Annales scientifiques de l’é.n.S.

Diana Shelstad

Orbital integrals and a family of groups attached to a real reductive group

Annales scientifiques de l'É.N.S. 4^{e} série, tome 12, n ${ }^{0} 1$ (1979), p. 1-31

http://www.numdam.org/item?id=ASENS_1979_4_12_1_1_0

Abstract

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1979, tous droits réservés. L'accès aux archives de la revue «Annales scientifiques de l'É.N.S. » (http://www. elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ORBITAL INTEGRALS AND A FAMILY OF GROUPS ATTACHED TO A REAL REDUCTIVE GROUP (${ }^{1}$)

By Diana SHELSTAD

1. Introduction

In this paper we pursue one of the questions suggested by the formulations in [7] (cf. [10]). Our concern will be with transferring orbital integrals from one group (of R-rational points on a connected reductive linear algebraic group defined over \mathbf{R}) to another. In [9] we considered "stable" orbital integrals and obtained a transfer which will be our starting point. We recall some details. Suppose that f is a Schwartz function on the group G, that T is a Cartan subgroup of G and that γ is a regular element in T . Then, following Langlands, we have defined

$$
\Phi_{f}^{1}(\gamma)=\sum_{\mathrm{\omega}} \int_{\mathrm{G} / \mathrm{T}} f\left(g \gamma^{\mathrm{\omega}} g^{-1}\right) d \bar{g},
$$

where $d \bar{g}$ is a G-invariant measure on G / T (whose normalization we ignore for the present) and ω ranges over the set $\mathscr{D}(\mathrm{T})$ [7] which we may identify simply as the quotient of the imaginary Weyl group for T by the subgroup of those elements realized in G . . . recall that any element of the imaginary Weyl group stabilizes T. Our interest in these stable orbital integrals lies in the fact that the distributions $f \rightarrow \Phi_{f}^{1}(\gamma)$ generate the characters attached to L-packets of tempered irreducible representations of G (cf. [9]).
Suppose that for each Cartan subgroup T we are given a function Φ^{T} on the regular elements in T. Then a theorem of [9] provides necessary and sufficient conditions for the existence of a Schwartz function f on G such that $\Phi^{\mathrm{T}}=\Phi_{f}^{1}$ for each T. On the other hand, if we fix an L-group (=associate group [8]) for G then we are provided with a quasi-split group G^{*} and an inner twist ψ from \mathbf{G}, the underlying algebraic group for G, to \mathbf{G}^{*}. The map ψ determines embeddings of each Cartan subgroup (of G) in G^{*}; these embeddings induce an injection of the set $t(\mathrm{G})$ of conjugacy classes of Cartan subgroups of G in $t\left(\mathbf{G}^{*}\right)$. Recall that $t(\mathrm{G})$ is partially ordered (cf. [3]); the image of $t(\mathbf{G})$ in $t\left(\mathbf{G}^{*}\right)$ forms an "initial segment" of $t\left(\mathrm{G}^{*}\right)[9]$. We say that an element γ^{\prime} of G^{*} originates from the regular element γ of G if γ^{\prime} is the image of γ under one of the embeddings in G^{*} of the Cartan subgroup containing γ.

[^0]ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE. - 0012-9593/1979/1/\$ 1.00
(C) Gauthier-Villars

Now combining this and the characterization theorem, we can effect a transfer of stable orbital integrals from G to G^{*} in the following sense: given a Schwartz function f on G there is a Schwartz function f^{\prime} on G^{*} such that $\Phi_{f^{\prime}}^{1}\left(\gamma^{\prime}\right)=\Phi_{f}^{1}(\gamma)$ if γ^{\prime} originates from the regular element γ in G, with $\Phi_{f^{\prime}}^{1}\left(\gamma^{\prime}\right)=0$ if γ^{\prime} does not originate in G.

We come then to our present problem. First, we replace Φ_{f}^{1} by an "unstable" orbital integral. If x assigns to each ω in $\mathscr{D}(\mathrm{T})$ a value, either 1 or -1 , then again following Langlands, we set

$$
\Phi_{f}^{\chi}(\gamma)=\sum_{\omega \in \mathscr{D}(\mathrm{T})} x(\omega) \int_{\mathrm{G} / \mathrm{T}} f\left(g t^{\omega} g^{-1}\right) d g
$$

for regular γ in T. Global considerations (for example, the suitable grouping of some terms on one side of the Trace Formula ($c f$. [5], §5, for SL_{2}) suggest that we consider those x described in [7]; we recall the appropriate definitions and observations in Paragraphs 2,3. Briefly, as described in [7], $\mathscr{D}(\mathrm{T})$ can be embedded in a quotient of the module generated by the coroots of T in G and x is a quasicharacter on this quotient . . . the domain of x is thus larger than $\mathscr{D}(\mathrm{T})$. From now on we assume that x is of such type and call Φ_{f}^{x} a x-orbital integral. In Paragraph 4 we will describe the invariance, smoothness and "jump" properties (which we find easier to work with than "germ expansions") of x-orbital integrals.

The triple ($\mathrm{G}, \mathrm{T}, \boldsymbol{x}$) determines, via an L-group construction, a quasi-split group H of same rank as G, but possibly of lower dimension [7]. We will recall the construction in Paragraph 5, remarking now only the fact that T can be embedded in H and $\mathscr{D}_{\mathrm{H}}(\mathrm{T})$ transferred to $G ; x$ is trivial on the image of $\mathscr{D}_{\mathrm{H}}(\mathrm{T})$. An imprecise version of a question of Langlands asks whether the x-orbital integrals for G transfer to stable orbital integrals on H . To proceed to a more careful formulation we observe that the L-group construction provides not only H but also some ancillary data, including a quasi-split group G^{*} and an inner twist ψ from G to G^{*}. The data yield embeddings of the Cartan subgroups of H in G^{*} and a map from $t(\mathrm{H})$ into $t\left(\mathrm{G}^{*}\right)$; recalling the map of $t(\mathrm{G})$ into $t\left(\mathrm{G}^{*}\right)$ determined by ψ we obtain then a notion of a Cartan subgroup of H originating in G . For example, using the notation of [3] for $t()$, we may have:

and obtain three conjugacy classes of Cartan subgroups in H originating in G (case G nonsplit, noncompact form of type $C_{2} \ldots H$ of type $A_{1} \times A_{1}$). Suppose that T^{\prime} originates from T (our given Cartan subgroup). Then the transfer of Φ_{f}^{x} to T^{\prime} depends on the choice of map from T^{\prime} to T . Thus we have to qualify our notion of an element γ^{\prime} of H originating from a regular element γ of G . We will do this by choosing a set $\mathscr{I}=\left\{i_{m}: \mathrm{T}_{m}^{\prime} \rightarrow \mathrm{T}_{m}\right.$, $m=0,1, \ldots, N\}$ of embeddings such that T_{0} is our given group T and $\mathrm{T}_{0}^{\prime}, \ldots, \mathrm{T}_{\mathrm{N}}^{\prime}$ form a complete set of representatives for the conjugacy classes which originate in G (see

[^1]Paragraph 6 for technical assumptions). We then say that γ^{\prime} originates from $\gamma \in \mathrm{T}_{m}$ with respect to \mathscr{I} if γ^{\prime} is stably conjugate to $i_{m}^{-1}(\gamma)$; that is, if γ^{\prime} is obtained from $i_{m}^{-1}(\gamma)$ by the action of an element of $\mathscr{A}\left(\mathrm{T}_{m}^{\prime}\right)(c f$. [7], recalled also in Paragraph 2). Also attached to \mathscr{I} is a transfer of χ to each of the Cartan subgroups $\mathrm{T}_{1}, \ldots, \mathrm{~T}_{\mathrm{N}}$ (cf. Paragraph 7).

We come then to the main problem, that of finding a factor Δ so that for each Schwartz function f on G there is a Schwartz function f^{\prime} on H satisfying:
(1) $\Phi_{f^{\prime}}^{1}\left(\gamma^{\prime}\right)=\Delta(\gamma) \Phi_{f}^{\chi}(\gamma)$ if γ^{\prime} originates from the regular element γ in G with respect to \mathscr{I} and
(2) $\Phi_{f^{\prime}}^{1} \equiv 0$ on those Cartan subgroups of H which do not originate in G .

Thus Δ is to be a function on the regular elements of $\bigcup_{m=0}^{N} T_{m}$. On each Cartan subgroup T_{m} we fix a system of positive imaginary roots. We may consider, at least formally,

(the conditions on α are made precise in Paragraph 7).
This expression can be interpreted as a function Δ_{m} on T_{m} if half the sum of the positive imaginary roots "not from H " lifts to a character on \mathbf{T}_{m}. That will be the major part of our assumption (8.1). In prescribing a candidate for Δ we insert parameters $\varepsilon_{0}, \ldots, \varepsilon_{\mathrm{N}}$, each equal to 1 or -1 ; thus our candidate will be the function $\Delta_{\mathrm{H}}^{\mathrm{G}}=\Delta_{\mathrm{H}}^{\mathrm{G}}\left(\varepsilon_{0}, \ldots, \varepsilon_{\mathrm{N}}\right)$ defined by $\left\{\varepsilon_{m} \Delta_{m} ; m=0, \ldots, \mathrm{~N}\right\}$. The existence (for some choice of $\varepsilon_{0}, \ldots, \varepsilon_{\mathrm{N}}$) of a "transfer of orbital integrals" in the sense of the last paragraph is then independent of our choice of \mathscr{I} and the systems of positive imaginary roots. In Theorem 8.3 we show that $\gamma^{\prime} \rightarrow \Delta_{\mathrm{H}}^{\mathrm{G}}(\gamma) \Phi_{f}^{\chi}(\gamma)$ is well-defined (although, in general, neither $\Delta_{\mathrm{H}}^{\mathrm{G}}$ nor Φ_{f}^{χ} alone transfers to H in this way).

Our main result, Theorem 10.2 , is a set of necessary and sufficient conditions on the choices for $\varepsilon_{0}, \ldots, \varepsilon_{\mathrm{N}}$ in order that $\Delta_{\mathrm{G}}^{\mathrm{H}}=\Delta_{\mathrm{G}}^{\mathrm{H}}\left(\varepsilon_{0}, \ldots, \varepsilon_{\mathrm{N}}\right)$ provide a transfer of orbital integrals. Suppose that the classes of T_{m}^{\prime} and T_{n}^{\prime} are adjacent in the lattice $t(\mathrm{H})$. Then we attach to the pair (m, n) a signature $\varepsilon_{x}(m, n)$ obtained from values of x and a signature $\varepsilon_{+}(m, n)$ obtained by evaluating some determinants. Our conditions are:

$$
\varepsilon_{m} \varepsilon_{n}=\varepsilon_{\chi}(m, n) \varepsilon_{+}(m, n) .
$$

In Paragraph 11 we begin a study of the consistency of these equations as the pair (m, n) varies. After some remarks, suggesting a general procedure, and two examples we can conclude that if the derived group of \mathbf{G} is isogenous to a product of groups each of rank at most two, then there is indeed a choice of $\varepsilon_{0}, \ldots, \varepsilon_{\mathrm{N}}$ for which $\Delta_{\mathrm{G}}^{\mathrm{H}}\left(\varepsilon_{0}, \ldots, \varepsilon_{\mathrm{N}}\right)$ provides a transfer of orbital integrals.

The author gratefully acknowledges the suggestions and advice of R. P. Langlands.
Notation. - We continue with the notation of [9], except that now σ denotes complex conjugation and we further generalize the notion of Cayley transform (cf. Paragraph 3). By

[^2]the character module of a torus we will mean the group of rational characters, with multiplication written additively; roots will be rational characters, rather than linear functionals on the Lie algebra (as in [9] and the present section).

2. The set $\mathscr{D}(\mathrm{T})$

Let \mathbf{T} be a maximal torus in \mathbf{G}, defined over \mathbf{R}. We recall from [7] that

$$
\mathscr{A}(\mathrm{T})=\{g \in \mathbf{G}: \operatorname{ad} g / \mathbf{T} \text { is defined over } \mathbf{R}\},
$$

and $\mathscr{D}(\mathbf{T})=\mathbf{G} \backslash \mathscr{A}(\mathbf{T}) / \mathbf{T}$. If \mathbf{M} is the centralizer in \mathbf{G} of the maximal \mathbf{R}-split torus in \mathbf{T} then $\mathscr{A}(\mathrm{T})=\mathrm{G} . \operatorname{Norm}(\mathbf{M}, \mathbf{T})$ [9]. Hence we may as well regard $\mathscr{D}(\mathrm{T})$ as $\Omega(\mathbf{M}, \mathbf{T}) \backslash \Omega(\mathbf{M}, \mathbf{T}), \Omega(\mathbf{M}, \mathbf{T})$ being the Weyl group of \mathbf{T} in $\mathbf{M}(\ldots$. the "imaginary Weyl group of \mathbf{T} ') and $\Omega(\mathbf{M}, \mathbf{T})$ the subgroup of $\Omega(\mathbf{M}, \mathbf{T})$ consisting of those elements which can be realized in M .

We need to recall some facts from [7]. We will use σ to denote the non-trivial element of the Galois group of \mathbf{C} over \mathbf{R} and $\mathbf{H}^{*}()$ to denote the cohomology of $\langle 1, \sigma\rangle$. If $g \in \mathscr{A}(\mathrm{~T})$ then $\sigma\left(g^{-1}\right) g \in \mathbf{T}$ so that $g \rightarrow\left(1 \rightarrow 1, \sigma \rightarrow \sigma\left(g^{-1}\right) g\right)$ yields a map of $\mathscr{A}(\mathrm{T})$ into the 1 -cocycles for \mathbf{T}. This map induces a bijection between $\mathscr{D}(\mathrm{T})$ and those elements of $\mathrm{H}^{1}(\mathbf{T})$ which are annihilated by the natural map of $\mathrm{H}^{1}(\mathbf{T})$ into $\mathrm{H}^{1}(\mathbf{G})$. Such elements of $\mathrm{H}^{1}(\mathbf{T})$ lie in a subgroup $\mathscr{E}(\mathrm{T})$ obtained as follows. Let \mathbf{G}^{\sim} be the simply-connected covering group of the derived group of \mathbf{G}, π the natural homomorphism of \mathbf{G}^{\sim} into \mathbf{G} and \mathbf{T}^{\sim} the inverse image of \mathbf{T} under π. Then $\mathscr{E}(\mathrm{T})$ is the image of $\mathrm{H}^{1}\left(\mathbf{T}^{\sim}\right)$ under the homomorphism into $\mathrm{H}^{1}(\mathbf{T})$ induced by π.

To continue with [7], we denote the character module of \mathbf{T} by $\mathrm{L}(\mathbf{T})$ and set $L^{2}(\mathbf{T})=\operatorname{Hom}(\mathbf{L}(\mathbf{T}), \mathbf{Z})$. In the usual manner we identify $\mathrm{L}^{2}\left(\mathbf{T}^{\sim}\right)$ with the submodule $\left\langle\Xi^{`}\right\rangle$ of $L^{`}(\mathbf{T})$ generated by the set $\Xi^{`}$ of coroots for \mathbf{T} in \mathbf{G}. Tate-Nakayama duality then establishes a canonical isomorphism between $\mathscr{E}(\mathrm{T})$ and the image under the natural homomorphism of $\mathrm{H}^{-1}\left(\left\langle\Xi^{`}\right\rangle\right)$ into $\mathrm{H}^{-1}\left(\mathrm{~L}^{`}(\mathrm{~T})\right)$ or, just as well, between $\mathscr{E}(\mathrm{T})$ and the quotient of $\left\{\lambda^{2} \in\left\langle\Xi^{2}\right\rangle: \sigma \lambda^{2}=-\lambda^{2}\right\}$ by

$$
\mathscr{L}(\mathrm{T})=\left\{\lambda^{2} \in\left\langle\Xi^{2}\right\rangle: \lambda^{2}=\sigma \mu^{2}-\mu^{2}, \text { some } \mu^{2} \text { in } \mathrm{L}^{2}(\mathbf{T})\right\} .
$$

Hence $\mathscr{D}(\mathrm{T})$ is identified as a collection of cosets of $\mathscr{L}(\mathrm{T})$ in $\left\langle\Xi^{2}\right\rangle$; we shall call this the T-N identification.

As for realizing T-N explicitly we will need only an (unpublished) observation of Langlands; we state it as a proposition as we will use it in several places. Recall that a root α is imaginary if and only if $\sigma \alpha=-\alpha$ or, equivalently, $\sigma \alpha^{2}=-\alpha^{2}$. Assume now that α is imaginary; ω_{α}, the Weyl reflection with respect to α, lies in $\Omega(\mathbf{M}, \mathbf{T})$. In the case α is compact ($c f$. [9]) ω_{α} lies in $\Omega(\mathbf{M}, \mathrm{T})$.

Proposition 2.1. - In the case α is noncompact the image under $\mathrm{T}-\mathrm{N}$ of $\Omega(\mathrm{M}, \mathrm{T}) \omega_{\alpha}$ is $\alpha^{2}+\mathscr{L}(\mathrm{T})$.

```
4 e}\mathrm{ SÉRIE - TOME 12 - 1979 - No 1
```

The proof is straightforward. Indeed, fix a homomorphism (over \mathbf{R}) of SL_{2} in \mathbf{G} as in [9]. Then the image of $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ is a 1 -cocycle of \mathbf{T} attached to ω_{α} in the manner earlier. It is now a matter of reviewing the $\mathrm{T}-\mathrm{N}$ identification explicitly (cf. [6]); we omit the details.

3. Characters on $\mathscr{D}(\mathrm{T})$

Following [7] we will consider a quasicharacter x on $\left\langle\Xi^{`}\right\rangle$, trivial on $\mathscr{L}(\mathrm{T})$. Note that the restriction of x (as quasicharacter on $\left\langle\Xi^{`}\right\rangle / \mathscr{L}(\mathrm{T})$) to $\mathscr{D}(\mathrm{T})$ takes only the values ± 1. We will often refer to x as a "character on $\mathscr{D}(\mathrm{T})$ " [although, in general, the domain is larger and x is not determined by its restriction to $\mathscr{D}(\mathrm{T})]$.
If $\omega \in \mathscr{A}(\mathrm{T})$ then clearly

$$
x^{\omega}\left(\lambda^{2}\right)=x\left(\omega^{-1} \lambda^{\check{ }}\right), \quad \lambda^{\check{ }} \in\left\langle\Xi^{\check{ }}\right\rangle,
$$

defines a character on $\mathscr{D}\left(\mathrm{T}^{\omega}\right)$; here, as usual, ω acts on $\left\langle\Xi^{2}\right\rangle$ by the contragredient of the adjoint action. On the other hand, we will often write $x(\omega)$ for the value of x on the coset $\Omega(\mathrm{M}, \mathrm{T}) \omega$ in $\mathscr{D}(\mathrm{T})$. If $\omega_{1} \in \mathscr{A}(\mathrm{~T})$ and $\omega_{2} \in \mathscr{A}\left(\mathrm{~T}^{\mathrm{T}_{1}}\right)$ then $\omega_{2} \omega_{1} \in \mathscr{A}(\mathrm{~T})$ and:

Proposition 3.1:

$$
x\left(\omega_{2} \omega_{1}\right)=x\left(\omega_{1}\right) \chi^{\omega_{1}}\left(\omega_{2}\right) .
$$

Proof. - Note that

$$
\sigma\left(\omega_{1}^{-1} \omega_{2}^{-1}\right) \omega_{2} \omega_{1}=\sigma\left(\omega_{1}^{-1}\right) \omega_{1} \omega_{1}^{-1}\left(\sigma\left(\omega_{2}^{-1}\right) \omega_{2}\right) \omega_{1} .
$$

Since the $\mathrm{T}-\mathrm{N}$ identification respects the action of $\mathscr{A}(\mathrm{T})$ the assertion is now clear.
Suppose that α is an imaginary root of \mathbf{T} in \mathbf{G}. Provided that there is a noncompact root among the elements $\omega \alpha, \omega$ in the imaginary Weyl group of $\mathbf{T}\left[\right.$ or, just as well, ω in $\Omega_{0}(\mathbf{G}, \mathbf{T})$, the elements realized in $\mathscr{A}(\mathrm{T})]$, we can find $s \in \mathbf{G}$ such that $\sigma\left(s^{-1}\right) s$ realizes the Weyl reflection $\omega_{\alpha}[9]$. In the case that α itself is noncompact we have called s a Cayley transform with respect to α [9]. It is convenient now to drop this requirement on α : thus, as long as α is imaginary and $\sigma\left(s^{-1}\right) s$ realizes ω_{α} we will call s a Cayley transform with respect to α. The assertions of Proposition 2.7 in [9] remain true; in particular, \mathbf{T}_{s}, the image of \mathbf{T} under s, is defined over \mathbf{R}.

