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ON NORMAL HOMOGENEOUS EINSTEIN MANIFOLDS

BY McKENZiE Y. WANG (1) AND WOLFGANG ZILLER (2)

A Riemannian metric g is called Einstein if its Ricci tensor satisfies Ric(g)==cg for
some constant c. For c>0, most known examples of Einstein manifolds are compact
homogeneous spaces; see, for example, [25], [20], [12], [7], [21], [27], [28], [2]. Not
every simply connected compact homogeneous space admits a homogeneous Einstein
metric [24], but a general classification of homogeneous Einstein metrics seems to be
difficult. In this paper we study the Einstein condition for a "natural" metric that exists
on every simply connected compact homogeneous space.

Let G/H be compact and simply connected. Then G is compact, and the semisimple
part of G acts transitively on G/H. Hence we will assume that G is a compact,
connected, semisimple Lie group, and H is a closed subgroup. We let g, () denote the
respective Lie algebras. Any bi-invariant metric on 9 induces an orthogonal splitting
9=1) -L m, and if we identify m with Tgn(G/H), the restriction of the bi-invariant metric
to m induces a G-invariant metric on G/H by left translation. Such a metric is called a
normal homogeneous metric. A canonical choice for a bi-invariant metric on g is the
negative of the Killing form, denoted by B. The induced metric on G/H, denoted by
^B, will be called the standard homogeneous metric on G/H.

The Einstein condition for g^ can be described as follows. Let / be the isotropy
representation of H°, the identity component of H, on T^H(G/H)=m. We also denote
by % the corresponding representation of I) on m. For any (orthogonal) representation
7i of I) and any bi-invariant metric Q on t) we let C^ Q be the Casimir operator defined
by —^tr(7t(X()7c(Xf)), where {X,.} is a Q-orthonormal basis oft). Then we have

i
(see( 1.7), (1.12)).

THEOREM 1. — The standard homogeneous metric g^ on G/H is Einstein iff
C^ a | ^ = a Id for some constant a.

Equivalently, if m=mo ©m^ © . . . ©m,, is the decomposition of m into non-trivial
[R-irreducible summands m^, . . ., m^ and a space mo on which / is trivial, then g^ is
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564 M. Y. WANG AND W. ZILLER

Einstein iff nto = 0 and B* (?i,, ̂  + 2 8) = B* ( .̂, ̂ . +28) for all i, j. Here ?i, is the domi-
nant weight of ^ on m^, 2 8 is the sum of the positive roots of I), and B* is the metric on
1)* induced by B 11).

If the isotropy representation of H on m is irreducible over R, then g^ is obviously
Einstein. Such spaces are called isotropy irreducible. If the representation of H° on m
is also IR-irreducible, the spaces are called strongly isotropy irreducible. The irreducible
compact symmetric spaces are of course strongly isotropy irreducible. The non-symme-
tric strongly isotropy irreducible spaces were classified by J. Wolf [25]. This classification
is not quite complete, see the correction to [25] and the paper [23].

If the isotropy representation is reducible. Theorem 1 becomes rather restrictive, and
it enables us to classify all the standard homogeneous metrics which are Einstein in the
case when G is simple. Note that in such a case the only normal homogeneous metric
on G/H, up to scaling, is the standard homogeneous metric. It is natural to assume
that G/H is simply connected (hence H is connected) since if g^ is Einstein on G/H, then
g^ on its universal cover is also Einstein.

Our main result is

THEOREM 2. — Let G be a compact, connected, simple Lie group and H a closed,
connected subgroup such that G acts almost effectively on G/H and G/H is simply
connected. If g^ is Einstein and G/H is not strongly isotropy irreducible, then the Lie
algebras (9, % are given in Table I of Chapter 1.

We will see in Chapter 5 that there are de Rham irreducible spaces with G semi-simple
but not simple whose standard homogeneous metric is Einstein. However, it would be
more natural in such a case to classify all normal homogeneous Einstein metrics.

Chapter 1 contains a general discussion of the Einstein condition for g^. More
generally, in (1.9) we study the Ricci tensor of any naturally reductive metric on G/H in
terms of the Casimir operator of its isotropy representation. We then describe some of
the more interesting examples in our classification. A table of our full classification
follows.

In Chapter 2 we develop the necessary tools for computing Einstein constants and
describe some facts we need from representation theory and from [23]. The details of
our classification are given in Chapter 3 (for the quotients of the classical groups) and
in Chapter 4 (for the quotients of the exceptional groups).

Applications of Theorems 1 and 2 are given in Chapter 5. We first determine the
connected isometry groups of the manifolds in Theorem 2 and show that none of the
manifolds are isometric. Second, we use Theorem 2 to classify all the left invariant
Einstein metrics on compact simple Lie groups that are obtained from the bi-invariant
metric by scaling in the direction of a subgroup. Third, we examine fibrations of the
Einstein manifolds in Theorem 2 where the fibres and base are again normal homogeneous
Einstein. For such a fibration we can scale the metric on the total space in the direction
of the fibres, and in most cases we obtain another Einstein metric which is not normal
homogeneous.
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ON NORMAL HOMOGENEOUS EINSTEIN MANIFOLDS 565

Chapters 1 and 5 can be read independently of the rest of the paper by any reader
who is more interested in the classification results and their applications. However, the
classification for quotients of the classical Lie group in Chapter 3 is conceptual, and
contains results of independent interest. In particular, we mention.

THEOREM 3. — Let n be an n-dimensional almost faithful orthogonal representation of a
compact connected Lie group H, and let % be the isotropy representation of SO(n)/7i(H),
i.e., A27l=adH®5C. Then C^ p=a Id for some constant a and some bi-invariant metric
Q on t) iff K is the isotropy representation of a symmetric space of compact type^ or (a)

1 1 i
H=G2, TT= 0=9 or id©o=e (b) H=Spin(7), 71=0—0=0, (c) H=Spin(7)-S0(m),

i
m ̂ 3, 7i=[o—o=e (8) id] © [id ® pj.

The classification for the quotients of S0(n) follows easily from this result. Similar
theorems are proved in Chapter 3 for quotients of the unitary (resp. symplectic) groups
and compact hermitian (resp. quaternionic) symmetric spaces. These results are in the
same spirit as results in [23].
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CHAPTER ONE

The Einstein condition and description of results

1. PRELIMINARIES AND THE RICCI TENSOR. — Let G be a compact, connected, semisimple
Lie group and H a closed subgroup. We denote by 9 and I) the corresponding Lie
algebras and by n the embedding of H in G. The homogeneous space G/TC(H) will be
denoted by M. We assume that G acts almost effectively on M, i. e., 9 and t) have no
non-trivial ideal in common.

For X, Y in 9, set B(X,Y)= -tr((ad X)°(ad Y)). B is the negative of the Killing
form of 9; it is positive definite, and gives an (Ad H)-invariant orthogonal splitting
9=1) 1m, with respect to which (9, 1)) is a reductive pair. We may identify m with the
tangent space of M at the identity coset: for X e m c = 9 , let X* be the vector field
generated by the action of the one-parameter subgroup exp(^X) of G on M and associate
X with X*(^H). Then [X, Y]^= -[X*, Y*],H.

We recall next the isotropy representation % of H on Tgn(M). An element h in H
acts on M by left translation and fixes the identity coset eH. dh is an automorphism
of T^n(M) and the isotropy representation is given by h\-^dh. % induces in turn a
representation of t) on T^(M), which will again be denoted by %. Using the identifica-
tion of m with Tgn(M) these representations get identified with the adjoint representation
onm, i.e, for /ieH, xW=Ad^(/i) and for Xel), Yem, 5c(X)Y=[X,Y]. Since we
assume that G acts almost effectively on M, the isotropy representations of M are almost
faithful and faithful respectively.

From m»T^H(M), we also see immediately that B [ m induces an invariant Riemannian
metric gy on M which will be called the standard homogeneous metric. Notice that every
homogeneous space G/H with G compact, semisimple has such a metric. We are
interested in characterizing when g^ is Einstein, i. e., has constant Ricci curvature.

A preliminary simplification results from observing that the Einstein condition is a
local one, and so we can assume that M is simply connected, which in turn implies that
H is connected. Then the embedding n of H in G is uniquely determined by t) <= 9. In
the remainder of this paper we shall therefore mainly work with the Lie algebras 9 and
t). We shall say that the pair (9, t)) is Einstein or that t) is Einstein in 9, meaning that
gg is Einstein for M.

For the convenience of the reader, we derive below an expression for the Ricci tensor
of the standard homogeneous metric ̂  which is implied by (12 a) and (18) on pp. 608-9
of [12].

Let X, Y e m. Define A (X, Y) = - tr^ (pr^ o ad Xo ad Y), where pr^ is the projection of
9 onto ^ with respect to the orthogonal splitting 9=!) 1m and tr^ is the trace of linear
operators on 9 restricted to I). If { Z^} is an orthonormal basis of I) with respect to B,
then

(1.1) A (X, Y) = -^ B ([X, [Y, Z,]], Z,) = -^ B ([Z, [Z, X]], Y)
i i
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since B is ad g-invariant. Moreover, A is ad ^-invariant, thus defining a positive semi-
definite invariant tensor on M.

(1.2) PROPOSITION. - Ric fee) = (1/4) B + (1/2) A.
Proof. - Let X e m be a unit vector. By Theorem X. 3. 5 (3) of [15] we obtain

B (R (X, X,) X, X) = ^ B ([X, X,L, [X, X,y + B ([X, X,],, [X, X,],)

= - ̂  B ([X, X,L, [X, X,]J + B ([X, X,], [X, X,]),

where { X , } is an orthonormal basis for m with respect to B such that X=Xi . It
follows that

Ric^(X,X)=.tr^(pr^oadX)2+B(X,X)-A(X,X).

Since [1), m] c m, and B is ad g-in variant, the matrix of ad X with respect to { Z . X.}
has the form ^ ^

( 0 a(X)\
V-a(Xr b(X))

It follows that

tr^(pr ,oadX)2=tr(fc(X)2)=-B(X,X)+2tr(a(X)a(X) t)=-B(X,X)+2A(X,X).

Hence RicgB(X,X)=(l/4)B(X,X)+(l/2) A(X,X), as asserted. •

2. THE EINSTEIN CONDITION AND CASIMIR OPERATORS. - We first deduce some immediate
consequences of Proposition 1.2 and then go on to relate the tensor A to a Casimir
operator of the isotropy representation of M.

Since m is an orthogonal representation of H, let us write it as a sum of a trivial
representation nto (of possibly zero dimension) and irreducible orthogonal representations
m,, i>0, with dominant weights .̂

(1.3) COROLLARY. - If g^ is Einstein, then either H is trivial or mo=0. In the first
case g^ is a bi-invariant metric ofG.

Proof. - Let Ric(^)=C^. Since A [mo=0, nto^O implies that C-l/4. But then
A=0, and the definition of A implies that m=mo. This contradicts the assumption
that G acts almost effectively on M unless H is trivial. •

(1.4) Remark. - Since nto is a subalgebra of g by the Jacobi identity, the condition
mo ̂ 0 is equivalent to the existence of a subalgebra f such that 1) ® f c 9. Hence if ̂
is Einstein, no such subalgebra I can exist unless g=t)®i This already restricts the
possibilities for H.

ANNALES SCIENTIFIQUES DE L'feCOLE NORMALE SUPfeRIEURE



568 M. Y. WANG AND W. ZILLER

(1.5) COROLLARY. - J/H is a torus in G, then g^ is Einstein if f the torus is maximal
and all roots ofG have the same length mth respect to B. Hence G is locally a product
ofSV(n\ S0(2n), E^, E7, or Eg.

proof. - That the torus must have maximal rank follows from (1.3). If H is a
maximal torus, m=©m, is just the root space decomposition of 9. Therefore, by the

i

definition of A, A|m,=-B*(a,,a,)B, where ±a, is the root corresponding to m,, and
B* is the inner product induced by B on g*. The result follows immediately. •

Remark. - A theorem of Matsushima ([17], Theorem 3) implies that up to a holomor-
phic transformation there is a unique Kahler-Einstein metric on G/T. But examining
the Kahler condition for an invariant metric on G/T ([I], p. 1149) one sees that g^ for
G/T is never Kahler.

(1.6) COROLLARY. - Suppose Ric(gB)=CgB on M, then 1/4^C^1/2. M is locally
symmetric iffC=112. C=l/4 iffH={e}, i.e., g^ is a bi-invariant metric ofG.

proof. - In the proof of Proposition (1.2), we established that

A(X,X)= l B(X,X)+ l t r , (pr^oadX) 2 .

Clearly, tr^pr^oadX)2^ and so 1/4 ̂ C^ 1/2. Now C= 1/4 iff A=0 iff H = { ^ } since
the isotropy representation is almost faithful. Lastly, C = 1/2 iff tr^ (pr^ ° ad X)2 = 0 for
all X emiff [m, m] <= I). •

The Einstein constant C can be calculated by taking the trace of (1.2) and using
(1.1). We get C= 1/4+1/2^ (dim H,) (l-a,)/dim(G/H), where H, are the simple

i

factors of H and BH, = a, B^ | l)r

To obtain a necessary and sufficient condition for g^ to be Einstein we need to examine
the tensor A more closely. The main observation is that A is the Casimir operator of
the isotropy representation with respect to B 11). We explain this connection below.

Let ̂  be a compact Lie algebra, (i. e., t)=3©[^ I)] where 3 is the center of b and ft, b]
is semisimple,) and (p be a faithful representation of \). Suppose that <, > is an ad \)-
invariant non-degenerate symmetric bilinear form on \). Then the Casimir operator of
(p with respect to <, > is defined by

C<p,<,>=-I>(X^(p(Y,),
i

where { X,}, { Yj are bases of I) dual with respect to <, >, i. e., < X,, Y .̂ > = 8^. C^ < , > is
independent of the choice of { X,} and { Y,}, and commutes with every cp (X). Hence if
(p is an irreducible complex representation then C^ < ̂  is a scalar operator. If in addition
q> is orthogonal, i. e. (p(X) is skew symmetric for every X, and if < , > is positive definite,
then this scalar is nonnegative.
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ON NORMAL HOMOGENEOUS EINSTEIN MANIFOLDS 569

Now if we let 1) be the Lie algebra of H, (p be the isotropy representation 50 of I) (the
differential of the isotropy representation of H), and <, > =B 11), then (1.1) implies that

A(X,Y)=B(C,,B^X,Y).

Combining this with (1.2) we get

(1.7) COROLLARY. — If we regard the Ricci tensor as a symmetric endomorphism ofm,
then

R i c ( ^ B ) = . I d + _ C ^ B | i r

Hence g^ is Einstein iff C^ a\^ is a multiple of the identity. •
Note that the condition C^ g | ^ = a Id is only a condition on the isotropy representation

^, despite the presence of the restriction of the Killing form B of 9 to I). We only need
to observe that

(1.8) B(X,Y)=B^(X,Y)-tr(x(X)x(Y))

for X, Y el), where B^ is the negative of the Killing form of t).
A formula analogous to (1.7) also holds for the Ricci tensor of naturally reductive

metrics. This is not needed for this paper, but since it is of independent interest, we
include the derivation below. We will assume that G is a connected but not necessarily
compact Lie group. Let g be an invariant Riemannian metric on G/H. Then t) is a
compact Lie algebra (although H need not be compact) and there exists an ad(())-
in variant subspace m with g = () © m. The metric g is naturally reductive with respect to
the transitive group G and the splitting g=I )©m if for all X, Y, Z in m we have
^(X,[Z,Y]J+^([Z,XL,Y)=0.

A theorem of Kostant (see [13], p. 355 Theorem 4 or [7] p. 5) says that given a
naturally reductive metric with respect to a decomposition 9 = 1) ® m there exists a unique
ad (g)-in variant non-degenerate symmetric bilinear form Q on the ideal g=mm+[m,m]
such that Q(m,gni))=0 and Q[m=^. Conversely, if Q is an ad (g)-in variant non-
degenerate symmetric bilinear form such that Q [ ^ is non-degenerate and Q [ ()1 is positive
definite, then with respect to the decomposition g=l) © ̂ , QJ t)1 is a naturally reductive
metric. Since g is an ideal in g that acts transitively on M, we will henceforth assume
that g = g. Notice though that Q and Q [ t) are in general not positive definite.

(1.9) PROPOSITION. — Let g be a naturally reductive metric on M which is the restriction
to t)1 of an Sid(Q)-invariant non-degenerate symmetric bilinear form Q on g. If we define
S by B(X,Y)=Q(SX,Y), then

Ric(^S+JC,Q,,.

Proof. — We define as before

A (X, Y) = - tr^ (pr^ o ad X o ad Y).

ANNALES SCIENTIFIQUES DE L'fiCOLE NORMALE SUPfiRIEURE



570 M. Y. WANG AND W. ZILLER

Using the bi-invariance of Q and Q(l),m)=0, we get

A(X,Y)=-SQ([Y,[Z,X]],Y),
i

where Y,, Z, are dual bases of ty. i. e., Q(Y,, Z .̂) =5^.. The proof of (1.2) carries over if
we replace B by Q at appropriate places and shows that

Ric(g)(X^)=lB(X,X)^lA(X^).
4 2

The definition of C^ then implies that

A(X,Y)=Q(q,^X,Y).

(Notice that in this formula we have to use Q instead of the metric B since we do not
necessarily have B(I), m) =0.) •

Unlike the case of C^B|^ ^ .Qlb can have eigenvalues of either sign since Q|t) need
not be positive definite. Hence Ric(g) can also have eigenvalues of either sign. Notice
also that the Einstein condition is not equivalent to C^ Q^=ald anymore. This
concludes our detour to consider the Ricci tensor of naturally reductive metrics.

For I) semisimple and <, > the negative of the Killing form of t), the calculation of
C < > for an irreducible complex representation (p is classical. Exactly the same calcula-
tion holds when t) is compact and <, > is any ad (9)-in variant non-degenerate symmetric
bilinear form. For the convenience of the reader, we include the calculation below.

We pause first to review some basic facts about the structure and representation theory
of compact Lie algebras. Let < , > be an ad (I)) -in variant non-degenerate symmetric
bilinear form on \) and t <= I) be a maximal abelian subalgebra. We may extend < , > to
a non-degenerate symmetric form on t) (X) C which will also be denoted by < , >. Using
< , > , we may write I) =3 It)' and t=3-Lt' , where 3= center of t) and t)' is semisimple.
% = t' ® C is then a Cartan subalgebra for ̂  ® C. Now t) ® C = 3 ® C 1 ̂  ® C. Let

t)o®Z%
a

be the root space decomposition of l^OOC with respect to t)o. Note that <%, t )p>=0
whenever a + P + 0.

For every positive root a we can find vectors E^el),, E_,e^_, such that
< E,, E, > = < E_,, E_, > =0, < E^ E_, > = 1. Then [E,, E_J=H,, the element dual to a
with respect to <, >. As is customary, we let 8 denote one half the sum of the positive
roots of t) ® C.

Every irreducible complex representation (p of I) has a cyclic vector v corresponding to
a dominant integral form ^, which determines the representation up to equivalence, v
is unique up to a scalar multiple, and is characterized by (p(EJu=0 for all positive
roots a.
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ON NORMAL HOMOGENEOUS EINSTEIN MANIFOLDS 571

(1.10) LEMMA. — Let 1) be a compact Lie algebra with an ad (i^-invariant non-degenerate
symmetric bilinear form < , ) and (p an irreducible complex representation oft) with dominant
weight^. Then C^^>= —<X,, X,+28>*Id, where < , > * denotes the bilinear form on
t)*®C induced by < , > .

Proof. — We already noted that C<p < > is scalar. In the notation of the pre-
ceding paragraphs, we choose { h^ . . ., h^ } < = % , { h^+1, . . ., \} <= 3 00 C and
{ ^ , . . . , h ? } c = % , { h ^ i , . . . , h * } c : 3 ® C such that <^*>=8,,, l^i, j^r. Then
/ii, . . ., ̂ ,, E,, E_,, (a>0) and h?, . . ., /i*, E_,, E,, (a>0) are dual bases of () (x) C with
respect to <, >. Hence

r

-C, ,< ,>=E <P(/»,)(PW)+ E (p(E^°(p(E_.)+ ^ (p(E_.)°(p(E^
1 = 1 a > 0 a>0

r

= E <p(/i,)(pW)+ S <P(H.)+2 ̂  (p(E_^°(p(E,)
1 = 1 a>0 a>0

Let v be a dominant weight vector of cp. Then

-C<p,<,>^=f S M^-)W)+ E ^(Hj)r=«^A>*+<^25>*)r. •
\ f = l a>0 /

Combining (1.7) with (1.10) we obtain

(1.11) THEOREM. — Let m=mo © m^ © . . . © m^ be the decomposition of the isotropy
representation into a trivial representation nto and irreducible real representations m?
l ^ f ^ f e , with dominant weights X^. Then g^ is Einstein iff nto=0 and for every i^j,
B* (?L,, ̂  + 2 5) = B* ( .̂, ̂ . +25). (B* 15 the inner product on Q* induced by B.)

Proof. — The definition of C^ g implies that C^ g m .̂ c: m^. m^ (g) C is either V^ or
V),^ © V^ where V,,^ is the complex irreducible representation with dominant weight ^
and ^ denotes the contragredient representation. If m, (X) C = V^ .̂, then
C^ a | m, = - B* (?i,, X, + 2 8) Id by (1.9). If m, ® C = V^ © V^ we observe that the map
which takes ^ to ^-* is an isometry with respect to B* and that 5*= 8. Hence
B* (^,, ̂  + 2 8) = B* (?i*, ̂ f +25) and again we have q, g | m, = - B* (?i,, ?i, +25) Id. •

The above proof yields immediately.

(1.12) COROLLARY. - (M, g^) is Einstein iff B*(X,, ^+2§)=B*(^,^.+28) for all
i^j and mo==0, where {^1} are the dominant weights of the irreducible complex representa-
tions of m ® C. •

An immediate consequence of Corollary (1.7) and Theorem (1.11) is the following
corollary, which will be used as an inductive method for classification in Chapter 4.

(1.13) COROLLARY. — Let G be a compact, connected, semisimple group.
(a) If H c K c: G are closed connected subgroups such that B g [ f = C . B ( for some

constant C and (G/H, gg ) is Einstein, then (K/H, g^) is Einstein.
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(fc) If Hf c= K^ c G ar^ closed connected subgroups mth K^ simple, II H^ c: n K, c G,
anri (G/(II H(), ^g ) is Einstein, then for each f, (K;/H,, g^) is Einstein. •

Many of the examples we will obtain are easily seen to be Einstein by the following.

