classification
theorems.

For multidimensional generalizations of M.A.E. we reduce the problem to a problem in invariant theory
which we solve for n=3 and give a partial description for n^4. C00-classification is obtained for n=3.

Our approach is based on the deep relations between M.A.E. on M" and contact geometry of J1 M"-the
first jets space of M". This approach provides a possibility to apply symplectic and contact geometry methods
in classical invariant theory and for calculation Spencer cohomologies as well.

In 1B74 Sophus Lie raised the following problem: find the classes of local equivalence
of non-linear 2nd order differential equations with respect to the group of contact
diffeomorphisms. He formulated theorems on reducing the Monge-Ampere type differ-
ential equations to quasilinear and linear form [11]. As far as we know, a complete
proof of this theorem had never been published.

The class of Monge-Ampere equations is a natural setting for a classification activity
since the problem of local classification of arbitrary non-linear 2nd order equations
contains as a subproblem the classification with respect to fractionally-linear transforma-
tions of all submanifolds in the space of quadrics.

In 1979 Morimoto [17] announced a number of statements on classification of Monge-
Ampere equations of a special form based on the theory of G-structures.

Our approach to the classification problem is based on a relation between the differen-
tial forms on the manifold J1M of 1-jets of smooth functions and Monge-Ampere
equations [10]. We rely much upon [10].

Note also that the classification problem is in close connection with certain problems
of the classical invariant theory which are, in our opinion, of an independent
interest. One of them is the problem of description of orbits of the natural action of
the symplectic group in the space of exterior forms. Notice that the analogy with
differential equations enables us to understand better certain problems of the invariant
theory for this group. In particular, this concerns the description of Sp-orbits of
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282 V. V. LYCHAGIN €t dl.

3-forms on the 6-dimensional real symplectic space and also certain orbits of 4-forms on
the 8-dimensional space.

The text consists of 6 sections (S).
In Section 0 we introduce basic concepts and constructions used below. The main

source of definitions and ideas is paper [14].
In S. 1 we consider the classical two-dimensional problem of S. Lie on local classifica-

tion of Monge-Ampere equations. We start with the algebraic model of our problem
and study a symplectic equivalence of 2-forms in 2 ̂ -dimensional space. The normal
forms are listed.

The non-degenerate two-dimensional Monge-Ampere equation determines an addi-
tional geometric structure on 4-dimensional symplectic manifold. The elliptic equations
define an almost-complex structure and hyperbolic—an almost-product structure. The
Newlander-Nirenberg theorem (in the elliptic case) and Frobenius theorem in a hyperbolic
one give necessary and sufficient conditions of equivalence of our Monge-Ampere to a
constant coefficients equation.

At the end of the section we prove two classic S. Lie theorems on the reduction of
non-linear Monge-Ampere to a quazilinear one and on the normal forms of Monge-
Ampere admitting an intermediate integral.

Sections 2-5 are devoted to the algebraic problems arising in a high-dimensional (n ̂  3)
classification.

In S.2 we solve the problem of symplectic classification of effective 3-forms on
6-dimensional real space. We list normal forms and indicate that even in the 3-dimen-
sional case the Monge-Ampere equations corresponding to generic orbits are not lineariza-
ble even at a point.

Theorem 2.6 generalizes the corresponding results ofJ.-I. Igusa [8] and V. Popov [19]
in the case of an algebraically non-closed field. Moreover we directly built an invariant
of the classification problem.

In the next section (S. 3) we give a short outline of the description procedure for
normal forms in the dimension greater than 3 (Theorem 3.4). In theorem 3.5 the
normal forms of effective 4-forms on 8-dimensional symplectic space are listed (under
some natural conditions).

We establish a relation between the set of all transvections admitted by a given form
and the symplectic classification of effective forms. After that the stabilizers of effective
/2-forms are described. We also calculate the stationary subalgebras of the most import-
ant types of effective forms.

