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Introduction

Let X/fe be a proper variety. The formal completion Pic X^ of the Picard group of X
may be regarded as representing a problem of deformation theory about isomorphism
classes of line bundles on X. If S = Spec A is an artinian local affine scheme with residue
field k, the S-valued points of the formal group Pic X^ may be described in cohomological
terms by the short exact sequence

0 ̂  PicX'(S) -^ H1 (X x S, GJ ̂  H1 (X, GJ.

Schlessinger, in his paper [30], takes this observation as a point of departure in the study
of Pic X. In particular, he establishes easily manageable criteria for pro-representability
of functors of the above type, and, defining Pic X" by the above exact sequence, he shows
that it is pro-represented by a formal group over k.
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88 M. ARTIN AND B. MAZUR

The origin of this paper is the observation that this approach is by no means limited
to studying deformation problems involving H1. For any integer r ^ 0, we can mimic
the above exact sequence and define functors

0': Art/fe°-^(Ab)

using H'' (X, G^) (cf. II). We show that these functors O1' exhibit a strong tendency
to be pro-representable and, in fact, by formal Lie groups (/). The exact hypotheses
are in II, paragraph 3, where the theory is systematically developed for flat schemes X/S
and €>7S is studied as a formal group over the base S. For example, ̂ /k is a formal Lie
group if A0'!'""1 = h°'r+1 = 0, hence when X/fc is a smooth complete intersection of dimen-
sion r ^ 2 in projective space.

The formal groups ^r appear, then, as higher dimensional analogues of the classical
formal group Pic X^. In the first interesting case, r = 2, we shall sometimes refer to O2

^\
as Br, and call it the formal Brauer group of X.

Two natural problems arise:
(a) Interpret the numerical invariants of these formal groups in terms of the algebraic

geometry of X.
(b) Find new properties of X which are brought into focus by these formal groups and

their particular properties.

The purpose of this paper is to set up some fragments of a theory to answer the above
questions. We sketch some of the principal results, which we prove under certain hypo-
theses. For the exact hypotheses, the reader is referred to the body of the text.

The most obvious invariant of a formal group is its dimension. One has (§ 3):

dim <y == h ° ' r = dinifc H^X, 0^\

If k is of characteristic 0, the dimension is the only numerical invariant of a formal Lie
group. However, in characteristic/? there are subtler invariants contained in the Dieudonne
module D ̂ r. We establish two facts about this Dieudonne module. The first result
relates D ̂  to something as difficult to compute:

DO^H^X.^T),

where-^ is Serre's Witt vector sheaf'on X [31]. This provides in some measure an expla-
nation of the fact that Serre's Witt vector cohomology may fail to be of finite type over
W = W (fe): It is of finite type over W if and only if ^r is a formal group of finite height
(i. e., has no unipotent part). More tangibly,

H^X.^OwK

is finite dimensional over the field of fractions K of W, whenever O1' is pro-representable.

(1) This fact was first noticed by Levelt (unpublished).
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FORMAL GROUPS 89

The second result relates D ̂  to more familiar arithmetic invariants of X. Its precise
statement involves some further hypotheses which may be found in chapter IV. In this
introduction we shall try to apply these precise statements to the calculation of the nume-
rical invariants of D ̂ r. Suppose k is algebraically closed. Then the action of the
semi-linear endomorphism F on the vector space D <y ®^ K decomposes this vector
space into eigenspaces, giving us a family of eigenvalues

04, . . . , a^eK

counted with multiplicites (see § 1). Unlike the situation in linear algebra, these eigen-
values are not unique, for modification of the eigenvector by scalar multiplication tends
to change them. Nevertheless, their /?-adic ordinals Oj = ordp a, are uniquely determined
by the semi-linear endomorphism F. We normalize by taking ordpp = 1. Then the a-
are non-negative rational numbers which we may write in non-decreasing order

0 ̂  a^ ^ a^ ̂  ... ̂  a^,

and these rational numbers together with their multiplicities of occurrence are called
the slopes and multiplicities of the Dieudonne module of O1', or more succinctly, the slopes
and multiplicities of y. They are numerical invariants which determine, and are deter-
mined by, the isogeny class of a "maximal quotient of O1' of finite height" (see § 1).
Indeed, most of the salient invariants of this quotient are readily visible from the above
set of slopes and multiplicities. For instance, its height is simply the number h. Further,
C^ is connected and therefore there is a topologically nilpotent endomorphism V
on D <y ®w K such that FV == VF = p. It follows that all slopes are less than 1.

There is another semi-linear vector space with an operator F determined by X/k. This
is the crystalline cohomology group H^g (X/W).

By performing the analogous semi-linear algebra to the semi-linear endomorphism F
on H^ys (X/W) ®w K? w^ may obtain its set of eigenvalues

&i, &2» • • • » bn,

and setting Py = ordp bj we obtain the slopes counted with multiplicities of the semi-
linear F-module H:̂  (X/W) ®w K

O^P^P^...^p,.