(1.14) COROLLARY. — Let /=Xi ® • • • ® Xk y^here ^ is an irreducible real representa-
tion mth dominant weight .̂. If for each i^j there exists an automorphism of t) \vhich
takes Xf to ̂  and permutes the {^ }, then g^ is Einstein.

Proof. — If A is such an automorphism, then 'k^oA=fkp ^.oA==^., and 8°A=8.
We only have to show that A is an isometry of B 11) since then
B* (^., X, + 2 8) = B* ( .̂, ̂  +28). But this follows from (1.8) since any automorphism is
an isometry of B^ and tr(^(X) °^(Y))=^tr(^(X)^(Y)) is invariant under A since A
permutes the ^/s. • l

3. SOME EXAMPLES. — In this section we describe some pairs (G, H) for which gy is
easily seen to be Einstein using (1.11) or (1.14).

We begin by establishing some notation and conventions in representation theory. Let
t^w? V2m9 2in(^ Pm denote respectively the standard complex representations of SU(m) (or
U(m)), Sp(m), and S0(m) (or Spin(m)) of dimensions m, 2m, and m. If 'k is the
dominant weight of an irreducible complex representation n^ of a compact simple Lie
algebra I), we often describe n^ by giving the diagram of n^. Suppose a is a simple root,
let ^a=[2B*(^,a)]/[B*(a,a)]. ^a is a non-negative integer and is independent of the
choice of the bi-invariant metric on I). The diagram of n-^ consists of the Dynkin
diagram of I) with ^a placed above the vertex corresponding to a.

A2 7i and S2 n denote respectively the second exterior and symmetric power of n, and
we have

A2 (71 (S) 71') = [A2 71 ® S2 71'] © [S2 71 ® A2 Tl'],

S2 (71 ® 71') = [S2 71 ® S2 71'] ® [A2 71 ® A2 71'].

(® denotes the external tensor product while 00 is used to denote the internal tensor
product.) If 7t is a non-self-contragredient representation, then n ® n* has an orthogonal
and a symplectic structure. The corresponding real/quaternionic representation is deno-
ted by [7iL/[7i]H.

If SO(n)/H is a homogeneous space with isotropy representation ^ and the inclusion
H c= S0(n) is given by the orthogonal representation TC, then A 2 7 c = A d H © X since
A^^Adgo^) and Adso(jH=AdH© X- ^is can be used to compute the isotropy
representation ^. Furthermore, if H c= K c G and if ^ is the isotropy representation
of H in K and 72 that of K in ^ then the isotropy representation of H in G is

2
Xi © X21H - we also observe that S2 p^ = id © o—o—, . . ., S2 v^ „ = Adgp („), and

i
A^^id®^—•—•—. . .—•=o.
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Examples of homogeneous manifolds whose standard metric is Einstein include group
manifolds G with G compact, connected, and semisimple, and symmetric spaces of
compact type. They include also the reductive strongly isotropy irreducible spaces G/H
with H compact, connected and G acting effectively on G/H. In [25] such spaces are
completely classified (see also [23]). It turns out that G must be compact and simple if
(G, H) is not a Riemannian symmetric pair.

As we saw in (1. 5), (G/T, g^) is Einstein iff T is a maximal torus and all roots of G
have the same length with respect to B. We now describe some non-trivial examples.

Example 1. - (a) G=SU(nfe), H=S(U(^) x . . . xU(fc)) (n times), fe^2,
n ̂  3. K: H -> G is given by © [id ® . . . ® ̂  ® . . . ® id]. The isotropy representation
is easily seen to be © [id ® . . . ® ̂  (§). . . ® n? ®. . . ® id]^. By (1.14) (G/H, g^) is
Einstein.

(b) G=Sp(kn), H=Sp(fe)x . . . xSp(k) (n times), f e^ l , n^3. TL-H-^G is given by
© [id ® . . . (§) V2 k (8) . . . (§) id]. The isotropy representation is

© [id ® . . . ® v^ fc (§). . . ® v^ k ® . . . ® id].

Again, by (1.14) (G/H, g^) is Einstein.
(c) G=SO(nk), H=SO(k)x . . . xSO(k) (n times), ^3, n^3. 7t:H->G is given

by © [id (§)...(§) p^ (§). . . (§) id] and the isotropy representation is

© [id (8) . . . ($ ) pfc ® . . . (§) pfc (§)...(§) id].

By (1.14) (G/H, g^) is Einstein. (This example was observed previously in [7], p. 59.)

Example 2. - (a) G=SO(n2), H=SO(n). S0(n), n^3, and n:H->G is given by
p^ ® ?„. By computing A2 (?„(§)?„) we see easily that the isotropy representation of
G/H is [A2 ?„ ® (S2 p»—id)] © [(S2 p^—id) ® A2 pj. (G/H, gy) is normal homogeneous
Einstein by (1.14).

(b) G = SO (4 n2), H = Sp (n) - Sp (n), n ̂  2, n: H -> G is given by v^ „ (§) v^ „. By compu-
ting A2 (v^ „ (8) v^ „), we see that the isotropy representation of G/H is

[S2 V2 „ (8) (A2 v, ,-id)] © [(A2 v^-id) (§) S2 v^,].

By (1.14) (G/H, ^) is Einstein.

Remark. — The normal homogeneous Einstein spaces in Example 2 can be obtained
from symmetric spaces, just as the non-symmetric strongly isotropy irreducible quotients
of S0(n) by connected subgroups can be obtained from Riemannian symmetric spaces
of compact type. (See [25] pp. 147,8, and [23].)

Let us consider the symmetric spaces G/K=SO(2n)/(SO(n)-SO(n)) and
Sp(2 n)/(Sp(n) • Sp(n)). The isotropy representations / are respectively

p^(§)p^:SO(n)xSO(n)^SO(n2) and v^(§)v^: Sp(n) xSp(n) -> S0(4n2).

The spaces in Example 2 are just SO(dimG/K)//(K).
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The following interesting family of examples also arises from symmetric spaces.
Example 3. — Let G/H be a compact irreducible simply connected symmetric space

with H simple. Let n be the isotropy representation of G/H and n = dim G/H. Then
SO(n)/7r(H) is isotropy irreducible (see [23]) with isotropy representation ^ determined
by A27l=adH©/. In the above we include the spheres G/H=SO(n+l)/SO(n), in
which case 7i(H)=SO(n) and % is 0-dimensional. In Chapter 2 section 3 we will see
that

- / 2 d i m H \ , , - / dimH \ -
^BSo.^^^Jld and C^^^^Id.

For irreducible symmetric spaces G/H for which H is not simple the above equalities
are satisfied only for SO(2fe)/(SO(fe). S0(7c)) and Sp(2fe)/(Sp(^). Sp(fe)). In these cases,
example 2 shows that the standard metrics of SO(n)/7i(H) are Einstein.

Now let G^/Hf, f = l , . . .,k be a family of irreducible symmetric spaces of the above
types of dimension n^ with corresponding representations TI^ and ^. Then
G/H=Gi/Hi x . . . x Gfc/Hfc is a new symmetric space. We examine SO(n)/7i(H), where
n=dim G/H and n is the isotropy representation of G/H. The isotropy representation
ofSO(n)/7i(H) is

k

^= © [id ®. . . ® ̂  ®. . . ® id] ® © [id ® . . . ® TI; ®. . . ® Kj ® . . . ® id],
i<J

as can be seen from the inclusions

H = H i X . . . xHfc-^———^S0(ni)x . . . xSO(nfc)-^SO(n),

and the fact that the isotropy representation of SO(n)/(SO(ni) x . . . x SO^)) is
© [id (§) . . . (§) p^. (§). . . (§) p^. (§) . . . (^) id]. One easily sees that for the standard inclusion
i<J l j

S0(n,) c S0(n) we have Bso(n)=((n-2)/(n,-2))Bso(^. Hence

F . ^ni-2V . /2dimHA ( dimH, \^C..BSO.).^^JC,.^^,^^^^ and ^BSo^l^^^^Jid.

Therefore C^ g^ |^=aIdiff(dimH;/n;) is independent of f, in which case we obtain a
large family of Einstein standard homogeneous metrics.

An interesting special case is if G;/Hf=(HfXHf)/AH; with Ti^Ad^, where H^ is
any compact simple Lie group. Then the above shows that the standard metric
of SO (dimH)/Ad (H) is always Einstein provided that H is compact and
semisimple. Another special case is if we let G^/H^=G/H for all i, where G/H is an
arbitrary irreducible compact symmetric space as above. (We obtain example 1 (c) from
G/H=S".)
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By examining a list of irreducible symmetric spaces one easily shows that the
only other possibilities for which (dim Hf)/n,=(dim Hy)/ny (or equivalently
dim G,/dim H^ = dim G^/dim Hj) are given by

G./H, G/H,

SO(2n)ISO(n)-SO(n) SU(2n-2)/SO(2n-2)
Sp(2n)/Sp(n)-Sp(yi) SU(4n+2)/Sp(2n+1)

SO(32)/SO(16)-SO(16) Eg/Spin (16)
SO(20)/SO(10)-SO(10) E.7/SU(8)
SO(14)/SO(7)« S0(7) E6/Sp(4)

SO(6)/SO(5) Ee/F^
SO(5)/SO(4) SU(6)/Sp(3)

Most of the other Einstein standard metrics on SO(n)/7i(H) also come from compact
symmetric spaces G/H where n:H-^SO(n) is the isotropy representation of G/H: the
symmetric spaces M = S" x P^1 C and M = S6 x P5 C give rise to the normal homogeneous
Einstein spaces SO(3n+2)/(SO(n)-U(n+1)) and SO(26)/(SO(6)-Sp(5)-Sp(l)). The
only new normal homogeneous Einstein space SO(n)/H which does not come from
symmetric spaces is described in the next example.

Example 4. — Let G=Spin(8) and H=G2. Suppose n:H->G is given by
i

[o = •] © [o = •]. Then the inclusions G^ <= so (7) c= so (8) show that the isotropy represen-
1 1

tation is [o=»]©[o=»]. Obviously, (1.14) implies that g^ is Einstein. Now G/H is
diffeomorphic to S7 x S7 because G/H is a 7-sphere bundle over S7; however, by
Corollary 5.4, p. 215, of [15], g^ is not a product metric.

Notice that this example is also the only homogeneous space G/H with G simple, H
connected, and .isotropy representation a sum of equivalent irreducible real
representation. This follows from our classification, since for any such space the stan-
dard metric is Einstein.

Example 5. - G=Eg, H=SU(5)-SU(5), where TC:H-^G is determined by the fact
that H is a maximal subgroup of maximal rank in G. (See [5], p. 219.) Wolf calculated
the complexified isotropy representation of G/H (see pp. 282 a, b in [26]) to be

i ^ i i ^ i

By (1.14), (Eg/(SU(5) • SU(5)), g^) is Einstein. In fact, this is the only isotropy reducible
space of the form G/H where H is a maximal subgroup of maximal rank in G and G is
compact, connected, and simple. Hence we have shown that the standard metric of
every homogeneous space G/H where H is a maximal connected subgroup of maximal
rank in a compact connected simple Lie group G is Einstein.

Example 6. — G=F4, H=Spin(8) and TI:H->G is given by the inclusions
Spin(8) c= Spin(9) <= F4. The complexified isotropy representation is pg ® Ag'© Ag\
Hence by (1.14), (F4/Spin (8), g^) is Einstein.

ANNALES SCIENTIFIQUES DE L'feCOLE NOkMALE SUP^RIEURE



576 M. Y. WANG AND W. ZILLER

A glance at Table IB shows that many examples with G an exceptional Lie group
satisfy the conditions of (1.14) and hence are Einstein without any computation. On
the other hand we have:

Example 7. — G=Eg, H=SO(9), respectively Spin (9), with inclusions given by
SO (9) c SU(9) c= Eg and Spin (9) c Spin (16) c= Eg (where Spin (9) c= Spin (16) is given
by the spin representation). One can show that the isotropy representations are given

2 1 1 1 1
by o—o—o = • © 2 [o—o—o = •] in the first case and by o—o—o = • © o—o—o = • in
the second case. A computation shows, surprisingly, that the Casimir contants are all
equal.

We conclude this section with an example involving a number theoretical condition.
Example 8. - Let G=SU(/^+0, H=S(U(p)xU(g) xU(!)) with p, q, 1^2 and

n: H -> G given by [\ip (§) ̂  <§) id] © [id (§) id (§) pj. Actually, n is not effective, since the
kernel of i^p(§)^ is a one-dimensional central subgroup, so that 7i(H)=H/U(l). One
can show that the isotropy representation is [\Xp (§) \iq (§) \if]^ © [id (§) ad (§) ad] and a
computation shows that gp ls Einstein iff p2 + q2 — Ipq = — 1 (and hence (^3). There are
infinitely many positive integral solutions of this equation, e.g., if J=3, /?o=^o= 1, then
pn = qn -1? (ln=^c[n-l ~Pn -1 g^ recursively solutions of p2 + q2 — Ipq = — 1 with 1=3. To
describe all solutions of this equation, let d=l2—4 and consider Q( /d). This quadratic
extension is the same as Q(y, where ^=( f+ /P^4)/2. E. has minimal polynomial
x2—lx-}-1. Let CT be the generator of the Galois group of Q(y/Q. The Galois conju-
gate y is (; - /P-4)/2. Consider the lattice Z [^] c Q (^). A typical element in Z [^ can
be written as m^—m^. The norm

N ( m i — m^Q ==(m i—w^) (m i—m^y}= m^+m|—!mi m^.
Hence finding all integer solutions for a given I is equivalent to the determination of
elements of norm — 1 in Z [Q. It is a well-known result in number theory (Theorem 1,
p. 118 of [6]) that all solutions of N ( w i — m 2 ^ ) = — l have the form ±^ sn^ where seZ
and { n j is a set of pairwise non-associate elements of norm — l i n Z [ y . { n ^ } may be
empty (for certain values of 0, but if it is non-empty, it gives rise to infinitely many
solutions. One can show that for infinitely many values of I {n,} is non-empty, and for
I = 3 it easily follows that the above solutions are the only ones.

We finally remark that the quotients of SU(n) and Sp(n) in Table IA are related to
symmetric spaces in a similar fashion as the strongly isotropy irreducible quotients of
SU(n) and Sp(n) are. (See Chapter 3.)

4. TABLE OF RESULTS. — We now summarize in table form our classification of normal
homogeneous Einstein manifolds M=G/H where G is compact, connected, simple, H is
a compact connected subgroup, and where G/H is not strongly isotropy irreducible.

In view of remarks made in section 1 we shall only list the Lie algebras g and I). The
embedding dn: I) -^ 9 is specified by (p ° 71, where (p is the lowest dimensional basic
representation of 9, or by the embedding of f) into one of the maximal subalgebras of
maximal rank of 9.

A regular subalgebra in these tables means a subalgebra of maximal rank, an R-
subalgebra is a subalgebra which is contained in a regular subalgebra, and an S-subalgebra
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is one which is not contained in any regular subalgebra. In the case of an R — or S —
subalgebra, the index of the subalgebra is also given. Recall that for simple compact
connected groups H <= G, 713 (H) = Z -> 713 (G) = Z is multiplication by an integer, which
is called the index of t) in 9. See section 2.2 for more details.

Note that the items in Tables IA are not necessarily mutually exclusive.

TABLE I A

Normal homogeneous Einstein metrics—G classical, simple

No. 9 t) Embedding of t) in 9 % Remarks

1. . . . .

la. . . .

Ib. . . .

2c. . . .

3a. . . .

3b. . . .
4. . . . .

5

independent of i

6. . . . .
p2+q2-lpq=-l

la. . . .

I b . . . .

lv.,(%v,^dbid1ffi> - - 2 . 2
. . . . .

9
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su(n\
so (2 n)

su (nk)

sp (nk)

so (nk)

so (n2)

so (4 n2)
SO (M),

n = dim t)

50 ( ̂  dim T t f )\ i 7

SM(/^+0

5/?(3?I-1)

so(3n+2)

so (26)

vn(K)

any maximal
abelian subalgebra

s(u(k)@...@u(k))
n copies

sp(k)@. . .@sp(k)
n copies

so(k)@. . .@so(k)
n copies

so(n)@so(n)

sp(n)@sp(n)
t) semi-simple,

non-simple
^so(4)

t)iC...et),
(t),, 7c,-) as

in example 3
dim 7i;
dimH,

u(l)@u(p)@u(q)
M(l)e«(l)

sp(n)@u(2n—l)

so(n)@u(n+l)

sp(\)@sp(5)@so(6)

rr-

all embeddings
are conjugate

^[id®. . . ® U f c ® . . .(g)id]
i

n

^[id®. . .®V2fe®. . .®id]
i

^[id®. . .(g)pfc(g). . .(g)id]
i

Pn®Pn

V2»®V2n

ad

i
^ [id®. . . ®7r;®. .. ®idJ

1=1

^[id®. . .0^®. ..®id]
i

where A2 TC, = ad /i;©Xi

[u,(g)id(g)id]e

[id(g)Up®nJ

[V2n®id]@[id®U2n-l]lHl

[pn®id]®[id®^+i]R

[id®id(8)pj
^

rn=Alff>rn=Al

root space decomposition

£ [id®. . . ®Hk®. . . ®u?®. . . ®idk

£ [id®. . . (§)V2 fc®. . . ®V2 k®. . . ®id]

£[id®. . .®pk®. . .®pk®. . .®id]

[A2 p^(g)(S2 p^-id)]C[(S2 p^-id)®A2 pj iff ^

[S2V2„®(A2V2„-id)]e [(A^-id^S2^]

^ [id®. . . ®7c,®. . . ®7Ty(g). . . ®id]®
f < j i

[^®H?®u^^e
[id®ad(g)ad]

[^n^^n-ifcepd^S2^^^

[Pn®Un+ ifc®[id®A2 U^ J^

[V2®Vio®P6]®[0®»——•——•——•=0®0——0——0]

1
9rn=»1

n^3

k^2,n^3
regular

subalgebra

/c^l , n^3
regular

subalgebra

k^3,n^3
regular

subalgebra
is even n ̂  3

n^2

1>1

^=2
^=2
^3

n = l
regular

subalgebra
n^3

regular
subalgebra
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CHAPTER TWO

Computation of the Einstein constants

In this chapter we discuss the practical aspects of computing Einstein constants, and
collect various useful facts from representation theory.

1. FACTS FROM REPRESENTATION THEORY. — First we consider how the isotropy represen-
tations of quotients of the classical groups can be determined. Let ^, v^, pn denote
respectively the usual complex representations of SU(n), Sp(n), and S0(n) (or of the
corresponding Lie algebras) on C", C2", and C". Then ^® ̂ =id©ad^^ (id is the
trivial 1-dimensional representation), S^^^ad^^, and A2 p,, = ad^, („). Now let G be
SU(n), Sp(n), or S0(n), and n: H -> G be an almost faithful representation of a compact,
connected group H. Since adg=ad^©/, the isotropy representation 7 °f G/n(H) is
determined by n ® n* =id © ad^ © % in the unitary case, S2 71= ad^ © /, in the symplectic
case, and A 27t=ad^©7 in the orthogonal case. Note that the above relationships still
hold if the representations are replaced by their complexifications. Moreover, the Eins-
tein condition can be expressed in terms of the complexified isotropy representation
(5^(1.12)).

When H is not semi-simple it is more convenient to allow G=U(n) and consider
quotients of U(n) rather than of SU(n). Let JLI,, denote also the n-dimensional complex
representation of U(n). Since ̂  ® n^=ady(^, if n: H -> U(n) is almost faithful, we have
upon restriction 7i(S)7i*=ad^© ̂  where 7 ls Ae isotropy representation of
U(n)/7i(H). However, in this case U(n)/7t(H) need not be almost effective.

Let I) be compact. Then id c= n ® 71*, id c: A2 n if n is symplectic, and id c S2 K if n
is orthogonal. Furthermore, in each case the multiplicity of id is one if n is
irreducible. The condition A2 71= id holds only for the 2-dimensional representation of
su (2) and S2 n ̂  id if TC -^ id. If A2 n = ad^, then I) = so (n) and n = ?„. If S2 K = ad^, then
^)=sp(n) and u=v^^' If 7i;®7i;*=id©ad^, then t)=su(n) and ^==^n'

The following well-known isomorphisms will be used frequently:

A2 (7t © a) =A2 n © A2 a © [n ® a],

S2 (7t © a) = S2 7i © S2 a © [71 ® a],

A2 (K (§) a) = [A2 n (§) S2 a] © [S2 K (§) A2 a],

S2 (7T (§) a) = [S2 n ̂  S2 a] © [A2 n (§) A2 a].

Certain irreducible summands of 7 are found by

(2.1) LEMMA. — Let n^ be an irreducible complex representation of a compact Lie
algebra t) mth dominant weight ^,
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582 M. Y. WANG AND W. ZILLER

(d) T^-a c: A2 T^ with multiplicity 1 if a is a siw/?k root with (^,a)^0. J/71^ is in
addition orthogonal, then 7i2x-a * ad/. c A27^ Mnfess (I), 713,) is one of the following:

I /\{so (n), p,), 1 so (8), o—o^ I, (so (7), o—o = •), (G;, o = •), or (sp (n) © sp (1), v^ „ ® v^

\ 0 ^
and a is t/i^ simple root of sp(\)).

(b) 7i23, <= s27^ mth multiplicity 1. If n^ is symplectic, then 7123, + ad^ c s271^ unless
(t),7iO=(s/?(n),V2j.

(c) 7r,,+^ c TT,, 00 71? wi^i multiplicity 1. Ifn^Kf, ^+31* + ad^ Mnfcss
(l),7i)=(su(n),^) or (M(n),^).

For a proof, see, for example, [23]. It is also implicit in the proofs of Propositions in
[25]. Here we only note that if i\ is a dominant weight vector of 71,, and u^-a = ̂  (E-a) ̂
then i;,, A i^_,, ̂  ° i\ (symmetric product), and ̂  ® vf are clearly weight vectors in A2 n^
S2 71̂ , TT), ® 71? respectively of multiplicity 1 and are moreover dominant. This proves
the first part of each statement in (2.1).

The dominant weight of any irreducible summand in 7^0 TI?, A2 7 ,̂ or S2^ is
respectively of the form ^X^- Sn^a,, 2X-a-£n,a,, or 2^-£n,af, where a, are the
simple roots of 1), n^ are non-negative integers, and a is a simple root of I) such that
(5i,a)^0.