In S. 4 we make an algebraic digression and study the finiteness conditions on type of
effective forms stabilizers. First we classify reductive subalgebras / in EndV with non-
trivial first Cartan prolongation. If the representation / -> EndV is irreducible the
results are known (Theorem 4.2.1). Theorem 4.3.1 solves this problem for reducible
representations. Then we study stabilizers. Theorem 4.4.1 states the general result on
finiteness of the stationary subalgebra of a regular element. We also give several
reformulations and corollaries of this theorem for stabilizers of effective forms under a
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MONGE-AMPERE EQUATIONS 283

symplectic action. At the end of the section we explicitly calculate Cartan prolongations
of the stabilizers of several important types of effective forms.

In S. 5 we study involutiveness of the stabilizers of effective forms. The importance
of these questions to the classification problem is explained in 6 where we identify the
symbol of a Monge-Ampere equation corresponding to the homology equation of the
classification problem with the stabilizer of the corresponding form. The involutiveness
of the symbol is one of the conditions of the criterion for formal integrability.

S. 6 is the central one from the classification problem viewpoint. Theorem 6.4.1
gives conditions for reducibility of an equation with analytic coefficients by an analytic
symplectic diffeomorphism to an equation with constant coefficients in R".

The finiteness of stabilizer condition enables us to strengthen this theorem and general-
ize it to C°°-setting (Theorem 6.6.1).

At the end of the section Theorem 6.6.1 is applied to the classification of effective
forms and the corresponding Monge-Ampere equations on the 3-dimensional
manifolds. The main results were published in [5, 15, 16].

0. Formulation of the problem

0.1. Let (V, Q) be a symplectic space over R with the structure form OeA^V*)
and dim V =2n. Denote by r:V-^V* the isomorphism determined by the structure
form 0 i. e. V (X) = ;x (0) and by F,: A8 (V) -^ A5 (V*) its exterior powers, F, = A5 (F). For
every coeA^V*) denote by z^eA^V) the s- vector corresponding to co, i.e. r,(z;J=©.

In the algebra of exterior forms A*(V*)= © A^V*) introduce two operators
s^o

T^CV*)-^^2^*), the operator of exterior multiplication by the structure form Q
T(O))=CO A Q, and 1 ̂ (V*)-^"2^*), the operator of inner multiplication by the
canonical bi vector v^, -L (o)) = ̂  (co).

An exterior form coeA^V*), k^n will be called effective if -Lco=0 or, equivalently,
coeA^V*) is effective if and only ifT^o)=0 for s=n-k, T^O/^T5 [14].

0.2. Let M be a smooth manifold, J1 (M) the manifold of 1-jets of smooth functions
on M, UeA^^M) the universal 1-form on 31M which determines the contact
structure [12]. At each point x e J1 M the restriction of dV^ onto C (x) = Ker U^ determi-
nes a symplectic structure and therefore the operators ^A^C*^))-^^2^*^)) and
^A^C*^))-^"2^*^)). The tangent space T^M) splits into the direct sum
T^.^lV^CC^OIRXi where Xi is the contact vector field with the generating
function 1 [12]. Therefore, if A^C*) the space of differential .y-forms on J1 M degener-
ated along Xi, (A^C*))^ is naturally identified with A^C*^)) and, besides, we have

A5 (J1 M) = A5 (C*) © A5-1 (C*).

We will say that (oeA^C*) is an effective form on J1 M if 10=0. Denote by A^ the
set of all the effective ^-forms.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



284 V. V. LYCHAGIN €t al.

0.3. For every differential n-form (oeA^.PM) determine a non-linear differential
operator ̂  acting via the formula A^ (h) =7\ (h)* (co), A^: C00 (M) -> A" (M) where j\ (h)
is the section determined by a function AeC°°(M). Two differential forms (D^,
0)3 € A" (J1 M) determine the same operator if and only if co^ — o)^ € V^ where 1^ is the w-th
homogeneous component of the ideal 1̂  <= A* (J1 M) formed by the elements of the form
®i A U + ©2 A d\J. Since A^ (J1 M) ̂  A5 (J1 M)/I^ then Aco is determined by the effective
part of the projection ofo) onto A^C*). In what follows we will assume that Ao is
given by an effective form o). We will call the operators A^:C°°(M) ^A"(M) the
Monge-Ampere operators.

