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SURFACES OF GENERAL TYPE
WITH p,=\ AND (K, K)=l. I

BY ANDREI N. TODOROV

Introduction

The aim of this article is to describe all surfaces with pg=l and (K, K)==l. The first
examples of such surfaces were constructed by Kunev in [Ku]. Here we give the following
description of all surfaces with pg=l and (K, K)==l: every such surface is a complete
intersection of two quasi-homogeneous polynomials in P4^, 2, 2, 3, 3). This fact was
conjectured by M. Reid and I learned it from I. Dolgacev. From this description it follows
that the moduli space of surfaces with pg=l and (K,K)==1 consists of one
component. These surfaces are interesting because they are simply connected and the local
Torelli theorem is not true for some of them. Thus surfaces with pg = 1 and (K, K) = 1 that
are canonical Galois coverings of P2 give counter examples to a conjecture of P. Griffiths,
which states that the local Torelli theorem is true for all simply-connected surfaces of general
type with pg^ 1. Even more the auther recently proved that these surfaces give counter
examples to global Torelli theorem. We give a complete description of all Galois coverings
of P2 with pg= 1 and (K, K)= 1. For surfaces with pg= 1 and (K, K)= 1 that are not a
canonical Galois coverings of P2 the local Torelli theorem is true.

The auther wants to express his gratitute to his sudent and friend V. Kunev for many
valuable conversations during the preparation of this article. This resulted in
improvements of some of the proofs. Part of these results were reported in the
Mathematische Arbeitstagung 1978 in Bonn. The auther wants to express his gratitude to
the organizers of this conference for the extremely stimulating atmosphere created during the
conference.

1. A description of all surfaces with p g = 1 and (K, K)= 1

We need some definitions in order to formulate Theorem 1.

DEFINITION 1. — An weighted projective space of type (wo, W i , . . . , wj, where Wi are
positive integers', is defined as Proj C (wo, . . . , wj, where C (WQ, . . . , wj is the polynomial
ring with the following graduation, degXi=Wi.
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2 A. N.TODOROV

DEFINITION 2. - We will say that /(xo, . . . , xj= ̂ a^ is a quasi-homogeneous
k

polynomial of type (wo, . . . , wj ofdeg mifffe=(feo, . . . , ^) and feo^o+ . . . +koW^=m.

DEFINITION 3. - An weighted complete intersection in P"(wo, . . . , wj we will call a
variety V, whose ideal in the graded ring C (xo, . . . , xj is generated by a regular sequence of
quasi-homogeneous polynomials f^ , .. .,/^ , where di is the degree o f^ .

THEOREM 1. — Every surface with an ample canonical class, pg=^ and (K, K)=l is a
complete intersection of type (6, 6) in P4^, 2, 2, 3, 3).

Proof. — First I will give the reason for choosing P4^, 2, 2, 3, 3) as a space of embedding
surfaces with pg= 1 and (K, K)= 1. First I will recall some facts proved by V. Kunev for
surfaces with pg= 1 and (K, K)= 1:

THEOREM (see [Ku]). — Let S be a minimal model of a surface with pg=t and
(K,K)==1. Then (a) the complete linear system |2Ks[ gives a holomorphic map
/|2Kc| : S -> P2, (b) the complete linear system 13K§ | gives a holomorphic birational map.

Bombieri proved in [Bom] the following lemma: Let S be a minimal model of a surface with
pg= 1 and (K, K)= 1, then the general element of 12K§ | is irreducible and nonsingular.

From the definition we know that dim H°(S, Qg2) = L Let ̂ (^ ^s2) be generated by
so. From Riemann-Roch we get that dimH°(S, 0(2Ks))=3. Let H°(S, 0(2Kg)) be
generated by So, s i, s^. From Kunev's theorem and Bombieri's lemma, it follows that we
can choose s i and s 2 in the following way; let C i and C 2 be the divisors of s o and s i, then we
may suppose that Ci and C^ are nonsingular curves intersecting each other
transversally. From Riemann-Roch theorem it follows that dim H° (S, 0 (3 Kg)) = 5. Let
H°(S, 0(3 Kg)) be generated byso, S o 5 i , S o S 2 , S 3 , S4. From Kunev's theorem it follows
that we can choose the divisors of s 3 and S4, C 3 and €4, so that C 3 intersects €4 transversally
and both of them intersect C i and C 2 transversally. The theorem of Kunev gives us a hope
that S can be embedded in P4^, 2, 2, 3, 3), i.e. in ProjC(so, Si, S2, S3, S4), where
degso=l, degSi=2, degs2=2, degs3=3 and degs4=3.

