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COMPARISON THEOREMS
FOR COMPACT SYMMETRIC SPACES (*)

BY MIN-OO AND ERNST A. RUH

1. Introduction

In this paper we prove that a compact Riemannian manifold M whose curvature is similar
to the curvature of a compact symmetric space M is diffeomorphic to a locally symmetric
space. In case of the sphere as model space, similarity of curvature is measured in terms of a
bound on sectional curvature. The same is true for complex project! ve space as model if we
restrict our attention to Kahler manifolds. For symmetric spaces of rank one our result
specializes to well-known theorems, compare [5], [6] and [8].

For a symmetric space of arbitrary rank as model, a description of the similarity of
curvatures of the general manifold and the model in terms of sectional curvatures would be
rather cumbersome. Instead, we measure this similarity with the norm of the curvature of
the corresponding Cartan connection. E. Cartan first developed this connection to study
affine and projective structures on manifolds. Since the curvature of the relevant Cartan
connection vanishes in case the manifold is a locally symmetric space, its norm is a natural
measure for the deviation of the local geometry of the general manifold from the local
geometry of the model. We refer to [8] for an elaboration of this point of view.

In [2] Cheeger utilized other assumptions on the curvature. Our assumption has the
advantage that it is independent of the inject! vity radius, or equivalently of a lower bound for
the volume of the general manifold M. For rank one models M this difference is of no
importance because the curvature assumptions yield an estimate for the injectivity radius
ofM. For models of higher rank such estimates are not known a priori; they are a
consequence of our theorem.

(*) This work was done under the program "Sonderforschungsbereich Theoretische Mathematik" (SFB 40) at
the University of Bonn.
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336 MIN-OO AND E. A. RUH

In the proof, we reduce the situation to the special case where the model is a compact semi-
simple Lie group. Here the local geometry is described by the Maurer-Cartan
equation. It is natural therefore to expect that a simply connected manifold P with a
form co satisfying the appropriate Maurer-Cartan equation up to a small error should be
diffeomorphic to a Lie group. We prove this result by solving the Maurer-Cartan equation
dw + [ co, co ] = 0 on P, where [ , ] is the bracket of the Lie algebra of the model. To prove the
existence of a solution we follow the method of Newton-Kolmogorov-Moser and solve a
linearized deformation equation ^ ' a= — Q ' approximately, where Q', the error term, is
interpreted as the curvature of a certain connection. The fact that d ' o d ' ^ 0 prevents us
from solving the linearized equation exactly; however the Bianchi equation allows us to solve
it well enough for the iteration to converge to a Maurer-Cartan form.

As explained in Chapter 3, we obtain an approximate solution of d ' a = — 0' by solving
A' P = — Q' and setting a = 8 ' P, where A' = ̂ ' 5 ' + 8 / (T, and 5 ' is the adjoint of d f . The
main point of Chapter 4 is to prove that the solutions of A' P= — Q / satisfy a maximum
principle. As a consequence, existence and uniqueness of P follows as well as an estimate
for || P ||. We were motivated to do the computations of this chapter by the well known
vanishing theorem for the second cohomology group of a compact semi-simple Lie
group. In Chapter 5 we obtain the estimates we need to prove the convergence of the
iteration. The main tools are interior regularity estimates for solutions of elliptic partial
differential equations in variational form and a generalized maximum principle for coercive
differential operators. The maximum principle enables us to avoid assumptions on the
injectivity radius of the exponential map of P.

The material of Chapter 5 could be simplified considerably if, instead of assuming a bound
on the C°-norm of the curvature, we would assume a bound on the C^norm, or even a
Holder norm, of the curvature. In this case, the standard theorems on elliptic differential
equations would apply directly. We wish to thank L. Berard Bergery for suggesting several
improvements in our first version of this paper.

2. The results

Let G denote a compact semi-simple Lie group, g its Lie algebra and co : TG -> 9 the
Maurer-Cartan form. By definition, co is constant on left invariant vector fields and defines
an isomorphism between the Lie algebra of left invariant vector fields on G and the tangent
space g=TgG of G at the identity element. We wish to compare the local geometry of a
general manifold P to that of G.