Proposition 3.2. - If $x\left(\alpha^{2}\right)=1$ then

$$
x^{s}\left(\lambda^{\check{ }}\right)=x\left(s^{-1} \lambda^{\check{\prime}}\right), \quad \lambda^{\check{ }} \in\left\langle\Xi_{s}^{-}\right\rangle,
$$

defines a character on $\mathscr{D}\left(\mathrm{T}_{s}\right)$.
Here Ξ_{s}^{2} denotes the set of coroots for \mathbf{T}_{s} in \mathbf{G}.

Proof. - We have only to show that if $\mu^{2} \in \mathrm{~L}^{2}\left(\mathbf{T}_{s}\right)$ and $\sigma \mu^{2}-\mu^{2} \in\left\langle\Xi_{s}^{2}\right\rangle$ then $\chi^{s}\left(\sigma \mu^{\check{ }}-\mu^{\check{ }}\right)=1$. But
which differs from $\sigma\left(s^{-1} \mu^{\check{ }}\right)-s^{-1} \mu^{\check{ }}$ by an integral multiple of $\alpha^{\check{ }}$. Hence the proposition is proved.

Finally, we include some simple computations needed in the next section.
Proposition 3.3. - Suppose that α is a noncompact imaginary root for which $x\left(\alpha^{2}\right)=1$. Then:
(i) $\chi^{\omega_{x}}=\chi$;
(ii) $x\left(\omega \omega_{\alpha}\right)=\chi(\omega), \omega \in \mathscr{A}(\mathrm{T})$; and
(iii) if s is a Cayley transform with respect to α then $\chi^{s}(\omega)=\chi\left(s^{-1} \omega s\right)$ for any $\omega \in \mathscr{A}\left(\mathrm{T}_{s}\right)$ which normalizes \mathbf{T}_{s}.

Proof:
(i) $x^{\omega_{x}}\left(\lambda^{2}\right)=x\left(\lambda^{2}\right) x\left(\omega_{\alpha} \lambda^{2}-\lambda^{2}\right)=x\left(\lambda^{2}\right), \lambda^{2} \in\left\langle\Xi^{2}\right\rangle$;
(ii) $x\left(\omega \omega_{\alpha}\right)=x\left(\omega_{\alpha}\right) x^{\omega_{\alpha}}(\omega)=x\left(\alpha^{2}\right) x(\omega)=\chi(\omega)$ (cf. Props. 3.1, 2.1);
(iii) Proposition 4.6 of [9] and Proposition 3.1 show that it is enough to prove (iii) in the case where ω realizes the Weyl reflection with respect to an imaginary root β of \mathbf{T}_{s}.

Suppose that β is compact. Then $\chi^{s}\left(\omega_{\beta}\right)=1$. Proposition 4.6 of [9] shows that either $\omega_{s^{-1} \beta}$ or $\omega_{s^{-1} \beta} \omega_{\alpha}$ is realized in G. Since $x\left(\omega_{s^{-1} \beta} \omega_{\alpha}\right)=x\left(\omega_{s^{-1} \beta}\right)$ (ii) we obtain $\chi^{s}\left(\omega_{\beta}\right)=\chi\left(\omega_{s^{-1} \beta}\right)=\chi\left(s^{-1} \omega_{\beta} s\right)$.

Suppose that β is noncompact. Again an argument as in Proposition 4.6 of [9] shows that if $\omega_{s^{-1} \beta}$ is realized in G then so is ω_{β}. Hence if ω_{β} is not realized in G we get

$$
\chi^{s}\left(\omega_{\beta}\right)=\chi^{s}\left(\beta^{\breve{ }}\right)=\chi\left(s^{-1} \beta^{\check{ }}\right)=\chi\left(\omega_{s^{-1} \beta}\right)=x\left(s^{-1} \omega_{\beta} s\right)
$$

On the other hand, if ω_{β} is realized in G we may argue as in the previous paragraph and the proof is completed.

4. Definition and properties of Φ_{f}^{x}

We come then to orbital integrals. Fix a Schwartz function f on G. As in [9], if T is a Cartan subgroup of G, $d t$ a Haar measure on T, $d g$ a Haar measure on G and γ a regular element of T we set

$$
\Phi_{f}(\gamma, d t, d g)=\int_{\mathrm{G} / \mathrm{T}} f\left(g \gamma g^{-1}\right) d \bar{g}
$$

$\overline{d g}$ denoting the quotient measure arising from $d t$ and $d g$. Recall that if $\omega \in \mathscr{A}(\mathrm{T})$ then $\Phi_{f}\left(\gamma^{\omega},(d t)^{\omega}, d g\right)$ depends only on the class of ω in $\mathscr{D}(\mathrm{T})$. Hence we may define

$$
\Phi_{f}^{\chi}(\gamma, d t, d g)=\sum_{\omega \in \mathscr{Q}(\mathbf{T})} x(\omega) \Phi_{f}\left(\gamma^{\omega},(d t)^{\omega}, d g\right)
$$

$$
4^{\text {e }} \text { SÉRIE }- \text { TOME } 12-1979-\mathrm{N}^{\circ} 1
$$

(cf. [5]); recall that $\gamma^{\omega}=\omega \gamma \omega^{-1}$. It is clear that

$$
\Phi_{f}^{\chi}(\gamma, \alpha d t, \beta d g)=\beta / \alpha \Phi_{f}^{\chi}(\gamma, d t, d g), \quad \alpha, \beta>0
$$

Proposition 4.1:

$$
\Phi_{f}^{\chi^{\omega}}\left(\gamma^{\omega},(d t)^{\omega}, d g\right)=\chi(\omega) \Phi_{f}^{\chi}(\gamma, d t, d g), \quad \omega \in \mathscr{A}(\mathrm{T})
$$

Proof:

$$
\begin{aligned}
\sum_{\omega^{\prime} \in \mathscr{D}\left(T^{0}\right)} x^{\omega}\left(\omega^{\prime}\right) \Phi_{f}\left(\left(\gamma^{\omega}\right)^{\omega^{\prime}},\left(\left(d t^{\omega}\right)^{\omega^{\prime}}, d g\right)=\sum_{\omega^{\prime} \in \mathscr{D}\left(\mathrm{T}^{0}\right)} \frac{x^{\omega}\left(\omega^{\prime}\right)}{x\left(\omega^{\prime} \omega\right)}\right. & x\left(\omega^{\prime} \omega\right) \Phi_{f}\left(\gamma^{\omega^{\prime} \omega},(d t)^{\omega^{\prime} \omega}, d g\right) \\
& =x(\omega) \sum_{\omega^{\prime \prime} \in \mathscr{D}(\mathrm{T})} x\left(\omega^{\prime \prime}\right) \Phi_{f}\left(\gamma^{\omega^{\prime \prime}},(d t)^{\omega^{\prime \prime}}, d g\right),
\end{aligned}
$$

as desired, since Proposition 3.1 shows that

$$
\frac{x^{\omega}\left(\omega^{\prime}\right)}{x\left(\omega^{\prime} \omega\right)}=\frac{1}{x(\omega)}=x(\omega)
$$

Fix a system I^{+}of positive roots for \mathbf{T} in \mathbf{M}; that is, a system of positive imaginary roots for \mathbf{T}. As in [9] we define

$$
\mathrm{R}_{\mathrm{T}}(\gamma)=\left|\operatorname{det}(\operatorname{Ad} \gamma-1)_{\Omega / m!}\right|^{1 / 2} \prod_{\alpha \in \mathrm{I}^{+}}\left(1-\alpha\left(\gamma^{-1}\right)\right)
$$

and then set

$$
\Psi_{f}^{\chi}(\gamma)=\Psi_{f}^{\chi}(\gamma, d t, d g)=\mathrm{R}_{\mathrm{T}}(\gamma) \Phi_{f}^{\chi}(\gamma, d t, d g)
$$

Proposition 4.2. - Ψ_{f}^{x} extends to a Schwartz function on

$$
\mathrm{T}_{0}=\left\{\gamma \in \mathrm{T}: \alpha(\gamma) \neq 1, \alpha \in \mathrm{I}^{+}\right\}
$$

Proof. - The assertion follows immediately from [2], for $\Psi_{f}^{\chi}(\gamma)=\sum_{\omega \in \mathscr{O}(\mathrm{T})} x(\omega) \Psi_{f}^{\omega}(\gamma)$ where $\Psi_{f}^{\omega}(\gamma)=\mathrm{R}_{\mathrm{T}}(\gamma) \Phi_{f}\left(\gamma^{\omega}\right)$ which can be written as $c \Lambda(\gamma){ }^{`} \mathrm{~F}_{f}\left(\gamma^{\omega}\right)$ where c is a constant, Λ a unitary character on T and ${ }^{`} \mathrm{~F}_{f}$ is the function of Harish-Chandra [12]; here we are using representatives ω [for the classes in $\mathscr{D}(\mathrm{T})$] which lie in $\operatorname{Norm}(\mathbf{M}, \mathbf{T})$.

Thus, like the function ${ }^{`} \mathrm{~F}_{f}, \Psi_{f}^{\chi}$ (and each derivative) "jumps" across each wall $\alpha=1$, $\alpha \in I^{+}$. We discuss these "jumps" following the usual procedure (cf. [2]): α will be a root in $\mathrm{I}^{+}, \gamma_{0}$ an element of T such that $\alpha\left(\gamma_{0}\right)=1$ and $\beta\left(\gamma_{0}\right) \neq 1$ if $\beta \neq \pm \alpha, \gamma_{v}$ will denote $\gamma_{0} \exp i v \mathbf{H}_{\alpha}$, where H_{α} is the coroot (as element of $\underset{\sim}{t}$, the Lie algebra of \mathbf{T}) attached to α, and D will be an invariant differential operator on T .

Lemma 4.3. - If $x\left(\alpha^{2}\right)=-1$ then

$$
\lim _{v \downharpoonright 0} \mathrm{D} \Psi_{f}^{\chi}\left(\gamma_{v}\right)=\lim _{v \uparrow 0} \mathrm{D} \Psi_{f}^{\chi}\left(\gamma_{v}\right)
$$

anNales Scientifiques de l'école normale supérieure

Proof. - If all the roots $\omega \alpha, \omega$ an element of the imaginary Weyl group, are compact then the result follows immediately from [2].

Suppose now that α is noncompact. By [2] again, (and an earlier paper cited in [2]), we have only to show that under the assumption $\mathrm{D}^{\omega_{\mathrm{s}}}=\mathrm{D}$ the jump for D , as defined in [9], paragraph 4, is zero. Recall that D , introduced because of the awkward transformation of R_{T} under the imaginary Weyl group, is the image of D under the automorphism induced by $\mathrm{H} \rightarrow \mathrm{H}+\mathfrak{s}(\mathrm{H}) \mathrm{I}, \quad \mathrm{H} \in \underset{\sim}{t}$, where $\mathfrak{s}=1 / 2 \sum_{\alpha \in \mathrm{I}^{+}} \log \alpha$. Because $x\left(\alpha^{2}\right)=-1$ we have $x\left(\omega_{\alpha}\right)=-1$ (Prop. 2.1) and so ω_{α} is not realized in G. Hence to compute

$$
\lim _{v \downarrow 0} \hat{\mathrm{D}} \Psi_{f}^{\mathrm{x}}\left(\gamma_{v}\right)-\lim _{\vee \uparrow 0} \hat{\mathrm{D}} \Psi_{f}^{\mathrm{x}}\left(\gamma_{v}\right),
$$

we may replace Ψ_{f}^{χ} by Ψ where

$$
\Psi(\gamma)=\mathrm{R}_{\mathrm{T}}(\gamma) \sum_{i}\left(\chi(\delta) \Phi_{f}\left(\gamma^{\delta}\right)+\chi\left(\delta \omega_{\chi}\right) \Phi_{f}\left(\gamma^{\delta \omega_{\alpha}}\right)\right),
$$

and δ, an element of $\operatorname{Norm}(\mathbf{M}, \mathbf{T})$ satisfying $\delta \alpha=\alpha$, ranges over a complete set of representatives for the classes in $\mathscr{D}(\mathrm{T})$ containing such an element (cf. [9], §4). But $\chi^{\omega_{\alpha}}(\delta)=\chi(\delta)$. To prove this, a simple argument shows that it is enough to consider the case that δ is a reflection; then the proof is immediate (cf. Paragraph 3). Thus we have

$$
x\left(\delta \omega_{\alpha}\right)=x\left(\omega_{\alpha}\right) x(\delta)=x\left(\alpha^{\check{ }}\right) x(\delta)=-x(\delta) .
$$

Hence $\Psi\left(\gamma^{\omega_{\alpha}}\right)=\left(\imath-\omega_{\chi .}\right)(\gamma) \Psi(\gamma)$. Since $D^{\omega_{\alpha}}=D$ we obtain immediately that

$$
\lim _{v \downarrow 0} \hat{D} \Psi_{f}^{\chi}\left(\gamma_{v}\right)-\lim _{v \uparrow 0} \hat{D} \Psi_{f}^{\chi}\left(\gamma_{v}\right)=0
$$

as desired.
Finally, suppose that α is compact but that $\omega \alpha$ is noncompact. Then since

$$
\Psi_{f}^{\chi}(\gamma)=\chi(\omega) \Psi_{f}^{\chi^{\omega}}\left(\gamma^{\omega}\right)
$$

[using the positive system $\left(\mathrm{I}^{+}\right)^{\omega}$ to define $\Psi_{f}^{\chi^{\omega}}$] the proof is easily completed.
We come then to the other possibility, namely $\chi\left(\alpha^{\check{\prime}}\right)=1$. We have already observed that, regardless of the value of $\chi\left(\alpha^{\check{ })}\right.$, if all $\omega \alpha$ are compact then

$$
\lim _{v \downarrow 0} \mathrm{D} \Psi_{f}^{\chi}\left(\gamma_{v}\right)=\lim _{v \uparrow 0} \mathrm{D} \Psi_{f}^{\chi}\left(\gamma_{v}\right)
$$

For the remaining case we proceed in steps. Suppose first that α is noncompact and that s is a Cayley transform with respect to α, standard in the sense of [9], Paragraph 2. Since $x\left(\alpha^{2}\right)=1$ the character x^{s} is well-defined (Prop. 3.2). We claim that

$$
\begin{equation*}
\lim _{v \downarrow 0} \hat{\mathrm{D}} \Psi_{f}^{\chi}\left(\gamma_{v}\right)-\lim _{v \uparrow 0} \hat{\mathrm{D}} \Psi_{f}^{\chi}\left(\gamma_{v}\right)=2 i \hat{\mathrm{D}}^{s} \Psi_{f}^{\chi_{s}^{s}}\left(\gamma_{0}\right) \tag{1}
\end{equation*}
$$

4^{e} série - TOME $12-1979-\mathrm{N}^{0} 1$

The notation is that of [9]. Thus we assume that the system I^{+}is adapted to $\alpha(\ldots$ if β is imaginary and $\langle\beta, \alpha\rangle>0$ then $\left.\beta \in \mathrm{I}^{+}\right) ; \mathrm{R}_{\mathrm{T}_{s}}$, and hence $\Psi_{f}^{\chi^{s}}$, is defined relative to $\mathrm{I}_{s}^{+}=\left\{\beta: s^{-1} \beta \in \mathrm{I}^{+}\right\} ; \hat{\mathrm{D}}$ and $\widehat{\mathrm{D}^{s}}$ are defined relative to I^{+}and I_{s}^{+}respectively. For the choice of Haar measure on T_{s} we refer to [9].

To prove the claim we again recall the computations of [9], Paragraph 4. First, on the left-hand side of (1) Ψ_{f}^{α} may be replaced by Ψ where $\Psi(\gamma)=\sum_{\omega} x(\omega) \Psi_{f}\left(\gamma^{\omega}\right)$ with ω an element of $\operatorname{Norm}(\mathbf{M}, \mathbf{T})$ satisfying $\omega \alpha= \pm \alpha$, ranging over a complete set of representatives for those classes in $\mathscr{D}(\mathrm{T})$ which contain such an element. Fix ω such that $\omega \alpha=\alpha$. Then by Proposition 4.5 of [9] we have

$$
\lim _{v \downarrow 0} \hat{\mathrm{D}} \Psi_{f}^{\omega}\left(\gamma_{v}\right)-\lim _{v \uparrow 0} \hat{\mathrm{D}} \Psi_{f}^{\omega}\left(\gamma_{v}\right)=\operatorname{id}(\alpha) \widehat{\mathrm{D}^{s}} \Psi_{f}^{s \omega s^{-1}}\left(\gamma_{0}\right)
$$

where $d(\alpha)=2$ if ω_{α} can be realized in G and $d(\alpha)=1$ otherwise. If ω_{α} can be realized in G then we obtain

$$
\lim _{\vee!0} \hat{\mathrm{D}} \Psi_{f}^{\chi}\left(\gamma_{\mathrm{v}}\right)-\lim _{\vee \uparrow 0} \hat{\mathrm{D}} \Psi_{f}^{\chi}\left(\gamma_{v}\right)=2 i \sum_{\omega \alpha=\alpha} x(\omega) \widehat{\mathrm{D}^{s}} \Psi_{f}^{s \omega s^{-1}}\left(\gamma_{0}\right)=2 i \widehat{\mathrm{D}^{s}} \Psi_{f}^{\chi_{s}^{s}}\left(\gamma_{0}\right)
$$

since, by Proposition 3.3, $\chi^{s}\left(s \omega s^{-1}\right)=\chi(\omega)$. If ω_{α} is not realized in G and $\omega \alpha=\alpha$ then $\omega \omega_{\alpha}$ and ω lie in distinct classes of $\mathscr{D}(\mathrm{T})$. However $\chi\left(\omega \omega_{\alpha}\right)=\chi(\omega)$. We now argue again as in [9]. First, we may assume that $\mathrm{D}^{\omega_{a}}=\mathrm{D}$. Then it follows that the term on the left-hand side of (1) coming from $\omega \omega_{\alpha}$ equals that for ω. By applying Lemma 4.6 of [9] we obtain the formula (1).