Remark. — From now on all curves Ci will be fixed, where Ci is the divisor ofs» for all i>0
and Ci are nonsingular and have the properties described above.

In order to prove Theorem 1, we need the following construction:

THE CONSTRUCTION OF X4. — From the fact C i e 12 Kg | and the results of Wawrik [W] we
can construct a Z 2 cyclic covering p i : X i -> S ramified over C i. Let me denote by | H 11
the complete linear system [ p f K§ [ . Let p^ : X^-^X^besiZ^ covering ofX i ramified over
p f C 2. Let me denote by H 2 = p ̂  H i. It is clear that ( p i p 2)* C 3 belongs to 13 H 2 1 and we
can construct a cyclic J-^ covering ^3 : X3 -> X2 ramified over ( p ^ P i ) * €3. Again I will
denote by H3 =p*3H2. We see immediately that (^3 p^ p i)* €4 belongs to [ 3 H31 so that we
can construct a cyclic Z^ covering p^:X^-> X^ ramified over (ps^Pi)* €4. From the
fact that all Ci are nonsingular and transect each other transversally, we conclude that all X,
are nonsingular surfaces, f = l , 2, 3, 4. If we can prove that X4 can be embedded as a
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SURFACES OF GENERAL TYPE WITH pg= 1 AND (K, K)= 1 3

complete intersection of type (6, 6) in P4, Theorem 1 will be proved, because
P4( l , 2. 2, 3, 3)=P4/G, where G is a group which acts in the following way

(g,(Xo : Xi : X2 : X3 : X4)==(Xo^o '' ^\9\ '' ^l9l '' ^3^3 .' ^4^4)

gi=exp(2nbi/Wi), 0 ^ f c ; < W f .

The equivalence of these two definitions is proved in [D]. Thus our aim is to prove that X 4 is
a complete intersection of type (6, 6) in P4.

LEMMA 1. - (a) dimH°(Xi, 0(Hi))=2, (fc) |Hi | does not have fixed components,
(c)(Hi,H,)=2.

Proof. - The proof is based on the following remark: Z2=( l» s) acts on H°(Xi, 0(Hi))
and so H°(Xi, C^H^H^C^Hi))4-eH°(0(Hi))-, where H^C^Hi))4- is the invariant
and H°(0(Hi))~ is the anti-invariant subspace. It is a well-known fact that
H^OOH^-^pfH^CHKs)) and thus dimH^CHHi))-^!. Now we must compute
dimH°(0(Hi))-. Notice that CHH^p'i'C^Ks) and it follows that the cocycle defining
0(Hi) is of the form /fj=p?(^). Let Uf be a covering of Xi by polycylinders. If
/eH°(0(Hi))- then it follows thatf5^ -/and/f= -/,, where/,==/^.. Indeed.fromthe
definition of/ it follows that / = f^ /, and so from /?, = f^ it follows that/f = - /,. Now let
U i contains the branch locus of p i, C i. It is a well-known fact that we can choose the local
coordinate system (x,, y ^ ) in U, in such a manner that x f = X f and ^f= —}^, where yi is the
local equation of Ci in U,. Now let
(1.1) fAx^y^^mnxTyl and /f= E(~ l)^mn^^
(1.2) fsi=-fi ^fi^^a^xTyf^1, where m and n>0.
So

(lt3) fi^-fi ^f-yi9i(x^yh

From (1.3) it follows that if/^ -/ then (f)==C[ +D, where D is an effective divisor on
X i. If we can prove that C i is rationally equivalent to H i, then from (1, 3) it will follows
that dim H°(0(Hi))-=l.

PROPOSITION 1.1.- The branch locus ofC[ is rationally equivalent to Hi .
Proof. - See [W].