The following definitions are motivated by the Maurer-Cartan equation ^co+[co, co]=0,
where [ , ] is the Lie bracket in g. Let co : TP -> 9 define a parallelization of P, i.e.,
co : T^P -> 9 is a vector space isomorphism of the tangent space T^P with g for all xeP.
We define the curvature ofco to be the 9-valued 2-form Q=Ao+[co, co], where [ , ] is the
Lie bracket of g. In case 9 is compact and semi-simple, the Lie algebra carries a natural
positive definite scalar product (minus the Cartan-Killing form) and the isomor-
phism co induces a Riemannian metric on the manifold P. With respect to these metrics we
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COMPARISON THEOREMS FOR COMPACT SYMMETRIC SPACES 337

define the maximum norm || Q || ==max | Q(Xi, X2) |, where the maximum is taken over all
unit vectors Xi, X^eTP. Our first result is the following:

THEOREM 1. — Let g be a compact semi-simple Lie algebra, co : TP —> 9 a parallelization of a
compact manifold P, and Q the curvature o/oo.

There exists a positive constant A depending only on g such that \\ Q || <A implies that P is
diffeomorphic to a quotient V\G, where G is the simply connected Lie group with Lie algebra 9
and r is a finite subgroup ofG.

The main application of this result is the following Theorem 2, where manifolds P
satisfying the above assumption occur naturally as principal bundles. For this application
we need a slightly more precise formulation of Theorem 1. We prove in fact the existence of
a parallelization co : P —> 9 with vanishing curvature, i. e., which satisfies the Maurer-Cartan
equation. Moreover, by choosing A small enough we can find such a co with | |co—co| |
arbitrari ly small. This implies that the diffeomorphism of the theorem is in fact a quasi-
isometry with the dilatation controlled by the constant A of the theorem.

To motivate and clarify our assumption on the curvature of the general manifold M in
Theorem 2 we first analyse the standard case. Let M = G/K be an irreducible riemannian
symmetric space. The projection G -> M is a K-principal bundle representing the reduction
of the bundle of orthonormal frames over M to the isotropy group K. The Maurer-Cartan
form co : TG -> c\ is a Cartan connection of type (G, K) for M with vanishing curvature
Q=^co+[co, co]. The flatness of co is topologically reflected in the fact that the
G-principal bundle G x G -> M obtained by extending the fibres of the bundle G -> M from

K _ _
K to G; and hence also the associated fibre bundle G x G/K -^ M with fibre G/K = M is
canonically trivial. The trivialization is given by

G x G ^ G / K x G ,
K

[{a, b)]^(aK,ab),
where [(a, b)] denotes the equivalence class [(ak, k~1 b)\keK}.

Let 9 = f©m be a Cartan decomposition of 9 with respect to K. The i- valued part ofco is
the Levi-Civita connection of the symmetric space M and the m-valued part is the canonical
soldering form given by the isomorphism TM^G x m, with K represented in m via the
adjoint action of G restricted to K . K

The following assumptions on M serve to define the appropriate K-principal bundle P over
M together with a parallelization CD : TP —> 9 satisfying the conditions of Theorem 1. Our

first assumption on M is that there is a reduction P —^ M of the bundle of frames over M to the
structure group K represented orthogonally in rn^tR" as above. This is a purely
topological assumption and is obviously a necessary condition for M to be diffeomorphic to a
quotient of M. On P we have the canonical m-valued soldering form 9 given by the
formula:

9 : T^P-^m,
X^u~ln(X),
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338 MIN-OO AND E. A. RUH

where ueP defines an isomorphism u : m^T^M. 9 is an ad K-equi variant 1-form
vanishing on vertical vectors.

Let T| be a connection form on P. T| is a Riemannian connection since the structure group
K of P is compact, i. e., it preserves a Riemannian metric. We do not assume that r\ is a
Levi-Civita connection. This would imply certain rigid integrability conditions for P,
whereas our aim is to avoid assuming closed conditions.

We combine 9 and T| to define a 9-valued 1-form co = T| + 9 : TP -> 9 = f©m. This CD is a
Cartan connection of type (G, K) with curvature Q=^co+[co, co], where [ , ] is the Lie
bracket of 9. In the following Theorem we define ||Q|| as in Theorem 1. We shall not
define the concept of Cartan connection because we do not use it except for the motivation of
the term curvature for the expression Q=Ao+|co, co]. For details we refer to [8].

THEOREM 2. — Let M=G/K denote a simply connected compact irreducible symmetric
space, M a compact Riemannian manifold, and Q the curvature form of the Cartan connection co
on the principal bundle P over M defined above.