The following Lemma is useful for comparing Casimir constants. It is well-known,
but we include a proof for the convenience of the reader.

(2.2) LEMMA. — Let n^ and n^ be irreducible complex representations o/t) and Q a
bi-invariant metric on t). (We extend Q to a non-degenerate symmetric form on t)* ® C,
denoted by Q.)

(a) Ifi) is compact and ^2=^1— Sm^-ay, where a, are the simple roots of^ and mj are
non-negative integers, then -Q(^i,^+25)^ -Q^, ^+2 8) with equality iff'^=K^

(b) If 1) is semi-simple and ^^^ for every simple root a, then
-Q(?4, ?4+28)^-Q(^2^2+28) with equality iff^=^2'

Proof. - (a)

-Q(54,?4+28)+Q(^2+28)
=-2£m^Q(^,a^)-2£m^.Q(a^8)+£mfm^Q(af,a^.)

=-£m,Q(a,,a,)(^+l)+£m,m,Q(a,,a,)

since Q(28, a,)=Q(a,, a,). Because ^,2 ls dominant, we have

^^rn2-^^^.
, Q(a,., a,)

4' SfiRIE - TOME 18 - 1985 - N° 4
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Hence -(1/2) ̂  (a,, a,) ̂  -S w; Q(a,, a,). Therefore,

-Q(^i,^i+28)+Q(^,^+28)^-2:m,Q(a,,a,)(l +(1/2)^)^0

with equality iff w,=0 for each 7.
(b) The proof of (a) remains valid if the m/s are arbitrary non-negative real

numbers. But if ̂ ^, then ̂ -^ is dominant with ^-^=£ m,a, for some non-
negative rational numbers m^ (since the entries of the inverse of the Cartan matrix
2 Q(af, a,)/Q(o,, a,) consist of positive rational numbers). •

2. COMPUTING CASIMIR CONSTANTS. - It will be convenient to use a particular normaliza-
tion of the Killing form. For a simple Lie group G, let BQ be the negative of the Killing
form and B$ be the induced metric on g*. Let ^ be the maximal root of G and B^ be
the multiple of B^ defined by B̂ * (^i, n) = -2. We write

Bo = (XG Bo and hence B(* = a^ B$.

Then (XG= -(l/2)BG(H,ji)= -2/B$(u,H), where H is dual to n with respect to B^.
Below we list the values of o^ for the simple Lie groups. (See, for example, [7] p. 40

for their calculation.)
TABLE II

(XG=-(l/2)BG(n,a

G

SU(yi)
Sp(n)

SO(M),n^5
S0(3)

G^
F4

E6

£7
Es

2n
2(n+l)
2(M-2)

4
8

18
24
36
60

Since

B,,(,,)(A, B)=-(n-2)tr(AB), B,p^(A,B)= -2(n+l)tr(AB),
and

B^(,,(A,B)=-2ntr(AB),
we have

B^A^——^AB), n^5,

B;,(3,(A, B) = -^tr(AB), B^(,)(A, B)= -tr(AB),

and
B^(,)(A,B)=-tr(AB).
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In this paper we consider the Einstein condition for standard homogeneous metrics
on G/H with G simple. Therefore, by (1.12) it is equivalent to compare the Casimir
constants of irreducible summands of ^ defined using B^ instead of BQ. For any
irreducible representation n^ of H(Hc=G), we introduce the notation E(TI^) for the
Casimir constant —8^(^,^+28). We sometimes use the same notation for Casimir
constants with respect to other bi-invariant metrics on H. When we do so the bi-
invariant metric used will be clearly stated.

If 9, t) are both simple Lie algebras and t) c 9, then the index of t) in g is the constant
[g:t)] so that Bg=[g:t)]B^. Dynkin [8] showed that this constant is an integer, and
Oniscik [18] showed that his integer is equal to the index of the homomorphism
7t3 (H) -> 713 (G) where H c= G are Lie groups whose Lie algebras are I) and 9
respectively. In Chapter 4, to indicate the index of I) in an exceptional Lie algebras 9,
we shall place it at the upper right hand corner of the symbol of t). For example, the
principal 3-dimensional subalgebra of G2 is written as A^8.

To compute the indices of simple subalgebras of the classical groups we also introduce
the index of a representation. If n is a complex representation of a simple Lie algebra
t), the index of n is the constant i(n) so that

-tr(7c(X)7i(Y))=f(7i)B^(X,Y) for all X, Yet).

i (n) clearly satisfies

i (n © o) = i (n) + i (a), i (id) = 0, and i (n (g) a) = i (n) dim 0+1(0) dim 71.

If 7t=7i^ is irreducible and {Xj, { Y j are dual bases of t) with respect to B^, we get

- i (7c) dim t) = - i (n) ̂  B^ (X,, Y,) = ̂  B^ (n (X,) n (Y,) X,, Y,)
i i, J

=ZB^(-C,.B,(X,),Y,)=(dim7i)B^(?i,^+28).
j

Thus

(2.3) .^)=-f^)B,*(X,^25).
\ dim t) /

If t) <= 9 with t), 9 simple and q> is a representation of 9, then [9:1)] = i (<p [ t))/i (cp), where
(p|l) is the restriction of (p tot). Note that i(Hn)=i(v2 „)==!, f (p^)=2 if n>3, and
f(p^)=4. Hence if n is a unitary n-dimensional representation of t) with t) simple, we
have [su (n): n (t))] = i (n\ so that in particular i(n) is an integer. If n is symplectic then
[sp(n): 7i(t))]=f(7c), and if n is orthogonal [so(n): 7T(t))]=f(7i)/2, n^5.

For the standard inclusions so(m) c= so(n)(3<m^n), sp(m)^sp(n\ su (m) c su (n),
we have [9: t)] = 1. Also, [so (2 n): su (n)] = [su (2 n): sp (n)] = [so (4 n): sp (n)] = 1, while
[so (n): so (3)] = 2 if n ̂  5, and [su (n): so (n)] = [sp (n): su (n)] = 2 except that
[su (3): so (3)] = 4. Table V of [8] contains the indices of the basic representations of the
simple Lie algebras.
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Let ^ be the isotropy representation of G/H with G compact, connected, simple,
and I)=l)i©. . . ®^©t with ^ simple and t abelian. If 7i^c=^(g)C, then
7^=71^ (§). . . (§) TC^ (§) 71̂ , and from the above it follows that

(2.4) E(^)=-BG*(^X+28)=-BG*(^o^o)-Ef——)B,*(^,^+28,),
i vte^j/

where 8^ is one half the sum of the positive roots of I)f. We can compute [9:1)j as
indicated before. So we are left with computing —B^*(X,^+28) for a simple Lie
algebra I), which we from now on abbreviate by (^, ̂ +28).

Let t) be simple, {oc ,} be the simple roots of t), and T(. be the (dominant weight of the)
basic representation corresponding to a, defined by 2 (r,, a,) =8^ (a,, a,). Since { r , } is a
basis of the Cartan subalgebra of I) dual to { 2 oif/(ap a^)} with respect to B^*, the inverse
matrix of g^ = 4 (a,, a,)/((Xf, o^) (a,, a,) is ̂  = (T^ T,). Since ^ = £ ̂ al T, and 8 = £ T^ we have

(2.5) (?l,^+28)=S?laaa^,,+2S^(^^,).
», J i J

The matrix (g^ for each simple Lie algebra is given in Table II, pp. 117-8 of [8]. From
this one easily obtains Table III of Casimir constants of all the basic representations and
Table IV for a few other representations that will occur frequenctly in the later chapters.

3. SYMMETRIC SPACES AND ISOTROPY IRREDUCIBLE SPACES. — We next collect some results
in [23] which will enable us to compute in a uniform fashion the Einstein constants of
symmetric spaces and strongly isotropy irreducible spaces.

Let G/K be an n-dimensional irreducible symmetric space of compact type with
(orthogonal) isotropy representation 71. Since by (1.6, 1.7) C^ ̂ j (=(1/2) Id, we have

(2.6) E ( 7 r ) - o c G

which depends only G and not on the subgroup K. If 7 is the isotropy representation
of SO(n)/7i(K), i. e., A2 71= ad; © ̂  then we have

(2.7) q,Bo|(=2C^o|(=H

even if SO(n)/7t(K) is not strongly isotropy irreducible.
We distinguish four types of symmetric spaces: the hermitian symmetric spaces G/H- S1,

the quaternionic symmetric spaces G/H-Sp(l), the real symmetric spaces G/H with H
simple, and the Grassmannians over 1R, C, and D-0.

If L/H is strongly isotropy irreducible but not symmetric, then L is simple
(Theorem 1.1 in [25], p. 62). If L is in addition a classical group, then L/H is related
to a symmetric space G/K as follows: (for details, see [23])

(A) L=SU(n). — Let G/H'S1 be an irreducible compact hermitian symmetric space
of (real) dimension In. Its isotropy representation n = [n^ (§) n^]^ and SU(n)/7i^(H) is
strongly isotropy irreducible with isotropy representation ^=7^+3^. Notice that if

ANNALES SCIENTIFIQUES DE L'^COLE NORMALE SUPfeRIEURE
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SU(/7): -n2=l 2(/7-2) /7^
n n

TABLE III

Casimir constants of basic representations

y tn - j ) " ^ (^.2)2/"±i\
n \ n I

Spin): /7+^- In 3{n-^~) i^-th1) -y(/7-1) (/7+3) -y(/7+2)

/7 (2/7+1)
(/7-1) (/7+2)S0(2/7+1): In 2(2/7-1) y (2/7-/+1)

SO (2/7): 2/7-1 2(2/7-2) y(2/7-y)
-0-

8 4
G2

F4:
18
0-

17
PL.

36

1
3

33 1
3

24
——•——

48

12
——•

33 1 17 1-
3 3

^Q

96 196 300
-0-

240
-0-

180
-0-

120 60

> 1 4 4

G/H- S1 is a complex Grassmannian the above construction yields S\J(pq)/S\J(p)' SU(^),
while for the real Grassmannian SO(n+2)/SO(n)-SO(2), which is hermitian symmetric,
the construction yields the symmetric space SU(n)/SO(n).

Since TI^+^ (§) id c= (^ ^) n^) (g) (nf & n^) c A2 n we have C^ eo =Id by (2 •7)- Let

Xo be in the complexified Lie algebra of S1 with ^(^o)^- Then by (1.8) we have
Bo(Xo,Xo)=-2n and B£(5io^o)=-l/2n. Since C,^^ ^=(1/2) Id, we have
C^^=(l/2-l/2n)Id. We next relate Be to Bsu(n). Since Bgu(n)(A,B)=-tr(AB),
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(1.8) implies that Bsu^|t)=l/2(BG- B^. In [23], we show that
BH=(l-(n-l)/dimH)BG if 1) is simple, and hence Bsu^|l)=((n-l)/2dimH)BG.
Therefore, with respect to TT, : t) c SM (n), for simple 1), EOc)=2dimH/(n-l) and
E(7i^)=dimH/n.

Conversely, every non-symmetric strongly isotropy irreducible quotient of SU(n) arises
in this fashion from a compact hermitian symmetric space.

(B) L=Sp(n). - Let G/H-Sp(l) be an irreducible compact quaternionic symmetric

space of (real) dimension 4n. The isotropy representation n == n' (8) o and Sp(n)/n'(H)
is strongly isotropy irreducible. Notice that if G/H • Sp (1) is SU (n + 2)/S (U(n)•U (2)),
the above construction yields the symmetric space Sp(n)/U(n), and for
SO(w+4)/SO(n)-SO(4) it yields the strongly isotropy irreducible space
Sp (n)/SO (n) • Sp (1), which was not included in [25]. If G/H • Sp (1) is not also hermitian
symmetric, then 71'= 71, and 7=712,.

Since n^ ® id c S2 TC, ® A2 (o) <= A2 71, (2.7) implies that C^ ̂  = Id. If o has domi-
nant weight A,o and Xo e sp (1) ® C with Xo (Xo) = 1, then (1 .8) implies that

^(^^(^Kspd^o^o)—4'^ — 4 n — 8 = — 4 ( n + 2 ) .

Since §o = ̂ -o, we have

BS (^ ^o + 2 5o) = 3 B$ (?LQ, ̂ ) = ~3

4(n+2)

and hence

r ^ 3 \^ 2n+l .,
c-BG=l2-4(nT2)/d=4(n^^

Together with Bgp^(A, B) = -tr(AB), (1.8) implies that B^ 11)= l/2(Be-BH). If
() is simple, we show in [23] that BH = (1 - n (2 n + l)/dim H (n + 2)) B^. Therefore,

R' Ih ( n(2n+l) \T..
^^'^^(n+^dimHr05

so that E (7) = (2 (n + 2) dim H)/n (2 yz + 1) and E (71,) = dim H/2 n.
Conversely every non-symmetric strongly isotropy irreducible quotient of Sp(n) arises

in this fashion from compact quaternionic symmetric spaces.

(C) L=SO(n). — Let G/H be an n-dimensional real symmetric space with I)
simple. Its isotropy representation is of the form 71,. Then SO(n)/7i,(H) is strongly
isotropy irreducible with isotropy representation 7. Either there exists only one simple
root a with (?i,a)^0, in which case x=7c^-«, or there exist two such simple roots, in
which case (t),7c,)=(5i^),ad), n=k2-!, and x® C=7i2,-,©7i^_,. In either case we
have q,BG==Id and C^G=(l/2)Id. From [23], we have BH=(l-n/2dimH)BG and
since Bso(.)(A,B)=-l/2tr(AB) we have BsoJt)=l/2(BG-BH)=(n/4dimH)BG.
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TABLE IV

G (^+25)

SU(n) . . . . . . . . . . . . . . o—o—. . .—o 2(n-l)(?i+2)/n

i i
SU(n) . . . . . . . . . . . . . . Ad=o—o—. . .—o—o 2n

SU(2). . . . . . . . . . . . . . o (l^^+fc

SU(3) . . . . . . . . . . . . . . o—o (2/3)yc2+^+f2)+2?+0

Sp(n) . . . . . . . . . . . . . . Ad=»-—»—. . .—•=0 2(n+l)

2
S0(n) . . . . . . . . . . . . . . S2p„-id=o—o—o—. . . 2n

TABLE V

Non-symmetric strongly isotropy irreducible quotients of the classical groups

L/H K /

SU(n)/7i,,(H), H simple. . . . . . . TC=^ ')i=n\+^
E (n) = dim H/n E (50) = 2 dim H/(n -1)

SU(^)/7r(SU(/?)-SU(g)) ^=^p®^ X=ad^®ad,^
K^^^, (^ ^)^(2,2) . . . . ^.{K}={\|q)((p2-\}|p)^(\|p}({q2-\)|q} E(x)=(l/^(2^)+(l/^)(2^)

Sp(n)/7t(H), H simple . . . . . . . TC=T^ X=7c2)l
E(7c)=dimH/2n E(5c)=2(n+2)dimH/(2n2+M)

Sp(n)/7c(SO(n)-Sp(l)), n^3 . . . 7i=Pn®V2 ^-(S^^-i^^ad^d)
E(7r)=(l/4)(n-l)+(l/n)(3/2) E(x)=(l/4)(2n)+(l/n)(4)

SO(n)/7t(H), H simple . . . . . . . TC=TC^ X=^2^-o(o r 7 c23l-ct®7 l2^-(x*
E (7t) = 2 dim H/n E (50) = 4 dim H/n

SO(4n)/7c(Sp(n)Sp(l)), n^2. . . ^=^2n^i X=(A2V2„-id)®ad^(l)
E(7c)=(n+l/2)+(l/n)(3/2) E(x)=(2n)+(l/n)(4)

SO(7)/7r(G2) . . . . . . . . . . . . . K= o=e' E(7C)=4 x= o=e' E(%)=4

Table VI

G/K 71 A27c=ad^,©/

SO(p+9)/SO(j9)'SO(^) 7i=Pp®P, X= [ad^^S^-id)]
^^^>1. . . . . . . . . . . . E(7i)=(l/g)(^-1)+(!//?) (9-1) CKS^^pp-i^^ad^J

E(x)=(l/9)(2^-2))+(l/^)(29),
(1/g) (2^) + (1/^(2(9-2))

Sp (p + 9)/Sp (?). Sp (q) n = V2p §)v^ 30 = [(A2V2p - id) ®ad^ (,)]
^^^>1 . . . . . . . . . . . £(7c)=(l/29)(p+1/2) + (1/2^(^+1/2) ©[<,(„) ®(A2^-id)]

E(x) =(1/2^) (2^) +(1/2^) (2(g+l)) ,
(1/29) (2(^+1))+(1/2/0(29)
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Thus E(^)=(4dimH)/n and E(7i^)=(2dimH)/n. The only non-symmetric strongly
isotropy irreducible spaces of the form SO(n)/H with H non-simple are
SO (4 k)/Sp ( k ) ' Sp (1), k ̂  2. Conversely, every non-symmetric strongly isotropy irreduci-

i i
ble quotient of S0(n) arises this way except for (t), n^) =(G^ o=»), where ^= o=».

In Table V we list n^ and / f01' the non-symmetric strongly isotropy irreducible
quotients of the classical groups. If the subgroup is non-simple, the index and normalized
Casimir constants for each simple factor can easily be read off from the table, and hence
also the Casimir constants with respect to any other bi-invariant metric on I). (This will
be useful in Chapter 3.) Table VI supplies the same information for the real and
quaternionic Grassmannians, for which the above construction does not yield strongly
isotropy irreducible spaces.

4. IRREDUCIBLE SUMMANDS IN A2 K^ AND S2 K^. — In the next chapter we need to know
irreducible summands in A2^ other than those given by (2.1). Here we describe
them. Let () be a compact Lie algebra, and a, P be simple roots of t). Then we call
oci, . . .,o^ a chain of simple roots connecting a and P if a^=a, a^=P, (a^a^+^^O, and
(a? o^)=0 whenever j ̂  i + 2. Such chains were first considered by Dynkin ([9], p. 266).

(2.8) PROPOSITION. — Let n^ be an effective irreducible representation off) with (^, a) 7^0,
(^, P) 7^0 for two distinct simple roots a and P of1), and let a^, . . ., a^ bera chain of simple
roots connecting a and P with the additional property that (^-, a^) = 0 for 2 ̂  i ̂  k — 1. Then
7T23i-ai-...-akc= A2 7i^ wlt^ multiplicity 1. Furthermore, if n is orthogonal, then
^-ai-...-^ c ado unless n=^^+iy

Proof. — Let v be a dominant weight vector of n-^. Then it follows from the hypotheses
and any one of the standard formulas for the multiplicities of weights of n^ that ^,—a,
?i-ai-a2, . . .,5i-ai-a2-. . . -o^.i, ^-a^, ̂ -^-i-^ ' • • » ^-0^2-^3-. . . -a^,
and ^ — a i — a 2 — . . . — a f — . . . — a f c (a^ deleted) have multiplicitly one and that
X — a i — o ^ — . . . — a f c - i — a k has multiplicity fe. The corresponding weight vectors are
then of the form t;,=X_^.X_^. . .X_^y , w;=X_^._^. . .X_^y , ( l^f^fc-1) , and

^=X^. . .X_^X_^. . .X.^X_^ (2^fe-l).

A basis for the weight vectors with weight X—ai — . . . —o^ are then Zf=X_,.^.

Let A= [zen^®K^\z has weight 2 ' k — a i ^ — . . . — ^ } ' A basis for A^A^TI^) is
given by v A z^, v A z^, . . .,v /\ z^, v^ A H^_i, u^ A w^_2, . . .,1^-1 A w^, and hence
A C} A2 (TI^) has dimension 2k— 1. On the other hand, the only possible representation
in A^TI^) in which 2 ^ — a i — . . . —o^ can be a non-dominant weight vector are T^-ai
and 7^2 ^_^. But as before we see that 2 5 i — a i — . . . — a j f c has multiplicity f e — 1 in
^2 ̂ -ai an(^ ^2 ^-<x2' Hence ihere is one linearly independent weight vector in A Pi A2 (n^)
not accounted for, and this must be a dominant weight vector for an irreducible summand
7i2 „-«,-...-„ in A2 (7^).
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If n^ is orthogonal and T^-ai-...-^ c ad^ then ^=2X-ai-. . . -o^ is the maximal
root of a simple ideal of t) and (n, ai) >0, (n, o^) >0. By the effectiveness of T^, I) must
be simple and t) = su (k +1) follows immediately. •

Remarks, — (a) By a similar argument one can show that under the same conditions
7i2?,-ai-...-ak c s2 (^O with multiplicity 1.

(b) One can obtain further irreducible summands in A2^ and S2^ under other
hypotheses using similar methods. For example, if ^^3, then besides n^^-^ c= ̂ (^
we also have 7^-3 a c A2^). Likewise, if X01^ besides T^ c S2^) we also have
^2 ̂ -2 a c s2 (n))' such information considerably simplifies the classification of strongly
isotropy irreducible quotients of S0(n) and Sp(n). (Compare Lemma 7.4 and
Theorem 8.1 in [25].)

(c) Irreducible summands other than n^+p in ^(2)7ip were studied by Dynkin
(Theorem 3.1 in [9]). In the special case where p=^*, he showed that if o^, . . ., o^ is a
chain of simple roots joining a^o^ such that in addition (^,04)^0,
(^ 002) = . . . =(^, a,,) =0, (X*, 04) = . . . =(^, Ofc-i) =0, (^i*, a^ ̂ 0, then

7l,+^_^_...-^C7l,®7l?

with multiplicity 1.
Hence if SU(n)/7^(H) is isotropy irreducible (and is positive dimensional), which

by (2.1) is equivalent to ^g)7i?=id®ad^©^+^, the above implies that
ad(=T^+^_a -...-a. By looking at each simple Lie algebra one can immediately enume-
rate the possibilities for (t), n^). This gives a short proof of Theorem 6.1 in [25].