We continue with the assumption that α is noncompact but allow s to be any Cayley transform with respect to α. Then s may be written as $\omega_{0} s_{0}$, where s_{0} is a standard transform (with respect to α) and $\omega_{0} \in \mathscr{A}\left(\mathrm{~T}_{s_{0}}\right)$. We know that

$$
x^{s_{0}}\left(\omega_{0}\right) \Phi_{f}^{x^{s}}\left(\gamma^{\omega_{0}}\right)=\Phi_{f}^{x_{0}}(\gamma), \quad \gamma \in\left(\mathrm{T}_{s_{0}}\right)_{\text {reg }}
$$

Also, by definition,

$$
\mathrm{R}_{\mathrm{T}_{s}}\left(\gamma^{\omega_{o}}\right)=\mathrm{R}_{\mathrm{T}_{s_{o}}}(\gamma), \quad \gamma \in \mathrm{T}_{s_{0}}
$$

and $\widehat{D^{s}}=\left(\widehat{D^{s}}\right)^{\omega_{0}}$. Hence

$$
\lim _{v \downarrow 0} \hat{\mathrm{D}} \Psi_{f}^{\chi}\left(\gamma_{v}\right)-\lim _{v \uparrow 0} \hat{\mathrm{D}} \Psi_{f}^{\chi}\left(\gamma_{v}\right)=2 i x^{s_{0}}\left(\omega_{0}\right) \widehat{\mathrm{D}^{s}} \Psi_{f}^{x_{s}^{s}}\left(\gamma_{0}^{s}\right)
$$

Now we come to the general case. Thus we will assume that $\sigma\left(s^{-1}\right) s$ realizes ω_{α}, with α possibly compact. Suppose that $\omega \alpha$ is noncompact. Then s may be written in the form $\omega_{0} s_{0} \omega$ where s_{0} is a standard transform with respect to $\omega \alpha$ and $\omega_{0} \in \mathscr{A}\left(\mathrm{~T}_{s_{0}}\right)$. But

$$
\Psi_{f}^{\chi}(\gamma)=\chi(\omega) \Psi_{f}^{\chi^{\omega}}\left(\gamma^{\omega}\right), \quad \gamma \in \mathrm{T}_{\mathrm{reg}}
$$

the "R-" function in the definition of $\Psi_{f}^{\chi^{\omega}}$ being relative to $\left(\mathrm{I}^{+}\right)^{\omega}$, a system adapted to $\omega \alpha$. It is then easy to check that

$$
\hat{\mathrm{D}} \Psi_{f}^{\chi}\left(\gamma_{v}\right)=\chi(\omega) \widehat{\mathrm{D}^{\omega}} \Psi_{f}^{\chi^{\omega}}\left(\gamma_{v}^{\omega}\right)
$$

$\widehat{\mathrm{D}^{\omega}}$ being defined relative to $\left(\mathrm{I}^{+}\right)^{\omega}$. We have then

$$
\begin{equation*}
\lim _{v \downarrow 0} \hat{\mathrm{D}} \Psi_{f}^{\chi}\left(\gamma_{v}\right)-\lim _{v \uparrow 0} \hat{\mathrm{D}} \Psi_{f}^{\chi}\left(\gamma_{v}\right)=2 i x(\omega){x^{s_{0} \omega}\left(\omega_{0}\right) \widehat{\mathrm{D}^{s}} \Psi_{f}^{\chi^{s}}\left(\gamma_{0}^{s}\right), ~ ; ~}_{\text {, }} \tag{2}
\end{equation*}
$$

where terms on the right-hand side are defined relative to the positive system $\left(\left(I^{+}\right)^{\omega}\right)_{s_{0}}^{\omega_{0}}=I_{s}^{+}$.
We wish to give an (intrinsic) interpretation of $x(\omega) \chi^{s_{0} \omega}\left(\omega_{0}\right)$ as a " x-signature" for s. We continue to assume that α is an imaginary root, that $\chi\left(\alpha^{2}\right)=1$ and that s is an element of \mathbf{G} such that $s_{\sigma}=\sigma\left(s^{-1}\right) s$ realizes ω_{α}. We write \mathbf{G}_{α} for the image of the appropriate real form of SL_{2} under one of the standard homomorphisms attached to $\alpha\left(c f\right.$. [9]); \mathbf{G}_{α} is independent of the choices made in defining such a homomorphism. Our first observation is that we may modify s_{σ} by an element of \mathbf{G}_{α} to obtain a 1 -cocycle for \mathbf{T} trivial in \mathbf{G} (... we are considering the cohomology of just $\langle 1, \sigma\rangle$, as before). Indeed, suppose that α is noncompact. Then $s=\omega_{0} s_{0}$ where $s_{0} \in \mathbf{G}_{\alpha}$ and $\omega_{0} \in \mathscr{A}\left(\mathrm{~T}_{s_{0}}\right)$. We write ω_{0} as $g_{0} \omega_{0}^{\prime}$ where $g_{0} \in \mathrm{G}$ and ω_{0}^{\prime} normalizes $\mathbf{T}_{s_{0}}$ and centralizes the maximal \mathbf{R}-split torus in $\mathbf{T}_{s_{0}}$. Then setting $\omega_{1}=s_{0}^{-1} \omega_{0}^{\prime} s_{0}$ we have $\omega_{1}^{-1} \mathbf{G}_{\alpha} \omega_{1}=\mathbf{G}_{\alpha}$ and hence

$$
s_{\sigma}=\sigma\left(\omega_{1}^{-1}\right) \sigma\left(s_{0}^{-1}\right) s_{0} \omega_{1}=\sigma\left(\omega_{1}^{-1}\right) \omega_{1} \omega_{1}^{-1} \sigma\left(s_{0}^{-1}\right) s_{0} \omega_{1},
$$

where $\sigma\left(\omega_{1}^{-1}\right) \omega_{1}$ is a 1-cocycle for \mathbf{T} (and 1-coboundary for \mathbf{G}) and $\omega_{1}^{-1} \sigma\left(s_{0}^{-1}\right) s_{0} \omega$ is an element of \mathbf{G}_{α}. Now suppose that α is compact but that $\omega \alpha$ is noncompact. Then we may write s as $\omega_{0} s_{\omega} \omega$ where $s_{\omega} \in \mathbf{G}_{\omega \alpha}$ is such that $\sigma\left(s_{\omega}^{-1}\right) s_{\omega}$ realizes $\omega_{\omega \alpha}$ and $\omega_{0} \in \mathscr{A}\left(\mathrm{~T}_{s_{\mathrm{m}}}\right)$. Decomposing ω_{0} as before we find that we may assume that $\omega_{0}=1$. Then

$$
s_{\sigma}=\sigma\left(\omega^{-1}\right) \omega \cdot \omega^{-1} \sigma\left(s_{\omega}^{-1}\right) s_{\omega} \omega
$$

where $\sigma\left(\omega^{-1}\right) \omega$ is a 1-cocycle for \mathbf{T} (and 1-coboundary for \mathbf{G}) and $\omega^{-1} \sigma\left(s_{\omega}^{-1}\right) s_{\omega} \omega \in \mathbf{G}_{\alpha}$. This justifies our claim.

Suppose now that we decompose s_{σ} in two ways, say $s_{\sigma}=w_{1} t_{1}=w_{2} t_{2}$, where $w_{1}, w_{2} \in \mathbf{G}_{\alpha}$ and t_{1}, t_{2} are 1-cocycles for \mathbf{T} and 1-coboundaries for \mathbf{G}. We claim that the images of (the cohomology classes of) t_{1}, t_{2} under $\mathrm{T}-\mathrm{N}$ differ by an element of $\mathbf{Z} \alpha^{2}$ and hence $x\left(t_{1}\right)=x\left(t_{2}\right)$. To prove the claim we have only to note that the classes of t_{1} and t_{2} differ $\mathrm{A}!$ an element of $\mathbf{H}^{1}\left(\mathbf{T} \cap \mathbf{G}_{\alpha}\right)$; such an element maps under $\mathrm{T}-\mathrm{N}$ into $\mathbf{Z} \alpha^{2}$.

It is now immediate that if $s_{\sigma} \in t_{\sigma} \mathbf{G}_{\alpha}$ where t_{σ} is a 1-cocycle of \mathbf{T} trivial in \mathbf{G} then we may define the " x-signature" $\varepsilon_{\chi}(s)$ of s as $\chi\left(t_{\sigma}\right)$.

In (2) we wrote s as $\omega_{0} s_{0} \omega$ where $\omega \alpha$ is noncompact, $s_{0} \in \mathbf{G}_{\omega \alpha}$ and $\omega_{0} \in \mathscr{A}\left(\mathrm{~T}_{s_{0}}\right)$. To compute s_{σ} we may assume that ω_{0} normalizes $\mathbf{T}_{s_{0}}$. Set $\omega_{1}=s_{0}^{-1} \omega_{0} s_{0} \omega$. Then

$$
\varepsilon_{\chi}(s)=\chi\left(\sigma\left(\omega_{1}^{-1}\right) \omega_{1}\right)=\chi\left(\omega_{1}\right)
$$

in our usual notation. On the other hand

$$
\chi(\omega) \chi^{s_{0} \omega}\left(\omega_{0}\right)=\chi(\omega) \chi^{\omega}\left(s_{0}^{-1} \omega_{0} s_{0}\right)=\chi\left(\omega_{1}\right) .
$$

Hence $\chi(\omega) \chi^{s_{0 \omega}}\left(\omega_{0}\right)=\varepsilon_{\chi}(s)$. We conclude:
Lemma 4.4. - Suppose $x\left(\alpha^{2}\right)=1$. Then:
(i) if all $\omega \alpha$ are compact we have

$$
\lim _{v \downharpoonright 0} \mathrm{D} \Psi_{f}^{\chi}\left(\gamma_{v}\right)=\lim _{v \uparrow 0} \mathrm{D} \Psi_{f}^{\chi}\left(\gamma_{v}\right)
$$

4^{e} série - tome 12 - $1979-\mathrm{N}^{0} 1$
(ii) if $\sigma\left(s^{-1}\right) s$ realizes ω_{α} then

$$
\lim _{v \downarrow 0} \hat{\mathrm{D}} \Psi_{f}^{\mathrm{x}}\left(\gamma_{v}\right)-\lim _{v \neq 0} \hat{\mathrm{D}} \Psi_{f}^{\mathrm{x}}\left(\gamma_{v}\right)=2 i \varepsilon_{\chi}(s) \widehat{\mathrm{D}}^{s} \Psi_{f}^{\chi^{x}}\left(\gamma_{0}^{s}\right) .
$$

Here, we recall, the terms $\hat{\mathrm{D}}, \Psi_{f}^{\chi}$ are defined relative to a system I^{+}of positive imaginary roots adapted to α and the terms $\widehat{\mathrm{D}^{s}}, \Psi_{f}^{x^{s}}$ relative to $\mathrm{I}_{s}^{+}=\left\{\beta: s^{-1} \beta \in \mathrm{I}^{+}\right\}$.

5. (T, x)-groups

To establish notation and introduce the groups of [7] we recall some more material from [7] (and [8]). Our data will be a connected reductive group \mathbf{G} over \mathbf{R}, a maximal torus \mathbf{T} in \mathbf{G}, also defined over \mathbf{R}, and a quasicharacter x on the module generated by the coroots for \mathbf{T}, trivial on the submodule $\mathscr{L}(\mathbf{T})(c f$. Paragraph 2$)$.
We begin with an L-group ${ }^{\mathrm{L}} \mathbf{G}$ for \mathbf{G}. Thus fix a pair $\left(\mathbf{G}^{*}, \psi\right)$, where \mathbf{G}^{*} is a group quasisplit over \mathbf{R} and $\psi: \mathbf{G} \rightarrow \mathbf{G}$ is an isomorphism (over \mathbf{C}) such that $\sigma\left(\psi^{-1}\right) \psi$ is inner. In \mathbf{G}^{*} fix a Borel subgroup \mathbf{B}^{*} over \mathbf{R} and a maximal torus \mathbf{T}^{*} over \mathbf{R}, contained in \mathbf{B}^{*}. To abbreviate notation we use L for the character module for \mathbf{T}^{*} and $\mathrm{L}^{`}$ for its dual; $\Sigma \subset \mathrm{L}$ will be the set of simple roots for \mathbf{T}^{*} in \mathbf{B}^{*} and $\Sigma^{`}$ the corresponding set of coroots. Fix a triple $\left({ }^{L} \mathrm{G}^{0},{ }^{L} \mathrm{~B}^{0},{ }^{\mathrm{L}} \mathrm{T}^{0}\right)$, where ${ }^{\mathrm{L}} \mathrm{G}^{0}$ is a connected reductive group over \mathbf{C}, ${ }^{\mathrm{L}} \mathrm{B}^{0}$ is a Borel subgroup of ${ }^{\mathrm{L}} \mathrm{G}^{0}$ and ${ }^{\mathrm{L}} \mathrm{T}^{0}$ is a maximal torus contained in ${ }^{\mathrm{L}} \mathrm{B}^{0}$, such that the character module for ${ }^{\mathrm{L}} \mathrm{T}^{0}$ is $\mathrm{L}^{\breve{ }}$ and the set of simple roots for ${ }^{\mathrm{L}} \mathrm{T}^{0}$ in ${ }^{\mathrm{L}} \mathrm{B}^{0}$ is $\Sigma^{\check{ }}$. For each $\alpha^{\check{ }} \in \Sigma^{\check{ }}$. fix a root vector $\mathrm{X}_{\alpha^{-}}$ in the Lie algebra of ${ }^{\mathrm{L}} \mathrm{G}^{0}$. The element σ acts on $\mathbf{T}^{*}, \mathrm{~L}, \mathrm{~L}^{`}$ and ${ }^{\mathrm{L}} \mathbf{T}^{0}$; we denote also by σ the action on ${ }^{\mathrm{L}} \mathrm{G}^{0}$ which extends that on ${ }^{\mathrm{L}} \mathrm{T}^{0}$ and satisfies $\sigma \mathrm{X}_{\alpha^{-}}=\mathrm{X}_{\sigma \alpha^{2}}, \alpha^{2} \in \Sigma^{\check{ }}$. The semidirect product of ${ }^{\mathrm{L}} \mathrm{G}^{0}$ by the Weil group of \mathbf{C} / \mathbf{R}, with $1 \times \sigma$ acting by σ and $\mathbf{C}^{*} \times 1$ acting trivially, defines an object in the category $\mathscr{G}^{2}(\mathbf{R})$ of [8]; this object will be our L-group ${ }^{\mathrm{L}} \mathrm{G}$.
Next, we use the pair ($\mathbf{T}, x)$ to construct another object ${ }^{\mathrm{L}} \mathrm{H}$ in $\mathscr{G}^{2}(\mathbf{R})$. We denote by σ_{T} the action of σ on $\mathbf{T}, \mathbf{L}(\mathbf{T})$ and $\mathbf{L}^{`}(\mathbf{T})$. Fix $x \in \mathbf{G}^{*}$ such that $\psi_{x}=\operatorname{ad} x \circ \psi \operatorname{maps} \mathbf{T}$ to \mathbf{T}^{*}. Thus ψ_{x} induces an isomorphism of $\mathrm{L}^{`}(\mathbf{T})$ with $\mathrm{L}^{`}$ by which we transfer σ_{T} to $\mathrm{L}^{`}$; by the same means we transfer x to a quasicharacter on $\left\langle\Sigma^{2}\right\rangle$; this new quasicharacter, x^{*}, is trivial on $\mathscr{L}=\left\{\lambda^{\check{ }} \in\left\langle\Sigma^{2}\right\rangle: \lambda^{2}=\mu^{2}-\sigma_{\mathrm{T}} \mu^{2}\right.$, some $\left.\mu^{2} \in \mathrm{~L}^{2}\right\}$ and so is σ_{T}-invariant. Let ${ }^{\mathrm{L}} \mathrm{H}^{0}$ be the connected reductive subgroup of ${ }^{\mathrm{L}} \mathrm{G}^{0}$ generated by ${ }^{\mathrm{L}} \mathrm{T}^{0}$ and the 1 -parameter subgroups defined by those roots of ${ }^{\mathrm{L}} \mathrm{T}^{0}$ in ${ }^{\mathrm{L}} \mathrm{G}^{0}$ on which χ^{*} is trivial. Fix a Borel subgroup of ${ }^{\mathrm{L}} \mathrm{H}^{0}$ containing ${ }^{\mathrm{L}} \mathrm{T}^{0}$ and let $\Sigma_{\mathrm{H}}^{\check{ }}$ be the set of simple roots for ${ }^{\mathrm{L}} \mathrm{T}^{0}$ in this group. Since χ^{*} is σ_{T}-invariant the set of all roots of ${ }^{\mathrm{L}} \mathrm{T}^{0}$ in ${ }^{\mathrm{L}} \mathrm{H}^{0}$ is preserved by σ_{T}. We write σ_{T} as a product $\omega . \sigma_{\mathrm{H}}$, with $\omega \in \Omega\left({ }^{\mathrm{L}} \mathrm{H}^{0},{ }^{\mathrm{L}} \mathrm{T}^{0}\right)$, the Weyl group of ${ }^{\mathrm{L}} \mathrm{T}^{0}$ in ${ }^{\mathrm{L}} \mathrm{H}^{0}$, and σ_{H} induced by an automorphism of Σ_{H}. For each $\alpha^{\check{\prime}} \in \Sigma_{\mathrm{H}}$ choose a root vector $\mathrm{Y}_{\alpha^{\circ}}$ in the Lie algebra of ${ }^{\mathrm{L}} \mathrm{H}^{0}$; we denote also by σ_{H} that extension of σ_{H} to ${ }^{\mathrm{L}} \mathrm{H}^{0}$ satisfying $\sigma_{\mathrm{H}} \mathrm{Y}_{\alpha^{\prime}}=\mathrm{Y}_{\sigma_{\mathrm{H}}{ }^{2}}, \alpha^{-} \in \Sigma_{\mathrm{H}}$. The semi-direct product of ${ }^{\mathrm{L}} \mathrm{H}^{0}$ by the Weil group of \mathbf{C} / \mathbf{R}, with $1 \times \sigma$ acting by σ_{H} and $\mathbf{C}^{*} \times 1$ acting trivially, defines an object ${ }^{\mathrm{L}} \mathrm{H}$ in $\mathscr{G}^{2}(\mathbf{R})$; the isomorphism class of ${ }^{\mathrm{L}} \mathrm{H}$ in $\mathscr{G}^{2}(\mathbf{R})$ depends only on G, T and x.
We come then to the groups attached to \mathbf{G} : we call a quasi-split $\operatorname{group} \mathbf{H}$ over \mathbf{R} a (T, \boldsymbol{x})-group for \mathbf{G} if the object ${ }^{\mathrm{L}} \mathrm{H}$ described above is an L-group for \mathbf{H}. Up to isomorphism over \mathbf{R} there is exactly one ($\mathrm{T}, \boldsymbol{x}$)-group for \mathbf{G}.

6. Cartan subgroups

We change notation slightly to write $\left(\mathrm{T}_{0}, x_{0}\right)$ for the fixed Cartan subgroup and quasicharacter; \mathbf{H} will now be a $\left(\mathrm{T}_{0}, x_{0}\right)$-group for \mathbf{G}. In this section we embed the Cartan subgroups of H in G^{*}. . . and some of them in G. The basis for our discussion is a result (unpublished) of Langlands.

For once and for all we fix (in the notation of the last section):
(i) $\psi, \mathbf{G}^{*}, \mathbf{B}^{*}, \mathbf{T}^{*}$ and hence ${ }^{\mathrm{L}} \mathrm{G}^{0} ;\left\{\mathbf{X}_{\alpha^{\bullet}}\right\}$ and hence ${ }^{\mathrm{L}} \mathrm{G}$;
(ii) an element x of \mathbf{G}^{*} such that $\psi_{x}=\operatorname{ad} x \circ \psi$ maps \mathbf{T}_{0} to \mathbf{T}^{*}, and hence ${ }^{\mathrm{L}} \mathrm{H}^{0}$;
(iii) a Borel subgroup of ${ }^{\mathrm{L}} \mathrm{H}^{0}$ and hence the action of σ_{H} on ${ }^{\mathrm{L}} \mathrm{T}^{0} ;\left\{\mathrm{Y}_{\alpha^{\sim}}\right\}$ and hence the action of σ_{H} on ${ }^{\mathrm{L}} \mathrm{H}^{0}$ and the object ${ }^{\mathrm{L}} \mathrm{H}$.

Recalling that L^{2} is the dual of the character module for T^{*} we make the canonical identification of \mathbf{T}^{*} with $\mathrm{L}^{`} \otimes \mathbf{C}^{*}$. By construction, $\mathrm{L}^{`}$ is also the dual of the character module for some torus in \mathbf{H} defined over \mathbf{R} (and containing a torus maximal among the \mathbf{R}-split tori in \mathbf{H}). Thus we can identify \mathbf{T}^{*} (as complex torus) together with the action of σ_{H} (induced from that of σ_{H} on L^{\prime}) as a maximal torus in \mathbf{H}, defined over \mathbf{R}. Recall that the action of $\Omega\left(\mathbf{G}, \mathbf{T}^{*}\right)$ (respectively, $\Omega\left(\mathbf{H}, \mathbf{T}^{*}\right)$) on L^{2} coincides with that of $\Omega\left({ }^{\mathrm{L}} \mathrm{G}^{0},{ }^{\mathrm{L}} \mathrm{T}^{0}\right)$ [respectively, $\Omega\left({ }^{\mathrm{L}} \mathrm{H}^{0},{ }^{\mathrm{L}} \mathbf{T}^{0}\right)$]. Hence $\Omega\left(\mathbf{H}, \mathbf{T}^{*}\right)$ is a subgroup of $\Omega\left(\mathbf{G}^{*}, \mathbf{T}^{*}\right)$. We remark that on $\mathbf{T}^{*}, \sigma_{\mathrm{T}}=\omega_{1} \sigma_{\mathrm{H}}, \omega_{1} \in \Omega\left(\mathbf{H}, \mathbf{T}^{*}\right) ; \sigma_{\mathrm{G}}=\omega_{2} \sigma_{\mathrm{T}}, \omega_{2} \in \Omega\left(\mathbf{G}^{*}, \mathbf{T}^{*}\right)$ and so $\sigma_{\mathrm{G}}=\omega_{3} \sigma_{\mathrm{H}}$, $\omega_{3} \in \boldsymbol{\Omega}\left(\mathbf{G}^{*}, \mathbf{T}^{*}\right)$.