There exists a positive constant A depending only on M such that || Q. || < A implies that M is
dijfeomorphic to a quotient r'\M, where F is a finite subgroup ofG.

In case the Riemannian connection T| is invariant under a group H, it follows from the
proof that H is isomorphic to a subgroup of G and the diffeomorphism M -> r\M is
equi variant with respect to the actions of H. Thus, in case M = S", our result, except for the
numerical constant, specializes to the main result of [5]. The proof also shows that the
diffeomorphism of M -> F\M is a quasi-isometry with the dilatation controlled by the
constant A of the theorem.

We remark that we have made no explicit assumptions on the Riemannian curvature. In
particular we do not assume that M has non-negative Riemannian sectional
curvature. Our curvature assumptions imply only that the connection T| has small torsion
and has curvature very near to that of the model space M.

Some of the previously known Comparison Theorems can be obtained as a consequence of
Cheeger's finiteness theorem, compare [3]. This is not true of the theorems above because
the curvature assumptions, a priori, do not yield an estimate for the injectivity radius or a
lower bound for the volume of M.

3. The proof

The main work in the proof of Theorem 1 is to establish the existence of a Maurer-Cartan
form co on P, i. e., a parallelization co : TP -> 9 which satisfies the Maurer-Cartan equation
rf(o+[(D, o)]=0, where [ , ] is the bracket in the Lie algebra 9. In the first part of this
chapter we set up a successive approximation scheme for the solution co and prove that the
existence ofco implies Theorem 1. In the second part we prove Theorem 2 as a Corollary of
Theorem 1. We postpone the two main steps of the proof, the existence of a solution of the
linearized equation, and the estimates necessary for the convergence of the iteration, to
subsequent chapters.
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COMPARISON THEOREMS FOR COMPACT SYMMETRIC SPACES 339

Let co be the g-valued 1-form of Theorem 1. To obtain a 1-form co = co + a with vanishing
curvature we must solve the equation:

(3.1) ^a+[o), a]+[a, o)]+[a, a]= -Q,

To prove that co is again a parallelization, and therefore a Maurer-Cartan form, we will
establish the estimate | |oc | | <c||0|| for some constant c depending only on 9.

Since (3.1) is non-linear we first consider the linearized deformation equation:

(3.2) ^a^a+to), oc]+[a, co]= -Q.

The operator d^ is the exterior co variant derivative of the co variant derivative D on the
trivial vector bundle P x g defined by the formula:

(3.3) DxS=X5+[o)(X),s],

where XeTP, s : P-^g is a section of the bundle and Xs is the derivative of s in
direction X. The curvature R° of D is computed to be

(3.4) R^X.Y^^X.Y),^,

where X, YeTP, s : P-^ g and Q=Ao+[co, 0)].
The exterior co variant derivative on 9-valued forms associated to D, denoted by d^, is

given by the formula:
p

1 = 0
(3.5) ^a(Xo, . . . ,X,)= ^(- iyD^a(Xo, . . . ,X , . . . ,X , )

+^(- l)^+ ka([X,,X„], . . . , X , , . . . , X , , . . . ,X,) .
}<k

It is readily seen that d^ on 1-forms is exactly the linear deformation operator of
equation (3.2).

Using (3.4) we can write the Bianchi identity for the curvature simply as

(3.6) daa=Q.

In general, it may not be possible to solve the linear equation (3.2) exactly. We will see that
it can be solved well enough, in a sense to be made precise later, if the curvature Q is
sufficiently small. For technical reasons which will become apparent in the next chapter,
we prefer to replace d0) by a slightly modified operator d ' . We obtain d ' from dto by replacing
the vector field bracket in (3.5) by the Lie algebra bracket. For the rest of this chapter the
symbols X^ will denote parallel vector fields; i.e. (D(X^)= Const. We define

(3.7) ^'a(Xo, . . . ,X , )= ^(-lyD^Xo, . . ., X, . . ., X,)
1=0

+ ^(-l^a^X,}, . . . ,X , , . . . ,X, , . . . , X p ) ,

where {X,, X„}=a-l([w(Xj'), ©(X^)]). j<
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340 MIN-OO AND E. A. RUH

In the following we will need the adjoint 5 / of d ' . Since 9 is compact and semi-simple it
carries a natural positive scalar product (minus the Cartan-Killing form), and the
isomorphism (D induces a Riemannian metric on P. With respect to these metrics we obtain

