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ON A LOWER BOUND FOR THE FIRST EIGENVALUE
OF THE LAPLACE OPERATOR

ON A RIEMANNIAN MANIFOLD

BY ATSUSHI KASUE (*)

Introduction

Let M be a connected, compact Riemannian manifold of dimension m with smooth
boundary 3M. The Laplace operator A acting on functions is locally given by

a->—(^^t,a-T^^)-
where (xi, ..., xj is a local coordinate system, g=T.m,j=lgijdXidXj is the fundamental
tensor, G= det(^.) and (^i•/)=:(^.)~l. We consider the following equation:

(0.1) AM+XM==O on M
M=O on 8M.

If for some number ^ there is a nontrivial solution u(x) of (0. 1), we call this value of ^
an eigenvalue. We write X-i(M) for the first eigenvalue. The purpose of the present
paper is to show geometric bounds for ^i(M).

Let us now assume the Ricci curvature of M is bounded from below by a constant
(m - 1)R and the trace of S^ is bounded from above by a constant (m - 1)A (R, AeR), where
SY denotes the second fundamental form of 8M with respect to the unit inner normal
vector field v on 9M (i. e, g(S.,X, Y)==g(VxV, Y) for X, YeT(aM)). Such a manifold M
is called a Riemannian manifold of class (R, A) for the sake of brevity. Recently, Li and
Yau [19] have given, among other things, computable lower bounds for Xi(M) in terms
of R, A and the inradius ̂  ^ M (i. e., ̂  '= sup { dis (x, 9M) : xeM}). Especially,
their estimate is optimum in the case when R=A=0 (cf. [ibid.: Theorem 11]). More
precisely, they have proved that, in such a case, ^-i(M) is greater than or equal to Tc2^^;
the equality is attained for a sect ion of a flat cylinder. Their method is based on a gradient
estimate of the first eigenfunction. Moreover, Gallot [8] has also showed another
computable lower bound for ^i(M), estimating the Cheegers isoperimetric constant in

(*) Research supported partly by Grant-in-Aid for Scientific Research.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. — 0012-9593/1984/ 31 /$ 5.00
© Gauthier-Villars



32 A. KASUE

terms of R, A and ^(cf. also [9]). On the other hand, before the works mentioned
above, Reilly [23] showed that i fR>OandA=0, )ii(M) is not less than mR and the equa-
lity holds if and only ifMis isometric to a closed hemisphere of the Euclidean sphere S^R)
of constant curvature R. This result by Reilly is a generalization, to Riemannian mani-
folds of class (R, 0) (R > 0), of the well known theorem by Lichnerowicz [18 ] and Obata [21],
which says that the first eigenvalue of the Laplace operator on a compact Riemannian
manifold without boundary is greater than or equal to mR if the Ricci curvature has a
positive lower bound R, and the equality holds if and only if the manifold is isometric
toS^R).

We shall now summarize our main results. In section 2, we consider the case when M is
a Riemannian manifold of class (R, A) and show that ^i(M) has a lower bound depending
on R, A and ̂  (cf. Theorem 2.1). Moreover our estimate is sharp when R and A satisfy
certain conditions which ensure us the existence of a model space of class (R, A) (cf. Defi-
nition 1.2). In fact, we see that the equality holds if and only if M is isometric to a model
space of class (R, A). We note that our estimate coincides with the above one due to Li
and Yau when R=A=0 (cf: Corollary 2.3) and our result contains the above theorem
by Reilly as the special case: R>0 and A=0. In section 3, we consider the case when
M is a domain of a complete, noncompact Riemannian manifold N and prove that if
the Ricci curvature of N is bounded from below by a nonpositive constant (m-l)R,
5ii(M) has a lower bound depending on R and the diameter d(M) ofM (cf. Theorem 3.1 (1)).
In connection with our estimate, we must mention that, under the same assumption as
above, Gallot has also given a lower estimate for )ii(M) in terms of R and d(M) (cf. [8;
Theorem 3.13 (i)]). It will be turn out that our estimate is sharper than his. Moreover
we shall show that if the sectional curvature ofN is bounded from above by a nonpositive
constant K and there is a concave function without maximum on N, ^i(M) has a lower
estimate depending on K and d(M) (cf. Theorem 3.1 (2)).