We come now to the embeddings. Let \mathbf{T}^{\prime} be a maximal torus in \mathbf{H} defined over \mathbf{R}. We pick $h \in \mathbf{H}$ such that ad h maps \mathbf{T}^{\prime} to \mathbf{T}^{*}. Composing ad h with the identity on \mathbf{T}^{*} (as map over \mathbf{C}, from a subgroup of \mathbf{H} to \mathbf{G}^{*}) we obtain an embedding $j(h)$ of \mathbf{T}^{\prime} in \mathbf{G}^{*}, defined over C. According to Langlands (unpublished) there exists $g \in \mathbf{G}^{*}$ such that $j(g, h)=\operatorname{ad} g^{-1} \mathrm{oj}(h)$ is defined over \mathbf{R}. (The proof proceeds as follows. Choose an element $\gamma=\exp \mathbf{X}, \mathbf{X} \in \mathrm{t}^{\prime}$, such that $h \gamma h^{-1} \in \mathbf{T}^{*}$ is regular in \mathbf{G}^{*} and lies in the derived group of \mathbf{G}^{*}. Consider the natural projection of the simply-connected covering group $\left(\mathbf{G}^{*}\right)^{\sim}$ onto the derived group. There is an element γ_{0} in the preimage of $h \gamma h^{-1}$ whose conjugacy class in $\left(\mathbf{G}^{*}\right)^{\sim}$ is defined over \mathbf{R}. By [11] this class contains an \mathbf{R}-rational point, say γ_{1}. Let $g\left(h \gamma h^{-1}\right) g^{-1}$ be the image of γ_{1} in \mathbf{G}^{*}. Then $\operatorname{ad} g \circ j(h)$ is defined over \mathbf{R}.) If both $j(g, h)$ and $j\left(g^{\prime}, h^{\prime}\right)$ map \mathbf{T}^{\prime} into \mathbf{G}^{*} over \mathbf{R} then the action of $j\left(g^{\prime}, h^{\prime}\right) \circ j(g, h)^{-1}$ on \mathbf{T}, the image of \mathbf{T}^{\prime} under $j(g, h)$, can be realized by an element of \mathbf{G}^{*}. Clearly this element lies in $\mathscr{A}(\mathrm{T})$. Hence the image of \mathbf{T}^{\prime} is determined up to conjugacy under $\mathrm{G}^{*}(c f$. [9]). It follows easily that if \mathbf{T}^{\prime} and \mathbf{U}^{\prime} are conjugate in \mathbf{H} under \mathbf{H} then their images in \mathbf{G}^{*} are conjugate under G^{*}. We conclude then that the embeddings $j($,) induce a map from the set $t(\mathrm{H})$ of conjugacy classes of Cartan subgroups of H to $t\left(\mathrm{G}^{*}\right)$. This map preserves the usual ordering ($c f$. [9], § 2) and, in fact, maps adjacent classes to adjacent classes. However it need not be injective. On the other hand, our twist $\psi: \mathbf{G} \rightarrow \mathbf{G}^{*}$ induces an embedding of $t(\mathrm{G})$ in $t\left(\mathrm{G}^{*}\right)(c f$. [9]). Thus we have a map from a subset of $t(\mathrm{H})$ into $t(\mathrm{G})$ (preserving adjacency). The domain is non-empty for, according to [7], the image contains the conjugacy class of T_{0}, our fixed Cartan subgroup of G.

While the map above is canonical [given the data in (i), (ii), (iii)] we will need to examine the correspondence of individual Cartan subgroups, where the choices will be of importance

```
4e SÉrie - tOME 12 - 1979 - No 1
```

(temporarily). First, we will say that a Cartan subgroup T^{\prime} of H originates in G if its conjugacy class lies in the domain of the map into $t(\mathrm{G})$. Clearly, if T^{\prime} originates in G then \mathbf{T}^{\prime} is embedded in \mathbf{G}, over \mathbf{R}, by a $\operatorname{map} \psi^{-1}$ oad $g^{\prime \prime} \circ j\left(g^{\prime}, h\right), g^{\prime}, g^{\prime \prime} \in \mathbf{G}^{*}, h \in \mathbf{H}$; that is, by a map of the form

$$
i(g, h)=\psi \circ \operatorname{ad} g^{-1} \circ \operatorname{id} \circ \operatorname{ad} h, \quad g \in \mathbf{G}^{*}, \quad h \in \mathbf{H}
$$

Moreover, $i(g, h)=i\left(g^{\prime}, h^{\prime}\right)$ if and only if $g^{\prime}=w_{1} g, h^{\prime}=w_{2} h$ where both w_{1}, w_{2} realize some element ω of $\Omega\left(\mathbf{H}, \mathbf{T}^{*}\right)$; both $i(g, h)$ and $i\left(g^{\prime \prime}, h^{\prime \prime}\right)$ embed \mathbf{T}^{\prime} in \mathbf{G} (over \mathbf{R}) if and only if $i\left(g^{\prime \prime}, h^{\prime \prime}\right)=\operatorname{ad} g_{0} \circ i(g, h)$ for some $g_{0} \in \mathscr{A}(\mathbf{T})$, \mathbf{T} denoting the image of \mathbf{T}^{\prime} under $i(g, h)$.

We now fix a set $\mathscr{I}=\left\{i_{0}, \ldots, i_{\mathrm{N}}\right\}$ of these embeddings $i(g, h)$, denoting the domain of i_{m} by \mathbf{T}_{m}^{\prime} and the range by $\mathbf{T}_{m}\left(\mathbf{T}_{0}\right.$ remains our fixed torus). We assume:
(i) $\mathrm{T}_{0}^{\prime}, \ldots, \mathrm{T}_{\mathrm{N}}^{\prime}$ form a complete set of non-conjugate groups among the Cartan subgroups of H originating in G ;
(ii) i_{0} is of the form $i(x$,$) , where x$ is the element fixed in (ii) at the beginning of this section and
(iii) if T_{m} is conjugate to T_{n} then $\mathrm{T}_{m}=\mathrm{T}_{n}$.

That (ii) is possible is indicated in [7](the argument is similar to that we reported earlier); (iii) is only for convenience.

We consider an embedding $i_{m}: \mathbf{T}_{m}^{\prime} \rightarrow \mathbf{T}_{m}$. Write L_{m} for $\mathbf{L}\left(\mathbf{T}_{m}\right), \mathrm{L}_{m}$ for $\mathrm{L}^{\smile}\left(\mathbf{T}_{m}\right), \Xi_{m}$ for the roots of \mathbf{T}_{m} in $\mathbf{G}, \Xi_{m}^{\sim}$ for the coroots and \mathscr{L}_{m} for the module $\mathscr{L}\left(\mathrm{T}_{m}\right)$. Clearly i_{m} induces isomorphism between $\mathrm{L}\left(\mathbf{T}_{m}^{\prime}\right)$ and L_{m} and between $\mathrm{L}^{\smile}\left(\mathbf{T}_{m}^{\prime}\right)$ and L_{m}. We claim that under these maps the coroots for T_{m}^{\prime} are embedded in Ξ_{m}^{\sim} and the roots in Ξ_{m}. Moreover these embeddings commute with the action of σ and if α^{\prime} maps to α in Ξ_{m} and γ^{\prime} to γ in T_{m} then $\alpha^{\prime}\left(\gamma^{\prime}\right)=\alpha(\gamma)$. To obtain the embedding of the coroots we write i_{m} as $i\left(g_{m}, h_{m}\right)$; then ad h_{m} maps the coroots for \mathbf{T}_{m}^{\prime} to the coroots for \mathbf{T}^{*} in \mathbf{H} and $\operatorname{ad} g_{m} \circ \psi$ maps Ξ_{m}^{2} to the coroots for \mathbf{T}^{*} in \mathbf{G}. Now we need only recall that a coroot for \mathbf{T}^{*} in \mathbf{G}^{*} (respectively, \mathbf{H}) is a root for ${ }^{\mathrm{L}} \mathrm{T}^{0}$ in ${ }^{\mathrm{L}} \mathrm{G}^{0}$ (respectively, ${ }^{\mathrm{L}} \mathrm{H}^{0}$). For the correspondence of roots, if we identify L with $\left(\mathrm{L}^{2}\right)^{2}$ then a root α of \mathbf{T}^{*} in \mathbf{H} is identified with

$$
\lambda^{2} \rightarrow \frac{2\left\langle\alpha^{2}, \lambda^{2}\right\rangle}{\left\langle\lambda^{2}, \lambda^{2}\right\rangle}, \quad \lambda^{2} \in L^{2}
$$

where we use a positive definite bilinear form \langle,$\rangle on \mathrm{L}^{2} \otimes \mathbf{Q}$ invariant under $\underline{\underline{\Omega}\left(\mathrm{G}^{0},{ }^{\mathrm{L}} \mathrm{T}^{0}\right)}$. But then α is also identified as a root of T^{*} in \mathbf{G}^{*}. The rest follows easily.

The map $\omega \rightarrow i_{m} \circ \omega \circ i_{m}^{-1}$ yields an embedding of $\Omega\left(\mathbf{H}, \mathbf{T}_{m}^{\prime}\right)$ into $\Omega\left(\mathbf{G}, \mathbf{T}_{m}\right)$ compatible, in the obvious sense, with the map on roots. We will denote by $\Omega_{0}\left(\mathbf{G}, \mathbf{T}_{m}\right)$ the subgroup of $\Omega\left(\mathbf{G}, \mathbf{T}_{m}\right)$ consisting of those elements which commute with σ; that is, those elements which can be realized in $\mathscr{A}\left(\mathbf{T}_{m}\right)$. The map above embeds $\Omega_{0}\left(\mathbf{H}, \mathbf{T}_{m}^{\prime}\right)$ in $\Omega_{0}\left(\mathbf{G}, \mathbf{T}_{m}\right)$.

We continue with a set \mathscr{I} of embeddings satisfying (i)-(iii). If T^{\prime} is any Cartan subgroup of H (originating in G) an \mathscr{I}-embedding of T^{\prime} in G will be a map of the form $i_{m} \circ$ ad h where h is an element of $\mathscr{A}\left(\mathrm{T}^{\prime}\right)$ mapping T^{\prime} to T_{m}^{\prime}. Also we will say that an element γ^{\prime} in T^{\prime} originates from a regular element γ of G with respect to \mathscr{I} if γ is the image of γ^{\prime} under some \mathscr{I}-embedding; γ^{\prime} is then regular in H .

Lemma 6.1. - If γ originates from regular elements $\gamma_{1} \in \mathrm{~T}_{m}$ and $\gamma_{2} \in \mathrm{~T}_{n}$ (with respect to \mathscr{I}) then $\mathrm{T}_{m}=\mathrm{T}_{n}$ and there exists ω in the image of $\Omega_{0}\left(\mathbf{H}, \mathbf{T}_{m}^{\prime}\right)$ in $\Omega_{0}\left(\mathbf{G}, \mathbf{T}_{m}\right)$ such that $\gamma_{2}=\gamma_{1}^{\omega}$.

Proof. - That $\mathrm{T}_{m}=\mathrm{T}_{n}$ follows from [9], Theorem 2.1 and the condition (iii) satisfied by \mathscr{I}. The rest is immediate.

We remark that whether or not an element of H originates in $G_{\text {reg }}$ is independent of the choice for \mathscr{I}; however the collection of elements (if non-empty) from which it originates is not.

7. Transferring χ_{0}

We have fixed $\mathscr{I}=\left\{i_{0}, \ldots, i_{\mathrm{N}}\right\}$. It is now an easy matter to transfer χ_{0} to a character x_{m} on $\mathscr{D}\left(\mathbf{T}_{m}\right)$. Indeed, choose $h \in \mathbf{H}$ such that ad h maps \mathbf{T}_{m}^{\prime} to \mathbf{T}_{0}^{\prime}. Then $\bar{h}=i_{0}$ o ad $h \circ i_{m}^{-1}$ maps \mathbf{T}_{m} to \mathbf{T}_{0} and Ξ_{m}^{\sim} to Ξ_{0}^{\sim}. Thus we have immediately a quasicharacter x_{m} on $\left\langle\Xi_{m}\right\rangle$. That x_{m} is trivial on \mathscr{L}_{m} follows from:

Proposition 7.1. $-\bar{h} \operatorname{maps} \mathscr{L}_{m}$ to $\mathscr{L}_{0}+\operatorname{Ker} \chi_{0}$.
Proof. - Let $\lambda^{\check{ }} \in L_{m}^{2}$ be such that $\sigma \lambda^{2}-\lambda^{2} \in\left\langle\Xi_{m}\right\rangle$. Then

$$
\bar{h}\left(\sigma \lambda^{2}-\lambda^{\check{ }}\right)=\left(\sigma\left(\bar{h} \lambda^{\check{ }}\right)-\bar{h} \lambda^{\check{ }}\right)+\sigma\left(\sigma(\bar{h}) \bar{h}^{-1}\left(\bar{h} \lambda^{\check{ }}\right)-\bar{h} \lambda^{\check{ }}\right) .
$$

But $\sigma(\bar{h}) \bar{h}^{-1}$ lies in the image of $\Omega\left(\mathbf{H}, \mathbf{T}_{0}^{\prime}\right)$ in $\Omega\left(\mathbf{G}, \mathbf{T}_{0}\right)$. Hence the second term is a sum of coroots for \mathbf{T}_{0} each coming from \mathbf{H}. This forces the second term to lie in Ker x_{0} because, by choosing $i_{0}=i(x$,$) , we have arranged that \alpha^{2} \in \Xi_{0}^{2}$ come from H if and only if $\alpha^{2} \in \operatorname{Ker} \chi_{0}$. It follows now that the first term lies in $\left\langle\Xi_{0}^{2}\right\rangle$ and hence in \mathscr{L}_{0}. This completes the proof.

We have to check that x_{m} is well-defined. Suppose that h is replaced by h^{\prime}. Then:
Proposition 7.2. $-\bar{h}^{\prime} \lambda^{2} \in \bar{h} \lambda^{2}+\operatorname{Ker} x_{0}, \lambda^{2} \in\left\langle\Xi_{m}^{2}\right\rangle$.
Proof:

$$
\bar{h}^{\prime} \lambda^{2}=\bar{h} \lambda^{2}+\bar{h}\left(\bar{h}^{-1} \bar{h}^{\prime} \lambda^{2}-\lambda^{2}\right)
$$

Since $\bar{h}^{-1} \bar{h}^{\prime}$ lies in the image of $\Omega\left(\mathbf{H}, \mathbf{T}_{m}^{\prime}\right)$ in $\Omega\left(\mathbf{G}, \mathbf{T}_{m}\right)$ the assertion follows easily.
For future use we note:
Proposition 7.3 :
(i) a coroot α^{2} in Ξ_{m}^{2} lies in the image of the coroots for \mathbf{T}_{m}^{\prime} (that is, "comes from \mathbf{H} ") if and only if $x_{m}\left(\alpha^{2}\right)=1$;
(ii) if ω lies in the image of $\Omega\left(\mathbf{H}, \mathbf{T}_{m}^{\prime}\right)$ in $\Omega\left(\mathbf{G}, \mathbf{T}_{m}\right)$ then $\chi_{m}^{\omega}=\chi_{m}$.

Proof. - The assertion in (i) is immediate since it is true for $m=0$ (cf. the proof of Proposition 7.1).

For (ii), let $\lambda^{2} \in\left\langle\Xi_{m}^{2}\right\rangle$. Then $\omega \lambda^{2}-\lambda^{2}$ lies in the span of the image in Ξ_{m}^{2} of the coroots for \mathbf{T}_{m}^{\prime}. Hence, by (i), $x_{m}^{\omega}=x_{m}$.

```
4e série - tome 12 - 1979 - No 1
```

The converse of (ii) is false. To clarify this, extend $\chi_{0}^{*}\left(\chi_{0}\right.$ shifted to $\left.\left\langle\Sigma^{`}\right\rangle\right)$ in some way to a quasicharacter on L^{2}. Identify this extension as an element of ${ }^{\mathrm{L}} \mathrm{T}^{0} \ldots{ }^{\mathrm{L}} \mathrm{H}^{0}$ is the connected component of the identity in the centralizer in ${ }^{L} G^{0}$ of this element. The condition $x_{m}^{\omega}=x_{m}$ is that the action of ω shifted to ${ }^{\mathrm{L}} \mathrm{T}^{0}$ be realized in the (full) centralizer of our element.

We have defined $\Omega_{0}\left(\mathbf{H}, \mathbf{T}_{m}^{\prime}\right)$ and $\Omega_{0}\left(\mathbf{G}, \mathbf{T}_{m}\right)$ (Paragraph 6); i_{m} induces an embedding of $\Omega_{0}\left(\mathbf{H}, \mathbf{T}_{m}^{\prime}\right)$ in $\Omega_{0}\left(\mathbf{G}, \mathbf{T}_{m}\right)$. If ω_{1}, ω_{2} lie in the image then we have defined $x_{m}\left(\omega_{1}\right), \chi_{m}\left(\omega_{2}\right)$; by Propositions 3.1 and 7.3, $x_{m}\left(\omega_{1} \omega_{2}\right)=x_{m}\left(\omega_{1}\right) x_{m}\left(\omega_{2}\right)$. Clearly also $x_{m}\left(\omega_{i}\right)= \pm 1$. We will need further information.

Let \mathbf{T} be a maximal torus, over \mathbf{R}, in a connected reductive group \mathbf{G} over \mathbf{R}. Let Ω be the Weyl group of \mathbf{T} in \mathbf{G} and Ω_{0} the subgroup of Ω consisting of those elements realized in $\mathscr{A}(\mathbf{T})$. Let \mathbf{S} be the maximal \mathbf{R}-split torus in \mathbf{T} and \mathbf{M} be the centralizer of \mathbf{S} in \mathbf{G}. The imaginary Weyl group of \mathbf{T}, denoted here by Ω_{I}, is the Weyl group of \mathbf{T} in \mathbf{M}; we have $\Omega_{\mathrm{I}} \subset \Omega_{0}$. Let \mathscr{W} be the restricted Weyl group attached to the pair (\mathbf{G}, \mathbf{S}). Restriction to \mathbf{S} defines a surjective homomorphism from Ω_{0} to \mathscr{W} (this follows easily from Theorem 2.1 of [9]); the kernel is Ω_{I}. We will classify the elements of Ω_{0} according to image in \mathscr{W}. First we recall the structure of \mathscr{W}. According to [4], \mathscr{W} is generated by the reflections with respect to certain (useful) roots of (\mathbf{G}, \mathbf{S}). To describe the reflections needed we assume \mathbf{G} simple. For convenience we exclude for the present the case that \mathbf{G} is of type \mathbf{G}_{2}. Then if $\tilde{\alpha}$ is a root of (\mathbf{G}, \mathbf{S}) the set of roots proportional to $\tilde{\alpha}$ is $\{ \pm \tilde{\alpha}\},\{ \pm 1 / 2 \tilde{\alpha}, \pm \tilde{\alpha}\}$ or $\{ \pm \tilde{\alpha}, \pm 2 \tilde{\alpha}\}$ [4]. We assume that $1 / 2 \tilde{\alpha}$ is not a root. We call $\tilde{\alpha}$ of type (A), (B') or (C) accordingly as:
(A) $\tilde{\alpha}$ coincides with some (real) root of (\mathbf{G}, \mathbf{T});
$\left(B^{\prime}\right) \tilde{\alpha}$ is not a root of $(\mathbf{G}, \mathbf{T}) ; 2 \tilde{\alpha}$ is not a root of (\mathbf{G}, \mathbf{S}), or
(C) $\tilde{\alpha}$ is not a root of $(\mathbf{G}, \mathbf{T}) ; 2 \tilde{\alpha}$ is a root of (\mathbf{G}, \mathbf{S}).

Suppose that $\tilde{\alpha}$ is of type B^{\prime} and choose a root λ of (\mathbf{G}, \mathbf{T}) whose restriction to \mathbf{S} is $\tilde{\alpha}$. Then $\lambda \neq \sigma \lambda$ (σ denotes complex conjugation) and $\lambda+\sigma \lambda$ is not a root so that $\langle\lambda, \sigma \lambda\rangle \geqq 0$. An argument on $\langle\lambda, \lambda\rangle$ shows that $\langle\lambda, \sigma \lambda\rangle$ is independent of the choice of λ. If $\langle\lambda, \sigma \lambda\rangle>0$ then comparison with the definitions of [4] shows that $\tilde{\alpha}$ cannot be useful in the sense of [4]. We call $\tilde{\alpha}$ of type B if $\tilde{\alpha}$ is of type B^{\prime} and $\langle\lambda, \sigma \lambda\rangle=0$ for each λ.