(3.8) S-o^X,, . . . ,X,)=- ^ D^,X,, . . . , X , )
k=l

+^ Z Za(e,.X2, .. . ,X,_i,{e,,X,},X,^, .... Xp),
z fc= 1 f = 2

where {^} /c = / , . . . , N ls a parallel orthonormal base in TP, and the vector fields X^
are parallel as indicated above. To estimate the norm of d ' - d ^ we observe that
-[X, Y ] + { X , Y}=o)- l(Q(X, Y)) holds for parallel vector fields X, Y, hence d ' - d ^ is an
operator of order zero. We list a bound for this operator, as well as a consequence via
the Bianchi equation (3.6), for further use:

(3.9)
d'-d^^ <c||Q||,

\d'a\\<cW\

where c depends only on 9.
Unlike in the case of the usual exterior derivative, where dod=Q, d ' o d ' may not

vanish. The following formula holds for d ' o d ' y. in terms of parallel vector fields X^:

(3.10) d ' d ' y . ^ . . . X^i)= ^ (-ir7 o-1 (Q(X,.,X,))oc(Xo . . . X, . . . X, . . . X^i).
' < 7

Proof. — For forms with oc(Xi, . . . , Xp) constant, d ' is just the exterior derivative for the
Lie algebra cohomology of g, and ^'^To^O. Because of this it is sufficient to prove the
formula for 0-forms. Let X, Y be vector fields of the parallelization and 5 a section in P x g:

^sX=Xs+[co(X),s],

d f d r s ( X , Y)=XY.s+[co(X)[co(Y), s]]

-YX.s-[co(Y)[co(X), .s]]- {X, Y}.s- [co{X, Y} , .s]

=([X, Y]- {X, Y} )s= -co-^X, Y))s,

where we have used the Jacobi identity for the Lie bracket. For further reference we list the
formula for 5' o 8 / in terms of parallel vector fields X3, . . . , Xp and a parallel orthonormal
base {^}^ i , . . . ,N in TP:

(3.11) S'a'o^, . . . , X ^ ) = = ^ (D-^Qte,^))^,^^, . . . , X ^ ) .
i , J = l

After these preparations we are in a position to define the iteration for a sequence of 1-forms
{ c o ^ } converging to a Maurer-Cartan form co on P. In fact we will define a sequence {coj of
parallelizations co; : TP -> g whose curvatures Q, = rfco^ + [co;, coj converge to zero. Starting
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COMPARISON THEOREMS FOR COMPACT SYMMETRIC SPACES 341

with o)o=co, we define o) i+i=c0f+ai , f=0, 1, . . . , where o^ is an approximate solution of
(3.2). The reason for this choice of o^ is the following expression for the curvature of co^ +1:

(3.12) Q,+i=Q,+^a,+[a,,aJ,

which shows that Q(+ i will be of the order of magnitude || Q^ ||2, since || a,; || will be shown to be
bounded by c ||Qi||.

To facilitate notation in the precise definition of a; we denote o^, Q^ and H+1 by a, Q' and
Q " respectively. We introduce the Laplacian A '=^ / § '+5 / ^ ' , where in the definitions (3.7)
and (3.8) co^ and Q^ are to be used instead of co and Q.

We define:

(3.13) a=5 'P ,

where P is the unique solution of the potential equation:

(3.14) A ' P — — Q ' .

Existence and uniqueness of the 2-form P satisfying (3.14) will be proved in the next chapter
as a consequence of the fact that the elliptic operator A' = d ' 5 / + 6' d ' is positive definite on
2-forms in case || Q' || is small enough.

The main requirements on a necessary for the convergence of the iteration described above
are formulated in the following.

MAIN LEMMA. — Lei CD' : TP -> 9 be a parallelization of a compact manifold P,
Q'^CO'+IO^, co'], and [ , } the Lie bracket in the compact semi-simple Lie algebra q.

There exists a constant A' > 0 depending only on 9 such that || Q' || < A' implies that the
1-form a=§' (3 satisfies:

(3.15)

(i) H ^ a + Q ' l l ^ l l Q ' l l 2 ;
(ii) ||a|| ^ H Q ' I I ;

(iii) | | oc [ | ^<c ' | Q ' H ,

where c is a constant depending only on g, c' a constant depending on g and on the diameter ofP,
|| || is the maximum norm with respect to the metrics in 9 and P defined earlier and || \\i,qis
the Sobolev norm with q > dim P.