0.4. Determine the action of the group Ct(J1 M) of contact transformations of J1 M
onto the Monge-Ampere operators setting a(AJA^) for aeCt(J1 M). Similarly define
the action of the Lie algebra ct^M) of contact vector fields on J^M setting
X^A^J^LX^CO); here Lx is the Lie derivative along X and Xy is a contact vector field
with a generating function/eC00 (J1 M) [12].

0.5. We will be interested in the problem of local classification of Monge-Ampere
operators (equations) with respect to the group Ct(m) of the germs of contact diffeomor-
phisms preserving a point w.

Hereafter we will assume that in a neighbourhood ofw there exists an infinitesimal
contact symmetry Xp where f(m) 7^0, ofA^. Then there exists a local contact diffeo-
morphism sending Xy to X^ so that we may assume that L^ (co)=0. This means that co
can be considered as a form on T*M and the classification problem for operators
(equations) given by such forms as a classification problem of differential ^-forms on
T* M with respect to the group of symplectic diffeomorphisms.

1. Classification of Monge-Ampere equations
on 2-dimensional manifolds* S. Lie^s theorems

1.1. Let (V, Q) be a symplectic space over a field k= R or C, dimV=2^.
For any coeA^V*) define its Pfaffian Pf(o))e^ from the formula (D^Pf^ft".
The coefficients P^(co) of the characteristic polynomial P^(X)=Pf(o)—XQ) are invari-

ants of the natural Sp (V)-action on A2 (V*) and P^ (X) = ^ P .̂ X-7, i. e. these invariants
O^j^n

completely determine generic orbits. Making use of the symplectic structure we may
associate with any 2-form G) a linear operator A^: V -> V, where o) (X, Y) = 0 (A^ X, Y)
for any X, Y e V. Since (o is antisymmetric, then A^ is symmetric with respect to the
structure form, L e,

n(A^X,Y)=Q(X,A<,Y) for X, YeV.

Remark. — X and A^ X are skew orthogonal, i. e. Q (X, A^ X) = co (X, X) = 0
for any XeV. There is a relation among A^, its characteristic polyno-
mial PA (^)=det|[A^-XE|| and P^; namely, [Pf^^detA^, in particular
[PJ^P^).
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MONGE-AMPERE EQUATIONS 285

1.2. Let us establish a normal form of a 2-form (Q e A2 (V*) with respect to the Sp (V)-
action similarly to the case of symmetric forms for k=C. Let X^, ̂  be two roots of
p^(7,)==0 and K(^), K^) the subspaces ofV formed by the vectors annihilated by a
power ofA^-^-i or A^-^» respectively.

LEMMA 1.2.1. - Let ^i ̂  ^2- r^ ̂  (^-i) ̂ ^ ^c (^2) are ̂ w orthogonal.

Proof. - Let C(X) be the subspace of eigenvectors of A^ corresponding to the
eigenvalue ^, C (K) c K (^). First let us show that C (^4) and C (^2) are skeworthogonal;
ifXeC(Xi), YeC^) then (1.1) implies that (Xi-^WX, Y)==0 hence Q(X, Y)=0.

Hence, the lemma is valid for a semi-simple operator. As for an arbitrary symmetric
operator A^ its semi-simple part is symmetric too.

LEMMA 1.2.2. - Let coeA^V*) be such that A^ is nilpotent. Then there exists a
basis /^.../;^,...,^, ; = 1 , 2 , . . . in V, where f\, g\. . . is a basis in KerA^ such
that

A<,.A=/;Li, A^=gJ[_i, Q(/;, ̂ )==8^.8,+^.-n.

Proo/. - Let/^ be a vector of maximal height with respect to A,, i.e. A^/^=0,
A^i-V^O. Set/^A^-^ and select a vector g^ so that Q(/i,^)==l. Then
^^ is also a vector of height n, since 0(/^, A^- lg^)=Q(/l, ̂ ,)^0. Let
^=A^~m^^. Let us show that we can modify g^ . . . ,g^ somewhat so as to preserve
A^=^_/but with Q(/^,g,)=0 for 3^2. For this replace g^ by g^gz-a^g^
where ̂  ls selected so as t2(/^, i^^C/ni' ^2)~f l2Q(/Hl. ^i). L^ ^^^(/ni. ^2)'