Suppose now that $\tilde{\alpha}$ is of type C. Choose a root λ of (\mathbf{G}, \mathbf{T}) whose restriction to \mathbf{S} is $\tilde{\alpha}$ and a root μ whose restriction is $2 \tilde{\alpha}$. If $\langle\lambda, \sigma \lambda\rangle>0$ then $\langle\mu, \mu\rangle \geqq 3\langle\lambda, \lambda\rangle$. Since we have excluded systems of type G_{2} we conclude that $\langle\lambda, \sigma \lambda\rangle \leqq 0$, and moreover that $\lambda+\sigma \lambda$ is a root of \mathbf{T}.

The reflections $\omega_{\alpha}, \tilde{\alpha}$ of type A, B or C, generate \mathscr{W}. We call $\omega \in \Omega_{0}$ of type A (respectively, B, C) if its image in \mathscr{W} is a reflection of type A (respectively, B, C).

We return to the tori \mathbf{T}_{m}^{\prime} in \mathbf{H} and \mathbf{T}_{m} in \mathbf{G}. Let \mathbf{S}_{m}^{\prime} be the maximal \mathbf{R}-split torus in \mathbf{T}_{m}^{\prime} and \mathbf{S}_{m} the maximal R-split torus in \mathbf{T}_{m}. Then i_{m} maps \mathbf{S}_{m}^{\prime} to \mathbf{S}_{m} and induces an embedding of the set of roots of $\left(\mathbf{H}, \mathbf{S}_{m}^{\prime}\right)$ in the set of roots of $\left(\mathbf{G}, \mathbf{S}_{m}\right)$ [since each root of \mathbf{S}_{m}^{\prime} (respectively, \mathbf{S}_{m}) is the restriction of a root of \mathbf{T}_{m}^{\prime} (respectively, \mathbf{T}_{m})]. Let \mathscr{W}_{m}^{\prime} be the restricted Weyl group attached to $\left(\mathbf{H}, \mathbf{S}_{m}^{\prime}\right)$ and \mathscr{W}_{m} be the group for $\left(\mathbf{G}, \mathbf{S}_{m}\right)$. Then i_{m}
induces an embedding of \mathscr{W}_{m}^{\prime} in \mathscr{W}_{m}; the image of the reflection with respect to a root of \mathbf{S}_{m}^{\prime} is the reflection with respect to its image in the roots of \mathbf{S}_{m} and also

is commutative.
We come then to computing x_{m} as a character on the image of $\Omega_{0}\left(\mathbf{H}, \mathbf{T}_{m}^{\prime}\right)$ in $\Omega_{0}\left(\mathbf{G}, \mathbf{T}_{m}\right)$.
Proposition 7.4. - If ω lies in the image of the imaginary Weyl group of \mathbf{T}_{m}^{\prime} then $\chi_{m}(\omega)=1$.
Proof. - Let $\omega=\omega_{\alpha_{1}} \ldots \omega_{\alpha_{1}}$ where $\alpha_{1}, \ldots, \alpha_{r}$ are imaginary roots of \mathbf{T}_{m} coming from \mathbf{H}. Then

$$
x_{m}(\omega)=x_{m}\left(\omega_{\alpha_{1}}\right) x_{m}^{\omega_{\alpha_{1}}}\left(\omega_{\alpha_{2}} \ldots \omega_{\alpha_{2}}\right)=x_{m}\left(\dot{\omega}_{\alpha_{2}} \ldots \omega_{\alpha_{2}}\right)
$$

since $\chi_{m}\left(\omega_{\alpha_{1}}\right)=1$ if α_{1} is compact, $\chi_{m}\left(\omega_{\alpha_{1}}\right)=\chi_{m}\left(\alpha_{1}\right)=1$ if α_{1} is noncompact and, in either case, $x_{m}^{\omega_{\alpha_{1}}}=x_{m}$. Induction now completes the argument.

We conclude from this proposition that $\chi_{m}(\omega)$ depends only on the image of ω in \mathscr{W}_{m}. Assume now that \mathbf{G} is simple. If \mathbf{G} is of type \mathbf{G}_{2} then direct computation shows that $x_{m}(\omega)=1$ for all ω in the image of $\Omega_{0}\left(\mathbf{H}, \mathbf{T}_{m}^{\prime}\right)$ in $\Omega_{0}\left(\mathbf{G}, \mathbf{T}_{m}\right)$. Suppose that \mathbf{G} is not of type G_{2}; then neither is any simple factor (of the simply-connected covering of the derived group) of \mathbf{H}. If $\tilde{\alpha}^{\prime}$ is a root of \mathbf{S}_{m}^{\prime} of type A and α is its image in \mathbf{G} then $2 \tilde{\alpha}$ is not a root (by an argument as in [13], §1.1); $1 / 2 \tilde{\alpha}$ may be a root. If $1 / 2 \tilde{\alpha}$ is not a root then $\tilde{\alpha}$ is of type A ; if $1 / 2 \tilde{\alpha}$ is a root then $1 / 2 \tilde{\alpha}$ is of type C . If $\tilde{\alpha}^{\prime}$ is of type B then $1 / 2 \tilde{\alpha}$ is not a root. Also $\tilde{\alpha}$ cannot be of type A; hence $\tilde{\alpha}$ is of type B or C. If $\tilde{\alpha}^{\prime}$ is of type C then so also is $\tilde{\alpha}$.

Lemma 7.5:

(i) If ω is the image of an element of $\Omega_{0}\left(\mathbf{H}, \mathbf{T}_{m}^{\prime}\right)$ of type A or C then $\chi_{m}(\omega)=1$, and
(ii) if ω is the image of an element of type B then $\chi_{m}(\omega)=1$ if ω is also of type B ; otherwise $x_{m}(\omega)=-1$.
Proof. - In case (i) there is a real root λ such that ω_{λ} has the same image in \mathscr{W}_{m} as ω. Hence $\chi_{m}(\omega)=\chi_{m}\left(\omega_{\lambda}\right)=1$ since ω_{λ} can be realized in G.
In case (ii), suppose that ω has image ω_{α} in \mathscr{W}_{m} and that λ is a root of \mathbf{T}_{m} such that $\langle\lambda, \sigma \lambda\rangle=0$ and the restriction of λ to \mathbf{S}_{m} is $\tilde{\alpha}$. Then ω has the same image in \mathscr{W}_{m} as $\omega_{\lambda} \omega_{\sigma \lambda}$. If $\tilde{\alpha}$ is of type B then $\{ \pm \lambda, \pm \sigma \lambda\}$ are the only roots of \mathbf{T}_{m} in the plane determined by $\lambda, \sigma \lambda$. Hence $\omega_{\lambda} \omega_{\sigma \lambda}$ can be realized in G and $x(\omega)=1$. The only other possible type for $\tilde{\alpha}$ is C; then

$$
\omega_{\lambda} \omega_{\sigma \lambda}=\omega_{\lambda-\sigma \lambda} \omega_{\lambda+\sigma \lambda}
$$

and

$$
x_{m}\left(\omega_{\lambda} \omega_{\sigma \lambda}\right)=x_{m}\left(\omega_{\lambda-\sigma \lambda}\right)=x_{m}\left((\lambda-\sigma \lambda)^{\check{\prime}}\right)=-1
$$

by Proposition 2.1 , since $\lambda-\sigma \lambda$ is not from \mathbf{H} and must be noncompact (by an examination of the root systems of type C_{2}). This completes the argument.

8. A factor and an assumption

Again we consider one of the embeddings $i_{m}: \mathbf{T}_{m}^{\prime} \rightarrow \mathbf{T}_{m}$. We fix, for once and for all, a positive system for the imaginary roots of \mathbf{T}_{m} in \mathbf{G} and use the induced system for the imaginary roots of \mathbf{T}_{m}^{\prime} in \mathbf{H}. Recalling the " R "-function of Paragraph 4 we set

$$
\mathrm{R}_{\boldsymbol{m}}(\gamma)=\prod_{\substack{\alpha \text { imaginary } \\ \alpha>0}}\left(1-\alpha\left(\gamma^{-1}\right)\right) \prod_{\substack{\alpha \text { not imaginary } \\ \alpha>0}}\left|(\alpha(\gamma))^{1 / 2}-(\alpha(\gamma))^{-1 / 2}\right|
$$

for $\gamma \in \mathbf{T}_{m}, \alpha$ denoting a root of \mathbf{T}_{m} in \mathbf{G}, and

$$
\mathbf{R}_{m}^{\prime}\left(\gamma^{\prime}\right)=\prod_{\substack{\alpha^{\prime} \text { imaginary } \\ \alpha^{\prime}>0}}\left(1-\alpha^{\prime}\left(\gamma^{\prime-1}\right)\right) \prod_{\substack{\alpha^{\prime} \text { not imaginary } \\ \alpha^{\prime}>0}}\left|\left(\alpha^{\prime}\left(\gamma^{\prime}\right)\right)^{1 / 2}-\left(\alpha^{\prime}\left(\gamma^{\prime}\right)\right)^{-1 / 2}\right|,
$$

for $\gamma^{\prime} \in \mathbf{T}_{m}^{\prime}, \alpha^{\prime}$ denoting a root of \mathbf{T}_{m}^{\prime} in \mathbf{H}; the second product in each expression is to be interpreted as in Paragraph 4. Next we set

$$
\mathbf{1}_{m}=\frac{1}{2} \sum_{\substack{\alpha \text { imaginary } \\ \alpha>0}} \alpha \quad \text { and } \quad \mathbf{1}_{m}^{\prime}=\frac{1}{2} \sum_{\substack{\alpha^{\prime} \text { imaginary } \\ \alpha^{\prime}>0}} \alpha^{\prime} ;
$$

$\mathbf{1}_{m} \in \mathrm{~L}_{m} \otimes \mathbf{Q}$ and $\mathrm{r}_{m}^{\prime} \in \mathrm{L}\left(\mathbf{T}_{m}^{\prime}\right) \otimes \mathbf{Q}$. Using i_{m} we transfer t_{m}^{\prime} to $\mathrm{L}_{m} \otimes \mathbf{Q}$, again writing r_{m}^{\prime}. Our assumption will be

$$
\mathbf{l}_{m}-\mathbf{l}_{m}^{\prime} \in \mathrm{L}_{m}
$$

(8.1) and

$$
\mathfrak{1}_{0}-\mathbf{1}_{0}^{\prime}-\bar{h}\left(1_{m}-1_{m}^{\prime}\right) \in\left\langle\Xi_{0}\right\rangle
$$

for some $h \in \mathrm{H}$ such that $\bar{h}=i_{0}$ o ad $h \circ i_{m}^{-1}$ maps $\mathbf{T}_{\boldsymbol{m}}$ to \mathbf{T}_{0}.
As before, Ξ_{m} is the set of roots of \mathbf{T}_{m}. Clearly (8.1) is independent of the choice of h and the positive systems for imaginary roots. The second part of the assumption is a consequence of the first in all but a few cases. Those cases where (8.1) fails will be dealt with in another paper.

On transferring R_{m}^{\prime} to T_{m} (without change in notation) we may define a function Δ_{m} on the regular elements of T_{m} by

$$
\Delta_{m}(\gamma)=\frac{\left(\mathrm{l}_{m}-\mathrm{l}_{m}^{\prime}\right)(\gamma) \mathrm{R}_{m}(\gamma)}{\mathrm{R}_{m}^{\prime}(\gamma)}
$$

Lemma 8.2. - If ω is in the image of $\Omega_{0}\left(\mathbf{H}, \mathbf{T}_{m}^{\prime}\right)$ in $\Omega_{0}\left(\mathbf{G}, \mathbf{T}_{m}\right)$ then

$$
\Delta_{m}\left(\gamma^{\omega}\right)=\chi_{m}(\omega) \Delta_{m}(\gamma), \gamma \varepsilon\left(\mathrm{T}_{m}\right)_{\mathrm{reg}}
$$

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

Proof. - Suppose that ω is the image of ω^{\prime}. Then

$$
\Delta_{m}\left(\gamma^{\omega}\right)=\frac{\varepsilon(\omega)}{\varepsilon\left(\omega^{\prime}\right)} \Delta_{m}(\gamma)
$$

where $\varepsilon(-)$ denotes the signature with respect to imaginary roots; that is, $\varepsilon(\omega)=(-1)^{n}$ where n is the number of positive imaginary roots α of \mathbf{T}_{m} in \mathbf{G} for which $\omega \alpha$ is negative, and $\varepsilon\left(\omega^{\prime}\right)$ is similarly defined relative to the imaginary roots of \mathbf{T}_{m}^{\prime} in \mathbf{H}. To show that $\varepsilon(\omega) / \varepsilon\left(\omega^{\prime}\right)=x_{m}(\omega)$ we proceed in steps. We remark first that $\varepsilon(-)$ does not depend on the choice of positive system for the imaginary roots.
(i) Consider the signature of ω with respect to all roots of $\mathbf{T}_{\boldsymbol{m}}$ in \mathbf{G} (and some choice of positive system). This signature coincides with the determinant of ω (on $L_{m} \otimes \mathbf{C}$) since $\omega \in \Omega\left(\mathbf{G}, \mathbf{T}_{m}\right)$; we denote it by det ω. Similarly we consider the signature det ω^{\prime} of ω^{\prime} with respect to all roots of \mathbf{T}_{m}^{\prime}. Clearly det $\omega=\operatorname{det} \omega^{\prime}$ since the result is true if we replace ω^{\prime} by any reflection in $\Omega\left(\mathbf{H}, \mathbf{T}_{m}^{\prime}\right)$.
(ii) Because ω preserves real roots also, we can consider the signature $\eta(\omega)$ of ω relative to the real roots of $\mathbf{T}_{\boldsymbol{m}}$ in $\mathbf{G}\left(\ldots\right.$ and similarly the real signature $\eta\left(\omega^{\prime}\right)$ of ω^{\prime} in $\left.\mathbf{H}\right)$. We claim that $\operatorname{det} \omega=\varepsilon(\omega) \eta(\omega)$, det $\omega^{\prime}=\varepsilon\left(\omega^{\prime}\right) \eta\left(\omega^{\prime}\right)$. To prove this we choose systems of positive roots in the following way. Take a system of positive roots for \mathbf{T}_{m} in \mathbf{G} with the property that if $\alpha>0$ and $\sigma \alpha \neq-\alpha$ then $\sigma \alpha>0$. Use the induced systems for the real roots of \mathbf{T}_{m}, the imaginary roots of \mathbf{T}_{m}, all roots of \mathbf{T}_{m}^{\prime}, the imaginary roots of \mathbf{T}_{m}^{\prime}, etc. Since $\omega(\sigma \alpha)=\sigma(\omega \alpha)$ the claim follows.

We will prove the lemma [in (v)] by showing that $\eta(\omega) / \eta\left(\omega^{\prime}\right)=\chi_{m}(\omega)$.
(iii) To compute $\eta(-)$ we use restricted roots. As before, let \mathbf{S}_{m} be the maximal R-split torus in $\mathbf{T}_{\boldsymbol{m}}$. Each root $\tilde{\alpha}$ of $\left(\mathbf{G}, \mathbf{S}_{m}\right)$ is the restriction to \mathbf{S}_{m} of some root of \mathbf{T}_{m}; we define $m(\tilde{\alpha})$ to be the number of roots of \mathbf{T}_{m} whose restriction to \mathbf{S}_{m} is $\tilde{\alpha}$. Recall that restriction to \mathbf{S}_{m} also defines a surjective homomorphism from ${\underset{\sim}{0}}\left(\mathbf{G}, \mathbf{T}_{m}\right)$ to \mathscr{W}_{m}, the restricted Weyl group attached to $\left(\mathbf{G}, \mathbf{S}_{m}\right)$. We denote by $\tilde{\omega}$ the image in \mathscr{W}_{m} of $\omega \varepsilon \Omega_{0}\left(\mathbf{G}, \mathbf{T}_{m}\right)$. Finally, we set $\tilde{\alpha}>0$ if $\tilde{\alpha}$ is the restriction of a positive root of \mathbf{T}_{m}, using an ordering for the roots of \mathbf{T}_{m} as in (ii).

For any $\tau \in \mathscr{W}_{m}$ we define

$$
\tilde{\eta}(\tau)=\sum_{\tilde{\alpha}>0}(-1)^{m(\tilde{\alpha}) n_{\tau}(\tilde{\alpha})}
$$

where $n_{\tau}(\tilde{\alpha})=0$ if $\tau \tilde{\alpha}>0$ and $n_{\tau}(\tilde{\alpha})=1$ if $\tau \tilde{\alpha}<0$. If $\omega \in \Omega_{0}\left(\mathbf{G}, \mathbf{T}_{m}\right)$ then $\eta(\omega)=\tilde{\eta}(\tilde{\omega})$.
(iv) To compute $\tilde{\eta}$, we note that $\tilde{\eta}$ is a quadratic character on \mathscr{W}_{m} since η is a quadratic character on $\Omega_{0}\left(\mathbf{G}, \mathbf{T}_{m}\right)$. We will then need to calculate just $\tilde{\eta}\left(\omega_{\tilde{\alpha}}\right)$ assuming $\omega_{\tilde{\alpha}} \in \mathscr{W}_{m}$ (and $\tilde{\alpha}>0$).
If $\widetilde{\beta}>0$ and $\omega_{\tilde{\alpha}}(\widetilde{\beta})<0$, set $\quad \tilde{\gamma}=-\omega_{\alpha}(\widetilde{\beta})$. Then $\underset{\sim}{\tilde{\gamma}}>0 \quad$ and $\left.\quad \omega_{\tilde{\alpha}} \tilde{\gamma}\right)<0 ;$ also $m(\tilde{\gamma})=m(\widetilde{\beta})$. Since $\tilde{\gamma}=\widetilde{\beta}$ if and only if $\widetilde{\beta}$ is proportional to $\tilde{\alpha}$ we conclude that

$$
\tilde{\eta}\left(\omega_{\tilde{\alpha}}\right)=(-1)^{a(\tilde{\alpha})} \quad \text { where } \quad a(\tilde{\alpha})=\sum_{\substack{\tilde{\beta}>0 \\ \tilde{\beta} \text { prop. to } \tilde{\alpha}}} m(\widetilde{\beta}) .
$$

```
4e série - tome 12 - 1979 - No 1
```

To determine the parity of $a(\tilde{\alpha})$ we may assume \mathbf{G} semisimple and simply-connected (by replacing the group by the simply-connected covering of its derived group) and consider each simple factor of \mathbf{G} separately. It is convenient to exclude factors of type G_{2} and deal with them separately later. Thus we assume that \mathbf{G} is simple and not of type G_{2}. Suppose that $\tilde{\alpha}$ is a root of \mathbf{S}_{m} for which $1 / 2 \tilde{\alpha}$ is not a root. To generate \mathscr{W}_{m} we need only $\omega_{\tilde{\alpha}}$, for those $\tilde{\alpha}$ which are of type A, B or C (cf. Paragraph 7).