Here, again, we have arranged things in non-decreasing order. (One should note that
when X is defined over a finite field Vq (q = p1), then the P/s are indeed well-known ari-
thmetic invariants of X/F^, for the quantities i ̂  are then the /?-adic orders of the eigen-
values of the Frobenius automorphism acting on the r-dimensional /-adic cohomology
of X [23].)

In contrast with the ay's, the P/s need not be less than 1. Nevertheless, a consequence
of the Corollary 3 of paragraph 4 is that, under certain hypotheses, the relationship between
the a/s and the P/s is the best that can be hoped for. Namely, the a/s coincide with
those P/s which are less than 1.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



90 M. ARTIN AND B. MAZUR

The above facts, taken together, give fairly explicit information concerning Serre's Witt
vector cohomology.

It is also interesting to combine this determination of the slopes and multiplicities
of ^r with knowledge of the dimension of <S>1'. One obtains the following inequality:

^^EmpO-P),
p

where P ranges through the rational numbers < 1 occurring, as slopes of H^y,, and Wp
denotes their multiplicity (Cor. 4, § 4). This inequality is the first of a series of inequalities
known as the Katz conjecture ([26], [27]).

CONNECTIONS WITH NERON-SEVERI. — Let X be a smooth proper surface over k, and
let p be the rank of the Neron-Severi group of X. In characteristic zero, one has the clas-
sical formula

p^-2^'2,

where b^ is the second Betti number. We prove an analogue of this formula in characte-•̂  /\.
ristic p involving the formal Brauer group Br of X. Namely, suppose Br is representable
by a formal group of finite height A. Under some supplementary hypotheses we prove

p^b^-lh.

Since h ^ A02, this is stronger than the classical assertion, provided h < + oo. On the
other hand, there are many surfaces [33] in characteristic^ for which the classical inequality
breaks down, though the weaker inequality p ^ b^ continues to hold (Igusa [20]). The
simplest example of such a surface is the product of a supersingular elliptic curve with
itself, which has p = b^ = 6, and h02 = 1. Its formal Brauer group is the additive
group.

A proof of the following conjecture would complement our result, and the two could
be considered a satisfactory generalization of the classical inequality to characteristic p:

CONJECTURE. — With the above notation, assume that the characteristic is not zero,
^

and that Br X is unipotent. Then b^ == p.

Examples. — Throughout our work the case of K 3 surfaces [4] (over an algebraically
closed field) in characteristic p > 0 has been an extremely useful guide. For these sur-
faces h°'1 = 0 and A0'2 = 1 and consequently the formal Brauer group is a formal one-
parameter group; denote its height by A. The second Betti number of a K3 surface
is 22. The Neron-Severi group of a K 3 surface is a free abelian group (of rank p). Using
results of the present paper, the relation between A and the eigenvalues of Frobenius
(best visualized by the Newton polygon [26]) may be summarized as follows:

/\ /<
A = oo; Equivalently, one has that Br = G^, or that the 22 eigenvalues of Frobenius

acting on 2-dimensional cohomology have ordp equal to 1. These K 3 surfaces are called
supersingular in [4] (compare with definition p. 199 of [23]). An elliptic K 3 surface
is supersingular if and only if p = 22 [4].
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y\

h < oo; Equivalently, Br is a /^-divisible formal group. In this case 1 ̂  A ^ 10,
and as is proved in [4] and [35], every h in this range occurs. The 22 eigenvalues
of Frobenius acting on 2-dimensional cohomology distribute themselves as follows:
There are h such eigenvalues with ordp equal to h—l/h', there are h eigenvalues with ordp
equal to A+l /A; the remaining 22— 2 h eigenvalues have ordp equal to 1.

To treat moduli problems arising from this example, and others, it is convenient to
develop the theory of the formal Brauer group over general bases. Given a parameter
space T of K 3 surfaces, the function h has an upper-semi-continuous behavior on T,
and may be used to define a stratification on T, studied in [4]. It is proved in [4] that
the supersingular K 3's determine a stratum of relatively low dimension in "the" moduli
space (2).

/\
Two examples where the formal Brauer group Br is of multiplicative type (a finite

product of G^s if the groundfield is algebraically closed) are worth mentioning:
(a) The Format surface ^ (d) : X^+Y^+Z^W = 0 in characteristic p, where

p = 1 mod d.
(d) Any "sufficiently general" smooth surface in P3.

One obtains (d) using the results of the present paper, together with a calculation of
the Newton polygon of Fermat varieties ([23], V. 2) and similarly (b) is obtained using a
theorem of Koblitz ([23] (II); the condition of "sufficient generality" is, however, not
explicit, and therefore one doesn't obtain specific examples in hand).

THE "ENLARGED" FUNCTOR ̂  — The formal Brauer group is, by definition, a connected
formal group, and therefore the slopes of its Dieudonne module are constrained to be < 1.

ys

It is natural to seek an enlargement of Br, which, under suitable hypotheses, will be a
(not necessarily connected) p'divisible group whose Dieudonne module slopes coincide
with the slopes of H^yg (X/W) ®w K m Ae closed interval [0, I], and whose connected

ys

part is Br.
This intention is served (under suitable hypotheses) by the functor y introduced in (IV. 1).