Suppose that g^ . . .,g^ with this property are already constructed and set
im=^m-^m-l- • • • -^mgl provided gm-1= §m-1-^Sm-2- • . • -^m-l^l- The

coefficient a^ is uniquely determined by the equation Q (/^, gj = 0 provided ^2. • • • ̂ m-1
are determined; in other words

^=ft(/^, gm)-^(fn^ gm-l)- ' . . -^-1 "(/m. ^2)

Assuming that g^, . . .,gi is a set of vectors such that Q(/^, ^)=8^ i for arbitrary s, I,
we get

^(/^ §s)=6l+s,n^+l

Denote by F or G the subspace spanned by /i,.. . ,/ni or g i ^ ' - ^ S n ^
respectively. Thanks to Remark 1.1 F and G are isotropic subspaces. In fact, the
vectors X and A^X are skeworthogonal. Let us show that moreover Q(X, A^X)=0 for
all Q/T^O. If m=2l then Q(X, A^X)-Q(A^X, A^X)=0 and if w = 2 / + l then
Q (X, A^ +1 X) = Q (Y, A^ Y) = 0, where Y = A^ X. Therefore V represents in the form
V=V / ©(F©G) where V is invariant with respect to A^ and n[V is
nondegenerate. The induction in 1/2 dim V finishes the proof.

These lemmas imply the following

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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THEOREM 1.2.3. — The exterior 2-forms over 1R or C are Sp (V)-equivalent if and only
ifA^ and A^ are equivalent with respect to GL(V).

1.3. This theorem directly implies the list of normal forms of Sp (V)-action on A2 (V*).

THEOREM 1.3.1. — For any coeA^V*) over R there exists a decomposition of\ into
the skew orthogonal with respect to Q, direct sum of subspaces V= © V^(X,, X) where ^ runs

3,^

the roots of P^(k) and 1^/^1/2 dim K(^) so that (o=^G)^j and o^yeA^V,) in the
symplectic basis (e^, . . .,^,/i. . .,/,.) of\\(^, ^) is of the following form:

(1) \ is real, dimV^(5i, X) is even, then

(D=^ ^ e*A/*+ S ^*A/*^
l ^ i ^ r l^ i^r-1

(2) X=CT+;T , dimV^ ^ a multiple of 4 then

^•=^ E ^A / *+T(^ ^,A/^,_,- E ^.-HA/!^2)+ S ^A/*_2
l^i^r 2i^r 2i+2^r 2^i^r

COROLLARY 1. — If all the roots of the characteristic equation P^(X)==0, ^, ^-2, . . ., ̂
ar^ r^/ ^^rf different then co= ^ ^^* A /* ̂  ^ symplectic basis.

l^i^r

COROLLARY 2. — y4^ effective form coeA^ (V^) o/z a ^-dimensional symplectic space ¥4
c^ be transformed by a symplectic transformation to one of the following forms

(1) (D-M/TA^-^A^)

(2) o=M/rA^-/2A^)

(3) O)=/?A^

COROLLARY 3. — ^4^ effective form coeA^V^) wz ^ ^-dimensional symplectic space
can be transformed by a symplectic transformation to one of the following forms

(1) 0)=^ A/f+X,^ A/2+^^ A/^, ?4+^+^3=0

(2) ©==2^^ A/f-^Ce? A/$+^ A/^)+V(^ A/2-^ A/?)

(3) 0)=2?l^ A/*-)l(^ A/2+^ A/^)+^ A/^

(4) (0=^A/T+^A/2

1.4. Let us return to the 2-dimensional case. For the effective forms coeA^V^) we
have P^(X,)=Pf(co)+^2 and its Sp(4)-orbit is completely determined by the values of
the Pfaffian.

An effective form co e A^ )V4) is called
elliptic ifPf(co)>0,
hyperbolic if Pf(co)<0,
parabolic if Pf(co) = 0.

4^^ - TOME 26 - 1993 - N° 3
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The Monge-Ampere equation ̂  on a two-dimensional manifold M determined by an
effective form coeA2^1 M) will be called elliptic, hyperbolic or parabolic at weJ1 M, if
so is the exterior form co^ on KerU^ ^.