Q.E.D.

Proposition 1.1 proves (a) of Lemma 1.
Q.E.D.

I Hi I does not have fixed components because C'ie|Hi| and it is a nonsingular
curve. Thus (b) is proved.

On S we have (Kg, Ci)=(Ks, 2Kg)=2 and on X i we have

(pTKs, p?Ci)=deg(pi)x(Ks. Ci)=4=(Hi. 2Cl)=(Hi, 2H,). '

So we obtain that (H i, H i) = 2.
Q.E.D.

4eSERIE ~ TOME 13 - 1980 - ?1



4 A. N. TODOROV

LEMMA 2. — dimH°(0(H2))=3. We can choose C^ in such a manner that the linear
system \ H^ \ gives a holomorphic map X^-^P2, (H^, H2)=4.

Proof. — We know that Z^=(l, s) acts on X^ and X2/5=Xi and so we can repeat the
arguments of Lemma 1 and conclude that H^O^^H^C^H^ +H°(0(H2))~,
where H^O^))^ =^(H°(0(Hi)) and H^O^))" is generated by /, where (/)=C2 is
the branch locus of p 2. From all these facts and Lemma 1 we get that dim H ° (0 (H 2)) = 3.

(b) If | H 11 has base points, these points can be at most two because of(Hi, H i) = 2. Let
these two points be P i and P 2. From Kunev's theorem it follows that we can choose C 2 in a
such a manner that C^ does not contain the images of Pi and P^ on S. Now our result
follows from the decomposition

HO(0(H2))=HO(0(H2))+eHO(0(H2))-=p^HO(0(Hl))+C/,

where (/)==C2 the branch locus o fp2 and (piPiYC^^lC'^.
(c) The proof of (H 2, H 2) =4 is the same as the proof of (Hi, Hi) =2.

Q.E.D.
LEMMA 3. — (a) dim H ° (X 3, 0 (H 3)) = 4, (b) the complete system | H 3 | gives a holomorphic

map g^ : X 3 - > Y c ; P 3 , Y f s a hypersurface of degree 6, X3 is a double covering o/Y ramified
over a curve rationally equivalent to 6H, H is the hypersurface section on
Y. (c)(H3,H3)=12.

Proof. — The proof is based on several steps.

STEP 1. - dim H ° (0 (H 3)) = 4.
Proof. — Z3=(l, s, s2) acts on X3 and thus on H°(0(H3)). From here it follows that

HO(0(H3))=HO(0(H3))+©HO(0(H3))£eHO(0(H3))£2 ,
where H^O^))-" is the invariant subspace and H^O^))8 and H^O^))8' are eigen
subspaces with eigen values £ and e2, where e3^! and s^O. From
H^O^^^H^O^)) follows that dim H^OO^^S (this is Lemma 2).

PROPOSITION 3.1. - dim H ° (0 (H 3))8 = 1 and dim H ° (0 (H 3))62 = 0.
Proof. — Let Uf be a covering of X3. Let / and g be elements of H°(0(H3))8 and

H^OQ-^))82 respectively. Let me denote by/; and g^ /|u and g\^.. If U^nC^O,
where €3 is the branch locus ofp3, then we can choose the coordinates in Ui in the following
manner: x f = x i and y^ = £ y i, where y»is the local equation of C 3 in U i. Repeating the same
arguments as in Lemma 1 we get

(3.2) /?=£/, and <7f=£2^ it /'=£/ and g^^g.

Let

(3.3) /-E^nnX^? and ^=Z^n^?.

From (3.2) and (3.3) we obtain:

(3.4) /f=£/» iff fi=yif'i(Xi,yf) and ^=£2^ iff gi=yf g^x,, y^).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



SURFACES OF GENERAL TYPE WITH pg= 1 AND (K, K)= 1 5

From (3.4) it follows that if / and g are elements of H^O^))6 and H^O^))82

respectively, then (/) = C 3 + D and (g) = 2 C 3 + D i. Proposition 3.1 follows from the fact
that €3 is rationally equivalent to H3. For the proof of this fact, see [W].