The basic idea to obtain a lower bound for ^i(M) is a combination of an extension of
a result by Barta [ 1] (cf. Lemma 1.1) and Laplacian and Hessian comparison theorems
which are the refined forms of the well known Rauch's comparison theorem (cf. [15]).

Finally, the author would like to express sincere thanks to Professor T. Ochiai for
his helpful advice and encouragement.

1. Preliminary

In this section, we shall first show a generalization of a result by Barta [ 1 ] (cf. Lemma 1.1),
and next give the definition of a model space of class (R, A) (cf. Definition 1.2) and some
notations used in Sections 2 and 3.

11 _ Let M be a connected, compact Riemannian manifold of dimension m with
smooth boundary 8M. We write M, for the interior of M. A result of Barta [1] tells
us that for any positive C^function \|/ on M, we have

Av|/
^M)^f-^
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ON A LOWER BOUND FOR THE FIRST EIGENVALUE 33

We shall first extend this result in the following

LEMMA 1.1. — Suppose there is a continuous function v|/ on M such that

(1.1) v|/>0 onM,,
(1.2) Av|/ + XA|/ S. 0 fl5 a distribution on M^

where ^ f5 ^ constant. Then we have

Xi(M)^.

Moreover if^f is smooth on an open dense subset ofM, 'k^(M)=K implies that \|/ is the first
eigenfunction (i. e., A\|/+^i(M)^/=0 on M^ and \|/=0 on SM).

Proof. — Applying the approximation theorem by Greene and Wu [11: Lemma 1.2,
Lemma 3.2 and Theorem 3.2] and the arguments in [5: p. 458], we can prove the above
lemma. In fact, for any £>0, the approximation theorem of Greene and Wu tells us
that there exists a smooth function \|/g on My satisfying

(1.3) l ^ -vM<|

(1.4) A\|/,+X\|/<£

on Mo. Let w be any smooth function whose support is contained in M. Then by (1.1)
and (1.3), w can be represented in the form:

on My and also
w=\|/' T|

w==(v|/e+s)r|s

on M. Noting that 2(v)/, +£)T|, < VT|,, Vv^ > +r|,2 1 1 V\|/J |2 = < V^, V { T ,̂ +£» } > and
integrating by parts,

f IIVwI^-^w^f^+^^IV'nell'+^vl/.+^Ti^Vri.V^^+^IIV^J^-^^+e^^^
JM JM

= f (^e+£)2 II Vr|J|2-Ti^+^A^-^^+s)2^2.
JM

Therefore we see by (1.4) that

(1.5) f ||Vw||2-^2^ [(^+£)21|VT^J|2+T^^+£){^-^)-e(?l+l)}
JM JM

^f^^s+^I^-^-^+l)}.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



34 A. KASUE

Since the right-hand side of (1.5) tends to 0 as eJA we obtain

r r
I IIVwIl^fw2.

JM JM
||Vw||2^ w2

This shows that ^i(M)^X, by the variational characterization of ^i(M). Now suppose
v|/ is smooth on an open dense subset U of M and ^i(M)=^. Then it follows from the
approximation theorem by Greene and Wu again that for any e > 0 and every compact
set K in UnM^, there is a smooth function v|/e,K on M<, which satisfies (1.3), (1.4) and

(1.6) I |VV|^K-V\H|<£

on K. Set r^K^wAvK.K+s)- Then by (1.5) we have

f I IVWII 2 -^ 2 ^ [(V|/,K+£||V^112+ fT^e2K(^,K+£){^-^K)-^+l)}.
JM JK JM

Since e is any positive number, we obtain by (1.4) and (1.6)

(1.7) [ I IVwI l^w^fv l^ l lVTi l l 2 (?I=MM)).

Suppose w is the first eigenfunction. Then || ̂ \\2-K^v2= - (Aw+^w)w=0,
JM JM

so that VT| =0 on K by (1.7). Since K is any compact set in U, we see that VT| =0 on U
and hence VT| =0 on M. This implies that T| is a constant on M, that is, w= const. x \|/
on M. This completes the proof of Lemma 1.1.

1.2. _ Now we shall define a special class of Riemannian manifolds with boundary.
For this purpose, let us introduce the function h^(t) on [0, oo) defined by the following
classical Jacobi equation:

(1.8) hR,A"+RVA=0 with VA(O)=I and VA'(O)=A.