If $\tilde{\alpha}$ is of type A then $m(\tilde{\alpha})$ is odd and $2 \tilde{\alpha}$ is not a root. Thus $\tilde{\eta}\left(\omega_{\tilde{\alpha}}\right)=-1$. If $\tilde{\alpha}$ is of type B then $m(\tilde{\alpha})$ is even and $\tilde{\eta}\left(\omega_{\tilde{\alpha}}\right)=1$. If $\tilde{\alpha}$ is of type C then again $m(\tilde{\alpha})$ is even. However, $m(2 \tilde{\alpha})$ is odd. Hence $\tilde{\eta}\left(\omega_{\tilde{\alpha}}\right)=-1$.
(v) We come now to the proof of the lemma. A straight forward argument shows that we may assume that \mathbf{G} is simple. If then \mathbf{G} is of type \mathbf{G}_{2} direct computation shows that

$$
\frac{\eta(\omega)}{\eta\left(\omega^{\prime}\right)}=\frac{\tilde{\eta}(\tilde{\omega})}{\tilde{\eta}\left(\tilde{\omega^{\prime}}\right)}=x_{m}(\omega)=1 \quad \text { for all } \omega
$$

Suppose that \mathbf{G} is not of type G_{2}; then neither is any simple factor (of the simplyconnected covering of the derived group) of \mathbf{H}. It is enough to consider ω^{\prime} of type A, B or $\mathrm{C}(c f . \S 7)$. If ω^{\prime} is of type A or C then we know that ω is of type A or C . Hence

$$
\frac{\tilde{\eta}(\tilde{\omega})}{\tilde{\eta}\left(\tilde{\omega^{\prime}}\right)}=x_{m}(\omega)=1 .
$$

If ω^{\prime} is of type B then we have that ω is of type B or C. If ω is of type B then again

$$
\frac{\tilde{\eta}(\tilde{\omega})}{\tilde{\eta}\left(\tilde{\omega}^{\prime}\right)}=x_{m}(\omega)=1 .
$$

However, if ω is of type C then

$$
\frac{\tilde{\eta}(\tilde{\omega})}{\tilde{\eta}\left(\tilde{\omega^{\prime}}\right)}=-1
$$

this is exactly the case where $x_{m}(\omega)=-1$. The lemma is therefore proved.
We now define a function $\Delta_{H}^{G}=\Delta_{H}^{G}\left(\varepsilon_{0}, \ldots, \varepsilon_{N}\right)$ on the regular elements in $\bigcup_{m=0}^{N} T_{m}$ by $\Delta_{\mathrm{H}}^{\mathrm{G}}(\gamma)=\varepsilon_{m} \Delta_{m}(\gamma)$, if γ is a regular element in $\mathrm{T}_{m} ; \varepsilon_{m}$ is a constant, either 1 or -1 . We also write just $\Phi_{f}^{\chi}\left(\gamma, \quad, \quad\right.$ for $\Phi_{f}^{\chi_{m}}(\gamma, \quad, \quad)$.

We summarize our choices once again: a set $\mathscr{I}=\left\{i_{m}: \mathbf{T}_{m}^{\prime} \rightarrow \mathbf{T}_{m}, m=0, \ldots, \mathrm{~N}\right\}$ of embeddings of tori as in Paragraph 6, on each T_{m} a positive system for the imaginary roots, and parameters $\varepsilon_{0}, \ldots, \varepsilon_{N}$.

Let f be a Schwartz function on G and assume fixed Haar measures on $\mathrm{T}_{0}, \ldots, \mathrm{~T}_{\mathrm{N}}$ (denoted generically by $d t$) and G (denoted $d g$). If $\gamma^{\prime} \in \mathrm{H}$ originates from the regular element γ of G with respect to \mathscr{I} set

$$
\Phi\left(\gamma^{\prime}\right)=\Delta_{\mathrm{H}}^{\mathrm{G}}(\gamma) \Phi_{f}^{\chi}(\gamma, d g, d t)
$$

Then:
Theorem 8.3. - Φ is a well-defined function on the elements of H which originate from regular elements of G . If γ^{\prime} is such an element and lies in the Cartan subgroup T^{\prime} of H then

$$
\Phi\left(\left(\gamma^{\prime}\right)^{\omega^{\prime}}\right)=\Phi\left(\gamma^{\prime}\right) \quad \text { for } \quad \omega^{\prime} \in \mathscr{A}\left(\mathrm{T}^{\prime}\right) .
$$

Proof. - This follows from Lemmas 4.1, 6.1 and 8.2.

9. Transferring orbital integrals

We continue with the notation of the last section. Our aim now is to write down conditions on $\varepsilon_{0}, \ldots, \varepsilon_{\mathrm{N}}$ (necessary for generic f) to ensure the existence of a Schwartz function f^{\prime} on H such that

$$
\begin{equation*}
\Phi_{f^{\prime}}^{1}\left(\gamma^{\prime}, d t^{\prime}, d h\right)=\Delta_{\mathrm{H}}^{\mathrm{G}}(\gamma) \Phi_{f}^{\chi}(\gamma, d t, d g), \tag{1}
\end{equation*}
$$

if γ^{\prime} originates from the regular element γ of G and

$$
\begin{equation*}
\Phi_{f^{\prime}}^{1}(,,)=0, \tag{2}
\end{equation*}
$$

on Cartan subgroups H of G which do not originate in G.
Here $d t^{\prime}$ is to be obtained from $d t$ via an \mathscr{I}-embedding; for each measure $d g$ we pick a Haar measure $d h$ on H subject only to the conditions: if $(d h)^{\prime}$ corresponds to $(d g)^{\prime}$ and $(d g)^{\prime}=\beta d g$, $\beta>0$, then $(d h)^{\prime}=\beta d h$, and if H is a torus then $d h=d t^{\prime}$.

Before proceeding, we note that a change in \mathscr{I} or the positive systems for imaginary roots causes at most a sign change on the right-hand side of (1); this change may as well be effected by adjusting $\varepsilon_{0}, \ldots, \varepsilon_{\mathrm{N}}$ instead.

Let T^{\prime} be a Cartan subgroup of H . Then we set:

Then:

$$
\begin{equation*}
\Phi^{\mathrm{T}^{\mathrm{T}}\left(\gamma^{\prime}, \alpha d t^{\prime}, \beta d h\right)=\beta / \alpha \Phi^{\mathrm{T}^{\mathrm{T}}}\left(\gamma^{\prime}, d t^{\prime}, d h\right), \quad \alpha, \beta>0, ~} \tag{I}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi^{(T)^{\left(\omega^{\prime}\right.}}\left(\left(\gamma^{\prime}\right)^{\omega^{\prime}},\left(d t^{\prime}\right)^{\omega^{\prime}}, d h\right)=\Phi^{\mathrm{T}^{\prime}}\left(\gamma^{\prime}, d t^{\prime}, d h\right), \quad \omega \in \mathscr{A}\left(\mathrm{T}^{\prime}\right) \tag{II}
\end{equation*}
$$

We want to check whether $\left\{\Phi^{\mathrm{T}^{\top}}\right\}$ satisfies the remaining conditions of [9], Theorem 4.7. From (I) and (II) above it follows that we may fix $d t$ and $d h$ and assume that either T^{\prime} is one of the Cartan subgroups T_{m}^{\prime} and $\gamma=i_{m}\left(\gamma^{\prime}\right)$ or T^{\prime} does not originate in G .

```
4e série - tome 12 - 1979 - No 1
```

We dispose first of the case that T^{\prime} does not originate in G. Then nor does $\left(T^{\prime}\right)^{s^{\prime}}$, for any Cayley transform s^{\prime} with respect to a noncompact imaginary root of \mathbf{T}^{\prime} (cf. [9], §2). Hence III, III a, III b of Theorem 4.7 in [9] are satisfied.

We will write Φ_{m} for $\Phi^{\mathrm{T}_{m}^{\prime}}$ and set

$$
\Psi_{m}(\gamma)=\mathrm{R}_{m}^{\prime}\left(\gamma^{\prime}\right) \Phi_{m}\left(\gamma^{\prime}\right)=\varepsilon_{m}\left(\mathbf{1}_{m}-\mathbf{1}_{m}^{\prime}\right)(\gamma) \mathrm{R}_{m}(\gamma) \Phi_{f}^{\chi_{m}}(\gamma)
$$

$\Psi_{m}(\gamma)$ is defined on the regular elements in T_{m}. For the next few paragraphs we omit the subscript m from $\mathbf{T}_{m}, \mathbf{T}_{m}^{\prime}, \Phi_{m}, \Psi_{m}, i_{m}, \mathrm{R}_{m}, \mathrm{R}_{m}^{\prime}, \mathbf{1}_{m}$ and i_{m}^{\prime}; we write I for the set of imaginary roots for $\mathbf{T}_{m}, \mathrm{I}^{\prime}$ for the imaginary roots of \mathbf{T}_{m}^{\prime} and sometimes identify I^{\prime} with its image in I .

From Proposition 4.2 we obtain that Ψ is a Schwartz function on

$$
\mathrm{T}^{(0)}=\{\gamma \in \mathrm{T}: \alpha(\gamma) \neq 1, \alpha \in \mathrm{I}\}
$$

To satisfy III of Theorem 4.7 in [9] we have to show that Ψ extends to a Schwartz function on

$$
\mathrm{T}^{(1)}=\left\{\gamma \in \mathrm{T}: \alpha(\gamma) \neq 1, \alpha \in \mathrm{I}^{\prime}\right\}
$$

According to a standard argument (cf. [13], §8.4) it is sufficient to show:
Proposition 9.1. - If $\alpha \in \mathrm{I}-\mathrm{I}^{\prime}$ and $\gamma_{0} \in \mathrm{~T}$ is such that $\beta\left(\gamma_{0}\right)=1$ only if $\beta= \pm \alpha$ then

$$
\lim _{v \downarrow 0} D \Psi\left(\gamma_{v}\right)=\lim _{v \uparrow 0} \mathrm{D} \Psi\left(\gamma_{v}\right)
$$

where $\gamma_{v}=\gamma_{0} \exp i v \mathrm{H}_{\alpha}, \mathrm{H}_{\alpha}$ denoting the coroot attached to α (as element of t), and D is any invariant differential operator on \mathbf{T}.

Proof. - Since $x\left(\alpha^{ॅ}\right)=-1$ this follows immediately from Lemma 4.3.
We come next to III a of Theorem 4.7 in [9]. Because H is quasi-split this condition is vacuous. Indeed:

Lemma 9.2. - If \mathbf{G} is a quasi-split group over \mathbf{R} then the following is true for any Cartan subgroup T of G : if α is an imaginary root for \mathbf{T} then there exists ω in the imaginary Weyl group for \mathbf{T} such that $\omega \alpha$ is noncompact.

Proof. - We may assume that \mathbf{G} is semisimple and simply-connected. By [9], Proposition 4.11 it is sufficient to show that for each imaginary root α of \mathbf{T} there exists $g \in \mathbf{G}$ such that $\sigma\left(g^{-1}\right) g$ realizes ω_{α}, the Weyl reflection with respect to α.

Let $\gamma_{0} \in \mathrm{~T}$ be such that $\alpha\left(\gamma_{0}\right)=1$ and $\beta\left(\gamma_{0}\right) \neq 1$ if $\beta \neq \pm \alpha$. Set \mathbf{C} to be the connected component of the identity in the centralizer of γ_{0} in \mathbf{G}; recall that \mathbf{C} is of type A_{1} and C contains T as fundamental Cartan subgroup. Let $\psi: \mathbf{C} \rightarrow \mathbf{C}^{\prime}$ be an inner twist taking \mathbf{C} to a quasi-split form \mathbf{C}^{\prime} and such that the restriction of ψ to \mathbf{T} is defined over $\mathbf{R}(c f$. [8]). Let s be a Cayley transform with respect to a (noncompact) $\operatorname{root} \psi(\alpha)$ of $\psi(T)$ and set $\lambda=\operatorname{ad} s^{\circ} \psi$. Then clearly the automorphism $\sigma\left(\lambda^{-1}\right) \lambda$ of \mathbf{T} realizes ω_{α}. Now choose an \mathbf{R}-rational point t in the image of \mathbf{T} under λ such that $\gamma=\lambda^{-1}(t)$ is regular in \mathbf{G}. Then $\sigma(\gamma)=\gamma^{\omega_{s}}$ so that the conjugacy class of γ in \mathbf{G} is defined over \mathbf{R}. But then,
by [11], this class contains an R-rational point, say $g \gamma g^{-1}$. Clearly $\left(\sigma\left(g^{-1}\right) g\right) \gamma\left(\sigma\left(g^{-1}\right) g\right)^{-1}=\gamma^{\omega_{\alpha}}$. Since γ is regular in \mathbf{T} this implies that $\sigma\left(g^{-1}\right) g$ realizes ω_{α} and so the lemma is proved.

We come then to the condition III b of [9], Theorem 4.7. Suppose that α^{\prime} is a noncompact root in I^{\prime}. Then α, the image of α^{\prime} in I, may be compact . . . in fact it may happen that each $\omega \alpha, \omega$ in the imaginary Weyl group of \mathbf{T}, is compact.

Proposition 9.3. - Let s^{\prime} be a Cayley transform with respect to α^{\prime}. Then we can find a noncompact root among the $\omega \alpha$ if and only if $\left(\mathrm{T}^{\prime}\right)_{s^{\prime}}$ originates in G .

Proof. - Suppose that $\left(\mathrm{T}^{\prime}\right)_{s^{\prime}}$ originates in G. Then an \mathscr{I}-embedding $i^{\left(s^{\prime}\right)}$ of $\left(\mathbf{T}^{\prime}\right)_{s^{\prime}}$ in \mathbf{G} yields a map $i^{\left(s^{\prime}\right)} \mathrm{oad} s^{\prime}{ }_{\mathrm{o}} i^{-1}$ on \mathbf{T} which can be realized by an element of \mathbf{G}, say s. Clearly $\sigma\left(s^{-1}\right) s$ realizes ω_{α} and we are done. Conversely, suppose that $\omega \alpha$ is noncomapct in \mathbf{G} and that s is a Cayley transform with respect to α (in our general sense). Then $i^{(s)}=\operatorname{ad} s \circ i \circ \operatorname{ad}\left(s^{\prime}\right)^{-1}$ is defined over \mathbf{R}; by choosing s suitably we can ensure that $i^{(s)}$ is an \mathscr{I}-embedding. Hence $\left(\mathrm{T}^{\prime}\right)_{s^{\prime}}$ originates in G and the proposition is proved.

Suppose now that α^{\prime} (noncompact in H) is a root for which all $\omega \alpha$ are compact. Suppose that $\gamma_{0}^{\prime} \in \mathrm{T}^{\prime}$ is such that $\pm \alpha^{\prime}$ are the only roots in I^{\prime} annihilating γ_{0}^{\prime}. It is possible that $\beta\left(\gamma_{0}\right)=1$ where β lies outside I^{\prime} (as usual, γ_{0} is the image of γ_{0}^{\prime}); nevertheless, for small $\nu, \quad \gamma_{v}=\gamma_{0} \exp i v \mathrm{H}_{\alpha}$ lies in $\mathrm{T}^{(1)}$ so that $\Psi\left(\gamma_{v}\right)$ is well-defined. To satisfy condition III b for the present α^{\prime} we have to show

$$
\lim _{v \downarrow 0} D \Psi\left(\gamma_{v}\right)=\lim _{v \uparrow 0} D \Psi\left(\gamma_{v}\right),
$$

for each D. If γ_{0} is annihilated by no root outside I^{\prime} then it is immediate (cf. Lemmas 4.3 and 4.4). To obtain this formula in general we have only to apply the usual argument (cf. [13], §8.4).
The remaining case provides us with the conditions on $\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{N}$. Here we have a noncompact imaginary root α^{\prime} for which some root in the imaginary Weyl group orbit of α is noncompact. Suppose that γ_{0}^{\prime} is an element for which $\alpha^{\prime}\left(\gamma_{0}^{\prime}\right)=1$ and $\beta^{\prime}\left(\gamma_{0}^{\prime}\right) \neq 1$ if $\beta^{\prime} \neq \pm \alpha^{\prime}$. Once again a straight forward argument shows that we may assume that $\pm \alpha$ are the only roots which annihilate γ_{0}.

We return to writing \mathbf{T}_{m} for \mathbf{T}, Φ_{m} for Φ, etc. Fix a Cayley transform s^{\prime} with respect to α^{\prime}. Recall that $\left(\mathbf{T}_{m}^{\prime}\right)_{s^{\prime}}$ originates in \mathbf{G} (Prop. 9.3). Whatever our choice for $s^{\prime},\left(\mathbf{T}_{m}^{\prime}\right)_{s^{\prime}}$ originates from the same torus, say \mathbf{T}_{n}, among $\mathbf{T}_{0}, \ldots, \mathbf{T}_{\mathrm{N}}$. Since to verify III b we are free to make any choice for s^{\prime} we may assume that $\left(\mathbf{T}_{m}^{\prime}\right)_{s^{\prime}}$ is \mathbf{T}_{n}^{\prime}. Thus we have:

We denote by s the map $i_{n} \circ S^{\prime} \circ i_{m}^{-1} ; s$ can be realized by an element of \mathbf{G} and $\sigma\left(s^{-1}\right) s$ realizes ω_{α}.

```
4e SÉrie - tOME 12 - 1979 - No 1
```

We need now to label our chosen systems of positive imaginary roots; we denote by I_{m}^{+}the system for \mathbf{T}_{m} and by $\left(\mathbf{I}_{m}^{+}\right)^{\prime}$ the induced system for \mathbf{T}_{m}^{\prime}. Because \mathbf{I}_{m}^{+}need not be adapted to α we pick a system \mathbf{J}^{+}which is. Then the induced system $\left(\mathrm{J}^{+}\right)^{\prime}$ is adapted to α^{\prime}. We denote by R^{*} the R -function defined by J^{+}and by $\mathrm{\imath}^{*}$ one-half the sum of the roots in J^{+}. We write

$$
\mathrm{R}=\varepsilon\left(\mathrm{I}_{m}^{+}, \mathrm{J}^{+}\right)\left(\mathfrak{l}^{*}-\mathfrak{\imath}\right) \mathrm{R}^{*} ; \quad \varepsilon\left(\mathrm{I}_{m}^{+}, \mathrm{J}^{+}\right)= \pm 1
$$

Similarly we define $\left(\mathrm{R}^{*}\right)^{\prime},\left(\mathrm{l}^{*}\right)^{\prime}$ and $\varepsilon\left(\left(\mathrm{I}_{m}^{+}\right)^{\prime},\left(\mathrm{J}^{+}\right)^{\prime}\right)$. As before, we will often transfer functions and operators from T_{m}^{\prime} to T_{m} without change in notation. We have to compute

$$
\lim _{v \downarrow 0} \hat{\mathrm{D}}\left(\left(\mathrm{R}^{*}\right)^{\prime} \Phi_{m}\right)\left(\gamma_{v}\right)-\lim _{v \uparrow 0} \hat{\mathrm{D}}\left(\left(\mathrm{R}^{*}\right)^{\prime} \Phi_{m}\right)\left(\gamma_{v}\right),
$$

. . . III b will be satisfied if and only if the result is

$$
2 i \widehat{\mathrm{D}}^{s}\left(\left(\mathrm{R}^{*}\right)_{s^{\prime}}^{\prime} \Phi_{n}\right)\left(\gamma_{0}^{s}\right) .
$$

We summarize our calculations in:
Proposition 9.4:
(a) $\hat{\mathrm{D}}\left(\left(\mathrm{R}^{*}\right)^{\prime} \Phi_{m}\right)=\varepsilon_{m} \varepsilon\left(\mathrm{I}_{m}^{+}, \mathrm{J}^{+}\right) \varepsilon\left(\left(\mathrm{I}_{m}^{+}\right)^{\prime},\left(\mathrm{J}^{+}\right)^{\prime}\right)\left(\mathrm{1}^{*}-\left(\mathbf{1}^{*}\right)^{\prime}\right) \hat{\mathrm{D}}\left(\mathrm{R}^{*} \Phi_{f}^{\chi^{\prime}}\right)$,
(b) $\left(\imath^{*}-\left(\imath^{*}\right)^{\prime}\right)\left(\gamma_{0}\right)=\left(\imath_{s}^{*}-\left(\imath^{*}\right)_{s}^{\prime}\right)\left(\gamma_{0}^{s}\right)$,
(c) $\left(\imath_{s}^{*}-\left(\imath^{*}\right)_{s}^{\prime}\right)\left(\gamma_{0}^{s}\right) \widehat{\mathrm{D}}^{s}\left(\mathrm{R}_{s}^{*} \Phi_{f}^{\chi_{k}}\right)\left(\gamma_{0}^{s}\right)=\varepsilon_{n} \varepsilon\left(\mathbf{I}_{n}^{+}, \mathbf{J}_{s}^{+}\right) \varepsilon\left(\left(\mathbf{I}_{n}^{+}\right)^{\prime},\left(\mathbf{J}^{+}\right)_{s}^{\prime}\right) \widehat{\mathrm{D}}^{s}\left(\left(\mathrm{R}^{*}\right)_{s}^{\prime} \Phi_{n}\right)\left(\gamma_{0}^{s}\right)$.

Note that (b) utilizes the second part of our assumption (8.1). Lemma 4.4 now shows that III b is satisfied provided

$$
\begin{equation*}
\varepsilon_{m} \varepsilon_{n}=\varepsilon_{\chi_{m}}(s) \varepsilon\left(\mathbf{I}_{m}^{+}, \mathbf{J}^{+}\right) \varepsilon\left(\left(\mathbf{I}_{m}^{+}\right)^{\prime},\left(\mathbf{J}^{+}\right)^{\prime}\right) \varepsilon\left(\mathbf{I}_{n}^{+}, \mathbf{J}_{s}^{+}\right) \varepsilon\left(\left(\mathbf{I}_{n}^{+}\right)^{\prime},\left(\mathbf{J}^{+}\right)_{s}^{\prime}\right) . \tag{9.5}
\end{equation*}
$$

Recall that $\varepsilon_{\chi_{m}}(s)$, the x_{m}-signature of s, was defined in Paragraph 4.

