HERBERT CLEMENS

Curves on generic hypersurfaces

Annales scientifiques de l’É.N.S. 4e série, tome 19, n° 4 (1986), p. 629-636

<http://www.numdam.org/item?id=ASENS_1986_4_19_4_629_0>
CURVES ON GENERIC HYPERSURFACES

BY HERBERT CLEMENS

1. Introduction

Let

\[V \subseteq \mathbb{P}^n \]

be a smooth hypersurface of degree \(m \geq 2 \) in projective \(n \)-space over an algebraically closed field \(k \). By an immersed curve on \(V \), we will mean a morphism

\[f: C \to V \]

which is everywhere of maximal rank from a complete non-singular algebraic curve \(C \). Every such mapping has a normal bundle

\[N_{f, V} = f^*(T_V)/T_C. \]

Our purpose in this paper is to prove:

1.1. Theorem. — Let \(V \) be a generic hypersurface of degree \(m \) in \(\mathbb{P}^n \). Then \(V \) does not admit an irreducible family of immersed curves of genus \(g \) which cover a variety of codimension \(< D \) where

\[D = \frac{2-2g}{\deg f} + m - (n+1). \]

Notice that, for example, if \(g = 0 \), Theorem 1.1 says that there are no rational curves on generic \(V \), if \(m \geq 2n-1 \).
2. Normal bundles to curves

Let C be a complete non-singular curve and
\[\phi : E \to C \]
a vector bundle of finite rank. We will call E semi-positive if all quotient bundles of E have non-negative degree.

2.1. Lemma. — Let
\[E_\xi \to C \]
be an algebraic family of vector bundles of rank r over C. If
\[E_0 \to C \]
is semi-positive, then $E_\xi \to C$ is also semi-positive for each generic ξ which specializes to 0.

Proof. — If the lemma is false, there exists a generic point ξ' and a quotient bundle
\[E_\xi' \to Q_\xi' \]
such that
\[0 < s = \text{rank } Q_\xi' < r \]
and
\[\deg Q_\xi' < 0. \]

Let L be a fixed line bundle on C such that $L \otimes E_\xi$ is generated by global sections for all ξ. So we have a bundle epimorphism
\[C \times k^N \to L \otimes E_\xi, \]
so that $L \otimes E_\xi$ is induced by a map to a Grassmann variety
\[\varphi_\xi : C \to \text{Gr}(N-r, N) \]
of a degree equal to
\[\deg E_\xi + r(\deg L). \]

Also $L \otimes Q_\xi$ is induced by a map
\[\psi_\xi' : C \to \text{Gr}(N-s, N) \]
of degree equal to
\[(2.2) \quad \deg Q_\xi' + s(\deg L). \]
Now ψ_0 specializes to a map

$$\psi_0: \ C \to \text{Gr}(N - s, N)$$

of degree $\leq (2, 2)$ and so gives a quotient bundle of $L \otimes E_0$ of degree $\leq (2, 2)$. Thus E_0 must have a quotient bundle of negative degree.

2.3. **Lemma.** — *If the global sections of $E \to C$ span the fibre of the bundle at some point $p \in C$, then E is semi-positive.*

Proof. — The determinant bundle of any quotient bundle of E has a non-trivial section.

2.4. **Lemma.** — Let

$$0 \to E_1 \to E_2 \to E_3 \to 0$$

be an exact sequence of bundles over C such that E_1 and E_3 are semi-positive. Then E_2 is also semi-positive.

Proof. — Let T be a sub-bundle of E_2 of degree greater than $\deg E_2$. Let S be the minimal sub-bundle of E_2 containing T and E_1. Consider the map

$$\eta: \ T \oplus E_1 \to S.$$

Then there exists a sub-bundle K of $T \oplus E_1$ such that, for almost all $p \in C$, the mapping η gives an injection

$$((T \oplus E_1)/K)_p \to S_p.$$

Since K is a sub-bundle of E_1, $\deg L \leq \deg E_1$, so that

$$\deg((T \oplus E_1)/K) \geq \deg T.$$

Therefore $\deg S \geq \deg T$. Thus $\deg (E_2/S) < 0$ contradicting the semi-positivity of E_3.