Set Ci(R, A):= i n f { r : ̂ (0=0, r>0} (^ +00) and

C 2 ( R , A ) : = i n f ! / :h^(t)^t>Q\ ( ^ + x ) .

Here we understand Ci(R, A)= +00 (resp. C2(R, A)= +00) if VA>O (resp. h^ does
not vanish on [0, Ci(R, A]). Clearly, the inner radius J^ ̂  a Riemannian manifold M
of class (R, A) is less than or equal to Ci(R, A). Moreover, we remark that Ci(R, A) < + oo
if and only ifR>0,R==OandA<0, or R<0 and A< -V^, and that 0<C2(R, A)< + oo
if and only if R>0 and A>0, or R<0 and -^/-R<A<0.

DEFINITION 1.2. — A Riemannian manifold M of class (R, A) is called a model space
if one of the following conditions holds:

(I) Ci(R, A)< +00 and M is isometric to the metric (closed) ball B(R; Ci(R, A)) with
radius Ci(R, A) in the simply connected space form M^R) of constant curvature R.
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ON A LOWER BOUND FOR THE FIRST EIGENVALUE 35

(II) R = 0 and A = 0, pr 0 < C2(R, A) < + oo. Moreover M is isometric to the warped pro-
duct [0, la} x ^r, where h=h^^ a is a positive number i fR=0 and A=0, and a=C2(R, A)
if 0<C2(R, A)< +00. (In this case, 8M is disconnected.)

(Ill) R=0 and A==0, or 0<C2(R, A)< +00. Moreover 9M is connected, there is
an involutive isometry a of 8M without fixed points, and M is isometric to the quotient
space [0, la} x ^8M/Gy, where a and h are the same as in (II), and Gy is the isometry group
on [0, la] x ^8M whose elements consist of the identity and the involutive isometry a
defined by a((t, x) = (la - t, a(x)).

1.3. — Let M be a Riemannian manifold of class (R, A). We write v for the unit inner
normal vector field on 8M. For a point xe8M, we denote by S,(x) the distance between x
and the cut point of N along the normal geodesic exp^v(x). Let (81, ..., 6^-1) be
a coordinate system on an open set U of 8M. Then (p, 9i, .. .,6^-1) is a coordinate
system on 0:= exp^ {t^(x) : xeU, 0^t<^(x} } , where p:= dis (8M, *). On the coordi-
nate neighborhood (tJ, (p, Oi , . . .,6^-1)), the Laplacian A can be expressed in the form:

A= ± + IW^ ̂ M /G^-9-}9 p 2 ' 8p S p ' ^ a e A ' ^ <?e,/

where gir=g(-^-,-^}, (^^fey)"1 and G==det(gy). This shows that
\C'u; C\)j/

^aiog^/G
8p

on U. On the other hand, since M is a Riemannian manifold of class (R, A),

(1:9) Ap= (L[op/G ^(m- l)(log h^y o p
8p

onV and the equality holds at a point peV if and only if the sectional curvature of any plane
tangent to a(t) is equal to R and 8M is umbilic at CT(O) (i. e., < So<o)X, Y > = A < X , Y » ,
where o : [0, a] -^ M is the unique normal geodesic from N to p such that p(a(t))=t
(cf. [13], [15 : Lemma (2.8)]). Especially when M is a model space of class (R, A),

Ap=(m-l)(log^A)'°P

on { xeM : p(x)<^} • Therefore the first eigenfunction 0 of a model space M of class
(R, A) can be written in the form:

<I)=(J)o p,

where <[) is a smooth function on [0, ̂  ] satisfying

n 10) -? ^^^-^^^Ar^+^i^())"+(»» -l)(log /l^)'4)/+A,l(M)(|)=0 on [0, ./M]
^{0)=yW-.0.[ ()>(0)=(|/(J^)==o.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPEMEURE



36 A. KASUE

1.4. — For the latter purpose, let us now consider the eigenvalue problem of an ordinary
differential equation which is more general than (1.10). Let F(t) be a continuous function
on an interval [0, a)(a>0) and P a positive constant less than a. We write ^-(F, P) for
the first eigenvalue of the following equation:

(1.11)
(t/'+F(r)(t/+?i(|)==0 on [0, P]
(|)(O)=(|)'(P)=O.