10. Transferring orbital integrals (cont.)

We come now to some explicit calculations and our main result (Theorem 10.2). Suppose that T_{m}^{\prime} and T_{n}^{\prime} are a pair among $\left\{\mathrm{T}_{0}^{\prime}, \ldots, \mathrm{T}_{\mathrm{N}}^{\prime}\right\}$ for which there is some Cayley transform (in our general sense) from T_{m}^{\prime} to T_{n}^{\prime}. This means just that the conjugacy class of T_{n}^{\prime} succeeds that of T_{m}^{\prime} in the lattice $t(\mathrm{H})$ (more briefly, " T_{n}^{\prime} succeeds $\mathrm{T}_{m}^{\prime}{ }^{\prime \prime}$). The left-hand side of (9.5) depends, apparently, on the choice (α^{\prime}) of root to define the Cayley transform, choice (s^{\prime}) of Cayley transform and choice (J^{+}) of positive system adapted to the image in G of that root. We will check that the choices have no effect. Let

$$
\begin{gathered}
\varepsilon_{x_{0}}(m, n)=\varepsilon_{\chi_{m}}(s), \\
\varepsilon_{+}(m, n)=\varepsilon\left(\mathbf{I}_{m}^{+}, \mathbf{J}^{+}\right) \varepsilon\left(\left(\mathbf{I}_{m}^{+}\right)^{\prime},\left(\mathbf{J}^{+}\right)^{\prime}\right) \varepsilon\left(\mathbf{I}_{n}^{+}, \mathbf{J}_{s}^{+}\right) \varepsilon\left(\left(\mathbf{I}_{n}^{+}\right)^{\prime},\left(\mathbf{J}^{+}\right)_{s}^{\prime}\right) .
\end{gathered}
$$

[^3]Although we have omitted it in notation, $\varepsilon_{x_{0}}(m, n)$ and $\varepsilon_{+}(m, n)$ may depend on the choices above. . . it is only their product which we claim to be independent. Our equations (9.5) are now:

$$
\begin{equation*}
\varepsilon_{m} \varepsilon_{n}=\varepsilon_{\chi_{0}}(m, n) \varepsilon_{+}(m, n) . \tag{10.1}
\end{equation*}
$$

Summarizing Paragraph 9 we have:
Theorem 10.2. - If $\varepsilon_{m} \varepsilon_{n}=\varepsilon_{\chi_{0}}(m, n) \varepsilon_{+}(m, n)$ whenever T_{n}^{\prime} succeeds $\mathrm{T}_{m}^{\prime}(m, n=0$, $1, \ldots, \mathrm{~N})$ then the factor $\Delta_{\mathrm{G}}^{\mathrm{H}}=\Delta_{\mathrm{G}}^{\mathrm{H}}\left(\varepsilon_{0}, \ldots, \varepsilon_{\mathrm{N}}\right)$ has the property that for each Schwartz function f on G there exists a Schwartz function f^{\prime} on H such that:

$$
\begin{equation*}
\Phi_{f^{\prime}}^{1}\left(\gamma^{\prime}, d t^{\prime}, d h\right)=\Delta_{\mathrm{H}}^{\mathrm{G}}(\gamma) \Phi_{f}^{\chi}(\gamma, d t, d g) \tag{1}
\end{equation*}
$$

if γ^{\prime} originates from $\gamma \in \mathrm{G}_{\mathrm{reg}}$ and

$$
\begin{equation*}
\left.\Phi_{f^{\prime}}^{1},, \quad\right) \equiv 0 \tag{2}
\end{equation*}
$$

on Cartan subgroups of H which do not originate in G .
The notation has been explained in Paragraph 9. The converse is also true: if the equations are not satisfied then we can find functions f for which there is no f^{\prime} satisfying (1) and (2). Of interest for character identities is the following: if both f^{\prime} and $f^{\prime \prime}$ are attached to f as in the theorem then any of the (tempered) characters χ_{φ} of [9] takes the same value on f^{\prime} and $f^{\prime \prime}$ and, conversely, we can always replace f^{\prime} by a function on which each χ_{φ} takes the same value (cf. [9], Lemma 5.3).

It remains now to prove our claim of the first paragraph; $\alpha^{\prime}, \alpha, s^{\prime}, s, \mathrm{~J}^{+}$and $\left(\mathrm{J}^{+}\right)^{\prime}$ are as at the end of Paragraph 9.

Proposition 10.2:

$$
\begin{aligned}
& \varepsilon\left(\mathrm{I}_{m}^{+}, \mathrm{J}^{+}\right) \varepsilon\left(\mathrm{I}_{n}^{+}, \mathrm{J}_{s}^{+}\right)=\frac{1}{2}\left(\mid\left\{\beta:\langle\beta, \alpha\rangle \neq 0, \text { both } \beta \text { and } \omega_{\alpha}(\beta) \in \mathrm{I}_{m}^{+}\right\} \mid\right) \\
& \\
& +\mid\left\{\beta: \beta \in \mathrm{I}_{m}^{+},\langle\beta, \alpha\rangle=0 \text { and } \beta \notin \mathrm{I}_{n}^{+}\right\} \mid .
\end{aligned}
$$

The proof is straightforward; we omit the details.
Corollary 10.3. - Neither $\varepsilon\left(\mathrm{I}_{m}^{+}, \mathrm{J}^{+}\right) \varepsilon\left(\mathrm{I}_{n}^{+}, \mathrm{J}_{s}^{+}\right)$nor $\varepsilon\left(\left(\mathrm{I}_{m}^{+}\right)^{\prime},\left(\mathrm{J}^{+}\right)^{\prime}\right) \varepsilon\left(\left(\mathrm{I}_{n}^{+}\right)^{\prime},\left(\mathrm{J}^{+}\right)_{s^{\prime}}^{\prime}\right)$ depends on the choice for J^{+}.

We will need the following:
Lemma 10.5. - Let \mathbf{G} be a connected reductive group over \mathbf{R}, T a Cartan subgroup of G and α, β imaginary roots of T for which there exist Cayley transforms. Suppose that the image of \mathbf{T} under some (and hence every) Cayley transform with respect to α is G-conjugate to the image under some transform with respect to β. Then there exists ω in $\Omega_{0}(\mathbf{G}, \mathbf{T})[$ that is, an element ω of $\Omega(\mathbf{G}, \mathbf{T})$ realized in $\mathscr{A}(\mathrm{T})$] mapping α to β.

It is clear that, conversely, if α and β are so related then the image of \mathbf{T} under a Cayley transform with respect to α is G-conjugate to the image under any Cayley transform with

$$
4^{e} \text { série - TOME } 12-1979-\mathrm{N}^{\circ} 1
$$

respect to β. Lemma 9.2 thus says that if \mathbf{G} is quasi-split then the $\mathscr{A}(\mathrm{T})$-orbits of imaginary roots of T parametrize the successors in the lattice $t(\mathrm{G})$ of the conjugacy class of T.

Proof. - As usual, we denote by \mathbf{G}^{\sim} the simply-connected covering of the derived group of \mathbf{G} : two maximal tori in \mathbf{G}, defined over \mathbf{R}, are stably conjugate if and only if their preimages in \mathbf{G}^{\sim} are stably conjugate in \mathbf{G}^{\sim} and so the natural projection induces a bijection between $t\left(\mathrm{G}^{-}\right)$and $t(\mathrm{G})$. Hence it is enough to prove the lemma in the case \mathbf{G} is simplyconnected, semi simple . . clearly, we can then assume \mathbf{G} simple, as well. Finally, by the results of Paragraph 2 in [9] we can assume \mathbf{G} quasi-split.

The rest of our proof is a case-by-case study. In several places we will use the following. Let T_{0} be a fundamental Cartan subgroup of G and $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ an ordered set of imaginary roots for T_{0} with the property that $\mathbf{T}=s \mathbf{T}_{0} s^{-1}$, where $s=s_{r} s_{r-1} \ldots s_{1}, s_{1}$ is a Cayley transform with respect to α_{1} and, for $i \geqq 2, s_{i}$ is a Cayley transform with respect to $s_{i-1} \ldots s_{1} \alpha_{i}$. Then $\alpha_{0}=s^{-1} \alpha, \beta_{0}=s^{-1} \beta$ are imaginary roots of T_{0}, perpendicular to Δ. Suppose that there exists $\omega_{0} \in \Omega\left(\mathbf{G}, \mathbf{T}_{0}\right)$ such that $\beta_{0}=\omega_{0} \alpha_{0}$, $\sigma \omega_{0}=\omega_{0} \sigma$ and ω_{0} fixes $\alpha_{1}, \ldots, \alpha_{r}$. Then clearly $\omega=s \omega_{0} s^{-1}$ has the properties required in the lemma.

We summarize now the (elementary) argument for each type. The roots for \mathbf{T}_{0} are labelled as in [1]; we transfer roots from \mathbf{T}_{0} to \mathbf{T} (via s) without change in notation.
$\left(\mathrm{A}_{n}\right)$ We have only to consider SL_{n+1} and special unitary groups (of maximal index). In the case of SL_{n+1} only the roots $e_{2 i-1}-e_{2 i}$ of (the usual) T_{0} are imaginary and it is easy to find ω_{0}. In the case of unitary groups all the roots of T_{0} are imaginary and again ω_{0} is easily found.
$\left(\mathrm{B}_{n}, \mathrm{C}_{n}\right)$ We give an argument for C_{n} which adapts immediately to the case B_{n}. Consider each pair of (imaginary) roots in T_{0} as possibilities for $\left\{\alpha_{0}, \beta_{0}\right\}$. In the cases $\left\{2 e_{i}, 2 e_{j}\right\}$, $\left\{e_{i} \pm e_{j}\right\},\left\{e_{i}-e_{j}, e_{i}-e_{k}\right\}, j \neq k$, and $\left\{e_{i}-e_{j}, e_{k}-e_{l}\right\}$ with i, j, k, l distinct and $e_{i}+e_{j}$, $e_{k}+e_{l} \notin \Delta$ the choice of ω_{0} is easy. In the case $\left\{e_{i}-e_{j}, e_{k}-e_{l}\right\}$ with i, j, k, l distinct and both $e_{i}+e_{j}, e_{k}+e$ lying in Δ, we have on \mathbf{T} that $\sigma e_{i}=e_{j}, \sigma e_{k}=e_{l}$ so that $\omega=\omega_{e_{i}-e_{k}} \omega_{e_{j}-e_{l}}$ commutes with σ and maps α to β. Next we observe that $\left\{e_{i}-e_{j}, e_{k}-e_{l}\right\}$ with i, j, k, l distinct and $e_{i}+e_{j} \in \Delta, e_{k}+e_{l} \notin \Delta$, is not a possibility (by counting the number of long imaginary roots in the images of \mathbf{T} under Cayley transforms with respect to $e_{i}-e_{j}, e_{k}-e_{l}$). Similarly $\left\{e_{i}-e_{j}, 2 e_{k}\right\}$ is not possible. The remaining pairs are similarly dealt with.
$\left(\mathrm{D}_{n}\right)$ Here we have to consider (i) the groups $\operatorname{Spin}(2 m, 2 m)$, $\operatorname{Spin}(2 m, 2 m+2)$ (where fundamental Cartan subgroups are compact) and (ii) $\operatorname{Spin}(2 m+1,2 m+1)$, $\operatorname{Spin}(2 m-1,2 m+1)$ (where fundamental Cartan subgroups are not compact). Again we examine each pair of imaginary roots in \mathbf{T}_{0}. In the case $\left\{e_{i}-e_{j}, e_{i}-e_{l}\right\}, j \neq l, \omega_{0}$ is easily found. In the case $\left\{e_{i} \pm e_{j}\right\}$, suppose that there is some e_{k} not appearing in the roots in Δ. Then for both (i) and (ii) the choice of ω_{0} is easy. In the same case, suppose that every e_{k} appears in a root of Δ and that for some pair (l, p) both $e_{l}+e_{p}$ and $e_{l}-e_{p}$ lie in Δ. Then on T, $\sigma e_{l}=e_{l}$ and $\sigma e_{j}=-e_{j}$ so that $\omega_{e_{j}+e_{l}} \omega_{e_{j}-e_{l}}$ will do for ω. Finally, suppose that every index appears in the roots of Δ (except i, j) and that if $e_{l} \pm e_{p}$ belongs to Δ then $e_{l} \mp e_{p}$ does not. Then we must be in the case of a well-known example for

Spin $(2 m, 2 m)(c f .[12])$ where twists by $e_{i}+e_{j}, e_{i}-e_{j}$ lead to non-conjugate Cartan subgroups.

Next we consider the case $\left\{e_{i}-e_{j}, e_{k}-e_{l}\right\}$ with i, j, k, l distinct. If either both or neither $e_{i}+e_{j}, e_{k}+e_{l}$ belong to Δ then we find ω as before (cf. the argument for C_{n}). We claim that if exactly one of these roots belongs to Δ then $\left\{e_{i}-e_{j}, e_{k}-e_{l}\right\}$ is not a possibility. We justify this by performing Cayley transforms on \mathbf{T} with respect to $e_{i}-e_{j}$ and $e_{k}-e_{l}$ and then calculating the "root spaces" attached to the images (cf. [12]); these spaces are easily seen to be non-conjugate in the sense of [12] [for both types (i), (ii)].

The remaining cases are now easily examined.
$\left(\mathrm{E}_{6}\right)$ There are two groups to consider: the simply-connected split form, whose fundamental Cartan subgroup is not compact and the simply-connected quasi-split form with compact fundamental Cartan subgroup. We investigate the second first.

If both roots $e_{i}+e_{j}, \pm 1 / 2\left(e_{i}+e_{j}\right) \pm \ldots$ are imaginary then clearly we can find an element of $\mathscr{A}(\mathrm{T})$ mapping the former to the latter. A simple inductive argument then shows that we can assume that Δ contains only roots of the form $e_{i} \pm e_{j}$. We have now only to show that for any pair among $\left\{e_{i} \pm e_{j}\right\}, 1 \leqq j<i \leqq 5$, we can find an ω as desired. For pairs $\left\{e_{i}-e_{j}, e_{i}-e_{l}\right\}, j, l$ distinct, this is immediate. In the case of $\left\{e_{i} \pm e_{j}\right\}$, there is some e_{k} not appearing in the roots of Δ and so we can argue as for the case D_{n}. In the case of $\left\{e_{i}-e_{j}, e_{k}-e_{l}\right\}$, with i, j, k, l distinct we again argue as before if either both or neither of $e_{i}+e_{j}, e_{k}+e_{l}$ belong to Δ. Suppose that $e_{i}+e_{j} \in \Delta, e_{k}+e_{l} \notin \Delta$. Then $\Delta=\left\{e_{i}+e_{j}\right\}$ and the root $1 / 2\left(e_{i}-e_{j}+e_{k}-e_{l}+\ldots\right)$ is imaginary in \mathbf{T} and perpendicular to neither $e_{i}-e_{j}$ nor $e_{k}-e_{l}$. Hence ω is easily found. The remaining cases are handled similarly.

To investigate the other form of type E_{6} we make the appropriate definition of "inverse Cayley transform" with respect to a real root of \mathbf{T} (generalizing the usual notion). It follows easily that we have only to check that if there are inverse Cayley transforms with respect to the real roots α, β which lead to conjugate Cartan subgroups then β is of the form $\omega \alpha$, with $\omega \in \mathscr{A}(\mathrm{T})$ (or, just as well, with ω in G). To make this check we set up the analogue of Δ among the (real) roots of the split Cartan subgroup of G. As before, we can assume that this set contains only roots of the form $e_{i} \pm e_{j}$ and consider candidates for α, β. The argument is analogous to that of the previous paragraph; we omit the details.
$\left(\mathrm{E}_{7}\right)$ We can assume that Δ contains only roots of the form $e_{i} \pm e_{j}$, for if $\mathrm{T}=\mathrm{T}_{0}$, any two roots of T can be connected by an element of $\mathscr{A}(\mathrm{T})$ and so we can restrict our attention to the case Δ contains $e_{8}-e_{7}$. We have then to consider just pairs from $\left\{e_{i} \pm e_{j}\right\}, 1 \leqq j<i \leqq 6$, as candidates for α, β. For a pair $\left\{e_{i}-e_{j}, e_{i}-e_{l}\right\}, i, j, l$ distinct, ω is easily found. Consider a pair $\left\{e_{i}+e_{j}, e_{i}-e_{j}\right\}$. Our previous arguments show how to find ω in all but the case where Δ has three elements $e_{8}-e_{7}, e_{k} \star e_{l}, e_{m} \star e_{n}$ where k, l, m, n are distinct from i, j and \star denotes some choice of \pm. For this \mathbf{T} we perform Cayley transforms by $e_{i}-e_{j}$ and $e_{i}+e_{j}$ and count the number of real roots in the images; this enables us to exclude this case. Next we consider a pair $\left\{e_{i}-e_{j}, e_{k}-e_{l}\right\}$, with i, j, k, l distinct. Again if either both or neither $e_{i}+e_{j}, e_{k}+e_{l}$ lie in Δ then we can find $\omega \ldots$ and similar arguments apply if we change either or both signs in $\left\{e_{i}-e_{j}, e_{k}-e_{l}\right\}$. The remaining case requires several arguments; we find it easier to use numerical indices. Suppose that $\Delta=\left\{e_{8}-e_{7}, e_{1}+e_{2}\right\}$. We exclude the pair

```
4 e}\mathrm{ SÉRIE - TOME 12 - 1979 - N N 1
```

$\left\{e_{2}-e_{1}, e_{4}-e_{3}\right\}$ by counting the number of imaginary roots in the image of \mathbf{T} under a Cayley transform with respect to $e_{2}-e_{1}, e_{4}-e_{3}$, respectively. It follows similarly that $\left\{e_{2}-e_{1}, e_{4}+e_{3}\right\}$ is not a possibility. Suppose now that $\Delta=\left\{e_{8}-e_{7}, e_{1}+e_{2}\right.$, $\left.e_{6}-e_{5}\right\}$. Then the pair $\left\{e_{2}-e_{1}, e_{4}+e_{3}\right\}$ is excluded (... this time counting real roots in the images). On the other hand, consider $\left\{e_{2}-e_{1}, e_{4}-e_{3}\right\}$. The root $1 / 2\left(\left(e_{8}-e_{7}\right)+\left(e_{2}-e_{1}\right)+\left(e_{4}-e_{3}\right)+\left(e_{6}-e_{5}\right)\right) \quad$ is imaginary and perpendicular to neither $e_{2}-e_{1}$ nor $e_{4}-e_{3}$. Hence we can find ω in $\mathscr{A}(\mathrm{T})$ mapping $e_{2}-e_{1}$ to $e_{4}-e_{3}$. Suppose that $\Delta=\left\{e_{8}-e_{7}, e_{1}+e_{2}, e_{6} \pm e_{5}\right\}$. Then for each pair $\left\{e_{2}-e_{1}, e_{4}-e_{3}\right\},\left\{e_{2}-e_{1}, e_{4}+e_{3}\right\}$ we can construct a root as above and so obtain ω. We can now easily complete the argument.
$\left(\mathrm{E}_{8}\right)$ Once again we can assume that Δ contains only roots of the form $e_{i} \pm e_{j}$ and investigate just pairs among $\left\{e_{i} \pm e_{j}\right\}$. The arguments are similar to those for E_{7} and so we omit the details.
$\left(\mathrm{F}_{4}\right)$ For the pairs $\left\{e_{i} \pm e_{j}\right\},\left\{e_{i}-e_{j}, e_{i}-e_{l}\right\},\left\{e_{i}-e_{j}, e_{k}-e_{l}\right\}$ and $\left\{1 / 2\left(e_{1} \pm e_{2} \ldots\right), e_{i}\right\}$, i, j, k, l distinct, we find ω easily. The pairs $\left\{e_{i}-e_{j}, e_{k}\right\}$ are eliminated (by counting short imaginary roots in the images of \mathbf{T} under . . .) and the argument then easily completed.
$\left(\mathrm{G}_{2}\right)$ Here we need only observe that if \mathbf{T} is compact then the G-conjugacy class of image of \mathbf{T} under a Cayley transform depends just on the length of the root used.