Let V be a smooth hypersurface of degree m in \mathbb{P}^n and let

$$f: \ C \to V$$

be an immersion of degree d. Let W be a *generically chosen* hypersurface of degree m in \mathbb{P}^{n+m} such that

$$\mathbb{P}^n/W = V.$$

We wish to prove the following:

2.5. **Lemma.** — *The normal bundle $N_{f, W}$ to the mapping

$$f: \ C \to V \subseteq W$$

is semi-positive.*

Proof. — Since we assume throughout that $m \geq 2$, we can specialize W to a hypersurface X of degree m in \mathbb{P}^{n+m} which contains \mathbb{P}^n and is non-singular at points of $f(C)$. By
Lemma 2.1, it will suffice to prove the assertion of the lemma for
\[f: \mathbb{C} \to W \]
where W is generic such that it contains the \(\mathbb{P}^n \). From the sequence of normal bundles
\[0 \to N_{f, \mathbb{P}^n} \to N_{f, \mathbb{P}^n, W} \to f^* N_{\mathbb{P}^n, W} \to 0 \]
and the fact that \(N_{f, \mathbb{P}^n} \) is semi-positive by Lemma 2.3, we need only find some W such that \(f^* N_{\mathbb{P}^n, W} \) is semi-positive. (Use Lemma 2.1 and Lemma 2.4 to see that this is enough.)

To this end, consider the sequence
\[0 \to f^* N_{\mathbb{P}^n, W} \to f^* N_{\mathbb{P}^n, \mathbb{P}^n+m} \to f^* N_{\mathbb{P}^n, \mathbb{P}^n+m} \to 0. \]

If we can find some special W for which
\[f^* N_{\mathbb{P}^n, W} \cong \mathcal{O}(m-1), \]
the proof of Lemma 2.5 will be complete. We do this by direct computation. Suppose \(f(C) \) does not intersect the linear space of codimension 2 given by
\[x_0 = x_1 = 0 \]
in \(\mathbb{P}^n \). Then let W be the hypersurface given by
\[x_{n+1} x_0^{m-1} + x_{n+2} x_0^{m-2} x_1 + \ldots + x_{n+m} x_1^{m-1} = 0. \]
In this case, we rewrite the map \(\lambda \) in (2.6) as
\[f^* \mathcal{O}(1)^{\oplus m} \to f^* \mathcal{O}(m) \]
\[\alpha_j \to \sum_{j=1}^{m-1} \alpha_j x_0^{m-1-j} x_1. \]
It is immediate to see that the kernel of this mapping is generated by
\[(x_1, -x_0, 0, \ldots, 0) \]
\[(0, x_1, -x_0, 0, \ldots, 0) \]
etc.
Since \(x_0 \) and \(x_1 \) do not vanish simultaneously on \(f(C) \)
\[f^* N_{\mathbb{P}^n, W} \cong \mathcal{O}(m-1). \]

3. Proof of the main theorem

In this final section, we will prove Theorem 1.1. We let \(V \) be a generic hypersurface of degree \(m \) in \(\mathbb{P}^n \) and we suppose that there is an irreducible algebraic family \(q \) of
CURVES ON GENERIC HYPERSURFACES

immersed curves of genus g on V which covers a quasi-projective variety of codimension D in V. For f generic in F, and

$$Y \subseteq \mathbb{P}^{s+k}$$

a smooth hypersurface with $Y \cdot \mathbb{P}^n = V$, let

$$R \subseteq H^0(N_{f, Y})$$

be any subspace. We denote, for each $p \in C$, the image of the evaluation map

$$R \to (\text{fibre of } N_{f, Y} \text{ at } p)$$

$$\rho \mapsto \rho(p)$$

by R_p. Then there is a unique sub-bundle

$$S \subseteq N_{f, Y}$$

such that $R \subseteq H^0(S)$ and, for almost all $p \in C$, the fibre of S is exactly R_p. Next consider the diagram

$$R \subseteq H^0(N_{f, Y})$$

$$\downarrow \phi$$

$$H^0(N_{V, Y}) \to H^0(f^* N_{V, Y}).$$

Assume now that

(3.1) $\nu(R) = \mu(H^0(N_{V, Y})).$

Then the sections of R must generate the fibres of $f^* N_{V, Y}$ at each point. So

$$T = S \cap N_{f, V}$$

is a well-defined sub-bundle of $N_{f, V}$. In fact, we claim that under the above assumptions the sequence

(3.2) $0 \to N_{f, V} \to N_{f, Y} \to f^* N_{V, Y} \to 0$

must be split. To see this, notice that the mapping

$$f^* N_{V, Y} \cong S/T \to N_{f, Y}/T$$

splits the sequence.