CHAPTER THREE

Quotients of the classical Lie groups

We will now classify the Einstein metrics among (G/H, gg), where G is a classical,
compact, connected, simple Lie group. H will be described by an almost faithful
representation n: H -> G. If 7 is the isotropy representation of G/H, the Einstein
condition is equivalent to C^^^=a.ld by (1.1). In each of the following sections we
begin by classifying those homogeneous spaces G/7i(H) for which C^Q=aId for some
(positive definite) bi-invariant metric Q on t) ((3.1), (3.4), (3.6), (3.8)). These results are
of independent interest; in particular (3.8) gives a new characterization of symmetric
spaces (not necessarily irreducible) in terms of their isotropy representations. Then we
specialize to the case where Q=B [ I) and use results in Chapter 2 to give the classification
of normal homogeneous Einstein metrics on quotients of the classical groups. All
dimensions will be taken over the complex numbers unless otherwise stated.
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1. THE UNITARY CASE

(3.1) THEOREM. — Let n be an almost faithful n-dimensional unitary representation of
H, and let ^ be the isotropy representation of \J(n)/n(H), i.e., TI (X) TT* = ad^ ® %. If
C^ Q=a.Id for some constant a and some bi-invariant metric Q on I), then one of the
following holds:

(a) there exists a hermitian symmetric space K/H whose isotropy representation is [K\^,
(b) H = Sp (w) - S1 and n = v^ 6) <P, so that U (2 m)/n (H) = SU (2 m)/Sp (m), m > 1.
(c) H^Sp^-S^-H^ with n = [(v^m (8 (p) ® id] © [id ® TcJ, w > 1, on^ [TI^R ^ ̂

isotropy representation of an irreducible hermitian symmetric space.

Proof. — Note first that H cannot be semi-simple because then TC(H) c SU(n) c U(n)
and so ^ contains a trivial representation, contradicting C^ Q = a Id.

We can therefore assume that l )= t ) i©. . .©t )^©t , where I); is simple, and 1=11^ with
k ^ 1. Let Tii ®.. . (§) TT,. ® (p be an irreducible summand of n. Then (p is 1-dimensional,
say with dominant weight \. .Let {\} be the set of dominant weights of t appearing
in the irreducible summands of TL {^p} must contain a basis for t* ® C since n is
faithful. Hence the number of irreducible summands of n is at least k. On the other
hand, each irreducible summand of n contributes to n ® n* the summand

(TCi ® . . . ® 71,. <g) (?) ® (7C? (g) . . . ® 7C* (g) (p*) ==(7li g) 7l?) (g) .. . ® (^ (g) 71*) ® id,

which contains a trivial representation of 1). Since this cannot lie in % by hypothesis,
and since ad^ contains exactly k trivial representations, n must contain exactly k irreduci-
ble summands of the form n^ (§)... ® Ky ® (p with {(p} linearly independent.

Next we show that for each simple factor I), in t) there exists a unique irreducible
summand of n which remains non-trivial when restricted to ^. If n^ ®.. . n^... ® (p and
TCi ® ... K i . . . ® ̂  ® $ in 71 are such that 7t, ̂  id, 71, 7^ id, then

(TCi ® 7C*) ® . . . (Hi ® 71*) ... ® ((p (g) (?)

lies in 7 since it cannot be contained in ad^ in view of (p ® $ ̂  id. Now TI^ g) TI* is
reducible since I); is simple. Let 7^=71^ and 7T,=7^. Then Tr,®?* contains TI^+^ and
another irreducible representation whose dominant weight is of the form
X+H*—^^^. By (2.2) it has a smaller Casimir constant than n^+^. This contradicts
q.Q=a.Id.

The above shows that after re-grouping and re-numbering we can write

l )=( i ) l©t l )®( l )2®t2)©. . .©(^®tfc)

(where t)i is semi-simple but not necessarily simple, and tf are 1-dimensional with
t=ti ©.. . ®tjk) and

k

n= © [id (§)... (§) 7tf (§)... (§) id],
1=1
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where T^ is an ^-dimensional faithful, irreducible, non-self-contragredient representation
of t)i © t,. Then

k

n 00 jt* = © [id ® ... (§) (id © ad^ © ̂ .) ®.. . ® id]
1=1

® © [id ® ...(§) ̂  (§)...(§) 7i* (§)... ® id]
i <J

where TI( (g) nf = id © ad .̂ © ̂ . Hence

^= © [id (§) ...(§) ̂ . (§)... (§) id] © © [id (§)... ® TI, (§)... ® T^* (8)... (§) id]^
i i < j

If ^ is the dominant weight of n^ then T^+^ c= TI^ ® 71*, and by (2.1 c), 7i^+^ c ^i unless
(^i®^? 7Ci)=(^(^)» Pw)' I11 ^e latter case [^JR is the isotropy representation of the
irreducible hermitian symmetric space SU(m-t-l)/S(U(m)'U(l)). If n^+^ <= Xp then
any other irreducible summand of ^ has dominant weight 'k + 'k* — S n^ o ,̂ and hence has
a smaller Casimir constant by (2.2). Thus ^.=7t^+^, i.e., (u (n^), l)f © 1,) is strongly
isotropy irreducible. By section 2.3 (A), if this isotropy irreducible space is non-symme-
tric, then [TiJiR is the isotropy representation of an irreducible hermitian symmetric
space. If it is symmetric, then since H, is semi-simple, either SU(nf)/Hf=SU(m)/SO(m)
or SU(2m)/Sp(m). If instead we consider the ineffective quotients U(n^)/H^S1, then
in the first case [jcj^ is the isotropy representation of the hermitian symmetric space
SO(w+2)/SO(m)' SO (2). Thus we have shown that for the n^s occurring in 71, [n^ is
the isotropy representation of some irreducible hermitian symmetric space unless

(b» ® tf, ^i) = (sp (m) © R, v^ ® (p), m > 1.

If for all i, [TiJiR is the isotropy representation of an irreducible hermitian symmetric
space K^/Hf- S1, where K^ is the connected isometry group, then we are in case (a) with
K=Ki x ... x Kfc and H=(Hi x S1) x ... x (Hfc x S1) (at least locally). Notice that for
K and H just described, on H^ x S1 we may take the bi-invariant metric B^ | ̂  © t^ and
let Q be the orthogonal sum of these metrics. By (2.6) and (2.7), C^ Q=l/2Id and
C .̂ Q=Id, so that C^ Q=Id. This gives the converse of 3.1 (a).

Next if for some f, K,=\^ (§) (p with m > 1, then /i=(A2 v^—id) ® id. With respect
to the normalized metric ( , ) on sp(m\ the Casimir constants are m+(l/2) (for v^J
and 2m (for A2 v^— id). Thus, with respect to any bi-invariant metric on t ) i©tp
2E(7if) > E(^). This in particular shows that [71 j^ cannot be the isotropy representation
of a hermitian symmetric space. Notice also that E(T^)/E(^) can be any number in
(l/2+l/(4m), oo) for an appropriate choice of metric on t^. This shows that such a n^
cannot occur if k ^ 3 since (with respect to Q) we must then have
E(7,)=2E(7^). If k=\ we obtain (b). If k=l and ^i ^0, ^ + °» we mus^ ^ve
E (Xi) = B (72) = E (Tti) + E (^2\ or equivalently, E (7ii)/E (xi) + E (n^/E (^2) = 1. Hence at
most one of the n^ say n i, can be v^ (§) cp, so then [n^m must be the isotropy representa-
tion of an irreducible hermitian symmetric space, which is case (c). •
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(3.2) Remark. — We now examine the possibilities for (t)^, n^) in (3.1c). Clearly,
(u(k), Ufe) is possible because ^2=^ and so an appropriate choice of Q gives
E(Xi)=E(7i,)+E(7^).

If ^9^0, then E(7Ci)/E(^i)+E(7t2)/E(/2)=l can only be satisfied if
E(n^)IE{^) < l /2—l/(4m) for some bi-invariant metric on ^©t^. ^ t>2 ls simple, it
follows from Table V that E(K^/E(^)==112-l/(2dimn^)-^-s for any e > 0 by suitably
scaling the metric on t^. Hence (t)2, K^) is admissible iff dim n^ <2m. If l)^ is not
simple, then i)^=su(p) Qsu(q), p ^ q. From Table V, we see that for an appropriate
choice of bi-invariant metric, E ( K ^ ) / E ( ^ ) ^ l / 2 — l / ( 2 p 2 ) - ^ s , for any e > 0. Hence
(b2» ^2) ls admissible iff/?2 < 2m.

(3.3) Remark. — The converse of Theorem (3.1) is true provided that in case (c),
?2? K2) ls one °^ ̂  admissible pairs in (3.2). The construction of Q is obvious by the
discussion in (3.2) and the proof of (3.1).

(3.4) COROLLARY. — Let K be n-dimensional almost faithful unitary representation of
H, and let ^ be the isotropy representation o/SU(n)/7c(H), f. e., n (g) n* =id ® adn © ̂ . //
C Q=ald for some constant a and some bi-invariant metric Q on I), then one of the
following holds:

(a) there exists a hermitian symmetric space K/H'S1 whose isotropy representation is
[n <§) (p]i% ((p is given by the inclusion ofS1 into the center of\J(n))',

(b) H = Sp (m) and n = v^;
(c) H = Sp (m) • H^ with K = [v^ (§) id] © [id (§ TiJ and [n^mls tne isotropy representation

of an irreducible hermitian symmetric space.

Proof. — Set H=H • S1 and 71=71 (8) (p, and apply the previous theorem. •
Next we determine those homogeneous spaces U(n)/7i(H) for which C ^ g . = a . I d .
For the rest of this section E(TI^) will stand for —B^(^, X+28). The corresponding

determination for SU(n)/7i(H) follows as before.

(3.5) THEOREM. — If n is an n-dimensional, almost faithful unitary representation ofH,
and ;y(U(n)/7c(H), gy) is Einstein but not strongly isotropy irreducible, then either:

(a) t)=u(m) © ... © u(m) (k times), n=km, m ^ 1, k > 2, and

n= © (id (§)... (8) ̂  (8)... (§) id),

or;

(b) ^=u(l) © s(u(p) © u(q)\ n=pq+l, p ̂  2, q ̂  2, I ̂  3,

TC = [^ (§) id (§) id] © [id (8) Hp (§) nj, and /?2 + q2 +1 = Ipq.

Proof. — We will apply (3.1) with Q=By^ and use the same notation as that in the
proof of (3.1). Since B^) [ M(n,)=B^^, we can compute E(TI;) using By" .̂ If
7it=7i,,(§)(p with ^ 7^ 0, then ^=7^+^(§)id. Since B;̂ ) | t ) f © t f = —^(71,0^), we have
E ((p) = 1/Mf, where n, = dim 71,.
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We first consider (3. la), where TI^ is the isotropy representation of an irreducible
symmetric space. We claim that in this case if ^ + 0 then E(^) > 2E(7if). Indeed, by
Table V and the above remarks, E(7i,)=(dim^+l)/n,, E(^)=2dim^/(n,-l) if I), is
simple and E^)^2-^2-!)/;^, E(7f)=2(/?2+g2)//^ for the Grassmannian
S\J(p+q)IS(\J(p)'\J(q)). The claim follows now by comparing E(^) and 2E(7if) case
by case.

If the number k of irreducible summands in 71 is ^ 3, then we must have E(7if) =E(T^.)
and whenever %, ̂  0 also E(^) =2E(7if). Hence all Xi=°» L e-.

(t),©t,,7i,)=(M(m,), ̂ ).

For this case E(7if)=mf, so necessarily m^-=m^ which is case (a).

If fe=2, then necessarily Xi=0 or X2=°- Say Xi=°» X2 ^ °» then ^i"^ and

E(^)=E(7ii)+E(7i2). Since E(7ii)=(, E^-E^) must be an integer, and using the
above values, one easily checks that this is only possible if

(t)2 ® ̂  ^2) = (M (P) © u (q\ Up ® u,).

Now E(/2)-E(^2)=(/?2+^2+1)/M and we g^ case (fc)-
If we are in case (3.1c), then using Chapter 2, E(7ii)==m+1/2 + l/(2m) and

E(^)=2m. Hence we must have E(n^)/E(^)=l/2—l/(4m)—\/(4m2) for some integer
m, and one easily checks that this is impossible. •

2. THE SYMPLECTIC CASE

(3.6) THEOREM. — Let K be an almost faithful, symplectic representation of H of
complex dimension 2n, and let 7 be the isotropy representation of Sp(n)/7i(H), i.e.,
S2 n = ad^ © 5C. TTi^n C^ Q = a. Id /or some constant a and some bi-invariant metric Q on
t) iff one of the following holds:

i
(a) Sp(n)/7i(H) is strongly isotropy irreducible (i. e., the representation n (§) o ofH' Sp(l)

is the isotropy representation of a quaternionic symmetric space or

Sp (n)/7i (H) = Sp (p + q)/Sp (p) Sp (q));

k

(b) H = Sp (mi) . . . Sp (w^ and n = © [id ® ... (8) v^. (§)... (§) id];

i
(c) H = Sp (m) • H^, and n = [v^ (§) id] ® [id (8) TI^] wl^ ^2 ̂  ° tne isotropy representation

of a quaternionic symmetric space.

Proof. — The irreducible summands in n are either symplectic or occur with their
contragredients. As in the unitary case, for each simple factor H^- of H, there exists
only one irreducible summand of n excluding its contragredient whose restriction to H^
is non-trivial. Again, using analogous arguments we can write l )=^ i© . . .©^
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k

and 7t= ® [id (§)... (8) TI, (§)... (8) fd], where TI, is a faithful representation of t),. If TI, is

irreducible, then TC, is symplectic and t), is semi-simple. Otherwise, 71, = a, ©a*, and ^
has a 1-dimensional center since id c= o, ® o* c= S2 n^ It follows that

X=©[ id®. . .®^(§) . . .®id ]© ® [id(§)...(§)7r,(§)...®7r.(8)...®id],
» < j

where S2 TT, = ad^. © /f.

First we consider the case where n^ is symplectic with dominant weight 'k. Then

^x^S2^, and by (2.1) either n^ c= ^ or TI,=V^. In the latter case TC,(§)O is the
isotropy representation of the quaternionic symmetric space Sp(w + l)/Sp (m) • Sp(l). If
^i-k c Xp then since any other irreducible summand in .̂ has the form Ti^.^.a., by (2.2)
we must have Xf=^ i.e., Sp((l/2) dim 7r,)/7c, (H,) is strongly isotropy irreducible. If

Sp((l/2) dim7t,)/7Cf(H,) is non-symmetric, then by Chapter 2, n, (§) o is the isotropy repre-
sentation of a quaternionic symmetric space. It cannot be symmetric since H, is semi-
simple and Ki is irreducible.

Next we consider the case where K, = a, ® a*. Then S2 a, c= .̂ Again by (2.2) S2 a,
must be irreducible, which is possible only if ( .̂, 7i,)=(M(m), ^©^) (see [23]). So

i
TT, (8)0 is the isotropy representation of the quaternionic symmetric space

SU (m + 2)/S (U (m) • U (2)). Hence in all cases K, (S) o is the isotropy representation of a
quaternionic symmetric space.

We now examine which combinations of (t),, n,) can occur. First, observe that for
any bi-invariant metric on t),, we have E(^) > 2E(7r,) if /, ̂  0. If I), is semi-simple,
this follows from Table V, and for the symmetric space Sp(m)/U(m) this follows easily
from Tables III and IV.

If all ^.=0, i.e., ( .̂, 7if)=(s/?(m,), v;̂ .), we have case (fc). Conversely, for case (fc),
clearly we can find a bi-invariant metric Q on I) such that E(7if)=E(^.) and so
C^Q=aId. If for i^j, ^ ^ 0, .̂ ̂  0, we get a contradiction since then
E (X») = E (X/) = E (Ttf) + E (TC,). Hence at most one .̂ ^0, say ^ ^ 0, while
X 2 = . . . =Xfc=0. If k ̂  3, we must have E(^)=E(7ti)+E(7r,) and E(7ii)=E(7r,), which
is impossible. If k = 2 we must have E (^) = E (7ii) + E (n^ which can clearly be achieved
with an appropriate choice of Q since E(^)-E(n,) > 0. This is case (c). Case (a)
corresponds to k = 1 and the case Sp (p + q)/Sp ( p ) ' Sp (q). •

Remarks. - Unlike hermitian symmetric spaces, quaternionic symmetric spaces are
automatically irreducible, (a), (b), (c) are not mutually exclusive. The possibilities for
H^ in (c) do not include all of (a) (the missing possibility is Sp (p + q)/Sp ( p ) ' Sp (q)).

(3.7) THEOREM. - I fn is a complex In-dimensional almost faithful symplectic representa-
tion ofH, and (Sp(n)/7i(H), g^) is Einstein but not strongly isotropy irreducible, then either
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(a) t)=sp(m) © ... © sp(m) (k times), n=km, k = 3, m = 1, and

7i = © [id ® ... ® v^ ® ... ® id],

or;

(b) ()=s/?(m)©M(2m-l), n=3m-l, m ̂  2, and 7i=[v^®id] © [id (8) ^m-iln-

Proo/. - We apply (3.6). For (3.6 b) we observe that B^.)=B^), and hence
E(7i,)=m,+l/2. Hence we must have mf=m^, which yields (a). For spaces in (3.6 c),
we need (since Xi + 0) E(^)=E(n,)-^E(n^. But thenm-^\12=E(n,)=E(^)-E(n^
and hence E^^—E^)—1 /^ must be a positive integer. A case by case analysis
using Table V shows that this is not satisfied if ̂  is simple or if n^. = Pn ® v^. If
(t)2, 7i2)=(M(fe), t^y, then E(7i2)=(l/2)fe and E(x2)=^+l since B^) | u(fe)=2B,^,
Xi = [S2 (A and B^) ((p, (p) = 1/k. Thus fe must be 2 m -1, which yields (fc). •

3. ORTHOGONAL CASE

(3.8) THEOREM. — Let n be an n-dimensional almost faithful orthogonal representation
o/H, and let ^ be the isotropy representation o/SO(n)/7i(H), i.e., A27l=ad^©^. Then
C^ Q=O. Id/or some constant a and some bi-invariant metric Q on I) iff one of the following
holds:

(a) K is the isotropy representation of a symmetric space;
i i

(ft) H=G2 andn= o=e (n=7) or 71= id®o=e (n=8);
i

(c) H=Spin (7), 71= o—o=», n=8, or

i
H=Spin(7)-SO(m), (m ^3), TI = [o—o = • ® id] © [id ® pj, n=m+8.

Proof. - 7i=7ii © ... © Ttfc ® [CTI © of] © ... ® [a^ © o*], where n^ a; are irreducible,
(ĵ . ̂  CT*, and Tif are orthogonal. Notice that one n^ can be id. This case will be dealt
with last.

Case 1: t) semi-simple, no id in n. — In this case there are no a^s in 71 since
A2 (a, © CT*) => a, ® a*, which contains id, so that id <= ^ by semi-simplicity. As in the
unitary and symplectic cases, for each simple factor of H, there is exactly one irreducible
summand of n whose restriction to it is non-trivial. So we may write t)=l)i © ... © I)jb

k

\)i not necessarily simple, and n = © [id (S)... ® K, ®... ® id], where 71, is an irreducible,

orthogonal faithful representation of ^-. Then

^ = © [id ®... (g) ̂  ®... id] © © [id (§)... ® 71, ®... ® 71̂ . (g)... ® id]
i K J

where A2 n, = ad^. © ̂ .
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If t)f is simple and n^ has dominant weight ,̂, and if a is a simple root of ^ with

( /(^, a) + 0, then TÎ ., <= A2!!;. By (2.1) either (h,, n,)=(so(m), pj, I so (8), o—o"

\
1 1

(so(7), o—o=»), (G^, o=e), or 7i^_a c= /^. In the first two cases, n^ is respectively the
isotropy representation of the irreducible symmetric space SO(m+l)/SO(m) and
SO(9)/SO(8) (after renumbering the roots of 50(8)). If Tt^-a c= Xi? there are two further
cases. If there are two simple roots a, P of 1), with (^, a) ^ 0, (^, p) ^ 0, then since ^
is simple, there is a chain of simple roots connecting a and P. By (2.8) either
7t^_^_^_ ...-o^ _ ^ - p c: Xi m addition to Ti^-oc c Xp which contradicts our hypothesis by
(2.2), or else n^ = ad (su (m)), which is the isotropy representation of
SU (m) x SU (m)/A SU (m). If there is only one simple root a of ̂  with (X, a) 7^ 0, then
any irreducible summand in ^ has the form T^-a-E^ar which has a smaller Casimir
constant by (2.2). Thus Xi^^-a? ^^ SO(dim^)/7i((H,) is strongly isotropy
irreducible. Since TC, is assumed to be irreducible, and H, is simple, SO(dim7^)/7if(Hf) is
non-symmetric. Hence n^ is the isotropy representation of an irreducible symmetric

i
space except when (^, n^) =(G^ o=»).

Next let us consider 71, corresponding to semi-simple, non-simple ^. By faithfulness,
we may assume that I)f=I); QW Wi V/ not necessarily simple), and ^=7^ ^n^ with n[
and n'i faithful, and both orthogonal or both symplectic.

If n\ and n'i are orthogonal, then

A2 (Ki (8) <) = [A2 ̂  ^) S2 n^] © [S2 K\ %) A2 n^]

= [(ad Vi © X' <§) (^ C lP//)] ® [(ib © y') (§) (ab ̂ / © x"]

Since y, XF// ^ 0, we must have X^X"^ since C^Q=aId. But this implies that
(t)i, 7l0=(so(m/), p^) and (l)^, 7t,//)=(5o(m//), p^Q. Thus 7c,=p^ (§) p^ is the isotropy
representation of the irreducible symmetric space SC^w'+m'^/SC^m')' SC^m").

If TC^ and n'/ are symplectic, then

A2 (7i; (§) TI;') = [(id © ̂  )̂ (ad^/ © ///)] © [(ad ;̂. © /') (§) (id © ̂ //)].

If ^/ and lF// are non-zero, then X^Z"^? and hence })\=sp(in'\ ^i=V2m'V/=SP(m//\
^ =V2y»". Thus, 711=71; (§) Ttt" is the isotropy representation of the irreducible symmetric
space Sp^+m'O/Sp^')< Sp^"). If ̂  or y is 0, say ^^O, then t);=5^(l), TC^V^.

In this case

A2 (7i; ® 71;') = [id (§) (ad^;/ © ̂ //)] © [ad^;. (8) (id © ̂ F")].

Hence id (§)/ / /<= Xr 1̂  ^// ls the dominant weight of TT;', then by (2.1) either
Wi\ n'i/)=(SP(m\ V2m) or n2^fcz')C//' ^n ̂  ^lrst ^SC, 71; = 7C; (§) 71;' = V2 )̂ V^^ is the

isotropy representation of an irreducible symmetric space since ̂  is semi-simple. In
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the second case, any other irreducible summand of ^ is of the form T^'-sn^ which
by (2.2) has a smaller Casimir constant. Thus, C^Q==aId implies that
Sp((l/2))dimn^)/K^(^) is strongly isotropy irreducible and non-symmetric since ^// is
semi-simple. By Chapter 2, TT, = n[ (8) n^ = v^ (§) TI^ is the isotropy representation of a
quaternionic symmetric space.