The proof as well as the definition of Sobolev norms will be given in the last chapter.
The estimates (3.15) (i) and (ii) together with (3.9) and (3.12) imply 1 1 Q, + 1 1 1 < c \ \ 0,112 with

c depending only on g and hence the sequence of curvatures converges rapidly to zero,
provided that the initial curvature Q = Qols small enough. Therefore by (3.15) (iii) the series

00

^ QCf and hence the sequence { c o ^ } of connections converges in the Sobolev space Wi^ (P) to
1=0
a connection form co with zero curvature. Since c ' in (iii) might depend on the diameter of P,
the rate of convergence in Wi^ might also depend on it. To prove that co is also a
parallelization of the tangent bundle of P it suffices to show | co — co | < 1 since the initial
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342 MIN-OO AND E. A. RUH

form o) = coo is an isometry on each tangent space by the definition of the metric on P. We
remark here that the metrics on P induced by co^ at each stage of the iteration change with the
iteration steps. However, since the change effected by an iteration step is controlled by
| QCi ||, we may, by choosing the constant A of the theorem small enough, assume that

where || | |^ stands for any norm used in the ith iteration step. Therefore we may write
unambiguously || ||̂  in the estimates at all stages of the iteration.

Because the constant c in (3.15) (ii) is independent of the diameter of P, the maximum
00

norm ^ a; = 1 1 co — co 1 1 can be made as small as we please by choosing the constant A of the
1 = 0

theorem small enough.

Thus co is a Maurer-Cartan form in the Sobolev space Wi^. Now, because 0=0 and
because the vector fields of the parallelization defined by co are volume preserving, co satisfies
the elliptic system of differential equations:

Ao+[co, co]=0, 5co=0.
Therefore co is smooth.

To finish the proof of Theorem 1, let P be the universal covering space of P and co the
pullback of co via the covering map. The connection form o) : TP -^ g defines a vector space
isomorphism between g and a finite dimensional subspace 9 of the space of vector fields
on P. Explicitly, g is defined by the property that G) (X) is constant for all X e oj. Since co
has curvature zero, we have

0=Q(X, Y)=X©(Y)-Y£(X)-CD[X, Y]+[£(X), £(Y)].

This implies that co : g-> 9 is a Lie algebra isomorphism.
To define a diffeomorphism F : P -> G, we fix an arbitrary point ?eP and consider the

over-determined system of partial differential equations

(3.16) dF = co, with initial condition F (e) = e,

where d¥ is the differential of F, e e G is the identity element and co is identified with the map
co : T^(P) -> g^Tp^ G via left-invariant vector fields on G. This differential equation is
integrable because co : g^g is a Lie algebra isomorphism.

The solution F : P -> G is globally defined because P is simply connected. F is in fact a
diffeomorphism because G is simply connected as well. Explicitly, one can define F, or
rather its graph, as follows: Consider the g-valued 1-form f t )=7cfco—-n^co on the
product PxG, where Tii, TT^ are projections onto the respective factors and co is the
Maurer-Cartan form on G. © defines an integrable distribution on P x G because
^CD+[CD, c jD]=7i fQ—7r^Q=0. The leaf of this foliation through the point (e, e) is the
graph of the diffeomorphism

(3.17) F : P-^G.
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To define the diffeomorphism F : P -> F\G, we first identify the fundamental group n (P)
with a subset F c: G as follows. Let L^ denote the action of yen (P) on P. Ly leaves g
invariant. We define 7i(P) -> G by y -> F(L^ ?). This map is obviously injective and we
use the same symbol for ye7i(P) and its image in F c: G.

The diffeomorphism F : P -> G is equivariant with respect to the actions L^ and Ly (left
translation) on P and G respectively because the maps F and L^~1 o F o L^ satisfy the same
partial differential equations with initial condition (3.16) and hence are identical. As a
consequence, 7i(P)-^Fc:G is an injective group homomorphism and F defines the
diffeomorphism F : P -^ F\G asserted in Theorem 1.