Q.E.D.
Remark. - Notice that we have proved that H ° (0 (H 3)) = p 3 H ° (0 (H 2)) + C y , where C is

the complex number field and (y)=C^.

STEP 2. - ̂ 3, H3)=12.
Proof. — The proof is the same as the proof for (Hi, Hi) =2.

Q.E.D.

STEP 3. — degg^(X^) is one of the following numbers: 2, 3, 4, 6 and 12.
Proof. — It follows from Lemma 2 and the remark after Step 1 that the complete linear

system | H31 gives a holomorphic map ̂ 3 : X3 -> Y c; P3. Now Step 3 follows from the
following formula: (H 3, H3)=deg^3 x(H, H)y, where (H, H)y is the selfintersection number
of the hyperplane section on Y.

Q.E.D.

STEP 4. — Let x i, x 2, x 3 and x 4 be sections of H ° (0 (H 3)), which are linearly independent
and generate H ° (0 (H 3)). Then all monomials formed from x i, x 2, x 3 and x 4 and having
degree 4 are linearly independent in H°(0(4H3)). We suppose that degXi= 1 for all f.

Proof. — The proof is based on several propositions.
PROPOSITION 3.2 :

HO(0(4H3))=p^HO(0(H2))+X4p?HO(0(3H2))+x^^HO(0(2H2)) ,

where ^4 is such that (x4)==C3, the branch locus ofp^.

Proof. — From the way we constructed X3 we know that J-^ acts on X3. From here it
follows that Z3 acts on H° (0 (H3)). From this action we get the following decomposition

HO(0(4H3))=HO(0(4H3))++HO(0(4H3))£+HO(0(4H3))e2 ,

where HO(0(4H3))+ is the invariant subspace, H°(0(4H3))6 and HO(0(4H3))e2 are eigen
subspaces with eigen values 8 and e2. Repeating the same arguments as in Step 1, we get

(3.5)
/eHO(0(4H3))£ ifff^=f,(x^y^yji(x,,y!),
^eHO(0(4H3))e2 ^ g ^ = g i ( x , , y , ) = y f g i ( x , , y f ) ,

where (Xi, y ^ ) is a local coordinate system in Uf such that xf=Xipi^f==}^, y ^ is the local
equation of €3 in Ui. From (3.5) and the fact that €3 is rationally equivalent to H 3 we
obtain:

f/eHO(0(4H3))£ i f f /=X4/ ' , where (x4)=C3 and /' eptH°(0(3H^
[ ^eHO(0(4H3))e2 iff g = x i g ' , where ^e^H°(0(2H,)).

4eSERIE - TOME 13 - 1980 - N° 1



6 A. N. TODOROV

PROPOSITION 3.2. - Follows from (3.6) and the fact H^O^H^^p^H^O^H^))'
Q.E.D.

PROPOSITION 3.3:

HO(0(4H2))=(p2Pl)*HO(0(4Ks))+^2(P2Pl)*HO(0(3Ks))
+^l(p2Pl)*HO(0(3Ks))+^^l(p2Pl)3 < eHO(0(2Ks)),

w/^r^(^2)==C2 (r^ branch locus ofp^) and y \ = ( p z ) * z ^ , (z i)==Ci, the branch locus o/pi.

Proof. — Z2 acts on X2 and so it acts on H°(0(4H2)). Thus we have

^^H^^^H^+H0^^))-.

We know that

H^C^H^r^H^C^HO).

Repeating the same arguments as in Proposition 4.1 we will get that

H°(0(4H2))-=y2^H°(0(3HO),

where (^2) =€2. So we get

(3.7) HO(0(4H2))=^$HU(0(4H,))+^2P!HO(0(3HO).

We know that X i is a double covering of S ramified over C i. Z 2 acts on X i. From this
action we get

(3.8) HO(0(4H,))=p?HO(0(4H,))++HO(0(4Hl))-.

Repeating the arguments of Remark 2 we obtain:

(3.9) ^^H.r^TH^C^Ks)),
(3.10) H°(0(4Hi))-=z^TH°(0(3Ks)),

where (z i) = C i the branch locus of p i and z i e H ° (0 (H i)).
Repeating the same discussion for H°(0(3Hi)) we get that

(3.11) HO(0(3Hl))=p?HO(0(3Ks))+z,pTHO(0(2Ks)).