Therefore, we have proved that for all i, n^ is the isotropy representation of an
i i

irreducible symmetric space unless (̂ ., ni)=(G^ o=») or (so (7), o—o==»).

If all Tif come from irreducible symmetric spaces K^/H;, by taking their product we
obtain case (a). Conversely, choose as the bi-invariant metric on I), the restriction to ^
of the negative of the Killing form of the connected isometry group of the symmetric
space. Since by (2.7), (2.8) C^ Q = 1/2 Id, C^ p = Id, we have C^ Q = Id.

i i
For (G^, o=e) we observe that 7ii=7i= o=», and hence E(7i^)=E(^) for any bi-

i i
invariant metric on I). For (so (7), o—o=») we have ^= o—o==e and with respect
to —B^(7), E(7if)=21/4, E(/f)=6, and hence E(7if)/E(^)=7/8 with respect to any bi-
invariant metric on 1). If k ^ 3 we must have E (^-) = 2 E (^) and hence neither case can
occur. If fc=2, and ̂  ^0, ̂  ^ 0, we must have E(^)=E(^)=E(n^-}-E(K^, i.e.,
E(7ii)/E(^)+E(7i2)/EOc2)=l. It one of ^ or 72=0» say Xi=0» we must have

i
E(^i)=E(7ii)+E(7i2). This shows that (G^, o=») cannot occur and only one of n^ or

i
7i2, say Tii, could be (so (7), o—o==»). 712 will then have to be p^ for some m or the
isotropy representation of an irreducible symmetric space with E (^2) = 8 E (712) for some
bi-invariant metric on ^2- We will now show that this second case is impossible. If 1)2
is simple, then with respect to any bi-invariant metric on ̂  we have E(^2)=2E(7i2) by
Table V. If 712 is the isotropy representation of a real Grassmannian or a quaternionic
Grassmanian it follows from Table VI that E(^) < 3E(7i2) tor any bi-invariant metric
on 1)2. The only remaining (1)2, 712) to consider are of the form ^^=sp(l) ® ̂  with t)"
simple, 7^2 = V2 (8) TI" with TI" symplectic, and Sp^l^dimTr'^/Ti'^H") strongly isotropy
irreducible, non-symmetric. It follows from [23] that 72 ̂ d <§) X"] ® [adsp(i) (§) T^"- J»
where ^// isN the dominant weight of 71" and a is the unique simple root of I)" with
(^//, a) 7^0. By taking the trace of the Casimir operator of A2 71"= id ©T^" -a (see
[23]), it follows that E(7l2^'-a)=(2m /7(m' /+l))E(7l / '), where w^dim^". Since
E (ad,p (i)) = 4, E (v2) = 3/2, we get E (^2) < 3 E (712) tor any bi-invariant metric on t)^. For
future reference we note that also E(7i2) < E^) for any bi-invariant metric on 1)2.

i i
Hence (G2, o=») can only occur by itself ( fe==l) , while (so (7), o—o==e) can occur by

itself or with (so (m), p^) (k = 2).
Case 2: 1) non semi-simple, no id m 71. — We write l)=^i ©.. . ® ̂ ©t, where

dim[Rt=(. As in the symplectic case, there must be exactly I summands of the form
[Tii (§)... ® Ky (§) (p] © [71? (§)... (8) TI^ 6) cp*] with (p 9^ id. Any other summand in n is
orthogonal and of the form n^ (§)... ® n^ (§) id. For each simple factor .̂, there is
exactly one summand in 71 whose restriction to ^ is non-trivial. Hence we may re-write
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t)=^ © ̂ \ where ̂ ^i ©.. • © ̂  (t), semi-simple), t)"=t)fc.n ©. . . © l)^ ( .̂ non-semi-
simple with 1-dimensional center), and n = [n' (8) id] © [id (S) (n" © TT"*)], where

TT' = © [id (§)... ® Tif (8)... (§) id] with TT, an orthogonal, faithful representation of ()„ and
1=1

i
^// == © [id ® ... (8) c .̂ ® ...(§) id] with CT^ 7^ aj" a faithful representation of I) .̂ Then

X= [X' (§) id] © [id (8) ̂ '] © [71' (§) (TT" © Tt"*)], where ^/ and ̂  are respectively the isotropy
representations of SO (dim O/TI^H') and SO (2 dim ̂ /(TC" © TC"*) (H").

Since there exists a bi-invariant metric Q on I) with C^Q=a.Id it follows that
C^ Q = a. Id and C^. p = a. Id. Since I)' is semi-simple, by Case 1, either n' is the isotropy

i i
representation of a symmetric space or (I)', 71')= one of (G^, o=e), (so (7), o—o=»), or

i
(so (7) © 50 (m), [o—o = • (§) id] © [id (§) pj). Moreover, since

A2 (71" © Tl"*) = A2 Tt" © A2 Tt"* © [71" (g) 7C"*], X" = A2 Tt" © A2 7C"* © X,

where ^ is the isotropy representation of L^dimTi^/TT^H"). Hence we also have
C^ Q = a Id. By (3.1), [TI"]^ is the isotropy representation of a hermitian symmetric space,
or (t)", 7i")=one of

(sp (m) © 1R, v^ (§) (p) or (57? (w) © R © f, [v2^ (§) (p ® id] © [id ® id (§) a])

where [a]^ is the isotropy representation of an irreducible hermitian symmetric space. To
exclude the last two cases, we first observe that C^^=a.U also implies that
^A2 n", Q = a ' M. But if TT" contains v^m (§) (p, then A2 TI" contains

A2 v^ ® S2 (p = [id (§) S2 <p] © [(A2 v^ - id) (8) S2 cp]

which have different Casimir constants.
If both n' and [n^]^ are isotropy representations of a symmetric space, we get 3.8 (a). So

i i
we next let (t)', n') = (G^ o = •) or (50 (7), o—o = •), and [TI^ to be the isotropy representa-
tion of a hermitian symmetric space. It suffices to consider the case of an irreducible
hermitian symmetric space. Let y=f)@ R, 71" =71 (§) (p. If I) is simple and TC=^, then
we show in [23] that A2^^-^-^ where a is the unique simple root with
(A-, a) =^ 0. Taking the trace of Casimir operators we get

E(^=^"-^E(^,
(w-1)

where m = dim n^, for any bi-invariant metric on !). Since A2 n" = A2 n^ (§> S2 (p and
E(S2(p)=4E((p) we have E^") < 4E(ii") (and E (n") < E (0 for any bi-invariant
metric. This contradicts

E(7lO^E(7T)^

E^) E(D
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If y is non-simple, then we are in the case of complex Grassmannians, and

T^Pp®^^.

Then

A2 n- = ([A2 ̂  (8) S2 ̂ ] © [S2 H, (8) A2 ̂ ]) ® S2 (p.

From Tables III and IV, again it follows that E(^) < 4E(7^ / /) and E(TI") < E(/"). The
same argument shows that

i
W, 71') = (so (7) © so (m), [o—o = • (§) id] © [id (§) pj)

is not possible. •

Case 3: id c= TT. — Let n = n' © id, where TT' contains no id. Then

A2 7t=A2 71' © 7i'=ad^ © x' © ̂

and hence ^/'©TI' Therefore, by hypothesis Cy p=a Id and C^ Q==O Id. In cases
1 and 2, we already studied C^Q=fl Id. If in addition C^Q=O Id, then 71' cannot be
the isotropy representation of a symmetric space since it follows from Tables V, VI and
earlier remarks that E(^) > E(TI') with respect to any bi-invariant metric on t)'. If

i
(^\ n/)=(G^ o=»), then ')C=n\ which yields precisely the second case in (3.6 (b)). If

i x ^ ^
(t)', -n/) = (so (7), o—o = •), or (so (7) © so (w), [o—o = • (§) id] © [id (S) pj),

we saw already that E(/') ^ E(TT'), contradicting C^Q=O Id.
This completes the proof of Theorem (3.8). •

(3.9) THEOREM. — Ifn is an n-dimensional almost faithful orthogonal representation of
H, and (SO(n)/7i(H), g^) is Einstein but not strongly isotropy irreducible, then one of the
following holds:

(a) l)=so(m)©so(m), 7t=p^, n==m2, m ̂  3; h = sp (m) © sp (m), n = v^ (S) v^
n=4m2, m ̂  2;

(fo) I)=I)i © ... © ̂ , TI= © [id (8)... (g) Hi (§).. .(§) id], n=^ dim n^ I ^ 2, where (̂ ., 71;)
i i

fs the isotropy representation of an irreducible symmetric space with 1)̂  simple or (t)f, 71;) fs
as in (a). Furthermore, we require that dim 7i;/dim H; is independent of i, 1 ̂  i ̂  !;

(c) l )=so(^)©M(fe+l) , 7i=[pfc(§)id]©[id(§)Uk+i]^ ^=3fe+2, fc ^ 3;
(d) t)=s/?(l) ©s/?(5)©so(6), 7i=[v2<§)Vio®id]©[id(§)id(§)p6], n=26;

i
(e) t)=G2, TI= o=e®id, n=8.
Proof. — We apply (3.8). Since (3.8^) gives rise to case (e\ while a computation

shows that (3.8c) does not yield any new Einstein metrics, we shall assume from now on
that (t);, Tif) is the isotropy representation of an irreducible symmetric space.
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N(w BL(H) | so(n,)=B^.)(n,=dim7t;) and so C^^^=a Id, which already excludes
many cases. If TT, comes from a real or quaternionic Grassmannian, then by Table VI,

(t),, ",) = (so (w) © so (m), ?„ (§) pj, (s/» (m) © s^ (w), v^ (§) V2J,

(so (w), pj, or (s^ (w) © sp (1), v^ (§) v,).

If (h,, 7t,)=(i © sp(l), n^ (§> o) is the isotropy representation of a quaternionic symmetric
space ^ Sp(m+ l)/Sp(m)- Sp(l) with I simple, then as before

2
X. = ["2il-« <§) 0] © [Tta,, (§) 0].

Let dim ̂ =2n, then B^(^)=B;,^ and [so(4n): s/»(l)]=i(nv2)=n, so Table V implies
that

H(ii2,(§)o)=2(n+2)dimH/n(2n+l) and E(n^_.$)o)=2dimH/(2n+l)+4/n,

where we used the fact (see the proof of (3.8), Case 1) that

E(^-J=(4n/(2n+l))E(7tO. But then E(^(§)o)=E(^-,<§)o) implies that
dimH=2n+1, and one easily checks that this is never satisfied.

If (h,, 7i,)=(i©t, [7t,,(§)(py is the isotropy representation of an irreducible hermitian
symmetric space with I simple then /, = [A2 ir, (§) S2 (?]„ © [̂ . (§) id] unless
n».=u .̂ Since

fiso^n) I t^t=-.tr(n^°n,)=-tT(n^lS>(f>)°(n^^>(p)

we have E (<p) = l/n. If I is simple we have B^ ̂  \ su (n) = B ,̂ („,. So

E(A2^,)=2("-2)E(^
(n-1)

(see the proof of (3.8)), and hence by Table V

E (A2 n^<g> S2 <p) = 2 (n - 2) dim H/n (n -1) + 4/n,

while E (n^,. (§) id) = 2 dim H/(n -1). Therefore, we have equality iff dim H = n -1, and
one easily checks that this is never satisfied. Similarly, if

(b., TC,) = (s (u (p) © u (q)), [up (§) u, (§) (p]^), p ^ q > i ,

then E(^+),. (§) id) =2(p2+q2)/pq and

E (A2 Up (§) S2 n, (g) S2 (p) = 2 (p2 + q2 -p + q - 4)/pq,

E (S2 Up $) A2 u, (g) S2 (p) = 2 (^2 + q2 +p - q - 4)/pq,

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



602 M. Y. WANG AND W. ZILLER

which shows that this case cannot occur either. Hence we are left with the following
possibilities:

(l)i,7Ci) , E(7C.) E(X.)

(1) . . . . . . . . . . . . . . . t)i simple 2dimH,/n, 4dimHf/nf
(2) . . . . . . . . . . . . . . . (so(m)@so(m), Pm®p^), 2dimHi/n, 4dimHi/n,
(3) . . . . . . . . . . . . . . . (sp(m)@sp(m), Vzm&Vzm)^ w^2 2dimH,/n, 4dimHf/n;
(4) . . . . . . . . . . . . . . . (sp(m)@sp(\), V2^®V2), m^2 w+l/2+3/2m 2m+4/w
(5) . . . . . . . . . . . . . . . (u(m), [nJn,), m^2 m 2(m-l)
(6) . . . . . . . . . . . . . . . (so(m), pj, m^3 m-1 x,=0

Since E(^.)=2E(7Cf) in cases (1)-(3) and E(^.) < 2E(^) in cases (4)-(5) it follows
that (4) or (5) cannot be combined with (1)-(5). If we combine (4) or (5) with (6) we
obtain (c) and (d) in (3.9). If (1)-(3) or (6) are combined with each other we obtain (a)
and (b). •

CHAPTER FOUR

Subgroups of the exceptional Lie groups

1. GENERAL REMARKS. — In [8], Dynkin classified the semi-simple subalgebras of the
exceptional simple Lie algebras up to "L-equivalence". Two homomorphisms Tii: t) -»- 9,
n! '• I) "̂  9 are L-equivalent if for every linear representation (p of g, the representations
(p°7ii and (p°7i2 are equivalent.

In classifying normal homogeneous Einstein metrics of quotients of the exceptional
groups, we shall consider in turn regular subalgebras, R-subalgebras, and S-subalgebras,
as did Dynkin. However, we shall use his classification crucially only in the case of S-
subalgebras.

Recall that a subalgebra n: t) -^ g is regular if there is a Cartan subalgebra t of g with
associated root space decomposition g== t® ^ ^ such that there exists a subset R of

a e A

roots of g and t' c t with I) = t' © ^ g,. For example, if 1) c g and rank I) = rank g, then
a e R

I) is a regular subalgebra of g. In section 2, we shall classify all Einstein regular
subalgebras of the exceptional Lie algebras using the classification of Borel-de
Siebenthal [5].

An R-subalgebra t) of g is one which is contained in but not equal to a regular
subalgebra. Obviously, an R-subalgebra cannot be strongly isotropy irreducible. Each
R-subalgebra t) is contained in a maximal regular subalgebra of maximal rank t of g. (f
is not necessarily unique.) Using the inclusions () c= f c= g and results in chapters 1 and
2 enable us to classify Einstein R-subalgebras of g without reliance on Dynkin's classifica-
tion of R-subalgebras, which is up to L-equivalence only.

A subalgebra of g that is not regular and not an R-subalgebra is an S-subalgebra. In
classifying Einstein S-subalgebras, we rely on Dynkin's classification (p. 233, [8]). Notice
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that in this case Dynkin showed that if two S-subalgebras are L-equivalent but not
conjugate in g, then there is an outer automorphism of g that takes one S-subalgebra
into the other (p. 128 [8]). Consequently, the corresponding homogeneous spaces with
the normal metrics g^ are actually isometric.

In this chapter, ( , ) will denote B^ ( , ).

2. REGULAR SUBALGEBRAS

(4.1) PROPOSITION. — Let I) be an Einstein regular subalgebra of an exceptional simple
Lie algebra 9 such that (g, ()) is not strongly isotropy irreducible. Then (9, I)) must be one
of the following:

TABLE VII

^ X) yO y0
F^ . . . . . . . . . . D4 o—o^ ®o—o". ®o—o".

\) \) \)l

£5 . . . . . . . . . . D4®R2 o—o/&^ C o-^'(§K(§U ® o—o^ (S^Y)
L ^o _L L \) J^ L V _L

i

[
1 y 0 - 1 . 1 ^" ) r /0 1 1-! r /° i itE? . . . . . . . . . . D4@3Ai o—o:. (§)o(g)o®o ® o—/ &o®o(§)o ® o—o^ ®o®o®o

"o J L \) J L \)i J

£7 . . . . . . . . . . 7Ai [1 2 3 4] C [1 2 5 6] ® [3 4 5 6] @ [1 3 5 7]
® [2 4 5 7]®[1 4 6 7]C[2 367]

ES . . . . . . . . . . A4@A4 [o—o—o—o(§) o—o—o—O]|R®[O—o—o—o®o—o—o—O](R

Eg . . . . . . . . . . 4A:2 [o—o(§)o—o(§)o—o(g)o—o]iR@[o—o<§)o—0^)0—o(§)o—O](R

®[o—o(§)o—o(§)o—o®o—o]iR®[o—o(§o—o®o—o(§)o—o]^

[~t /0 i /0-| r /01 y01"! r /° /0 n
Es . . . . . . . . . . D4®D4 o—o^ (^o—o^ ® o—o^ (So—o^ ® o—o^ (^o—o^

L ^o \)J L \) \) J L N)! \)J

ES . . . . . . . . . . 8Ai [1 2 3 4] ® [5 6 7 8] ® [1 3 5 6] ® [2 4 7 8] ® [1 3 7 8]
® [2 4 5 6] ® [1 4 5 8] ® [2 3 6 7] ® [1 4 6 7] ® [2 3 5 8]

® [1 2 5 6] ® [3 4 6 8] ® [1 3 6 8] ® [3 4 5 7]

Ee, E7, Eg . . . . . maximal root space decomposition
abelian

subalgebras
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Remark. — That (9, % is Einstein follows immediately from (1.14). It is, however,
not true that if I) is an Einstein regular subalgebra then all dominant weight of the
irreducible summands of / ® C are permuted by outer automorphisms of 1).
so (n)©M(n+l ) <= so(3n+2) and sp(n) @u(2n—\) c= sp(3n—\) furnish counter-
examples.

Our first observation is an immediate consequence of (1.4):
(4.2) LEMMA. — An Einstein regular subalgebra must be of maximal rank in 9. •
We shall henceforth assume that t)==t © ^ 9,, where R c= A (9) = root system of 9. It

a e R
follows that the weights of the isotropy representation of G/H consist of the complemen-
tary roots A (9) — R. Since the dominant weights in the isotropy representation are roots,
all irreducible summands of ^ (x) C are inequivalent representations. Furthermore, the
coefficients A"^^, a) /(a, a) are 0, 1, 2 or 3.

Before giving the detailed proof of (4.1) we first present an outline of the proof,
followed by a description of some facts and methods used constantly in the proof.

In [5], A. Borel and J. de Siebenthal classified all maximal subalgebras of maximal
rank in the simple Lie algebras. Let 9 be a simple exceptional Lie algebra, and t be
any maximal subalgebra of maximal rank. It turns out that all such Fs are Einstein
in 9. (See (4.6).) If I is simple, then we examine the subalgebras of maximal rank in t
to see which are Einstein in 9. A useful necessary condition is (1.13 a).

If f is not simple, say, l=Ii ® l^ ^^ note ^at ^Y ^gular subalgebra of I is of the
form I)i ©1)2, where t), is a regular subalgebra of i^. In view of (4.2) and (1.13fc) we
may restrict our attention to regular subalgebras of the form t)=a © t)i © ... © ̂ , where
f = a © ^ © . . . © i ^ with a abelian, l^ simple, and t), Einstein, regular and of maximal
rank in f^.

In any event, if f^ is a classical Lie algebra (we allow t = t^) then by comparing Table I A
and the list of isotropy irreducible spaces we see that ^, being of maximal rank and
Einstein in f^, must either be symmetric or one of cases 1, 2, or 7 in Table I A (with I
even if we are in case 2c). If If is an exceptional Lie algebra, then the admissible ()^s
are obtained by induction.

At this point we note that many non-semi-simple regular subalgebra are not Einstein
as a result of

(4.3) LEMMA. — Let f i ©t <= ti ©12 <= Q, where I^ and ^ are semi-simple regular
subalgebras in 9 and i is abelian. Let Bg | \^ = c B(2 and fi © t be Einstein in 9. Then

(a) all roots ofi^ have the same length;
(b) ifn^ (8)^2 ls an ^^ducible summand of the complexified isotropy representation of

G/(Ki x K^), then all weights ofn^ have the same length;
(c) the roots of 9 do not all have the same length.
Proof. — (a) is an immediate consequence of (1.13 a) and (1.5). To see (b\ we restrict

TI^ (§) 7t^ to ti © t, getting ̂  7i^ (8) (p^, where w runs through all weights of n^ and (p^
w

is the 1-dimensional complex representation of t with weight w. Hence (b) follows.
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Lastly, if all roots of 9 have the same length /2 with respect to the normalized Killing
form, then Einstein constants coming from K^/T are all equal to 2 since roots of i^ are
roots of 9. On the other hand, since G/(Ki x T) is assumed to be almost effective, there
exists an irreducible summand of ^ 00 C, say n^ with 7^ | fi + id. Now
Be* (^ 'k + 2 5) = B^ (A<, ^-) + Be* (^, 2 8) > 2 since X is a root of 9, giving a
contradiction. •

To proceed further in the classification we need to compare Einstein constants. We
shall establish the following convention.

(4.4) CONVENTION. — Let t) c I c 9, where 9 is a simple exceptional Lie
algebra. Denote -by 3^ and /^ Ae isotropy representations of K/H and G/K
respectively. Let n^ be an irreducible summand of ^ (x) C with dominant weight ^i
and TC^ be an irreducible summand of ^2 ® C [ I).

For most cases, to show that (9, I)) is not Einstein it suffices to compare the constants
of ^i and ^2 f01" suitably chosen irreducible summands.

To obtain the irreducible summands n^ and n^ we use the Borel-de Siebenthal
classification theory [5]. For the convenience of the reader, we recall this theory, follo-
wing Wolf. (See section 8.10 of [26]. This material is not in the earlier editions of the
book.)