Note that by the change of variable: s=T(r), where T(r):= exp - ¥(v)dv \du,
equation (1.11) can be rewritten as follows: L Jo J

(1.12) ^(T^^0 on^
$(O)=$'(P)=O,

where G o T = T o G = I and p=T(P). Here we shall give computable lower bounds
for X(F, P).

LEMMA 1.3. — Under the above notations, we have

(1.13) X(F.. P)> p jna^ \(\IT(u))du' T(o]

proof. — Let Xo be the right-hand side of (1.13) and \|/ the solution of an equation:

^n
\|/"+————°———\|/=0T (T'tG^)])2'
\)/(0)=0 and v[/'(0)=l.

Let <|)(0 be the first eigenfunction of (1.11). We may assume ^ > 0 on (0, P) and <))' > 0
on [0, P). Put (J)(s):==(|)oG(5). Then by simple computations, we have

^ ^ ^ fP ~ ~ P (RsWs)
(1.14) (MPmP)= W-<W=(^(F, P)-^o)| (T^G(5)])2^

Moreover by the definition of Ko, we see that v|/' > 0 on [0, p ] (cf. the proof of Lemma 4
and its corollary in [14 ]), and hence it follows from (1.14) that U¥, P) > ?io- This completes
the proof of Lemma 1.3.

LEMMA 1.4. — Suppose F is a constant. Then

F2 exp 2Fp
(1 •15) X(F- p)^ (expFp-l+^XexpFp-l)2

and the equality holds if and only if¥=0. In this case, ^-(0, P)=7I;2/4F2.
Proof. — This is a special case of a result by Krein [17].

46 SERIE — TOME 17 — 1984 — N° 1



ON A LOWER. BOUND FOR THE FIRST EIGENVALUE 37

2. A lower bound for the first eigenvalue
of a compact Riemannian manifold of class (R, A)

In this section, we keep the notations of Section 1 and prove the following

THEOREM 2.1. — Let M be an m-dimensional compact Riemannian manifold of class (R, A).
Then

(2.1) ^(M)^(R,A,./M),

where HR, A, ̂ ) is equal to U(m - l)(log h^)\ ̂  if^ < Ci(R, A) (cf. the paragraph 1.4),
and it is equal to the first eigenvalue of the metric ball B(R, Ci(R, A)) with radius Ci(R, A)
in the simply connected space form M^R) of constant curvature R if ̂  = Ci(R, A). More-
over the equality holds in (2.1) if and only if M is a model space of class (R, A).

Proof. ——We shall first show the theorem in the case when ^<Ci(R, A). Put
FR ,A:=(m— l)(l°g ^R.A/' Then Pp ^ is a smooth function on [0, Jf^\ since ftp ^ is positive
on [0, Ci(R, A)). Let ((> be the first eigenfunction of (1.11) defined by Fp ^ and P==^M-
We may assume that <|) is positive on (0, ̂ L so Aat (()' is also positive on [0, ̂ )- Since
the distance function p to 8M is smooth on M\^(8M), where ̂ (8M) denotes the cut locus
of 8M, we see by (1.9) that

(2.2) A(() o p+5^, ̂  o p=(|>" o p || Vp IM' o pAp+^(F^, JM)<I> ° P
^{(t)"+F^(t)'+^F^,^M)}°P
=0

on M\^(8M). We note here that inequality (1.9) sriJ? Wds ^t^r^w/i^r^ on M as a dfsrri-
bution, although the smoothness of p breaks on ̂ (^M) in general (cf. [15 : Corollary (2.44 ]).
Therefore inequality (2.2) Wds a^am on M as a distribution. Thus the first assertion
of the theorem follows from Lemma 1.1.

We shall now assume the equality holds in (2.1). Then it follows from the equality
discussion of Lemma 1.1 that 4» ° P is smooth everywhere on M, it vanishes on 8M and
it satisfies

A^OP+^FR^M^P^

on M. Therefore by the above arguments, we get

Ap==FR^op

on M\^(8M). This shows that for any geodesic a : [0, a] -> M with p(a(t))=t (te[0, a]),
the sectional curvature of every plane tangent to a(t) is equal to R and 8M is umbilic at
a(0) (i. e., < S^o)X, Y > = A < X, Y ) ) (cf. the paragraph 1.3). Moreover combining
this fact with the smoothness of <|) o p and the positivity of (|)' on [0, ^i)» we see Aat

^(9M)={xeM:p(x)^}.