Combining (3.8), (3.9) and (3.10) we get

(3.12) HO(0(4Hl))=pTHO(0(4Ks))+z^fHO(0(3Ks)).

Putting (3.11) and (3.12) in (3.7) leads us to

(3.13) HO(0(4H2))=(^2Pl) s l tHO(0(4Ks))+p2(^)(p2Pl) i l cHO(0(3Ks))
+^2(p2Pl)*HO(0(2Ks))+^2P^^)HO(0(2Ks)).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUP^RIEURE



SURFACES OF GENERAL TYPE WITH pg= 1 AND (K, K)= 1 7

(3.13) Proves Proposition 3.3 if we take into account that 3/1 ==p^ (z^).
Q.E.D.

Remark. — We can choose Xi , x^, ^3 and ^4 (a basis of H°(X3, 0(H3))) in a such way
thatx?=(p3p2^i)*(si),^J=(p3P2Pi)*(s2)^3=(p3P2Pi)*(so)andxl=(p3p2Pi)*(s3),
where (so)=K^ (s,)=C,, (s^^C^ and (s3)=C3.

Proof. - In Lemma 1 we proved that H^OtHi^pfH^C^Ksa-hCzi, where
(z i ) = C i , the branch locus of p i. From the fact that X i is a double covering of S ramified
over Ci, it follows that p*(s i )=zf . In Lemma 2 we proved that

H°(0(H2))=p$H°(0(Hi))+C^

where ( y ^ ) = C^, the branch locus of p ^ . From the fact that X2 is a double covering of X i
ramified over pKC^), it follows that (pzp\Y{s^=y^. I11 Lemma 3 we proved that

H°(0(H3))=^H°(0(H2))+C;C4,

where (x4)=C3. From the fact that X3 is a cyclic J.^ covering of X2 ramified over
( P 2 P i)* (C 3) it follows that ( p 3 p 2 p i)* (s 3) = xi. Combining all these facts we conclude that

HO(0(H3))=(p3P2Pl)*HO(0(Ks))+C(p2Pl)*(^)+Cp?(^2)+CX4.

Now taking into acount that H°(0(Ks))==C5o and denoting by x ^ = ( p ^ p 2 ) * ( z i ) ,
x2=Pt(y2)' -^^^^Pi)'1^^) we can state ^at H°(0(H3)) is generated by Xi , x^, ^3
and ^4.

Q.E.D.

PROPOSITION 3.4:

(a) HO(0(3H2))=(p2Pl)*HO(0(3Ks))+^2(p2Pl)*HO(0(2Ks))

+^l(p2Pl)*HO(0(2Ks))};^2(p2Pl)*HO(0(Ks)):

^i an^ ^2 have the same meaning as in Proposition 3.4.

(b) HO(0(2H2))=(p2Pl)*HO(0(2Ks))+^l(p2Pl)*HO(0(Ks))

+^(p2Pi)*H°(0(Ks))+C^2.

Proof. — Repeat the proof of Proposition 3.3.
Q.E.D.

PROPOSITION 3.5. - ̂ °(0(4Ks))isgeneratedbys^s^s^s^S2,SoS^,SoS^,si,siand
s^ 52. The 51 are chosen in the way pointed out on Paragraph 1.

Proof. - From the exact sequence

0-^0(3Ks)^0(4Ks)-^0(4Ks)|K^O

we get the following inclusion

O^H°(0(3Ks))^H°(0(4Ks)).

46 SERIE - TOME 13 - 1980 - N° 1



8 A. N. TODOROV

From this inclusion it follows that s ^ , s ^ s ^ , s ^ s ^ , S Q S ^ , S Q S 4 . are linearly independent. Let
me denote the vector space spanned by these linearly independent vectors by Vi. The
subspace V\ has dimension 5. Let me denote the subspace spanned by s^, sj and Si 52 by
¥2. We will show that dim V 2=3. If dimV2<3 then we will have
a i S ^ + ^ 2 5 J + f l 3 S i S 2 = 0 . From this equation we get a i 5 ? = S 2 ( a 2 S 2 + f l 3 S i ) . From the
last equation it follows that €2 is contained in Ci. This is impossible. I f V i n V 2 = = 0 ,
then Proposition 3.5 will be proved. Suppose that Vi n ¥2 ̂ 0 and let u e V i n ¥2 and
u^O. Thus

y = f c l 5 i + f c 2 5 2 + ^ 3 5 i 5 2 = S o ( C i S ^ + C 2 S o 5 i + C 3 S 3 + C 4 S o S 2 + C 5 S 4 ) .