Continuing with the same assumptions, we wish to show that

$$L \otimes T$$

is semi-positive, where L, as above, is line bundle

$$f^* O_{\mathbb{P}^r}(1).$$
To see this, let \(p \in \mathbb{C} \) be a point such that the sections in the vector space \(\mathbb{R} \) given above generate the fibre of \(S \) at \(p \). Let

\[
t_p \in (\text{fibre of } T \text{ at } p).
\]

By Lemma 2.3, to prove the semi-positivity of \(L \otimes T \), it suffices to find a meromorphic section \(\tau \) of \(T \) such that:

(i) \(\tau(p) = t_p \),

(ii) the polar locus of \(\tau \) is either 0 or is a hyperplane section of \(f(\mathbb{C}) \).

To accomplish this, choose a section of \(\rho \in \mathbb{R} \) such that

\[
\rho(p) = t_p.
\]

If \(\rho \in H^0(N_f, \nu) \), set \(\tau = \rho \). If \(\rho \notin H^0(N_f, \nu) \), then by (3.1), \(\rho \) determines a non-trivial section of \(f^*N_{\nu, \nu} \) which is the restriction of a section \(\tilde{\rho} \) of \(N_{\nu, \nu} \). Now let

\[
N_{\nu, \nu} \to \mathcal{O}_\nu(1)
\]

be a projection such that \(\tilde{\rho} \) maps to a non-trivial section of \(\mathcal{O}_\nu(1) \).

Choose a base-point free pencil on \(f^*H^0(\mathcal{O}_\nu(1)) \) which comes from a two-dimensional subspace

\[
R_0 \subseteq \mathbb{R}
\]

such that \(\rho \in R_0 \). Let \(R_1 \) be an affine line in \(R_0 \) which passes through \(\rho \) but does not contain the origin of \(R_0 \). We define our section \(\tau \) of \(T \) by the rule

\[
\tau(q) = \rho'(q)
\]

where \(\rho' \) is the unique section in \(R_1 \) whose image in \(H^0(f^*\mathcal{O}_\nu(1)) \) vanishes at \(q \).

We are now ready to complete the proof of Theorem 1.1. Since \(V \) is generic, we can find an irreducible family \(F \) of curves of genus \(g \) in

\[
W \subseteq P^{n+m}
\]

such that:

(i) if \(f \in F \), then (image \(f \)) spans a linear space of dimension \(\leq n \);

(ii) for generically chosen \(f \in F \), the tangent space to \(F \) at \(f \) maps isomorphically to a subspace

\[
R \subseteq H^0(N_f, w)
\]

satisfying (3.1) for \(Y = W \),

(iii) \(f \in g \subseteq F \),

where \(g \) is the family of curves on \(V \) postulated at the beginning of paragraph 3.

(We simply use the deformations of \(f \) into curves on \(K \cdot W \) where \(K \) is a linear space of dimension \(n \) in \(P^{n+m} \).)
So we are in the situation considered earlier in paragraph 3. Thus we have associated to \(R \) the sub-bundles

\[
S \subseteq N_{f, w}
\]

and

\[
T = S \cap N_{f, v}
\]

giving a split sequence

\[
(3.3) \quad 0 \to N_{f, v}/T \to N_{f, w}/T \to L^\oplus \to 0
\]

Also \(L \otimes T \) is semi-positive.

By Lemma 2.5, \(N_{f, w} \) is semi-positive, and so therefore is

\[
N_{f, v}/T
\]

since it is a quotient of \(N_{f, w} \). In particular

\[
\deg N_{f, v}/T \geq 0.
\]

On the other hand there is a unique sub-bundle

\[
T_v \subseteq T
\]

such that the sections of the tangent space to \(g \) at \(f \), considered as a subspace of \(H^0(N_{f, v}) \), lie in \(T_v \) and generate almost all fibres of \(T_v \). Referring to the first part of paragraph 3,

\[
\text{rank } T_v = (n-2) - D
\]

so that

\[
\text{rank } (T/T_v) \leq D.
\]

Now by the adjunction formula

\[
\deg N_{f, v} = (n+1-m)(\deg L) - (2-2g).
\]

On the other hand

\[
\deg N_{f, v} = \deg (T/T_v) + \deg T_v + \deg (N_{f, v}/T) \geq \deg (T/T_v).
\]

Since \(L \otimes T \) is semi-positive

\[
\deg (L \otimes T/L \otimes T_v) \geq 0
\]

so

\[
\deg (T/T_v) \geq -rk (T/T_v) (\deg L).
\]
Putting everything together

\[(n + 1 - m)(\deg L) - (2 - 2g) \geq -(rk \, T/T_y) \, (\deg L).\]

Let

\[\alpha = \frac{2 - 2g}{\deg L}\]

Then

\[rk \, (T/T_y) \geq \alpha + m - (n + 1)\]

so that

\[D \geq \alpha + m - (n + 1).\]