(4.5) Borel-de Siebenthal theory. — For each regular subalgebra I ) of maximal rank in
9, there exists a sequence of subalgebras Ip c ̂  c ... c f,. such that fo=^ ^r=^ ^d If is
a maximal subalgebra of maximal rank in i^i. The maximal subalgebras of maximal
rank in a simple Lie algebra are obtained as follows.

i
Let {oci, ..., a^} be a fundamental system of roots of 9 and H= ^ m^ be the maximal

root. Choose i so that m,=\ and let f be the simple Lie algebra whose fundamental
system is {o^, ..., a,_i, a^i, ..., aj. Then l=f © IR is a maximal subalgebra of maxi-
mal rank in 9. Moreover, (9, I) is hermitian symmetric with isotropy representation
[Tt-Jos-

To obtain semi-simple maximal subalgebras of maximal rank, choose i so that m,
is a prime. Then let I be the Lie algebra whose fundamental system is
{ai, ..., a^i, a^i, ..., o^, —n}. The possibilities for m, are 2, 3, and 5. In the first
case, (9, I) is symmetric but non-hermitian with isotropy representation TT_^. In the
second case (9, f) is non-symmetric with isotropy representation [TT-oJiR- There is only
one subalgebra with m,=5: A4 © A4 c= Eg, whose isotropy representation is
i ^ i i ^ i

Using Corollary (1.14) we obtain immediately

(4.6) LEMMA. — The maximal subalgebras of maximal rank in the simple compact Lie
algebras are all Einstein. •

The above description allows us to select n^ and n^ immediately. Another useful
observation is that if () is contained in f^ and (2, then we immediately obtain two
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irreducible summands 71,̂  and n^ (from the isotropy representations of K^/H and K^/H),
whose Einstein constants we can compare.

In the present case of regular subalgebras, the computation of Einstein constants is
facilitated by the following observations:

(a) ^ are roots of g, and so B(*(^., .̂) are easily known just from Borel-
de Siebenthal. Hence the computation of By(^, ^+28) is reduced to that of
By ( .̂, 2 8). Note that only the coefficients of ^ on the semi-simple part of I) are
required. When I) is non- semi-simple, the coefficients of ^2 can be obtained from the
extended Dynkin diagram of f since the ordering of the roots of ^ agrees with that of
1. If t) is semi-simple, this is no longer true and we have to perform separate calculations
to determine these coefficients.

(b) In computing B(* (^, ^+28) we sometimes need to compute the indices of the
simple factors of 1) in g. Since I) is a regular subalgebra, we see that
[Q'' t)f]=[Bc?(^ I^)]/[BG*(|̂  |̂ )L where ^ is the maximal root of g and ^ is the
maximal root of .̂. Notice that [g: t)j = I, 2, or 3.

For the rest of the observations we shall assume that all roots of g are of the same
length. Then since each ^ is a root, we are interested only in B(*(^, 28). Let 'k be a
dominant weight of % ® C.

(c) For any root a of 1), 'k':t=W^('k, a)=0 or 1. This follows from the Schwartz
inequality and the fact that K ^ ± a.

(d) On each simple factor of t), only one coefficient ^a may be non-zero. Assume
otherwise that X", ^ + 0 for simple roots a, P of ^. Then there is a chain of simple
roots of \)i, Oi, ..., a,, with a^=a and a,=P. But then y=a i+ . . . -has would have
X,7 ^ 2, contradicting (c).

(e) All roots of t) also have the same length. So the simple factors of t) occur among
A^, D^, E^, E7, or Eg, and have index 1. Since B^ (^, X,) =2 this places severe restrictions
on X. By Table 2, p. 117, of [8], a dominant weight X satisfies (^ ^) ^ 2 for t)=D^ only

if 7i, =p,, ad(DJ, or A^(4 ^ n ^ 8), for l)=Ee only if 7c,=ad(E6:», (

i i
o—o—o—o—o, for I)=E7 only if 7i,=adE7 or o—o—o—o—o—o, and for t)=Eg only

o o

if 7i, = ad (Eg). But if 71, = ad I), then 0 is a weight, giving a contradiction since rk I) = rk q
and all weights of 71, are roots of g.

(/) The following two tables of values are very useful for analyzing ^ ® C, in view of
the restriction B(*(^, ^)=2.

Finally, in order to avoid repetitions, we observe that except for a few regular
sub^gebras of E7 and Eg listed on p. 139 of [8], any two isomorphic regular subalgebras
of the simple exceptional Lie algebras are conjugate in g.
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TABLE VIII A

By (X, X,) for some basic representations
1/2 2/3 2/3 3/4 1 3/4 4/5 6/5 6/5 4/5 5/6 4/3 3/2 4/3 5/6

6/7 10/7 12/7 12/7 10/7 6/7 7/8 3/2 15/8 2 15/8 3/2 7/8

D-:

n/4

^
• Y

g . 4/3 4/3 3/2

TABLE VIII B

BQ"^, 26) /or some basic representations
1 2 2 3 4 3 4 6 6 4 5 9 8 5

A '. o o—o o—o—o o—o—o—o
6 10 12 12 10 6 7 12 15 16 15 12 7

Using all of the above, we can prove (4.1). The details are described below.
Proof of Proposition (4.1). — We shall consider each exceptional Lie algebra 9 in

turn. The extended Dynkin diagram will be listed. Subalgebras of 9 whose roots are
the short roots of 9 will be denoted by A^, A^, etc.

/ I 2 3\
Case I : g = G^. — ( o —o = • )•

\-p ai a2/

The maximal subalgebras of maximal rank are A 2 and A^ ® Ai. There are only two
subalgebras of maximal rank: A^ © R and R © A i , both contained in A^ ©A^. The

1 ^ 3
isotropy representation of A ^ o A ^ in G^ is o(8)®. So by (4.3b)A^@R is not
Einstein. For tR © A^, let 5ii = — [i and ^2 = — ̂ i. Clearly,

(?4, ^+25)=(^, ?4)=(^ ^2) <(^ ^+25).

So R ® Ai is not Einstein.
/ I 2 3 4 2 \

Case I I : 9=F4. — ( o—o—o=»—• j.
\ -U ai a2 oc3 a4/
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Maximal subalgebras of maximal rank Isotropy representation

B4

A^ <T?\^3

A fT\'K^'3?rV^

[0(§)0=»——•] =7C_,

[o—o(§)»——k =[7C_Jn,

We need to consider the following subalgebras:

1. B3 © R c= B^ <= F4. We can take ̂  = -^, ^= -^ since 83 © R c: B^ is sym-
i

metric, (^4, Xi + 2 8) = 7. TC^ | 83 = o—o = • and (^ ̂  + 2 8) = 11/2, so 83 © 1R is not
Einstein.

1 ^ 2 1 ^ 1
2. D3©Aic=B^cF4. We take n^ to be o—o—o(S)e and 71̂  to be o—o—o(§)e.

Since D^Q^i^^ is symmetric, (^1,^1 +2 8) =7 and (^>, ^2+28)=9/2• Hence
D3 © AI is not Einstein.

i i i
3. B 2 © 2 A i c= B4 <= F^ and B^ ® 2A^ c= €3 ©A^. 71^= o=»(S)o(8)o and

i i
7t^ == o = • (§) o (§) o. Since B^ © 2 A i c= B4 and B^ © A ^ c= €3 are symmetric, we have
(^i, X,i + 2 8) = 7 and (^2, ^2 + 2 8) = 4- Hence B^ © 2 A i is not Einstein.

4. €3 © R c= €3 © AI c= F4. This is clearly not Einstein because we can let ̂  be the
root of A i so that (^i, ^i+28)=2 while ^= -0^1 so that (^2, ^2+28) > (^ ^2)=2-

5. ^2 © (AI © R) c ̂ 2 © A2 c= F4 and (^2 © R) © A^ c= €3 © Ai c= F^ We let 71̂
be the isotropy representation of (Ai©IR)c :A2 . Since A i © l R c A 2 is symmetric,
(^,1, ^i +2 8) =3. Let 71̂  be the isotropy representation of ^2 © R c: €3. This is the
symmetric space Sp(3)/U(3) hence (^ ^2 +28)= 4 since €3 has index 1 in F4. So
A 2 © AI © R is not Einstein.

6. A.2 © R2 c: ^2 © AI © R c= F4. This is not Einstein since (X-i, ^-i +28) =2, while
^-2 can be taken to be —02 since A 2 © I R 2 c A 2 © A 2 < = F 4 . Certainly,
(^2+28)>(^2)=2.

7. D4 c: B4 c: F4. This is Einstein (see Example 6 in Section 1-3).

All other regular subalgebras of maximal rank are not Einstein either because 1.13 is
contradicted or because they are ruled out by (4.3).

1 2 3 2 1
Case I I I : g=E6. — o^o—o—o—o—005 .

i <->-^

46 SERIE - TOME 18 - 1985 - N° 4



ON NORMAL HOMOGENEOUS EINSTEIN MANIFOLDS 609

Maximal subalgebras of maximal rank Isotropy representation

3 ̂ 2 [o—o®o—o(§)o—ok

A fi^A 1 ^ 1
^.50^1 o—o—o—o—o®o

DsClR o-o—o^ (§K

1. A 2 © A 2 © AI ® R c 3 A^ c= E^. This is obviously not Einstein since

^1 | 2 A 2 © A i = 0—— 0 ® 0——0 (§) 0 While U^ | 2 A 2 ® A i = 0—0®0——0(§)0.

2. A4 C AI ® 1R c= As © AI c= Ee. This is not Einstein; just take

_ I 1 . , 1 1
^i |A4 ® Ai - o—o—o—o ® o and TC^ [^ e Ai = o—o—o—o ® o.

3. A^2A,@n^A,QA,czE^ and A3 e2Ai © R=D^ ©D^ © ̂  c D, ® R c E^.

Hence to see this is not Einstein, let

_ I 1 - 1 ^ , 1 1 1
^ l | A 3 © 2 A i = 0——0——0®0®0 and let 71̂  [ A 3 © 2 A i =

4. D4 © R2 c= Ds © R c E^. This is Einstein by (1.14) once we compute the isotropy

i /° i
representation. From the first inclusion we get o—o^ (§n (§n . Next notice that

/°, /01 i /° -i
^ | D^ © R= (̂ -o^ (8) t © o—o^ ® ^

0 \) \,

All other regular subalgebras of maximal rank fail to be Einstein in E^ because they
are not Einstein in one of the maximal subalgebras of maximal rank or because of (4.3).

1 2 3 4 3 2 1
Case IV: g=E7. - o—o—o—o—o—o—o

2 u

«7
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Maximal subalgebra of maximal rank Isotropy representation

D^CAl

AsCA^

A7

EeClR

/° i
o^ ®o
\)

i ^ i
[o—o—o—o—o (x) o—ok

l-i .q
0——0——0——0——0®tL"y ^

1. DS © [R © AI c: D(, © AI c= E7. This is not Einstein: let

i
i /° , /° , i

7i^ | D5 © AI = o—o—(x (x) o and n^ \ D^ © A^ = o—o—(x (8) o.
o 'o

2. (As © R) © AI c= De © AI c: E7. This is not Einstein:

1 - 1 ^ 1
K^ | A5 © AI = o—o—o—o—o (§) o and n^ | A^ © A^ = o—o—o—o—o (§) o.

3. D3 © D3 © AI c: D^ © AI <= E7. This is not Einstein since we easily see that ^ ® C
i ^ i ^ i ^ i ^ i

contains o—o—o (§) o—o—o (§) o and o—o—o (§) o—o—o (§) o.

4. D4 © D^ © AI c D(, © AI c E7. The isotropy representation has to be

i / ° ^ i ^ i ^ / ° ^ 1 ^ ^ 1 / ° ^ ^ 1 ^ 1

o—o^ (§) o (§) o (§) o © o—o^ ^) o (8) o (§) o © o—o^ (§) o ® o (§) o .ex (x)o(x)o(x)o ® o—o.
\> x^o o

i

Then by (1.14) this is Einstein.

5. 7 AI c D4 © 3 AI c= D^ © AI c= E7. This is clearly Einstein. To compute 7 expli-
citly, one restricts the isotropy representation in (4) to 7Ai; the isotropy representation

i ^ i ^ i ^ i
of 4Ai c: 04 is o (§) o (§) o (§) o.

6. (A4 © IR) © A^ c= A5 © A^ c= E7. This is not Einstein: let

i ^ 1 1
^ | A4 © A^ = o—o—o—o (§) o—o and 71̂  [ A4 © A^ = o—o—o—o (§) o—o.
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7. 2Aa © 1R © A^ c: A5 © A^ c: E7. This is not Einstein: let

1 ^ 1 ^ i ^ i ^ i
^i | 3^2= o—o(§)o—o(§)o—o and 71̂  [ 3A^= o—o(§)o—0(8)0—o.

8. Ae © IR <= A 7 c E7. This is clearly not Einstein by Table VIII.
9. A5 © AI © R c A7 c= E7. This is not conjugate to the subalgebra in (2). To see

that it also is not Einstein, let

n^ | A 5 © A i =
i

>(§)o and 7 t ^ | A 5 © A i = )o.

All other subalgebras are ruled out by (4.3) or are contained in D^ ©A^ but are not
Einstein in D^ © A^.

1 2 3 4 5 6 4 2
Case V: 9= Eg. — o—o—o—o—o—o—o—o .

-H «1

«8

Maximal subalgebras of maximal rank Isotropy representation

Do .y

E7®Ai

EeCA^

j 0——0——0——0——0——0(^)0

6

r1
 - 1 10——0——0——0——0®0——0

L Jus
6

A^y^A^. 3(§)0——0——0——OJIR^

ok

ok

1. D7 © R c= Dg <= Eg. This is not Einstein: let

^JE>7= < ./0and ^JD7=
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2. A 7 © IR <= Dg <= Eg. This is not Einstein by Table VIII and a dimension count.
3. D^ © D^ <= Dg <= Eg. This is not Einstein: let

i /° ^ i ^ i /01 . i .
7i^ = o—o—o—o^ (§) o (§) o and 71̂  = o—o—o—o^ (§) o (§) o

\) \)

by Table VIII A.
4. D4 © D4 <= Dg c= Eg. This is obviously Einstein by Tables VIII A and VIII B.

1 /° ^ 1 /° /01

7t^ = o—o^ (8) o—o^ and o—o—o—o—o—o^
\) 'o \)

/01 . /01 /° . /°
restricts to o—Ov ® o—Ov © o—o. ® o—Ov

'o ^o \)i ^oi

5. 4 D^ <= D4 © D4 c Eg. Again, this is obviously Einstein. The isotropy representa-
tion is

i ^ i ^ i ^ i ^ ^ ^ ^ ^ ^ ^ ^ i ^ i ^ i ^ i
[o(§)o(S)o(§)o(§)o(§)o^)o(§)o]©[o(§)o(§)o(8)o(§)o(§)o(8)o(8)o]

plus the restriction of the isotropy representation in (4) to 4 D^.
6. D5 © D3 c Dg <= Eg. This is not Einstein:

i /° , i /01 - 1

\) 'o

by Table VIII A.

7. A 7 © AI <= E7 © AI c: Eg. This is not Einstein:
1 - 1 ^ 1

by Table VIII A.
i i

8. A5©A2©Aic=E7©Ai<=Eg. NOWTI^= o—o—o—o—0(8)0—o(§)o. The pos-
i ^ ^ 1 1 ^ i ^ i

sibilities for TT^^ are o—o—o—o—o (§) o—o (§) o or o—o—o—o—o (§) o—o (§) o. A
dimension count shows that both possibilities must occur. By Table VIII B,
A 5 © A 2 © AI cannot be Einstein.
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9. (E(, © R) © AI c E7 © AI c Eg. This is not Einstein:

i
TI^ | Eg © AI = o—o—o—o—o (§) o and n^ \ Eg © A^ =

10. 4A^ c: Eg © A 2 c Eg. This is obviously Einstein by Tables VIII A and

1 1 1 i
VIII B. In fact, n^ = [o—o (§) o—o (8) o—o (8) o—o]^. Furthermore,

restricts to

1 ^ 1 ^ i i ^ i ^ ii i i i i i
[o—o (§) o—o (§) o—o] © [o—o (§) o—o (§) o—o] © [o—o (§) o—o (§) o—o].

These facts determine the isotropy representation of 4 A 2 in Eg.

All other subalgebras are seen to be not Einstein as in the other cases. •

3. R-SUBALGEBRAS

(4.7) PROPOSITION. — Let g be an exceptional simple Lie algebra and 1) an Einstein R-
subalgebra. Then I) occurs in Table IX. Every subalgebra t) in the table is Einstein. Each
I) is listed with some maximal regular subalgebra I => I), where the containment is described
by giving the induced representation.

Let I) be an R-subalgebra of 9. Then I) is contained in some maximal subalgebra of
maximal rank t. Of course, rank I) < rank g. As in the case of regular subalgebras, I
may be simple. Then I) c: f must be Einstein and we can use either induction or the
classification results in Chapter 3 to determine the Einstein subalgebras I) of I of strictly
smaller rank. In listing these Einstein subalgebras of I we must remember to consider
the symmetric and isotropy irreducible subalgebras. When I is non-simple, then
(=^©(1 © ... ©1^, where rf==0 or 1 and the I/s are simple. We have to consider
subalgebras \) of the form a ® I)i ©.. . © t)^, where a c: IR^, .̂ is Einstein in I, and at
least one 1̂ . has rank strictly less than that of I^. That this is enough is shown by

(4.8) LEMMA. — Let 9 be an exceptional simple Lie algebra and l=t^@l^ be a maximal
subalgebra of maximal rank. Iff) c= (^ © ̂  15 not of the form t)i © t)^ with t)^ c= t^ then t)
cannot be Einstein in Q.

Proof. - ^ must be of the form ()i © Al)o © t)2 c (^i © ^o) © (bo © ̂ 2) c f! © i! with

t)o 9^ 0. We note from paragraph (4.2) that the complexified isotropy representation of
G/(Ki x K^) always contains an irreducible factor of the form TE^ (8) n^ with ^i ^ 0,
^0.
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TABLE IX
g i) Inclusion f 5C

E(, . . 3Ai o 3A2 [o(§)o(§)o]©[o®o(§)o]@[o(§)o®o]@2[o(§)o(g)o]

2 1 2
E ( , . . A i ® A 3 o—o—o AI®AS [o(§)o—o—o]®[o(§)o—o—ofc

1 / 0 2 /0 /02 /0

E7 . . 04 o—o. A7 o—o^ ©o—o^ ©o—o.
\) \) \) \)2

I 2 1
Eg . . B^ o—o—o = • A g [o—o—o == •] @ 2 [o—o—o = •]

4 4
E g . . 4Ai 3AiC=E(, Ee®A2 [o(g)o®o®o] @ [o(g)o®o(§)o]

2 4 4
A i < = A 2 : o ® [o(§)o(§)o(§)o] @ [o(§)o(§)o(§)o]

2 2 2 2 2 2
© 2[(o(g)o(g)o®o) @ (o(§)o(§)o®o)

(D (o(§)o<§)o(§)o) © (o&o(§)o$)o)]

E g . . B^QB^ o=»(§)o=» A4@A4 or Dg 2[o==»(§)o=»] © 2[o=»(g)o=»] @

[o =»(§)o = •] @ [o = •(§)o = •]
I I 1 1 ^ 1 1 3

E g . . A2@A2 o—o®o—o A g O r D g 3[o—o(g)o—o]@[o—o®o—ok©

[o—o(§)o—O]|R

If t is not semi-simple, then we may assume that li=IR. Then ^0=^ ^i=0 and we
obtain a contradiction immediately to mo=0 in (1.3). So we may assume that t is semi-
simple with fi simple.

Indeed, I)o must be semi-simple, because the same argument in the previous paragraph
can be used. So let % be a simple non-trivial ideal in l)o. We write t)o = % ® bo'-
Now TI), | t)i © bo contains an irreducible summand of the form CTI (§) CTQ with Oo + id: if
not, then I)o <= KerTi^, contradicting the fact that all n^s have finite kernels. The same
argument shows that we can even assume that CTQ | bo ^ 1(^ Likewise, n^ | bo © ^2
contains an irreducible summand of the form TO (8) Ta with TQ | bo ^ id.

Thus CTI (§) CTQ ® To 0 T2 [ bi © Mo © b2 breaks up into irreducible summands with
different Einstein constants because OQ (§) TQ [ AI)o behaves that way. (Let M^, M^ be
respectively the dominants weights of OQ and TO. Then OQ d)To | Al)o contains ^1+^2
and at least another summand with dominant weight M^-^-M^—^Ln^i, which has strictly
smaller Einstein constant.) •

Below we compile a table of Einstein subalgebras of low dimensional simple Lie
algebras, the induced representations specifying their embedding, and the Einstein
constants of their isotropy representations. This table will be used throughout the proof
of (4.7).
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TABLE X

Einstein subalgebras of low dimensional Lie algebras.

^ Einstein subalgebra (induced representation on t); Einstein constant)

B? Af©Af(p3®p3; 8/3),
A?©A?©A?([p3<§)id(§)id] © [id&p3(§)id] © [id&id^]; 4)

D? B^ © Bi([p5&id] ® [id&ps]; 8), Bj(ad; 4),
1 4 4

B4(o—o—o=»©id, 8), A^eA^ao&ojeto&o]; 12/5),

A?©B;([o(§)o—o=»]©[o(§)o—o=»]; 8)
n* T»i/i „ - - - ^., ,„ .• , -- , 2...- iD^ B^ (o—o—o—o—o—o = • 0 id; 14), A? © B^ ([o&id] © [o&o—o—o—o—o = •]; 14),

Bl © Bi([p5<g)id] © [id&pij; 14), B; © B^p^d] 9 [id^pj; 14),
Cf ® CKv^Vg; 9), CJ © CJ(V4&V4; 5), B^A^; 9)

DI © Dt(p^p^; 3/4), Aj © Aj([ad®id] © [id®ad]; 4)

^ B4(o—o—o=»; 9), Aj © Ai(o—o&o—o; 4)
A2 Af(o; 3), A; © lR(o; 3), [R2(2)

A4 ^(2),Bi(o=;5), A; ©1R (o—o-o; 5), A i©A;©R(5)

A5 ^(2),Aj(o—o—o;6), C3(—-e=o;6), A4©R(5), A3©A;©R(5) ,

Ai©Ai©R(5), Ai(o—o; 16/5), A? ©Aj(o(§)o—o; 13/3),

1R2 © A; © A; © A; (o&o&o] © [o®o®o] © [o&o&o]; 2)

^ R7^ Di(o-o/o;8), CK.̂ -̂ o; 8), Af©Aj(o&o-o-o;5)
\ ^o /

^ A^ © R(o—o; 4), C; © Ci([»®»=o] © [•^•=o]; 4),

C; © C; © C; ([•(§)•(&•] © [•&•(§)•] © [•(§)•(§•]; 3),

C?©A?(»(g)o; 17/6)

^ ^(^ A5©R(o—o—o—o—o; 10), D^©[R(10), B4©A;(10),

D4©Di(10), B3©B^(10), D^D^IO), C? © C3(.fi)——=o; 22/3)
A? © A? © A? © A?([p3®id&id&id] © [id^&id&id]

©[id(§)id®p3§)id]©[id&id&id&p3]; 4)
Di © Dl © D^ ([p4®id(§)id] © [id(g)p4(§)id] © [id^id&pj; 6)

* For these subalgebras only the Einstein subalgebras of rank strictly less than rank I) are listed.