Now it is not hard to see that M is a model space of class (R, A), which is different from

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



38 A. KASUE

B(R; Ci(R, A)). When JM is equal to Ci(R, A), it follows from Theorem A in [16] that
M is isometric to B(R; Ci(R, A)). This completes the proof of Theorem 2.1.

Combining Theorem 2.1 with Lemma 1.3 or Lemma 1.4, we have the following two
corollaries.

COROLLARY 2.2. — l£t M be as in Theorem 2.1. Then

?4(M)>Lma^ F^A'^^V^A^^ '

COROLLARY 2.3. — Let M be as in Theorem 2.1. Suppose R=0 and A=0. Then

UM)̂ .
Moreover the equality holds if and only if M is a model space of class (0, 0) (e. g., a section
of aflat cylinder).

Remark. — In the case when R>0, we can obtain other computable estimates for ^i(M),
making use of a result by Friedland and Hayman [7].

3. A lower bound for the first eigenvalue
of a domain in a noncompact Riemannian manifold

In this section, we shall prove the following

THEOREM 3.1. — Let N be a connected, complete and noncompact Riemannian manifold
mthout boundary and M a compact domain mth boundary in N.

(1) Suppose the Ricci curvature of N is bounded from belo\v by a nonpositive constant
(m-l)R (m= dim N). Then

K2

A^^ (R=o)9, 4d(M)
^W> \ _______-(m-1)^ exp (2(m - l)^Rd(M))______ ^

[ (exp (m - l)^Rd(M) -14- 4/7^2)(exp (m - l)^Rd(M) -1)2

(2) Suppose the sectional curvature of N is bounded from above by a nonpositive constant K
and moreover there is a concave function [ i : N -> R mthout maximum. Then

K2

(K=0),
, 4d(M)2

^iW>\ -(m-l)^
4(1 - exp(- (m - l)^/-Kri(M)/2))2

(K<0).

Remarks. — (1) The estimate of the first assertion is « sharp » if R==0. In fact, let ©
be the antipodal map of a sphere S^1 in Euclidean space Rw and define an involutive

4e SERIE — TOME 17 — 1984 — N° 1



ON A LOWER BOUND FOR THE FIRST EIGENVALUE 39

isometry 0: S"1-1 x R -. S"1-1 x R by 0(6,0==(©(6), -r). Put N^S"1-1 x R/{ id., © }
7C2

and M^S^x [-r, r] /{ id.,©}. Then ^(MJ= —^ and Urn d(M,)/r=l.

(2) Let H be a connected, simply connected and complete Riemannian manifold
whose sectional curvature is bounded from above by a nonpositive constant K. Then,
there are many concave functions without maximum on H. Moreover if D is a freely
acting, properly discontinuous group of isometries on H and.N:=H/D is a parabolic
manifold, N possesses a concave function without maximum, where we call N:==H/D
^parabolic manifold if there is a point zeH(oo) that is the unique fixed point of every (p( -^ l)eD
(cf. [6 : Section 7 and Section 9] for details and examples of parabolic manifolds).

(3) Let N and M be as in the second assertion of the above theorem. Then if K<0,
we have

-(m-l)^ -(m-l^K

so that
4(1 - exp(- (m - l)^Kd(M)/2))2 4

. ̂ ^ -(m-l)^^i(M)> ———-;———.

This inequality was proved in [20] in the case when N is simply connected and the sectional
curvature is bounded from above by K<0.

In order to prove Theorem 3.1, we shall use a Busemann function, instead of a distance
function to the boundary as in the proof of Theorem 2.1.

To begin with, let us recall the definition of a Busemann function. Let N be a complete,
noncompact Riemannian manifold without boundary and y : [0, + oo) -> N a geodesic
ray. For any r^O, set B^:= dis(y(r), *)-t. Then

I B\(x) | == | dis (y(r), x)-dis (y(0), y(Q) | ̂  dis (y(0), x),

by the triangle inequality, so that {B!y}^o is uniformly bounded on compact subsets
of N. Moreover if s<t,

H(x) - B\(x) = dis (y(s), x) - dis (y(r), x) +1 - s = dis (y(5), x) - dis (y(r), x) + dis (y(r), y(s)) ̂  0,

again by the triangle inequality. Thus the family {B^}^o is also nonincreasing, and
hence it converges to a function B^ on N, uniformly on compact subsets. This function B
is called the Busemann function associated with a geodesic ray y. We first note the following

FACT 3.2 (cf. [24 : Lemma 3.2]). — Letting U,:= {xeN : B,(x)>a} for aeIR, \ve have

B^=a+ dis (8V ̂  *)
onU,.