To prove Theorem 2 we note that the assumptions imply the existence ofaparallelization co
of the principal bundle P satisfying the assumptions of Theorem 1. ' Hence there exists
another parallelization © satisfying the Maurer-Cartan equation. Now let P and 0) denote
the bundle and connection form induced from P and © by the universal covering
map M -> M. Although G is no longer assumed to be simply connected, integration of
equation (3.16) still yields a global diffeomorphism F : P-^ G since the base spaces M
and G/K are simply connected and because small neighborhoods of the fibres in P are
mapped diffeomorphically onto neighborhoods of the cosets of the subgroup K c G. This
follows from the facts that the original connection c o : T P ^ 9 = f © m maps vectors tangent
to the fibres onto I and that ||co-o)|| can be made arbitrarily small by choosing the
constant A small enough. We now identify n (M) acting on P as covering transformations
with a subgroup F c G such that F becomes equivariant. We define
(3.18) /: M-^G/K by xh-^C,,
where C^ denotes the center of mass of the map rcoF restricted to the fibre n~l(x)
(n : G -> G/K and n : P -> M) and the center of mass is defined as in [4] and [7]. For a
map h : Q -> V from a measure space Q to euclidean space tR", the center of mass is simply
the average over the measure in Q of the image points under h. In [4] this concept is
generalized to the case where the target space is a Riemannian manifold. In case the image
of h is contained in a small ball, all the properties of the euclidean center of mass are
essentially conserved. Here we are concerned with the map h = n o F restricted to the fibres
7i ~1 (x), x e M,and, as explained above, the fact that || co - © || can be made arbitrarily small by
choosing the constant A of the theorem sufficiently small, implies that the image of 710 F
restricted to n~l(x) is contained in a small ball.

To obtain an estimate for the differential df, we observe that, again because ||co-co|| is
arbitrarily small, dn o d¥ restricted to horizontal tangent vectors in TP, is arbitrarily close to
an isometry. Since the center of mass construction defined by averaging over the fibres
essentially averages the differentials restricted to horizontal vectors, we conclude that dfis a
quasi-isometry with the dilatation constant controlled by the constant A of the
theorem. Moreover, the map / is equivariant with respect to the identification of the
fundamental group n (M) with a subgroup F c: G. This is true because the center of mass is
invariant under isometries.

Finally, to justify the remark on the injectivity radius of M made in the introduction, we
observe that/is close to an isometry. Therefore the injectivity radii of M and M are
essentially the same.
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344 MIN-OO AND E. A. RUH

4. The linear equation

In the preceding chapter we have shown that the proof hinges on the existence and
uniqueness of the solution of the equation (3.14). In case P already is a compact semi-
simple Lie group G, the operator A' reduces to the usual Laplace operator on 2-forms with
values in g, and the result is well-known because the second cohomology vanishes. We
have defined the operators d ' and A' such that, even in the general case. A' is a positive
operator. Since we need more information on A', we prove that the solutions o f A ' P = = — Q '
satisfy a maximum principle.

To compute the operator A^^'S '+S'^Ton 2-forms explicitly we introduce the following
notation. Let e^, . . . , e^ denote an orthonormal basis of vector fields on TP such that
{co(^)} is a constant orthonormal basis in g. We define

(4.1) c?,=<{^.},^>.

Because of { ^ , ej} =G)~1 ([co(^), co(^-)]), the expressions c^j are constant on P. They are
simply the structure constants of the Lie algebra g with respect to the orthonormal basis
{co(^)}. The structure constants satisfy the identities

(4.2) ^ = - ̂  = - c{, and c[, c{, = 5^,

where the Einstein summation convention is used and 51-7 is the Kronecker symbol. The
equations hold because the scalar product < , > is by definition the negative of the Killing
form of g. Next we define

(4.3) R^-^cL,

where R is the curvature tensor of the Lie group G with Lie algebra g with respect to the
metric < ) and therefore satisfies the usual curvature identities.

For the computation of A' we split d ' =d^ +d^, where

(4.4) riia(Xo, . . . , X ^ ) = t ( - iyDx,oc(Xo, . . . ,X, . . . , X,)
1=0

and

(4.5) d^(X,, . . . ,X , )= ^(- l )^oc({X, ,X,},Xo, . . . , X , , . . . , X,, . . . ,X,) .
J < k

Here d^ is an algebraic operator, just the usual coboundary operator for the cohomology of
the Lie algebra g with trivial coefficients. The adjoint 5' of d ' splits accordingly as
5'=§i+§2. where

(4.6) §ia(X2, . . . ,X , )=- ^ D^oc(^,X2, . . . , X ^ )
k=l
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