Remarks. - In using Table X, one must bear in mind that if t) does not have index 1
in 9, then we must divide the constant (^, ^+25) by the index to get the correct
constant. Also, we need a list of Einstein subalgebras for E^ and £7, but this has to be
compiled during the proof of (4.7).

Proof of (4.7). - Recall that we are still using the convention in (4.4). We shall use
the maximal subalgebras of maximal rank t and their isotropy representations as listed
in section 2. We shall also use freely computations of indices of simple subalgebras in
9 developed in chapter 2.
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J. g=G2. — The maximal subalgebras of maximal rank are A^ ©A^ and A^. The
diagonally embedded A^ in A ^ © A ^ coincides with Af c= A^ and so is eliminated
by (4.8). By (4.8) and (1.4), as well as the condtiion rank t) < rank 9, we are done.
( A } c = A ^ © A ^ i s not Einstein because the isotropy representation contains three trivial
copies.)

I I . 9=F4. — After ruling out R-subalgebras using (4.8), (1.4), etc., we are left to
consider only the following ones:

1. i=B^.
i

(a) Af © Af. To compute o—o—o=» | t), observe that if 0, ± y^ ± y^ ± ^3, ± ^4
are the weights of p9, and if 0, ± Ix^ (f=l , 2) are the weights of p3 on each simple

1 3 ^ 1
factor, then 1/2 (^1+^2+^3+^4) | t )=3xi+X2. Hence o—o—o=e | t) => o(§)o. Since

4 ^ 2
/i contains o (§) o, t) is obviously not Einstein.

i i ^ i ^ i
(b) A^ © A^ © A^. By the same method in (a), o—o—o= • | 3A^=)o(§)o(§)o

with constant 9/4.

2. t=Ai©C3. For this we only need to consider t) of the form i)i©I)2, where
t)i c: A} is non-trivial and t)^ is an Einstein subalgebra of €3 of rank less than 3. So

i
essentially we need to consider A ^ © ( A ^ © A ^ ) . To compute •—•=o | A ^ © A f , we
let ± Zi, ± Z2» ± Z3 be the weights of v^. Then the dominant weight is just z^ -\-z^ +73.

1 ^ 2
V 6 [ A f ® A f = o(§)o, so it has weights ± x^, ±(x^+2x2), ±(x i—2x2) . Hence
Z i + Z 2 + Z 3 | A^ ©A^=3xi . This shows that

1 ^ 1 1 ^ 3 ^
o^)»—e=o | A^ ®(A^ ©A^) =3 o ® o ® o .

This irreducible factor has constant 4 ^ 17/6.

3. f = A 2 © Aj. We need only consider
1 2 2 ^ 2

(a) Af © Aj. Since o—o | A^= o , o (§) •—• c ̂  (g) C with constant 13/3.
2 ^ 4 1 ^ 4

(b) A^ © A^. Since •—• [ A^ = • © •, o—o (§)•<= ^ ® C. Since the isotropy
^ ^ 4

representation o f A 2 © A f c A 2 ® A j i s o—o (§) •, the subalgebra is clearly not Einstein.
I I L 9= Ee,

1. t = A 2 © A 2 © A 2 .

1 ^ 1 ^ 1 2 ^ 2 ^ 2
(a) 3 A^. o—o (§) o—o ^) o—o ] 3 A ^ = o(§)o(8)o and has constant 3. The iso-

4 4 4
tropy representation of 3A^ in 3Ai is [o <§)o (§)o] © [o (8)0 (§)o] © [o (§) o (§)o], which
also has constant 3. Hence 3 A^ is Einstein.
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(b) Af © A^ © (A^ © R) or similar R-subalgebras. % ® C contains the isotropy repre-
sentation of A^ © R c: A^, which has constant 3 since we are dealing with a symmetric
space.

1 1 1 2 1 1 1
0——0 (§) 0——0 (§) 0——0 [ () => 0 (§) 0——0 (§) 0 (§) t,

which has constant > 1 + 8/3 + 3/2 ^ 3. Thus t) is not Einstein.

2. t=D5 © (R. For R-subalgebras contained in I, we need only the Einstein subalge-
i

/° . 1

bras of D^ of rank at most 4. Let ̂  be the dominnant weight of o—o—o' (8) t and

write ?4 = ̂  + ̂ '2 where ^ = ̂  I I^- since ^/(SO (10) x SO (2)) is symmetric,
(^2, ̂  + 2 8) = 12. (^2, ^2 +28)= 45/4 and (X^, X;') = 3/4.

(a) B^ © Bi © [R. By using the weights of [p5 (§) id] © [id ^) p5], we see that

5 + 3/4 ^ 8. Hence t) is not Einstein.

/° i i i i
( f c ) A ^ © B ^ © I R . o—o—o^ (§K | A ^ © B ^ © R = o(§)o—o=e(S)t, which has

\)

constant 6 + 3/4 ^ 8. So I) is not Einstein.
2

(c) Bj©IR. Let 0, ± Xi ± ^2 be the weights of p5, then o=e is the
adjoint representation. Let ± z,., f = l , ..., 5 be the weights of pio. Then

i
/° i i i i

l /2(zi+. . .+Z5)=(3/2)xi+(l /2)x2. Thuso—o—o^ ®t\t)= o=9®t, which has
'o

constant 15/6+3/4= 13/4 ^4. So t) is not Einstein.

1 3
(d) Ai° © A^° © R c B^ © B^ © R c DS © R. Since o=» [ A^°= o, using (a), we

3 ^ 3 ^ 1
find that o (§) o (§) ? occurs in / ® C and its constant is 9/4 ^ 12/5. So I) is not Einstein.
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3. t=Ai © As. To consider R-subalgebras t) c: t, we need only the Einstein subalge-
bras of As of rank < 5.

(a) A{ ©Aj. Since

1 2 2

i ^ i 1 ^ 2 1 „ 2

o (§) o—o—o—o—o 1 I) = [o (8) o — o—o] ® [o (§) o—o—o]

which have constant 6. Thus t) is Einstein.
i i i i i

(fc)A}©C3. A3(•—•=o)= •—•^©•—•=o, o®»—»=o c ^ O O C with
constant 5^6. Thus t) is not Einstein.

2 3 3 1 ^ 3
(c) A} © Aj. A3 (o—o) = o — o © o—o, so o (8) o—o <= 7 ® C with constant

39/10 ^ 16/5.
1 ^ 1 3 ^ 1 ^ 3 ^

(d) A^ © A3 © Aj. A3 (o (§) o—o) =) o (§) o—o, so o (§) o ® o—o c: ^ ® C with
constant 4 ̂  13/3.

IV. g=E7.
1. f = A 2 © A 5 . To consider R-subalgebras I) <= f, we need this time all Einstein

subalgebras of As from Table X.
1 2 2 ^ 1

(a) A4 © At. Since o—o | A^= o, o (§) o—o—o—o—o c: 7 (g) C with constant
31/3 T^ 3. Thus I) is not Einstein.

i i i i ^ i i
(b) A^ © Aj. Since A2 (o—o—o) contains o—o—o, o—o (§) o—o—o is a summand

of 7 ® C and has constant 20/3 ^ 6. So t) is not Einstein.
1 i i ^

(c) A^ © Ci. Since A2 (•—• = o) = •—• = o © •—• = o, o—o (8) •—• = o is a sum-
mand in % ® C with constant 8/3 7^6. So t) is not Einstein.

1 ^ 1 ^ 2 1 2
(d) A^ © (A3 © Aj). Since A2 (o <§) o—o) contains o (§) o—o, o—o (§) o (§) o—o is a

summand in % ® C with constant 6 ̂  13/3. So t) is not Einstein.
2 2 1 1 ^ 2 1

(e) A^ © Aj. Since A^o—o) = o—o, o—o (§) o—o is a summand of % ® C with
constant 24/5 -^- 16/5. So t) is not Einstein.

2. I=A7.
1 ^ 1 ^ 2

(a) A f © A j . Since A4 (o(§)o—o—o) contains o(§)o—o—o with constant 6 ̂  5, t)
is not Einstein.

i i i
(7?) C\. Since A4 (•—•—• = o) = •—•—• = o © •—•—• = o © id, €4 is clearly not

Einstein.
3. l=Ai©De.
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(a) Ai © (A? © Bi). Since A^ | A2, © Bi= o (§) o-o-o=», o (§) o (§) o-o-o=.
is a summand in x <8 C with constant 45/4 + 10. So t) is not Einstein.

W A i © ( B i © B ^ ) . Since A ^ | B i © B ^ = o=«<§)o-o=., o<§)o=.(§)o-o=.
is a summand of x ® C with constant 31/4 + 10. So I) is not Einstein.

(c) k\ © 4 A?. A^ | 4 A^ contains o <§) o (§) o (§) o and so / ® C contains
i ^ i ^ i i i
o<g)o(8)o(§)o(§)o with constant 9/2 ^4. So t) is not Einstein.

(d) A^A?®^. Al + 2[Al®C3 contains o(§)»—»=o and so y ® C contains
i ^ ^ i
o ® o 6) •—• = o with constant 27/4 ^ 22/3. So i) is not Einstein.

4. t = Eg © IR. To consider R-subalgebras h c I, we need a list of the Einstein subalge-
bras of Eg of rank ^ 5. The following list gives also the induced representation correspon-
ding to the inclusion I) c f and the constants:

C;(^-^-,=o; 12), F^(.^.=o-o©id; 12), A^o-o; 8),

01 (0=*' T/ A! ©^([^ <§> o=»] © [o—^ ® o=«j; 7),

3 Af (3 Af c 3A^ <= Eg; 3), A{ © Aj([o ^) o—o—o] © [o <S> o—o-o]; 7).

Let ̂  be the dominant weight of o—o-o—o—o(§n and write ^ = ̂  + ̂  as in

111(2). Then (A,^, ^2') =2/3 by an analogous calculation.

1 l 2 2 1
(a) 3 Af © R. o-o-o-o-̂  <§) t j I) contains o (§) o d) o ̂ ) t, which has constant

o

8/3 ̂  3.

(b) A i©Aj©IR.

o | A^ © \\ = [o (§) o—o—o—o—o] © [o (§) i
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1 ^ 1 ^ 1 1
So if we further restrict to A} © A j, we get [o (§) o—o—o] © [o (S) o—o—o]. We there-
fore get a constant 14/3 ^ 6.

i i
(c) F^©IR. o—o—o—o—o | F4= o—o=®—•©id, which has constant 12. So

there is a summand in % 00 C with constant 38/3 + 12.

i i
(d) C\ ® R. o—o—o—o—o | €4 = •—•—• = o, and the corresponding summand

has constant 26/3 ^ 12.

1 2 2
(e) A jOIR . o—o—o—o—o | Aj= o—o, and the corresponding summand has

constant 22/9 ^ 8/3.

1 2
(y) Gi©lR. o—o—o—o—o | G|= •=o, and the corresponding summand has

constant 34/9 ^ 14/3.

(g) G i©A j ^
1 ^ 1 2 ^

Aj©G^= [o—o®o=e]©[o—o®o=^], so

the corresponding summand has constant 6^7.

So none of the above subalgebras are Einstein.

V. 9=Eg.
1. f = E 6 © A 2 .

(a) I) © Ai, where rank ^ < 6. By the results of IV (4), using 8/3 in place of the 2/3,
we immediately see that none of these subalgebras are Einstein.

(fc) 4 A^. o—o—o—o—o | 3 A 2 = [p4 ® p4 ® id] © [id (8) p4 (8) pj © [p4 (§) id ® p4],

u

and from this it is clear that 4 A^ is Einstein in Eg.
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2. l=E7 © Ai. For this we need a list of Einstein subalgebras of rank < 7 with the
corresponding Einstein constants: D^(8), A j1 (16/7), G^C^IO), A3 ©F^ (76/3).

(a) D^ © A^. D^ © A^ is also contained in A 7 © A^. So o—o^ (§) o is a summand
'o

of 7 ® C with constant 15/2 ^ 8.

(fc) A ^ © A ^ .
6 6

1^2= o—o ® o—o with corresponding constant

45/7 + 16/7.

(c) Gi©C3©A}.

1 1 i
o—o I G2®C3= [•=o®»—•=o]©[»=o(8)»—•=o].

The corresponding constant for the first summand is 9 ̂  10.

W A ? ® F i © A } . o—. A i © F 4 = 0(8)0—o=< \ and so the cor-

responding constant is 14 ^ 76/3.

So none of the above subalgebras are Einstein.
3. 2A4.

(a) Bj ® k\.
constant 39/5 ^ 5.

B j©A^= o=»^ ' with

(b) Bj©Bj. o—o—o—o(§) (
Clearly, this is an Einstein subalgebra.

2 1
[ B^QB^= 0=9^0=9 with constant 5.

(c) Bj © Ai © R and Bj © A^ © A} © R are now easily seen not to be Einstein.
4. l=A8.

(a) Aj © Aj. Since

A3 (09) ( 2A2=A 3 (p3 ® p3)=[o-o ® o—o] © [o—o $) o—o] © [o—o (8) o—o],

this is clearly an Einstein R-subalgebra.
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1
(b) B^. Since A3 p9 = o—o—o = • with constant 9, this is again an Einstein R-

subalgebra.
5. fe=Dg.
(a) 2A| c: 2D4 c: Dg and 2Cj c Dg. One easily verifies that the isotropy representa-

tions are the same as those in 4 (a) and 3 (b) respectively. Hence these subalgebras are
also Einstein.

(b) Df © Df c= Cj © Cj. Since
2 1 2 2 1 1 1 1 ^
•=o(§)»=o [ 2D2=([o®o]©[o®o]©[oOOo]) 00 ([o (x) o] © [o 00 o]),

2 D^ cannot be Einstein.
i

(c) A^" © C\. Since A^ | A^ © €4 contains o (§) •—•—•=o with constant 12 ^ 9, I)
is not Einstein.

i ^
(rf) A^ | A^ © B^, contains o ® A^, A^ [ B^ © B^ contains A5 ® A^ and

A^ | B^©B4 contains ^$)^ with respective constants 81/4, 65/4, and 57/4, all of
which are not equal to 14. So these subalgebras are not Einstein.

i i
(e) B^. A ̂  | B4= o—o—o==9 with constant 9. So this is an Einstein subalgebra.
This completes the proof of (4.7). •

4. S-SUBALGEBRAS

(4.8) PROPOSITION. — Let g be an exceptional simple Lie algebra and 1) an Einstein S-
subalgebra which is not strongly isotropy irreducible. Then I) is the maximal subalgebra

6 3 2
B^2 c Eg with isotropy representation o=e © o==e.

Proof. — A table of all S-subalgebras of the exceptional simple Lie algebras together
with their inclusion relations can be found on p. 233 in [8]. For the non-simple maximal
S-subalgebras, the corresponding isotropy representations are given in Table 35
in [8]. From the Table one checks easily that I) is Einstein iff it is strongly isotropy
irreducible.

If t) is a 3-dimensional subalgebra. Theorem 5.2, Corollary 5, and Corollary 8.7 in [14]
imply that 1) is Einstein in any simple Lie algebra g (not necessarily exceptional) iff

2 4 2 6
a d g | t ) = o © o o r a d g [ t ) = o©o. Hence (g, I)) must be isotropy irreducible and
there are no such pairs with g exceptional.

If I) is a simple S-subalgebra, then the isotropy representations are listed in Table 24
in [8]. All subalgebras there are isotropy irreducible except for B^2 c: Eg, and one checks
that it is Einstein.

Below we analyse as in sections 2 and 3 the remaining S-subalgebras in Table 39. We
retain convention (4.4).

10 6 4
1. A28 © A? c G\ © Af c= F4. 5C ® C = [ o $) o] © [o (§) o] with constants 15/7 and

6/7+3/2.
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2. A"©Ajc:GieAjc=E<,
10 1 ^ 1 1 6 1 1n^= o®o—o and o=» (§)o—o | A^ CA2= o®o—o

with respective constants 15/7 and 6/7+3.
3. G\ C A? c: F^ cz E^ and G^ © A? c= G^ © Aj c= E^. We immediately obtain sum-

1 ^ 4 4
mands o = » ® o a n d o = » ( § ) o i n 7 ® C , which obviously have different constants

4. A^eC^G^eC^E^
10 1 ^ l . 6 1

7t^= o®e—e=o and o=e(§)^-^=o | A^ ®Ca= o®^-e=o

with respective constants 15/7 ^ 6/7+6.

5. A ^ O A ^ c G j © A ^ cE7. 71^= o(§)o and o=e(§)o [ A^ ® A ^ = ^(§)^
with respective constants 15/14 and 15/7.

6. G i ® A ? © A ? c = G ^ © C ^ and F^®A?c=E, . ^= o = e ® ^ ® ^ and
1 4

TC^= o=»®o(§)o with respective constants 3/2 + 4/3 and 11/2.
7. A?1 © A? <= A?8 © A8 © A? c: G1, © A8 © A? c= E,. Immediately we obtain sum-

mands o (§) o and o=» $) o 6) o [ A^ © A^ = ^ <§) ^. Obviously, they have different
constants.

8. A^©F^G^®F^Eg. We have summands o°(8)^-o=—-e and
6 ^ 1
o QO o—o=9—• with respective constants 15/7 and 90/7.

9. GiOGieA^cGieF^cEg.
^ 1 ^ 4 i i

TT^= 0=9® 0=^00 and o=»®o—o==e—e[G2©Ai
1 ^ 1 ^ 2

contains o=»(g)o=e(§)o with constants 11/2 and 17/2 respectively.
Hence none of the above S-subalgebras are Einstein. All other S-subalgebras are not

Einstein because they fail to be Einstein in some maximal S-subalgebra.
This completes the proof of (4.8). •

CHAPTER FIVE

Geometrical properties and applications

1. ISOMETRIES AND CURVATURE. - In this section we determine the connected isometry
groups of our Einstein manifolds, and show that no two of them are isometric.

Let G/H be a simply connected normal homogeneous Einstein manifold with G
compact, connected, and simple. In this section we assume that G acts effectively on
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G/H. Since G and H are connected, we may pass to their Lie algebras 9 and E) whenever
convenient. If (G/H, g^) is (strongly) isotropy irreducible, then J. Wolf showed ([25],
Theorem 17.1, p. 141) that Io(M,gB)=G unless G/H=Spin(7)/G2 with
Io(M, gn)=SO(8), or G/H=G2/SU(3) with Io(M, ^)=SO(7).

(5.1) THEOREM. — Jf(G/H, g^) is an effective, simply connected, normal homogeneous
Einstein manifold mth G compact, connected, and simple and such that G/H is not (strongly)
isotropy irreducible, then Io(M, g^)=G.

The proof of this theorem relies on a result of Oniscik, which we will describe shortly.
Let (9, 9, 1) be a triple of compact Lie algebras, where 9 and f are subalgebras

of 9. Then (9, 9, t) is a decomposition if 9=9+1. If G, G, and K are the corresponding
connected Lie groups, then (9, 9, I) is a decomposition iff G acts transitively on
G/K. (9, f) is called an extension of (9, 1)) if (9, 9,1) is a decomposition and
9 01 = I). The extension is effective if 9 and t have no non-trivial ideal in common. The
decompositions (9, 9, t) with 9 simple are listed in Table VII of [18].

(9, t) is called a type I extension of (9, t)) if there exists a subalgebra a of 9 such that
t)©ac:9, 9=9©a, f=t)®a, and the inclusion fcg restricted to a is given by the diagonal
embedding. Obviously, (9, ()) has a type I extension iff the centralizer of I) in 9 is non-
empty.

(9, t) is called a type I I extension of (9, I)) if 9 is simple. All such extensions are listed
in Table VII of [18]. The correspondence between our and his notation is given by
(§Q,I,^=(G,G\G-,U).

Type I I I extensions are defined next. Let (m, m", m") be a decomposition with m
simple, and a be a simple subalgebra with m^^acm. Let 9=m®a, i=m/Q:)xn// 9=Aa,
and t) = k H Aa, where Aa is the image of a under the diagonal embedding
a ^ m © a = 9 . Then (9, f) is called a type III extension of (9, %. Notice that in this
case G/K is differentially a product manifold M/1VT x A/M". Moreover, by Table VII
in [18], in most cases the only possibility for a is m itself. The exceptions are given by
(m, m', m") = (a) (so (7), G^, so (5)), so (5) c= so (6) = a c: so (7)
(b) (so (4 n), so (4 n — 1), sp (n)), sp (n) c su (2 n)= a c= so (4 n)
(c) (so (8), spin (7), so (5)), so (5) c so (6) c so (7) c= so (8)
(d) (so (8), spin (7), so (5)©so (2)), so (5)®so (2) c= so (7) = a c= so (8)
(e) (so (8), spin (7), so (6)), so (6) c= so (7) = a c: so (8).

(In [7], p. 17, it was incorrectly claimed that a=m in all cases, but this does not affect
the proofs there.)

We can now state Oniscik's theorem (Theorem 6.2 in [18]).
(5.2) (Oniscik). Let (9, I)) be an effective pair of compact Lie algebras with 9

simple. Then any effective compact extension of (9, I)) is either a type I extension or a
type I extension of an extension of type II or III.

Proof of (5.1). - Let G=Io(M, g^) and K be the isotropy group of G at eH. Then
H = K O G and (9 f) is a non-trivial effective compact extension of (9, t)). In view of
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(5.2) we shall examine extensions of (9, t)) of types I, II, and III. Since g^ is Einstein,
(1.3) implies that (9, t)) has no type I extensions.