Moreover we have the following

LEMMA 3.3. — Suppose the Ricci curvature of N is bounded from below by (m-l)R

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



40 A. KASUE

(R^O, m= dim N). Let ^> be a nondecr easing C2'-function defined on an interval J. Then
\ve have

(3.1) A(<t> o B^((()" +(m -l^R^) ° B,

(2s a distribution on B^^J^ ('-=the interior of B^^J)).

Remark. — In the case when R=0 and ())= 1, inequality (3.1) implies that B^ is super-
harmonic on N. This fact was proved by Cheeger and Gromoll [4] (cf. also [24 : Funda-
mental theorem A]).

Proof of Lemma 3.3. — As the first step, let us consider the Laplacian of a distance
function to a point in a complete Riemannian manifold N without boundary. Let p
be a point of N and p denote the distance function to p. Let (p, 61, . . . , 9^_ i) be a polar
coordinates defined on N\^(p)u [p }, where we write ^(p) for the cut locus of p. Set
g^.= < a/59,, S/9Qj > and G:= det (̂ .). Then we have

(3.2) ^-^^(m-lXlog/Ryop
Sp

on N\^(p)u {p } (cf. e. g., [13]), where /R is the solution of the classical Jacobi equation:
/^+R4=0, subject to the initial conditions/R(0)=0 and /R(O)= 1. Since Ap=3 log G/5p
on N\^(p)u {p }, we see by (3.2) that

Ap^(m-l)(log/Ryop

on N\^(p)u { p ] . Therefore for a nondecreasing C2 function (|) on J, we have

(3.3) A((|)op)=(l)"||Vp||2+(t)'Ap
^{(t) ' '+(m-l)(logA)'(t/}op

on p'^J^W^u { / ? } . We remark here that ^u? equality in (3.3) Wds a^ a /wmr
jcep'^.Oo^^u { p } if and only if the sectional curvature of any plane tangent to a(t)
is equal to R, \vhere a : [0,, a] -> N is the unique distance minimizing geodesic fromp to x.
Moreover we note that inequality (3.3) still holds on p'^J^ as a distribution (cf. e. g.,
[15-.Corollary (2.42)]).

Let us now return the proof of Lemma 3.3. Applying inequality (3.3) in the sense of
a distribution to (|)°B'y (^0), we get

A((|) o B\} ̂  (|)" " V + (m - l)(log /„)' o p, • ̂

as a distribution on (B'y)"1^, where P(:= dis(y(Q, *). Therefore letting t-> +00, we
obtain inequality (3.1), since { B i y } converges to B^ uniformly on compact subsets and
lim (log /R)'(r)=^/—R. This completes the proof of Lemma 3.2.

We remark that Fact 3.2 and Lemma 3.3 hold for a function constructed from. a diver-
gent family of closed subsets, like a Busemann function (cf. [24]). More precisely, let
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ON A LOWER BOUND FOR THE FIRST EIGENVALUE 41

^= {Q}fei be a family of closed subsets C, of N indexed by some interval I==(a, P).
Assume dis (o, Q) tends to infinity as t -> P, where oeM is a fixed point. Set
B^:=dis(Q,*)—dis(0,Q). Then B^ is a Lipschitz continuous function with Lipschitz
constant 1 and also | B^> [ ^ dis (*, 6) by the triangle inequality. Thus { B^} is an equi-
continuous family which is uniformly bounded on compact sets. Therefore by Ascoirs
theorem, a subsequence of { B^}, to be denoted by { B^}, converges to a continuous
function By, on N uniformly on compact subsets. Then, Fact 3.2 is true for this function
B<g> (cf. [24: Lemma 3.2]), and also Lemma 3.3 holds, because the distance function p
to a closed subset A satisfies inequality (3.3) as a distribution on p~ ̂ oVA (cf. [15 : Corol-
lary (2.24)]). Moreover we have the following

LEMMA 3.4. — Suppose the sectional curvature of N is bounded from above by a non-
positive constant K and there is a concave function p, on N mthout maximum. Let
^= {Ct}fe(-ao ,supn) ^e a divergent family of totally convex closed subsets

C,:={^N:uM^r}

and B<^ a function constructed as above by a subfamily { C^ } . Then for any nonincreasing
C^-function (p on an interval J, v^e have

(3.4) A((poB^ {(p"+(m-l)^K(p'}oB^

as a distribution on B^^J)^.