THEOREM 1.5. — The Monge-Ampere equation determined by a form (DeA^T*]^),
dim M=2, in a neighbourhood o/meT*M where Pf(o)^)^0, is symplectic equivalent to
a Monge-Ampere equation with constant coefficients with respect to a symplectic coordinate
system if and only if

(1.5) do == 1/2 ̂ ln/Pf((D) | A co

Proof. - Necessity. Let ©o e A2 (T* M) be an effective 2-form with constant coeffici-
ents with respect to a canonical coordinate system and IP^cOo)^!- Let also
F: T* M -^ T* M be a symplectic diffeomorphism such that F* (0)0) = ̂ o for a function
?ieC°°(T*M), X^O. Then Pf(F*(co))=F*(Pf((o))=?i2 and therefore
o)o = F* (| Pf(co) | -1/2 (D) hence d(\ Pf(co) | -1/2 co) = 0 implying (1.5).

Sufficiency. First consider an elliptic case, Pf(co)>0 normalizing the form
co-^Pnco))"1^ assume that coeA^CP'M) is an effective form such that
<Ao=0. Consider the family of operators A^: T^ (T* M) -> T^ (T* M) dual to® with
respect to the symplectic structure: A^=A^. The operators A^ satisfy the characteristic
equation P^(A^)=0, therefore A 2 +1=0 and the field x->A^ determines an almost
complex structure on T* M. Since co is closed, this structure is integrable.

Prove this statement. Remind that an almost complex structure determined by the
field of operators A = (A^) is integrable if and only if the vector field

Z=[X, Y]+A[X, AY]+A[AX, Y]-[AX, AY]

vanishes for arbitrary vector fields X, Y.
The relations i^^^x. M and ^x=ixd~{~dix imply that on the closed forms the

following relation holds:

hx, Y] = ̂ X ̂ Y - h ̂ X + ̂ X h

To prove that Z = 0 it suffices to show that i^ Q = 0 we have

i\x, Y] ̂  = x̂ ̂ Y ̂  — ^Y ̂ x ̂ -~d0. (X, Y),

- ^A [X, AY] Q = hx, AY] G) = ^X ^AY G) - ̂ AY ^X co

- do (X, AY) = - ;x ̂ Y Q - ̂ AY ̂ x o + ̂  (X, Y).

^A [AX, Y] ̂  = ̂ AX ̂ Y 0) + ̂ Y ̂ X ̂  + d^ (x' ̂ )-

/[AX, AY] ̂  = ̂ AX ̂ AY ̂  - ̂ AY ̂ AX ̂  - ̂ ° (AX, AY) = ̂ X ̂ Y » - ̂ AY ̂ X ̂  + ̂ 0 (X, Y).

implying the desired.
Therefore by Newlander-Nirenberg's theorem A determines a complex structure

on T* M.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



288 v. v. LYCHAGIN et al.

On T*M consider the complex-valued closed form 9==Q-fo). Then making use
of (1.2) we get 9 (A,,, v,, ̂ )=9(^ A^)=fe(z;i, ^) for all ̂ , v^eT^^M).

Therefore by Darboux theorem 6=dz^ A dz^ in a local complex coordinate
system. Set z^=q^-iq^ z^p^ipz for some functions q^ q ^ p ^ p z on T*M which
form a local coordinate system. Separating the real and imaginary parts in the relation
Q=dz^ A dz^we get

Q,=dq^ A dp^+dp^ A ^? 0=^1 A dq^—dp^ A rf^.

Therefore (^, /?) is a canonical coordinate system in which ̂  is the Laplace equation.
Now consider the hyperbolic case assuming as above that Pf(co)= -1, <Ao==0. Then

o)2_pQ2^o and since CD is effective, then (co+Q)2^ and (co-Q)2^.
Therefore (O+Q and O)—Q are primitive 2-forms. Let E+ and E_ be distributions

determined by these forms. Let us show that E^ are completely integrable. In fact,
the annihilator of, say E+, is formed by the 1-forms yeA^T*]^) such that
y A (O)+Q)=O but then dy A (o)+Q)=0. Select the integrals/i, f^ and g^ g^ o fE+
and E_, respectively, so that G)+O=^ A df^ co—Q=^^ A dg^ in a neighbourhood of
m e T* M. Then Q. = 1/2 (df^ A df^ + dg^ A rf^) 0) = 1/2 (^ A ^2 - ̂ i A ^2) an(l there-
fore in the canonical coordinate system ^i=l/2/i, ^2 =1/2^, ^i==/2, Pz^g^ ^^ is the
wave equation.