For type II extensions we use Table VII in [18]. It follows from this table that 9 is
either classical or G^, and that I) is either simple or ()=^©l)^ with I)i simple and t^ of
rank 1. Looking through Table I (Chapter 1), we find that the only (9, t)) with a
type II extension (9, f) is (sp(2), 5/?(1)©M(1)) with (9, f)=(su(4), s(u(3)©M(l))). Now
Q/K = P3 C. Homogeneous Einstein metrics on P" C were completely determined
in [27]. Using the notation of pp. 6-7 of [27], and writting p2n+lc as
Sp (n + l)/Sp (n) • U (1), one easily shows that Bgp („ + ̂  induces the metric < , > on P2"+1 C
with ^=1/2, while the symmetric metric corresponds to t=\. In [27] it is shown
that the only homogeneous Einstein metrics on P2n+lC are given by ^= l / (n+ l ) and
r== 1. Hence (as we already know) Bgp^+i) is Einstein iff n= 1. Furthermore, it follows
from [27] that the sectional curvature of Bgp^+i) satisfies 1/16^K^1 with both limits
assumed. Hence Bgp^+i) can never be isometric to the symmetric metric on
p2n+i (Q j^ particular, the connected isometry group of Bgp^+i) must be Sp(n+l),
which shows that for (Sp(2)/Sp(l)-U(l), gg), Io(G/H, g^)=G.

Now let (9, f) be a type III extension of (9, t)) constructed from a decomposition
(m, nf, m'7). Such extensions are easily enumerated with the help of Table 7 in [27]. In
most cases, 9=Aa%m, and the exceptions are formed from the decompositions described
just before (5.2). By going through Table I, we see that the only (9, 1)) with a type III
extension is (spin (8), G^), where 9=s7?m(8)®so(8), t=spin(7)Qso(7), spin (7) c= spin (8)

i
by o—o=; so (7) c: so (8) by p7©id, and 90= 9 by the diagonal embedding of spin (8)
into spin(S)Qso(S). Notice that M==G/H is differentially the product manifold
S7 x S7. Every fi-in variant metric on M is a product metric since the isotropy representa-
tion of Q/K. is [p7®id]©[id(§)p7], which consists of two inequivalent K-
representations. On the other hand, the metric g^ on M is irreducible by
Corollary X. 5.4 in [15]. Hence the connected isometry group of g^ is Spin (8).

By (5.2), the proof of (5.1) is complete. •

Remark. — We would like to take this opportunity to correct some misleading
statements in [27]. Among the homogeneous metrics on p^^c there are two normal
metrics, corresponding tot=\ and t=l/2. All other metrics are not even naturally
reductive. Similarly, on S15=Spin(9)/Spin(7), among all the Spin (9)-in variant metrics,
there are exactly two normal metrics on S^-the symmetric metric and ^spin(9y ^ other
metrics are again not naturally reductive. In particular, among distance spheres on
P2Ca, one (whose radius is 2/3 the distance to the cut locus) is normal homogeneous
and all others are not naturally reductive. But, as follows from the present paper,
^spin(9) ls not Einstein. Hence the Spin (9) invariant Einstein metric on S15 is not
naturally reductive. The non-symmetric Einstein metric on P^^C is not naturally
reductive unless n= 1, in which case it is normal homogeneous.

(5.3) COROLLARY. — Let G/H be an effective, simply connected, normal homogeneous
Einstein manifold mth G compact, connected, and simple and such that G/H is not (strongly)

•
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isotropy irreductible. Then
(i) If G*/H* is another such homogeneous space, then (G/H, g^) is isometric to

(G*/H*, g^) iff there exists an isomorphism (p: G-^G* such that (p(H)=H*. Hence no
two spaces in Table I are isometric.

(ii) (G/H, gn) is not isometric to any strongly isotropy irreducible homogeneous space.
proof. - (5.1) implies that lo(G/^ g^)=GwG*=lo(G*IH*, g^) which in turn

implies (i). Let G'/H' be strongly isotropy irreducible, and assume that (G'/H', gy) is
isometric to (G/H, g^). Then G ̂  Io (G'/H', g^). If Io (G'/H', ge) = G\ then G/H would
be strongly isotropy irreducible, a contradiction. If Io (G'/H', g^) ̂  G', then since
G|H=lo(G//W,g^/K ̂  some ^ and K^H', lo(G'/W,g^)/K is strongly isotropy
irreducible. Hence G/H is strongly isotropy irreducible, a contradiction. •

(5.4) PROPOSITION. — Let (G/H, gj^) be a normal homogeneous Einstein manifold with G
compact, connected, and simple. Then

(i) g^ has non-negative sectional curvature.
(ii) gB has positive sectional curvature i/jTG/H is isometric to a rank 1 symmetric space,

or G/H=Sp(2)/Sp(l)•U(l)=P3C with 1/16^K^1, or G/H=Sp(2)/SU(2) which is an
isotropy irreducible rational 7-sphere with 1/37^K^1.

(iii) (G/H, g^) is irreducible as a Riemannian manifold.
proof. — (i) and (iii) do not require the Einstein condition, and follow immediately

from X. 3.6 and X. 5.4 in [15]. To see (ii), first by Berger^ classification [3], if G/H
is not diffeomorphic to a rank 1 symmetric space, then it is either Sp(2)/SU(2) or
SU(5)/Sp(2)'U(l). The first case is strongly isotropy irreducible, and the second case
is not Einstein. If G/H is diffeomorphic to a rank 1 symmetric space, using the classifica-
tion of compact homogeneous spaces diffeomorphic to rank 1 symmetric spaces (see,
e. g., [27]) and looking through Table I, we see that G/H must be Sp (2)/Sp (1) • U (1). The
pinching estimates follow from [27] and [10]. •

2. NORMAL HOMOGENEOUS EINSTEIN MANIFOLDS WITH G NON-SIMPLE. — We HOW give

some de Rham irreducible examples to show the necessity of the assumption that G is
simple in our classification theorem.

(5.5) PROPOSITION. - (i) Let G = K x K x . . . xK (/ times, 1^3) and H==K with K
simple and H -> G given by k\->(k, k, . . ., k). Then the standard metric on G/H is
Einstein and G/H is not strongly isotropy irreducible.

(ii) Let

H=SO(n)xSO(m)c[SO(n)xSO(n)]xSO(m)cSO(n)xSO(n+m)=G,

where the first embedding is A x id and the second is idx([p^®id]@[id(x)pj). Then the
standard metric on G/H is Einstein iff (n -1) • (n - 2) = m (m + n - 2).

(iii) Let H = Sp (n) x Sp (w) c: [Sp (n) x Sp (n)] x Sp (m) c= Sp (n) x Sp (n + m) = G, with
embedding as in (ii). Then the standard metric on G/H is Einstein iff
(2n+l ) (n+l )=2m(m+n+l ) .
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Remark. — Examples for solutions in (ii) are (n, m)=(ll,6) and (66,40), and in (iii)
(n, m)=(l,l) and (289, 357). Notice that G/H in (ii) resp. (iii) is diffeomorphic to the
Stiefel manifold SO(n+m)/SO(m) resp. Sp(m+n)/Sp(m) and so by [20] and [12] carries
a normal homogeneous Einstein metric for any value of m and n although g^ is seldom
Einstein.

(-1
Proof. - For (i), x= © ad,, so C^ Q=O Id for any bi-invariant metric Q on t. For (ii)

X=[ad^^g)id]©[p^d)pJ and BG|so(n)=2(2n+m-4)Bso^,

BG|so(m)=2(n+m-2)Bsoon).

The Einstein constants are now easily computed, giving the condition in (ii). For (iii),
similarily,

X=[ad^)®id]®[v2^®V2j
and

BG|^)=2(2n+m+2)Bsp^, ^\sp(m)=l(n+m+1) Bsp^.

If G is not simple, it would be more appropriate to classify all normal homogeneous
Einstein metrics (or more generally all naturally reductive Einstein metrics) than to
classify only the Einstein standard metrics. In principle, such a classification is possible
using the methods developed in this paper, although in practice it seems rather
cumbersome. By [11] (which uses (1.9)), if G/H carries a naturally reductive Einstein
metric g which is not locally symmetric, then the scalar curvature is positive, and hence 9
is a compact Lie algebra. It is natural also to assume that (G/H, g) is an irreducible
Riemannian manifold. The classification would then go inductively as follows.

Let 9=9i©92 with Qi simple. Then t)=l)i©^2®l)3 ̂ th th®^^ ̂ 2®^^ and
the inclusion l)cg is given by (l)i, l^, ^3) -> (I)i®t)2. ^©^s)- We can assume that t)2^0
since otherwise the metric would be a product metric. For simplicity we assume also
that ̂  is simple.

Let Bi=B^,B2=B^, then

Q=PiBilQ2(Q2=Q|^ and BQ=B^ 1 B^a^Bi 1 B2.

Using BI and C?2, we have orthogonal decompositions

Ql=t)i®I)2®mi, 92=t)2®b3®^2-

The isotropy representation

7==[Xi®id]©[id(g)ad^®id]©[id®72]-

By (1.9), if the metric Q[ I)1 is Einstein with Einstein constant E, then

^i.Qlbie^^-^MId.
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The possibilities for pairs (c$i, t)i©I)2) satisfying this condition can be classified by the
methods of this paper. If 9^ is a classical Lie algebra and Q | t)i©^2 ls positive definitive,
the classification was done in Chapter 3. Similarily, one can classify the admissible pairs
where the metric on I)i©I)2 ls non-degenerate but not positive definite or where g^ is an
exceptional Lie algebra.

The simplest case for which the Einstein condition is not over-determined is when
(9i? t)i©l)2) ls strongly isotropy irreducible and 92=^)2 ls ^so simple. (5. 5 (ii), (iii)) are
special instances of this case. We may assume that Q2 = B2 after re-normalization. The
Einstein condition becomes a quadratic equation in Pi, and one can show that it always
has two positive real solutions. One of these corresponds to a normal homogeneous
Einstein metric, the other corresponds to a naturally reductive one. G/H is diffeomor-
phic to GI/HF The corresponding metric on G^/Hi can be described as the metric
obtained by scaling in the direction of H2 in the fibration G^/Hi -> Gi/(Hi x I-^). This
situation was examined by G. Jensen [12] when G^/(H^xH^) is irreducible symmetric
and by [7] when Gi/(Hi x H2) is strongly isotropy irreducible but non-symmetric.

3. LEFT INVARIANT EINSTEIN METRICS. — Let G be a compact semisimple Lie
group. Then any metric on 9 determines a unique left invariant metric on G. If I) c= 9
is a subalgebra, one can consider for t>0 the metric gt=t(^o\V) -L (Bell)1) 2LS a ^t-
invariant metric on G. If t=l , g^ is Einstein since Ric(^B)=(l/4)B. G. Jensen [12]
first considered the question when g^ is Einstein for t^\. Subsequently D'Atri and
Ziller obtained the following

(5.7) THEOREM ([7] Corollary 2, p. 44). — I f f ) is not an ideal in g, then there exists a
unique t^\ with g^ Einstein iff the standard metric on G/H is Einstein and B^ = c B^ 11)
for some c>0. Furthermore, t< 1 and g^ is normal homogeneous with respect to G x H.

In [7] these metrics were examined when G/H is strongly isotropy irreducible. If H is
simple, BH = c BQ | () is automatically satisfied. If H is not simple, there are only six
cases for which B^ = c Bo 11). Five of these are listed in [7], p. 46. The sixth case is
5p(l)©so (4)c5p(4), which comes from one of the two families of isotropy irreducible
spaces omitted in [25].

Next we use the results of this paper to obtain a complete classification of the Einstein
metrics gy i+1, in (5.7) if G is simple.

(5.8) THEOREM. — Let G be a compact, connected, simple Lie group and H a semi-
simple subgroup such that G/H is normal homogeneous Einstein but not strongly isotropy
irreducible. Then BH=cBo|t), c>0, (and hence g^ is a left invariant Einstein metric for
some t< 1) unless G/H is given by No. 8 in Table I A or No. 6 in Table I B .

Remark. — In particular, each member of the infinite family of normal homogeneous
Einstein manifolds given by Nos. 4 and 5 of Table I A gives rise to a left invariant
Einstein metric on S0(n). By Theorem 5, p. 24, of [7], two such g^ are isometric iff the
corresponding standard metrics gy on G/H are isometric.

Proof. — If I) c: g is a simple subalgebra and c is defined by B^ = c BQ 11), then it follows
from our definitions in Chapter 2 that c=aH/(ao[9:t)]). Hence if ^ are the simple
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factors of I), DH^B^II) implies that 0^/^:1),] is independent o f f . One can now
examine each case in Tables I A and B. If t) is of maximal rank in 9 and all roots of 9
have the same length, then [Q:bJ=l, and hence we only need to check that OH. is
independent of i. Notice that Table IB, No. 4 is an example where OH. and the indices
are different, but c is still the same for all i. The only non-trivial case is Table I A,
No. 5 (No. 4 being a special case of No. 5). But in section 2-3 C we showed that in
this case

^•-••1^4^)^-(^i^)8".-

where n;=dim7t,, and since Bgo <„) | so (n,) = Bgo^we have

B \b-( "-^-^ ^R"SO (n) 1), - ————,——— 1 BH,
\ 2 dim h, — M, /

so
- /2dimh, V 1 \ ,
BH,=(^———l)(^)B,oJl,.

But since diml),/n, is independent of f, we have B^cB^. •

Remark. - It was shown in [7] that a left invariant metric < , > on a simple Lie
group G is naturally reductive with respect to some transitive group of isometries iff
there exists a subalgebra 1) eg (written as l)=l)o©t)i©. . . ©I), where (), is simple and t)o
is abelian) such that < , > is given by (a B^ | ()1) 1 (g | ()o) 1 (^ B^ | ̂ ) 1 . . . 1 (a, B^ | \\
where a, a, > 0 and g is an arbitrary metric on ()o. If < , > is Einstein, then g = ao B^ | t)o,
and if we normalize < , > so that a=l, then the Einstein condition in [7], p. 33, in our
present notation becomes

ao=4E, (l-a?)c,+a?=4Ea,

Cx,z(o,-i)B|b.=,(l-4E)Id,

where 7 is the isotropy representation of G/H, BH,=C,BG, and E is the Einstein
constant. Hence we again need C^ p=ald with respect to some bi-in variant
metric Q. Notice that these equations will be over-determined unless G/H is strongly
isotropy irreducible, a case which was examined completely in [7].

4. FIBRATIONS OF EINSTEIN MANIFOLDS. - For this section we need the following result,
which was obtained independently by L. Berard-Bergery (see the forthcoming book by
A. Besse on Einstein manifolds) and T. Matsuzawa [16]:

(5.9) THEOREM (Berard-Bergery, Matsuzawa). - Let F -> M -> B be a Riemannian
submersion mth totally geodesic fibres. Assume that the metrics on B, M, and F are
Einstein with Einstein constants Eg, E ,̂ Ep respectively and Ep>0. Furthermore, ifM is
not locally a Riemannian product of¥ and B, then the metric g, obtained by scaling the
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metric on M in the direction of F by a factor t > 0 is Einstein ifft=\ or t= EF/(EB — Ep). In
particular, g^ gives rise to a different Einstein metric on M iffEp^l/lE^.

The only previously known examples which satisfy the assumptions in (5.9) are (a)
the Hopf fibrations

g3_^g4n+3_^pn[ j_g

s7-^15-^8

g2_ ,p2n+ l (Q_ ,pn^

where (5.9) gives rise to tl^e non-symmetric Einstein metrics found by G. Jensen [12],
Bourguignon-Karcher [4], and W. Ziller [27], and (b) fibrations of the form
K^ -^G/KI -^G/KI'K^, where G/K^K^ is isotropy irreducible and B^=cBo[t2- If
K.2 is non-abelian, it was shown in [12] and [7] that there are two distinct homogeneous
Einstein metrics on G/K^. For each of these, we may apply (5.9) again. In all the
above examples, Ep 7^ 1/2 Eg, but in this section we will obtain several fibrations with
EF=1/2EB.

Let H c K c: G where G, K are compact semisimple and B^ = c B^ 11 for some constant
c > 0. We consider the Riemannian submersion with totally geodesic fibres

K/H -^ G/H -> G/K

where the metrics are given by B^ and BQ | f. Note that even if G is simple, K/H need
not be effective, so we denote by K/H the corresponding (almost) effective quotient. In
such a case we shall only assume that B^ = c BQ \ T.

If the standard metrics on G/H and G/K are Einstein, then, since the isotropy
representation of K/H is contained in that of G/H, the standard metric on K/H is automati-
cally Einstein. If in addition G is simple and K/H is not flat, then (5.9) yields a new
Einstein metric on G/H iff Ep 7^ 1/2 Eg. Of course, if H is trivial we are back in the
situation considered in the previous section, where EF<l/2Efi. Hence we shall assume
that dimH>0. From Table I one can easily compile a complete list of fibrations of
the above type where dimH>0 and K/H is not flat. This list is given in Table XI,
where we follow the same order as that in Table I. When G is exceptional one sometimes
has to refer to Chapter 4 to obtain all possibilities for K. Otherwise, the inclusions
H <= K c G are easily deduced from Table I.

(5.10) THEOREM. - Let K/H -> G/H -> G/K be one of the fibrations in Table XL Then
besides the standard homogeneous metric there is always another Einstein metric g^ except
in the following cases for which EF=l/2Eg:

(a) No. 1

SO(8)^U(4)=3T4

SU(4)^S(U(2)xU(2))=^T3

SO(2n-^-2)^SO(2n)SO(2):DTM+l;
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TABLE XI

Fibrations of Einstein metrics K/H ->• G/H ->• G/K

/i A; Remarks

1 . . . . .

2a . . . .
ft
3a . . . .
ft
4a . . . .
b . . . . .

5 . . . . .

6 . . . . .

7 . . . . .
8 . . . . .
9 . . . . .
10. . . . .
11. . . . .
12. . . . .
13. . . . .
14. . . . .
15. . . . .
16. . . . .
17a. . . .
b
18. . . . .
19. . . . .
20. . . . .
21. . . . .
22. . . . .
23a. . . .
b . . . . .
c . . . . .
24a. . . .

b . . . . .
25a. . . .
b . . . . .
c . . . . .

one of su (n),
so(2n), E(,, E7, Eg

so (ni n-^k)
so (nk)

sp(n^n^k)
sp(nk)

su(n^ n^k)
su (nk)

so (nk)

dim Ti^/dim /i,
independent of i

su(pq+l)

sp(3n-l)
so (3 n + 2)

so (26)
spin (8)

F^
E6
E6
E6
£7
E7
E7

Eg
Eg
Eg
Eg
Eg
Eg

Eg

Es

t = Lie algebra
of maximal torus

HI n^so(k)
n so (k)

n^n^sp(k)
n sp (k)

s(n^ n^u(k))
s(nu(k))

i
@^i

1=1

[u(l)@u(p)@u(q)}/
u(l)@u(\)

sp(n)@u(2n—l)
so(n)@u(n+\)

sp(\)@sp(5)@so(6)
Gz

spin (8)
3 so (3)

s/wi(8)®2so(2)
SM(2)©so(6)

so (8)
spin(S)@3su(2)

7su(2)

so (9)
spin (9)
4su(3)
4 so (3)

spin (S)@spin (8)
8sM(2)

so(5)®so(5)

SM(3)®su(3)

maximal rank with
(G/K, g^) Einstein,

B,=c.Bjf
HI so (^2 k)

so((n-l)k)@so(k)
n^sp(n^k)

sp((n-\)k)Csp(k)
s(n^u(n^k})

s(u((n-i)k)@u(k))

nso(k)
i=is+l

© ^so(k)
i=is+l

s(u(l)@u(pq))

sp(n)@sp(2n-l)
so(n)@so(2n+2)

so(20)®so(6)
spin(1)
spin (9)
3su(3)

spin(10)@so(2)
su(2)@su(6)

suW
so(12)@su(2)

spin(12)@su(2)
spin (S)@spin (4)@su (2)

su(9)
spin (16)

Ee®5M(3)
4si<(3)
s/wi(16)
s/?in(16)

spin (S)@ spin (S)
E,@su(2)
spin (16)

su(5)@su(5)
su(9)

so(8)@so(8)
spm(16)

^3, n^2
A^3, yi^3
^^1, »i^2
A;^l, n^3
fc^2, n,^2
fc^2, n^3

see Table I A No. 5

0=i'i<i'2<.. . < ^ + i = ^
n^2

^+^+1=^
p,q^2,l^3

n^l
n^3

V2®Vio

P9
Spin representation

P3

i ^ i
0=»<g)0=»

^3(8)^3
SM(3)<=so(8) by ad

(b) NO. 3 fl

Sp(6)^3Sp(2)=36Sp(l)
Sp(6)^2Sp(3)=36Sp(l);
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(c) No. 4a, ^2=4, fc^2,
(rf) No. 14.
Proof. - We have EB=(l/4)-(l/2)B$(?i, ?i+25) and since B^cBol^

EF=C [(1/4)—(1/2)8^(^1, H+28)], where ^ and p, are dominant weights of the isotropy
representations of G/K and K/H. The following observations simplify the calculations
considerably:

(a) If G/K and K/H are both symmetric, then EF=(1/2) Eg iff c= 1/2. This excludes
No. 7, 8, 11, 13, 15, 16, and 22 and for No. 14 it shows that Ep=(l/2) Eg.

(fc) If G/K is symmetric and c<l/2, then Ep<(l/2)EB. This excludes No. 19, 23 a,
24 a, and 25 c.

(c) If c^ 1/4, then Ep<(l/2) Eg. This excludes No. 12, 21,23 b, 24b, and 25 b.
(d) If EB>C then Ep<(l/2) Eg. This excludes No. la, 3 a, 4 a, 5, 18 and 25^.

Here we have used 0< -B$(5i, ?i+2§), -B^, ^+2 8) ̂ 1/2, which follows from (1.6)
and (1.7). The remainder of the cases are settled by a direct calculation. •

Remarks. — (a) It is not always the case that Ep<(l/2) Eg. Hence in contrast to the
situation when H is trivial, sometimes t > 1 and sometimes t < 1 for the new Einstein
metric.

(b) One can easily show that the new Einstein metric on G/H is not naturally reductive
except in the following two cases:

In No. 10 the new Einstein metric is the product metric on Spin(8)/G2=S7 x S7, and
in No. 7, n== l , the new Einstein metric is the symmetric metric on
Sp(2)/Sp(l)U(l)=P3C. This follows since one shows, using (5.2), that except in the
above two cases G is the full isometry group of g^ and no subgroup of G acts transitively
on G/H.

Note added in proof. — To be precise, one should include in Table 1 A and Table 1 B the case of a biin variant
metric on a compact, simple, simply connected Lie group G, i. e. H = { e }, which was mentioned in (1.3) and
(1.6). In (5.1) and (5.3) (ii) this case should then be excluded, since the metric is isometric to the strongly
isotropy irreducible symmetric space G x G/AG. The proof of (5.1) and (5.3) are easily modified.
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