Proof. — Since Q is a totally convex closed subset of N for each te(— oo, sup p), B^ is
a convex function on N and has continuous first derivatives on N\C( (cf. [3 : Propositions
3.4 and 4.7] and [22 : Lemma 5]). Therefore B^ is subharmonic on N (cf. [10, 11])
and moreover 6^ satisfies

AB^(m-l)(log/iK,oy°P.

as a distribution on N\C(, where p(S=dis(Q,*) (cf. [15 : Theorem (2.49)]). Hence
we have

(3.5) A((p o By^cp" o B^+(m- l)(log h^oV ° Pi' <P' ° B^

as a distribution on (By~l(J)o\Q. Since fi^ converges to B<^ uniformly on compact
sets and Inn (log /^K,o(0)/=\/r^ we see by (3.5) that inequality (3.4) holds. This

completes the proof of Lemma 3.4.

Proof of Theorem 3.1. — Let us first assume that the Ricci curvature of N is bounded
from below by a nonpositive constant (m— 1)R. Let B^ be the Busemann function asso-
ciated with a geodesic ray y : [0, + oo) -> N. Set 5^(M):= max { B^(x): xeM} ,

8,(M):= min {B,(x) : xeM } and 5y(M):==8y(M) -5y(M).

We write <() for the first eigenfunction of equation (1.11) defined by F=(m—l)^/—R
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and P=8y(M). We may assume that <|)>0 on (0,8y(M)]. Letting <D(0:=(|)(^-8y(M))
for re[8,y(M), 8^(M)] and applying Lemma 3.3 to 0°By, we have

A($ o B,)+^((m- 1)^R, 8,(M))0 o B,
^ { 0" + (m -l)./3]^)' + H(m - ̂ v^R, 8^(M))0 } o B,
=0

as a distribution on My Therefore it follows from Lemma 1.1 that

?^(M) ̂  U(m - 1)V^R, 8,(M)).

Since 8y(M) is less than the diameter d(M) of M by Fact 3.2, we obtain

(3.6) ?4(M)>^((m-l)y^R, d(M)).

Thus the first assertion of Theorem 3.1 follows from (3.6) and Lemma 1.4.
Now we shall show the second assertion of the theorem. Let B<g> be as in Lemma

3.4. Set MM):= max { Q<g(x) : xeM} , 8<g<M)= min { B^(x): xeM} and

8<g>:=8(M)-8^(M).

We write \|/ for the first eigenfunction of equation (1.11) defined by F= —(m—l)^/—K
and p=8<^(M). We may assume that \|/>0 on (0, 8^(M)]. Put T(0:=\1/(8^(M)---0
for t€[8<^(M), 8<g»(M)]. Ttien applying Lemma 3.4 to ^Fo B<^, we have
A(V o B^) + U - (m -1)^^, 8^(M)XF o B<^

^ { ^/+(m~l)y^xF'+^(-(m--l)y^K, 8^(M))lF } o B^
=0

as a distribution on M^. Therefore it follows from Lemma 1.1 that

^(M)^-(m-l)y^K, 8^(M)),
and hence, we obtain

(3.7) ?4(M)^(-(m-l)y^K, d(M)\

because 8y(M) < d(M). Thus the second assertion follows from (3.7), Lemma 1.4 (K = 0)
and Lemma 1.3 (K<0). This completes the proof of Theorem 3.1.

Before concluding this section, let us consider the first eigenvalue for a domain of a
compact Riemannian manifold without boundary and prove the following proposition,
where we shall use the same notations as in Section 1.

PROPOSITION 3.5. — Let N be a connected and compact Riemannian manifold mthout
boundary. Suppose the Ricci curvature o/N is bounded from belo\v by a constant (m— 1)R
(m= dim N, R€R). Then for any domain M mth smooth boundary,

(3.8) ?4(M) ̂  U(m - I)FR.^, rf(N) - ̂ ),
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