THEOREM (S. Lie) 1 . 6 . — Z^ M be an analytic manifold^ dim M=2 and €y, a Monge-
Ampere equation with analytic coefficients where Pf(G))^0, (joeA^.^M). Then ̂  is
locally equivalent to a quasilinear equation in a neighbourhood ^/weJ^M.

The quasilinearity of<^ is equivalent to the fact that the fibers of^i o: J1 (M) -> J° (M)
are integral manifolds. By Cauchy-Kovalevsky theorem there exists a 3-parameter
analytic family of solutions h, which defines a foliation in a neighbourhood of
we^M. By Weinstein's theorem [13] there exists a canonical transformation preserving
m and sending this foliation into ^f/o W. •^J1 (M). Then F* (co) defines a quasilinear
equation.

1.7. We say that/, g6C°°(T*M) define an intermediate integral for A^ if
(o=='k^df A dg-^-'k^Sl, X^€CO O(M). Since we are interested in normal forms of equations
we may assume that o)==df A dg-^-'kQ,, ^eC^^M).

THEOREM. — (S. Lie) Suppose a Monge-Ampere equation €^ co e A2 (T'1'M) admits an
intermediate integral (/, g) for which the subspace / c: C°° (T* M) generated by /, g, 1
over R forms a Lie algebra with respect to the Poisson bracket. Then ̂  reduces to the
one of the following normal forms:

(1) hyperbolic type: w==\/2(dp^ A dq^—dp^ A dq^)
(2) parabolic type: w=dp^ A dq^.

Proof. — Consider / , then 1 belongs to the center of / and therefore it suffices to
define {/, g}. Let {/, g}=C^-^-C^f^-C^ g, Qe(R then up to isomorphism the 3 cases
are possible:

(a) {/ ,^}=1; (b){f,g}=0; (c){f,g}=f.

4eSERIE - TOME 26 - 1993 - N° 3



MONGE-AMPERE EQUATIONS 289

By a contact diffeomorphism/, g can be transformed into p^ q^ in case (a), into p^ q^
in case (b) and in case (c), replacing g by g/f, we have {/, ^//} = 1 and therefore are in
case (a).

2. Symplectic classification of exterior effective
3-forms on 6-dimensional space

In this section we describe the Sp(V)-orbits in the space of effective forms A^(V^)
for n==3.

2.1. Let V be a 6-dimensional real symplectic space with the structure form Q and
co e A3 (V*) an effective form. Set (Ox == ix °>e A2 (V*), Ex = Ker cox for all X e V. Let us
construct an invariant of Sp-action, the quadratic form q^ on V associated with an
effective (o. Notice that ©x A ft =9 since the effectiveness of (0, (0 A 0=9, implies that
(Ox A Q=(O A 9^ where 9x=?x0 ^d therefore cox A Q2=(o A 9^ A n=co A 0 A 9x=9.
Therefore the characteristic polynomial of ©x is of the form (up to the volume form ft3):

((Ox-^^-^Q^^COxAQ,

with (Ox3"0 since "x is degenerate. Therefore the roots of P^(^) are ^ i==0 and

^ 3= ± /-1/412 (Ox. In fact, for a non-zero root ^ we have ^O^ ~3Tco^ and
since 13: A6 (V*) -> R is an isomorphism, then fk21^Q3==-31^ To)x. But
l3To)x=l2®i l303=6 and therefore ̂  - 1/412 (Ox.

Making use of these remarks we define an Sp (V)-invariant, the quadratic form
^eS^V*):

(2.1) ^(X)——!^!2^

If ©2 = F* ((Oi), F e Sp (V) then q^ == F* (q^). Notice also that if q^ (X) ̂  0 then (o^ 9
and since co^=9, then (Ox is a form of rank 4 and dim Ex =2.