From this formula we obtain:

(3.14) f c i 5 ^ + f c 2 s i + f c 3 S i 5 2 = 0 on Ks.

Notice that it is impossible. Indeed, let U be a neighborhood of a point on Kg. Let
5! |u =/! ̂ d S2 |u =/2• From the definition of s^ and 52 and Kunev's theorem it follows
that we can find a point P e Kg n U such that /i (P) ̂  0 and f^ (P) ̂  0. This fact contradicts
(3.14). Proposition 3.5 is thus proved.

Q.E.D.
The end of the proof of Step 4. — Let me denote by P 3 = p 3 p 2 P i - Combining

Propositions 3.2, 3.3 and 3.4 and taking into account the remark after Proposition 3.3, we
will obtain the following formula

(3.15) HO (0(4H3))=P?HO (0(4Ks))+XlPSHO (0(3Ks))+X2P^HO (0(3Ks))
+XlX2P?H O (0 (2Ks) )+X4X,PSH O (0 (2Ks) )+X4X2P^H O (0 (2Ks) )

+X4P?H O (0 (3Ks) )+X4XlX2P?H O (0 (Ks) )+xiP^H O (0 (Ks) )
+xSxlP§H O (0(Ks))+xSx2P$H O (0(Ks))+xix lX2C.

Note that this is a decomposition into a direct sum. From (3.15) we come 10:

PROPOSITION 3.6. — The basis o/H°(X3, 0(3 N3)) consists of all monomials of degree 4
formed ofx^, x ^ , x^ and x^ plus x ^ P ^ ( s ^ ) , X2?3(54), x^P(s^) and X4P3(s4).

STEP 5. — deg^3(X3)=6, i.e. g^(X^)is a hypersurface of degree 6 in P3.
Proof. - From Step 4 we see that ̂ =g^(X^) cannot be a hypersurface of degree less or

equal to 6. From Step 3 it follows that deg Y is either 6 or 12. Suppose that
degY= 12. From this fact it follows that all monomials of degree 6 formed of x ^ , x^, x^
and X4 are linearly independent in H° (X3, 0 (6 H^)). It is clear that we have the following
inclusion; P 1 : H ° (S, 0 (6 Kg)) c; H ° (X 3, 0 (6 H 3)). From this inclusion and the fact that

. all monomials of degree 6 formed of Xi , x^, x^ and ^4 are linearly independent it follows
t h a t S ^ , 5 o S i S 3 , 5 o 5 2 5 3 , 5 $ 5 i , s S 5 2 , 5 ^ S 3 , S ^ 5 ^ , 5 ^ 5 J , S ^ S i S 2 , s J , 5 ^ , 5 | , S ? 5 2 auds^J are

linearly independent vectors in H°(S, 0(6 Kg)) and spanned a vector subspace V of
dimension 14. (Formally the proof of the fact that dim V = 14 follows from the remark on
Paragraph 7 and the above inclusion.) We have the following standart exact sequence

0-HO(0(3Ks))^HO(0(6Ks))-HO(0(6Ks)|c,).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



SURFACES OF GENERAL TYPE WITH pg= 1 AND (K, K)= 1 9

From this exact sequence it follows that if u^O and yeV, then r(i;)^0, so
V n 54 00 H ° (0 (3 Kg)) = 0. From this fact we obtain that

dim^^Ks^dimV+dim^^Ks^^.

From Kodaira vanishing theorem for surfaces of general type, i. e. dim H l (S, 0 (n Kg)) = 0 it i
and n are greater then 0, and Riemann-Roch theorem, we get that
dim H ° (0 (6 Ko)) = 17. This contradiction proves Proposition 3.6.s / / Q.E.D.