Lemma 10.5 is thus proved.
Returning to $\varepsilon_{\alpha_{0}}(m, n)$ and $\varepsilon_{+}(m, n)$ we have now that we may replace α^{\prime} only by $\omega^{\prime} \alpha^{\prime}$, $\omega^{\prime} \in \Omega_{0}\left(\mathbf{H}, \mathbf{T}_{m}^{\prime}\right)$ [since we have required α^{\prime} to be noncompact there is further restriction on ω^{\prime} (cf. [9], Lemma 4.2) but we do not need this explicitly]. Thus s^{\prime} may be replaced only by $t^{\prime}=\omega_{0}^{\prime} s^{\prime} \omega^{\prime}$ where $\omega^{\prime} \in \Omega_{0}\left(\mathbf{H}, \mathbf{T}_{m}^{\prime}\right)$ and $\omega_{0}^{\prime} \in \Omega_{0}\left(\mathbf{H}, \mathbf{T}_{n}^{\prime}\right) ; s$ is then replaced by $\omega_{0} s \omega$ where ω is the image of ω^{\prime} in $\Omega_{0}\left(\mathbf{G}, \mathbf{T}_{m}\right)$ and ω_{0} the image of ω_{0}^{\prime} in $\Omega_{0}\left(\mathbf{G}, \mathbf{T}_{n}\right)$. A straightforward computation shows that $\varepsilon_{\chi_{0}}(m, n)$ is multiplied by $\chi_{m}(\omega) \chi_{n}\left(\omega_{0}\right)$ and $\varepsilon_{+}(m, n)$ by $\varepsilon(\omega) / \varepsilon\left(\omega^{\prime}\right) . \varepsilon\left(\omega_{0}\right) / \varepsilon\left(\omega_{0}^{\prime}\right)$ (in the notation of Lemma 8.2). Hence, by the proof of Lemma 8.2, $\varepsilon_{\chi_{0}}(m, n) \varepsilon(m, n)$ is unchanged.

11. Application of Theorem 10.2

As an immediate corollary of Theorem 10.2 we obtain:
Proposition 11.1. - If the ordering on $t(\mathbf{H})$ is linear (that is, if the derived group of \mathbf{H} is trivial, of type A_{n} or of type E_{6}) or if G has split rank one then given some ε_{M} there is a choice for $\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{M-1}, \varepsilon_{M+1}, \ldots, \varepsilon_{\mathrm{N}}$ for which the factor $\Delta_{\mathrm{G}}^{\mathrm{H}}\left(\varepsilon_{0}, \ldots, \varepsilon_{\mathrm{N}}\right)$ provides a transfer of orbital integrals in the sense of Theorem 10.2.

We would like to remove this assumption on $\mathbf{H}(\ldots$ or $\mathbf{G})$. Here we just describe some reductions and, as application, check that the conclusion of Proposition 11.1 remains valid under the assumption that the derived group of \mathbf{G} is isogenous to a product of groups each of which has rank at most two, with \mathbf{H} (or, more precisely, x_{0}) arbitrary. Recall that we admit only those pairs (\mathbf{G}, \mathbf{H}) which satisfy the condition (8.1); in particular, for each T_{m} one half of the sum of the positive imaginary roots not coming from \mathbf{H} defines a character on $\mathrm{T}_{\boldsymbol{m}}$.

We have thus to investigate the consistency of the equations (10.1) as the pair (m, n) varies. The following observation will allow us to consider just consistency around subsets of $t(\mathrm{H})$ of the form:

Proposition 11.2. - Suppose that \mathbf{G} is a connected reductive group over \mathbf{R} and that T^{\prime} and $\mathrm{T}^{\prime \prime}$ are Cartan subgroups of G succeeded by the same Cartan subgroup. Then both T^{\prime} and $\mathrm{T}^{\prime \prime}$ succeed some Cartan subgroup.

Proof. - A straightforward argument brings us to the case where \mathbf{G} is simply-connected, simple and quasi-split ($c f$. the proof of Lemma 10.6). We have then only to examine the possibilities for $t(\mathrm{G})$. This is easily done using the lists in [12]; we omit the details.

Suppose now that T_{m}^{\prime} is fixed and ε_{m} chosen as 1 . Suppose also that $\mathrm{T}_{n_{1}}^{\prime}$ and $\mathrm{T}_{n_{2}}^{\prime}$ are nonconjugate Cartan subgroups which succeed T_{m}^{\prime} and that $\varepsilon_{n_{1}}$ and $\varepsilon_{n_{2}}$ are defined so that (10.1) holds; that is,

$$
\varepsilon_{n_{i}}=\varepsilon_{\chi_{0}}\left(m, n_{i}\right) \varepsilon_{+}\left(m, n_{i}\right) \quad \text { for } \quad i=1,2 .
$$

Finally, suppose that T_{p}^{\prime} succeeds both $\mathrm{T}_{n_{1}}^{\prime}$ and $\mathrm{T}_{n_{2}}^{\prime}$. Then both

$$
\varepsilon_{\chi_{0}}\left(m, n_{i}\right) \varepsilon_{\chi_{0}}\left(n_{i}, p\right) \varepsilon_{+}\left(m, n_{i}\right) \varepsilon_{+}\left(n_{i}, p\right), \quad i=1,2
$$

are candidates for ε_{p}. Proposition 11.2 and a simple inductive argument allow us to conclude:

Lemma 11.3.-Given some ε_{M} there is a choice for $\varepsilon_{0}, \ldots, \varepsilon_{\mathrm{M}-1}, \varepsilon_{\mathrm{M}+1}, \ldots, \varepsilon_{\mathrm{N}}$ for which $\Delta_{\mathrm{G}}^{\mathrm{H}}\left(\varepsilon_{0}, \ldots, \varepsilon_{\mathrm{N}}\right)$ provides a transfer of orbital integrals if and only if

$$
\varepsilon_{\chi_{0}}\left(m, n_{1}\right) \varepsilon_{\chi_{0}}\left(n_{1}, p\right) \varepsilon_{+}\left(m, n_{1}\right) \varepsilon_{+}\left(n_{1}, p\right)=\varepsilon_{\chi_{0}}\left(m, n_{2}\right) \varepsilon_{\chi_{0}}\left(n_{2}, p\right) \varepsilon_{+}\left(m, n_{2}\right) \varepsilon_{+}\left(n_{2}, p\right),
$$

for each 4-tuple (m, n_{1}, n_{2}, p) as above,
To compute terms, let α_{i}^{\prime} be a noncompact root of T_{m} for which there is a Cayley transform, say s_{i}^{\prime}, with respect to α_{i}^{\prime} taking \mathbf{T}_{m}^{\prime} to $\mathbf{T}_{n_{i}}^{\prime}(i=1,2)$; let α_{i}, s_{i} be the images in \mathbf{G}. Similarly, let β_{i}^{\prime} be a noncompact root of $\mathrm{T}_{n_{i}}^{\prime}$ for which there is a Cayley transform, say t_{i}^{\prime}, with respect to β_{i}^{\prime} taking $\mathbf{T}_{n_{i}}^{\prime}$ to \mathbf{T}_{p}, and β_{i}, t_{i} be the images in \mathbf{G}. Thus we have

[^4]Note that it may happen that $\mathrm{T}_{n_{1}}=\mathrm{T}_{n_{2}}$. Choose a positive system I^{+}for the imaginary roots of T_{p} and system J_{i}^{+}for T_{m} adapted to α_{i} such that $\left(\mathrm{J}_{i}^{+}\right)_{s_{i}}$ is adapted to β_{i} and $\left(\left(\mathrm{J}_{i}^{+}\right)_{s_{\mathrm{s}}}\right)_{t_{i}}=\mathrm{I}^{+}$, $i=1,2$. Then the product of all terms in (11.4) of the form $\varepsilon_{+}($,$) is$

$$
\varepsilon_{+}=\varepsilon\left(\mathbf{J}_{1}^{+}, \mathbf{J}_{2}^{+}\right) \varepsilon\left(\left(\mathbf{J}_{1}^{+}\right)^{\prime},\left(\mathbf{J}_{2}^{+}\right)^{\prime}\right),
$$

[see Paragraph 10 for the definition of $\varepsilon_{+}($,$)]. Note that \varepsilon_{+}$depends only on the isogeny class of the derived part of \mathbf{G}. The same is true for the remaining terms in (11.4), for these are the signatures of the Cayley transforms $s_{i}, t_{i}(i=1,2)$: to compute the signature of, say s_{1}, choose \tilde{s}_{1} in the preimage of s_{1} in $\tilde{\mathbf{G}}$ (the simply-connected covering of the derived group of \mathbf{G}). Then \tilde{s}_{1} is a Cayley transform in \mathbf{G}^{\sim} and its signature (regarding x_{m} as a character for $\left.\mathbf{G}^{\sim}\right)$ is the same as that of s_{1}. Indeed if $\sigma\left(\tilde{s_{1}^{-1}}\right) \tilde{s_{1}} \in \tilde{t_{\sigma}} \mathbf{G}_{\alpha}^{\sim}$ then $\sigma\left(s_{1}^{-1}\right) s_{1} \in t_{\sigma} \mathbf{G}_{\alpha}$, where t_{σ} is the image of \tilde{t}_{σ} in \mathbf{G}; by definition, $x_{m}\left(\tilde{t}_{\sigma}\right)=x_{m}\left(t_{\sigma}\right)$. We will write ε_{*} for the product of the signatures of the $s_{i}, t_{i}(i=1,2)$.
Our second observation is that we need only verify (11.4) in the case that α_{1}, α_{2} are roots for the same simple factor of \mathbf{G}^{\sim} : It remains then to examine the various simple types . . . here we will examine just the simple systems of rank two (only for the split forms of type $\mathrm{C}_{2}, \mathrm{G}_{2}$ is there something to prove). For the reduction, we argue as follows. Suppose that α_{i} is a root for the simple factor \mathbf{G}_{i}^{\sim} of $\mathbf{G}^{\sim}, i=1,2$. Recalling the comment of the third paragraph of Paragraph 9 we may assume that $i_{n_{1}}, i_{n_{2}}$ and i_{p} have been chosen in such a way that we may take $\alpha_{1}^{\prime}=\beta_{2}^{\prime}, \alpha_{2}^{\prime}=\beta_{1}^{\prime}$ and $\tilde{s}_{1}=\tilde{t}_{2}, \tilde{s}_{2}=\tilde{t}_{1}$ with \tilde{s}_{i} lying in the factor \mathbf{G}_{i}^{\sim} of \mathbf{G}^{\sim}.

Then clearly the $x_{n_{1}}$-signature of \tilde{t}_{1} is the same as the x_{m}-signature of \tilde{s}_{2} and the $x_{n_{2}}$-signature of \tilde{t}_{2} is the same as the x_{m}-signature of \tilde{s}_{1}. This implies that $\varepsilon_{*}=1$. On the other hand, the positive systems $\mathrm{J}_{1}^{+}, \mathrm{J}_{2}^{+}$are equal so that $\varepsilon_{+}=1$ also, as desired.
Suppose now that the Lie algebra of the derived group of G is the split form of type G_{2}. There will be consistency problems only if H also has split rank two. Since such an H must contain (a copy of) the fundamental Cartan subgroup of G we may restrict our attention to the case that T_{0} is a fundamental Cartan subgroup. We list the roots of \mathbf{T}_{0} as $\alpha=e_{1}-e_{2}, \beta=-2 e_{1}+e_{2}+e_{3}, \alpha+\beta, 3 \alpha+\beta, 3 \alpha+2 \beta$ and their negatives, and the dual system as $\alpha^{2}=e_{1}-e_{2}, \beta^{2}=1 / 3\left(-2 e_{1}+e_{2}+e_{3}\right)$, etc. The possibilities for χ_{0} are given in the following table:

	α^{2}	β^{2}	$\alpha^{2}+3 \beta^{2}$	$2 \alpha^{2}+3 \beta^{2}$	$\alpha^{2}+\beta^{2}$	$\alpha^{2}+2 \beta^{2}$
$1 \ldots \ldots \ldots \ldots$	1	1	1	1	1	1
$x_{0}^{1} \ldots \ldots \ldots \cdots \cdots$	1	-1	-1	-1	-1	1
$x_{0}^{2} \ldots \ldots \ldots \ldots \cdots$	-1	1	-1	1	-1	-1
$x_{0}^{3} \ldots \ldots \ldots \cdots$	-1	-1	1	-1	1	-1

The characters $\chi_{0}^{2}, \chi_{0}^{3}$ are of the form $\left(\chi_{0}^{1}\right)^{\omega}, \omega \in \Omega\left(\mathbf{G}, \mathbf{T}_{0}\right)$. It follows that we need consider only the case $x_{0}=x_{0}^{1}$. Then, on fixing embeddings of the Cartan subgroups of H into G according to the prescription of Paragraph 6, we can identify α and $3 \alpha+2 \beta$ as the roots from H...H is thus a group of type $\mathrm{A}_{1} \times \mathrm{A}_{1}$. Note that the condition (8.1) is satisfied. As usual, we will denote the preimage of α by α^{\prime} and the preimage of $3 \alpha+2 \beta$
by $(3 \alpha+2 \beta)^{\prime}$. On the Cartan subgroup T_{0}^{\prime} both α^{\prime} and $(3 \alpha+2 \beta)^{\prime}$ are noncompact; we may assume that we have labelled the roots of \mathbf{T}_{0} so that both α and $3 \alpha+2 \beta$ are noncompact. We compute first the term ε_{+}. For J_{1}^{+}we must take the positive system with simple roots $3 \alpha+2 \beta$ and $-(\alpha+\beta)$ and for J_{2}^{+}the system with simple roots α and β; it follows that $\varepsilon_{+}=1$ (to conform with our earlier notation we write α as α_{1} and $3 \alpha+2 \beta$ as α_{2}). In computing the signature of s_{1}, we have only to write s_{1} as $s_{1}^{\prime} \omega$, where s_{1}^{\prime} is a standard transform with respect to α_{1} followed by a real conjugation and $\omega \in \Omega\left(\mathbf{G}, \mathbf{T}_{0}\right)$ fixes α_{1}. Then the x_{0}-signature of s_{1} is $x_{0}(\omega)(c f$. Paragraph 4). But the only possibilities for ω are 1 and $\omega_{\alpha_{2}}$, both of which are annihilated by χ_{0}. Similarly all the other signatures to be computed are one and so we obtain $\varepsilon_{*}=1$ and (11.4) is satisfied.

The case that the Lie algebra of the derived group of G is of type C_{2} is more instructive. Again we may assume that T_{0} is the fundamental Cartan subgroup. We list the roots of T_{0} as $\alpha=e_{1}-e_{2}, \beta=2 e_{2}, \alpha+\beta, 2 \alpha+\beta$ and their negatives and the dual system as $\alpha^{2}=e_{1}-e_{2}, \beta^{2}=e_{2}$, etc. The possibilities for χ_{0} are:

	α^{2}	β^{2}	$\alpha^{2}+2 \beta^{2}$	$\alpha^{2}+\beta^{2}$
$1 \ldots \ldots \ldots \cdot$	1	1	1	1
$x_{0}^{1} \cdots \cdots \cdots \cdots \cdots$	1	-1	1	-1
$x_{0}^{2} \cdots \cdots \cdots \cdots \cdots$	-1	1	-1	-1
$x_{0}^{3} \cdots \cdots \cdots \cdots$	-1	-1	1	

Only χ_{0}^{1} gives a group \mathbf{H} of rank 2. In this case we can identify the roots α and $\alpha+\beta$ as the roots of $\mathbf{H} \ldots \mathbf{H}$ is again of type $A_{1} \times A_{1}$ and the assumption (8.1) is satisfied. We may as well take T_{0}, or, more precisely, its Lie algebra, as in [12] [we are assuming that \mathfrak{g} is $\mathfrak{s p}(2, \mathbf{R})]$ and label the roots in the usual way. Then, on \mathbf{T}_{0}, α is compact and $\alpha+\beta$ noncompact, whereas the preimages $\alpha^{\prime},(\alpha+\beta)^{\prime}$ are both noncompact. Again to conform with earlier notation we write α as α_{1} and $\alpha+\beta$ as α_{2}. For J_{1}^{+}we must take the system with simple roots $\alpha+\beta$ and $-\beta$ and for J_{2}^{+}the system with simple roots α and β. It follows that $\varepsilon_{+}=-1$. As before, the signatures of s_{2}, t_{1} and t_{2} are all easily shown to be one. We have then to show that s_{1} has negative signature. If we write s_{1} as $s_{1}^{\prime} \omega$, where s_{1}^{\prime} is a standard transform with respect to $\underline{\alpha}_{2}$ (noncompact) followed perhaps by a real conjugation and $\omega \in \Omega\left(\mathbf{G}, \mathbf{T}_{0}\right)$ takes α_{1} to $\alpha_{2} \overline{\overline{\text { th }}} \mathrm{n} \chi_{0}(\omega)$ is the signature of s_{1} (cf. Paragraph 4). Clearly ω is either ω_{β} or $\omega_{2 \alpha+\beta} \omega_{\alpha}$. But $x_{0}\left(\omega_{2 \alpha+\beta} \omega_{\alpha}\right)=x_{0}\left(\omega_{2 \alpha+\beta}\right)$ since α comes from \mathbf{H}; both β and $2 \alpha+\beta$ are noncompact so that
and

$$
x_{0}\left(\omega_{\beta}\right)=x_{0}\left(\beta^{\check{ }}\right)=-1
$$

$$
x_{0}\left(\omega_{2 \alpha+\beta}\right)=x_{0}\left((2 \alpha+\beta)^{\check{ }}\right)=x_{0}\left(\alpha^{2}+\beta^{2}\right)=-1 .
$$

REFERENCES

[1] N. Bourbaki, Groupes et Algèbres de Lie, Chaps. 4, 5, 6, Hermann, 1968.
[2] Harish-Chandra, Harmonic Analysis on Real Reductive Groups I (J. Funct. Anal., Vol. 19, 1975, pp. 104204).

$$
4^{\mathrm{e}} \text { SÉRIE }- \text { TOME } 12-1979-\mathrm{N}^{0} 1
$$

[3] T. Hirai, Explicit Form of the Characters of Discrete Series Representations of Semisimple Lie Groups (Proc. Sympos. Pure Math., Amer. Math. Soc., Vol. 26, 1973, pp. 281-288).
[4] A. Knapp, Weyl Group of a Cuspidal Parabolic (Ann. Scient. Éc. Norm. Sup., 4 e serie, t. 8, 1975).
[5] J. P. Lablsst and R. P. La\glands, L-indistinguishability for SL(2) [Canad. J. Math. (to appear)].
[6] S. Lang, Rapport sur la cohomologie des groupes, Benjamin, 1966.
[7] R. P. Langlands, Stable Conjugacy; definitions and lemmas [Canad. J. Math. (to appear)].
[8] R. P. Langlands, On the Classification of Irreducible Representations of Real Algebraic Groups (preprint).
[9] D. Shelstad, Characters and Inner Forms of a Quasi-split Group over \mathbf{R} [Compositio Math. (to appear)].
[10] D. Shelstad, Notes on L-indistinguishability (based on a lecture of R. P. Langlands), A.M.S. Summer Institute on Automorphic Forms, Representations and L-functions, Corvallis, Oregon, 1977.
[11] R. Steinberg, Regular Elements of Semisimple Algebraic Groups (Publ, Math. I.H.E.S., 1965).
[12] M. Sugiura, Conjugate Classes of Cartan Subalgebras in Real Semisimple Lie Algebras (J. Math. Soc. Japan, Vol. 11, 1959, pp. 374-434).
[13] G. Warner, Harmonic Analysis on Semisimple Lie Groups, Vols. I and II, Springer-Verlag, 1972.
(Manuscrit reçu le $1^{\text {er }}$ février 1978. révisé le 3 août 1978.)

Diana Shelstad,
Department of Mathematics,
Columbia University,
New York, N. Y. 10027.

[^0]: ${ }^{(1)}$ Partially supported by the National Science Foundation under Grant MCS76-08218.

[^1]: $4^{\text {e }}$ SÉRIE - TOME $12-1979-\mathrm{N}^{\mathbf{o}} 1$

[^2]: ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

[^3]: annales scientifleues de l’école normale supérieure

[^4]: 4^{e} série - tome $12-1979-\mathrm{N}^{0} 1$