PROPOSITION 2.2. - Let X, YeV be such that Ye Ex. Then CO==COY A 9x-o)x A 9y ^
n(X, Y)=l W(0x A 9x=coY A 9y ;/Q(X, Y)=9.

Proo/. - The effectiveness of co implies

;x((o A Q)=o)x A Q-(O A 9x=9

yielding

^^(^ A n)=^Y(o)x A ^)-^Y((0 A 9x)=OY(ox) A n

+(0x A 9Y-COY A 9x+(0.9x(Y)=CO.Q(X, Y)-(OY A 9x+0)x A QY-

PROPOSITION 2.3. - If q^(x)^0 and Ex c V ^ ^ isotropic space then
0)=^ A ̂  A e^ in a canonical basis o/V.
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Proof. - Thanks to the above remark, dim Ex =2 and 0)^=0 by
hypotheses. Therefore, C0x A 9y=(0x A 9y A 9x=9 and, similarly, ©y A 9x A 9y=9
implying co A 9x A 9y=9. In fact, the intersection of every 5-dimensional subspace
W c: V with Ex contains at least one generic vector of the form aX+bY and therefore
co A 9x A 9y[^=9. ^ follows, there exists a vector ZeV such that co=92 A 9x A 9y.

Since co is effective, then

0=lco=l(ez A 9x A 9y)=9z A l(9x A 9y)-;z(9x A OY)=^(Y, Z)9x-Q(X, Z)9y

since 1 (9x A 9y) = 0. Thus X, Y, Z are in involution with respect to Q and therefore
can be completed up to a canonical basis.

PROPOSITION 2.4. — If q ̂ =0 but 0)7^9 then in a canonical basis co=^f A e^ A e^.

Proof. - Since ^(X)=9 for all XeV, then ^((Ox A o)y)=9 for all X, YeV or,
equivalently, T3 l^^x A ^=9 for all X, YeV or, equivalently,
T (c0x A coy) = 0 A c0x A coy = 9. Since co is effective, then CD A Q, = 9 and
9x A co + 0 A C0x = 9. Therefore, multiplying this identity by coy we get 9x A CD A coy = 9
for all X, YeV yielding co A C0y=9 and C0y=9. Therefore, coy is simple for all
YeV. Select YeV so that o)y^9. Then (Dy=a A P, a, (3^9 and
co A C0y=o) A a A P=9. Therefore c o = a A p A Y i s simple and making use of the effec-
tiveness of co as in 2.3 we get the desired decomposition.

2.5. Now consider the case when Ex is a non-isotropic subspace in V. Select Ye Ex
so that 0 (X, Y) = 1. Then by Proposition 2.2 we have

(2.2) co = coy A 9x — Ox A QY

Set Ex=Ker9xnKer9y, X, YeV. We have V=ExCEx, dim Ex =4 and Ex is
symplectic with respect to the restriction of 0. Let prime denote the restriction of a
form onto Ex.

PROPOSITION. — (1) (Ox, coy are effective on Ex; (2) vectors XeV, Ye Ex can be selected
so that C0x is non-degenerate and C0x A C0y = 9.

Proof. — (1) Since Q A co=9, then ( O x A O — c o A 9 x = 9 , c O y A Q — o ) A 9 y = 9 and
therefore ©x A Q' = ©x A Q l^1 = co A 9x je1 = 9 since E^ = Ker 9x 0 Ker 9y. Similarly,
COyAQ^.

(2) Select X so that ^(X)^9. Then the equation ^(X,Z+^X)=9, ZeEx with
respect to t always has a solution and therefore a vector Ye Ex can be selected
so that ^(X, Y)= — l/4l2(c0x A o)y). This is equivalent in turn to the fact
T 1^ (cox A coy) = 1^ (T (Ox A o)y) = 9 but 1^: A6 (V*) -> A2 (V*) is a monomorphism and
therefore Tcox A o)y=9 or Q A (DX A C0y=9. Substituting X into the identity obtained
we get

1^(0. A (Ox A COy)=COx A COy A 9x = 9

and similarly ©x A o)y A 9x=9 implying (Ox A c0y=9. Note that C0x is non-degenerate:
if Z e E^ belongs to its kernel then ^ ©x = 9 i. e. Z e Ex yielding Z = 9.
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