STEP 6. — Suppose that K§ is an ample divisor. Then Y is a nonsingular variety.
Proof. - Mumford proved that Proj(©H°(S, O(nKs))) is a nonsingular model of a

surface of general type S if Kg is an ample divisor. K§ is the canonical class of S. From this
result it follows that:

PROPOSITION 3.7. — Proj(©H°(X3, 0(nH3))) i s ' a nonsingular model ofX^.
Proof. - From Lemma 3 it follows that q(X^)=^ is a surface of degree 6 in P3. If

X i. Let me denote by R i the ring © H ° (X i, 0 (n H i)) and by R the canonical ring of S, i. e.
R=H°(S, O(nKs)). We must prove that for any maximal ideal m in Ri , the local ring
R i (^ is regular. Notice that R i = R [X]/(X2 - s i), so m' == m n R is a maximal ideal inRi fm
is maximal one in Ri. For the proof of this fact look at Zariski and Samuel book
Commutative Algebra. If the ideal m' does not contain the ideal (so) then R^) ̂  R i ̂ . For
the proof of this see Zariski and Samuel (the sign A means the completion in the m-adic
topology). Now it is a standart fact from the local algebra that if the completion of a local
ring is a regular one then the local ring is also regular. So in this case Proposition 3.7 is
proved. Now suppose that (s i) c: m'. It is clear that we have the following isomorphism:
R i (m) = R(m') [X]/(X2 - s i). The ring R(^) [X]/(X2 - s i) is regular iff s i ̂  0 mod m'2, i. e. s i is
a local parameter in R(^) . The last condition is fulfilled because the divisor of s i, C i, is a
nonsingular curve. So from here Proposition 6.1 follows. The criterium we used is
proved in Serre book Local Algebra in Springer Lecture Notes. If we repeat the same
arguments for the rings R , = H ° ( X f , 0(nH,)), f=2 , 3 and 4 we will get that Proj(Rf) is a
nonsingular model of X^-.

Q.E.D.

PROPOSITION 3.8. — Y is a nonsingular hyper surface in P3.
Proof. — First we will prove that Z2=(l , s) acts on X3 and X3/5=Y, i.e. ^3 : X3 -> Y is

the natural map X 3 -> X 3 / s . Let me denote by K (X 3) the field of rational functions on X 3
and by K(Y) the field of rational functions on Y. We have the natural inclusion:
JC(Y) c; K(X3). From Step 5, i.e. deg^=2, we get that deg(K(X3) : K(Y))=2. So
K(X3) is a Galois extension of K(Y) with a Galois group G=Z^, i.e.
K(Y)=K(X3)°. From the fact that K(Y) is the quotion field of the subring R' ̂  R^
generated by x^ , x^, x^ and ^4, it follows that K(Y)nR3=R' . From this fact we get
immediately that R'=R^. That G acts on R3 follows from the following theorem: Every
birational automorphism is a biregular one on the minimal model of a surface of general
type. From the definition of R' it follows that Proj (R') = Y = g 3 (X 3). Now it is clear that
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Y==X3/5 and since Y is a factor of a nonsingular surface \3 by the action of a group 22, it
follows that Y is a normal hypersurface in P 3. This fact leads us to conclude that Y can have
at most isolated singular points. These singular points can be ordinary double points
because Y = X 3 / Z 2 ̂ d ̂ eir number is equal to the number of the fixed points by the action
of Z 2. Let me denote the fixed points by the action of Z 2 by p i. To obtain a nonsingular
model Y of Y, we first blow X 3 at all fixed points p, and obtain a surface X 3. It is easy to see
that the involution 5 can be lifted to an involution 5 on X3. Let p be the canonical map
p : X3-^X3. LetEf^=p~l{p^),ihens\^==id. This implies that the quotient space Y of X 3
by the involution s is nonsingular. Moreover, the morphism p induces a morphism
p : X3 -> Y which gives a resolution of singularities of Y. From this whole discussion it
follows that we have a map ^3 : ̂ 3 -> Y, where X3 and Y are nonsingular varieties and
Y = X 3 / Z 2. These facts shows us that the ramification divisor of g 3 consists of the disjoint
union of nonsingular curves. Now let me compute the canonical class of X 3. We will use
the following lemma proved in [M] on p. 110.

LEMMA. — Let f: Xr -> Y1' be a regular dominating map of smooth r-dimensional varieties
with a branch locus B. Then for all rational r-forms w on Y;

(3.16) (/*w)=B+/- l((w)).

From this formula we immediately get

(3.17) Kx,=5K3.

Note that Ky=2H. Let the branch locus o f^beC+^E^ ' . It is a standart fact that
KX^ ==p* Kx^ 4- ̂  E^ . From formula (3.16) we obtain:

(3.18) 5H3+^E;=2H3+C+^E, ' .

From (3.18) we deduce that C is rationally equivalent to 3 H3. Let R be the ramification
divisor of g 3. From the fact that X 3 is a double covering of Y ramified overR, it follows that
g^(R)=2C^6H3, where ^ means rationally equivelent. Thus we get

(3.19) R-6H.

Next we will prove that Y is a nonsingular surface. If we prove that Z2 acts without isolated
fixed points, then Y will automatically be nonsingular. Let me denote by n the number of
fixed points on X3. The proof of the fact that Y is a nonsingular surface is based on the
following formula, connecting the topological Euler characteristics of X and Y, where X is a
Z^ cyclic covering of X ramified over R:

(3.20) x(X)=nx(Y)-(^-l)x(R),

where are the topological Euler characteristics.
Using (3.20) it is very easy to compute 7 (X3) and we will get that

(3.21) ^(X3)=504.
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Notice that

(3.21) x(X3)=x(X3)+n,

where n is the number of fixed points of the action of Z^ on Xs.
From (3.20) we obtain:

(3.23) x(X3)=2x(Y)-x(R).

where R is the ramification divisor of ^3.
Let us compute ̂  (Y) and ̂  (R). Because Y has only ordinary double points, then from the

results ofBriescorn it follows that the minimal nonsingular model YofYis diffeomorphic to a
nonsingular hypersurface of degree 6 in P3. Let Z be a hypersurface of degree 6 in
P3. Then from the well known formula: 12 ( p g — ̂  +1) = (Kz, K^) -+- ̂  (Z) we can conclude
that

(3.24) X(Z)=108.

Notice that R==C+ ^E^, where C is rationally equivalent to 6H and E» is an exceptional
curve of the second type and as all E^ are P1 we get that ^ (E») = 2. From the adjunctional
formula on Y we get that 2pg(C)-2==(C, C+Ky)=(6H, 6H+2H)=6 x6 x 8=288. So
X(C)=-288:

(3.25) x(R)=X(C)+l:X(E,)=-288+2n.

From (3.22), (3.23), (3.24) and (3.25) we get

(3.26) 5c(X3)+M=2xl08-h288-2n.

Combining (3.21) and (3.26) we see that n=0, so thus proving Step 6 and Lemma 3.
Q.E.D.

LEMMA 4. — Let X4 be a Z^ cyclic covering of X^ ramified over (p^ p^ pi)* (€4), where
C4=(54)6|3Ks|. Then: (a) dimH0^, 0(H4))=5 and (H^, H4)=36, (b) the complete
linear system \ H^ \ gives a map g ^ : X^. -> P4, deg ̂ 4 = 1 and g^ {Yi^) is a nonsingular variety,
which is a complete intersection of type (6, 6).

Proof. — The proof of (a) is the same as proof of Lemma 3. Notice that we have
H°(0(H4))= p4H°(0(H3))+Cx5, where (xs)==C^ the branch locus ofp4:X4-^X3.

The proof of (b).

PROPOSITION 4.1. — deggf4=l.

Proof. — Let me consider the composition of maps X^-^X^-^\ and let me denote this
composition by q, i.e. q\\^->\. Notice that q is given by the linear system
p? H° (0 (H3)) c: H° (X4, 0 (H4)). Let Xi, x^, ̂ 3 and ^4 be a basis for p! H° (0 (H3)). From
condition (a) it follows that Xi, x^, ̂ 3, x^ and ^5 is a basis of H° (0 (H4)), where (^5) = C^, the
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