Its etale quotient ̂  is the divisible part of H^ (X^, Upoo) [as Gal (^/fe)-module]. Using
a result of Bloch [7] when p > 2, we obtain that the height of Y61 is the number of eigen-
values of slope 1 in H^yg (X/W) ®w K- Although this gives what we wish as far as nume-
rical values are concerned, it would be better to have a direct relationship between the
Dieudonne module of y and the quotient of H^ys (X/W) comprising all eigenvalues whose
slopes lie in the interval [0, 1]. Can this be obtained by considering a hybrid "crystal-
line-fppf" site, in analogy with the construction of crys-et in paragraph 3 below?

COHOMOLOGY WHICH IS ANALYSABLE BY ^-DIVISIBLE GROUPS; HODGE-TATE DECOMPO-
SITIONS. — Let K/Q be a finite extension, R c: K its ring of integers and X/K a proper
smooth surface. Let T(-) denote the Tate construction. In (IV. 4) we study

(2) There are several moduli problems interesting to consider in connection with K 3's : polarized K 3's
(or not), elliptic K3's...

ANNALES SCD3NTIFIQUES DE L'^COLE NORMALE SUP&UEURE



92 M. ARTIN AND B. MAZUR

H = T^^X/K',/^))®^ Qp Ae finite dimensional Qp-vector space, with its natural
Gal (K/K) action. The cup-product pairing induces an isomorphism between H and H*,
its vector space dual, with respect to which the action of Gal (K/K) enjoys an evident
compatibility. Let us say that H is analy sable by p-divisible groups if there is a filtration

(*) 0 c: W c V <= H

by sub-Qp-vector spaces, stable under the action of Gal (K/K), such that:
(a) W is a Gal (K/K)-representation "coming from a /^-divisible group" W/R^i.e.

W ^ TW ®^ Qp). __
(b) V is the Gal (K/K)-representation coming from W°/R, the connected component

o f W ( V = = T W ° ® ^ Q p ) -
(c) The filtration (^) is self-dual under the cup-product pairing, in the sense that

W = V1 and (equivalently) V = W1.
One has a rather tight description of the Gal (K/K)-representation H, when it is

"analysable by /^-divisible groups". For example, using results of Tate one sees that
if H is "analysable by /^-divisible groups", then the semi-simplification of the Gal (K/L)-
representation H admits a Hodge-Tate decomposition with the expected "Hodge"
numbers; H itself admits such a Hodge-Tate decomposition if W° is of multiplicative
type. It is not true that all surfaces (even those with good reduction in characteristic p)
will have "analysable" 2-dimensional cohomology. Indeed, it is plausible that for/\
any X/R a proper smooth surface such that Br/R is pro-representable by a formal group
of infinite height, the 2-dimensional cohomology of X/K is not analysable. We show
however, that ifp > 2, and X/R is a proper smooth surface such that Pic1^ (X/R) is smooth
and Br X/R is of finite height, then the 2-dimensional cohomology of X/K is analysable.
These hypotheses hold, for example, when X/K is a K3 surface which admits a good
nonsupersingular reduction to characteristic p > 2, or when X/K is any lifting of the
Fermat surface ̂  (d) (p = 1 mod d). In the latter case one obtains that the 2-dimensional
cohomology of X/K admits a Hodge-Tate decomposition.

QUESTIONS FOR FURTHER STUDY:

(a) It is clear that as long as our theory is set in its present frame, it is doomed to be
dependent upon a steady rain of hypotheses, and cannot be totally general. One problem
rests in our insisting that the functors 0'" be pro-representable. The should be viewed
as a dispensable crutch used to convince the reader that one is dealing with a manageable
object, and to suggest the appropriate directions of study. The arithmetic content of
the theory (e. g., the inequality quoted above) should be independent of any such hypo-
thesis. Moreover, the most satisfactory theory would deal with some object in a derived
category finer than the simple collection of ys for all r. Such an extension will not
be merely technical, for it involves a systematic extension of the elegant theory of Cartier
on which much of our work is based.

(b) Our groups ^r might be suggestively denoted O0*1', since they are related to the
Hodge cohomology of bidegree (0, r), and they recapture only the part of r-dimensional
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cohomology given by slopes in the interval [0, 1]. One might hope to find a bigraded
system of groups O1'7 (i+j = r) where O1'-7 is somehow related to the Hodge cohomology
of bidegree (f, j) and whose Dieudonne module yields information about the part of r-dimen-
sional cohomology given by slope in the interval (i, i+1) (3).

(c) Convergence questions, and the notion of a link between crystalline cohomology in
characteristic p and etale cohomology in characteristic 0.

Let X/W be a smooth proper scheme, and suppose the system of deformation cohomology
groups

^(Xx^W^GJ, n^O,

yields a smooth formal group which we shall denote <D1' over V = Spf(W). Suppose
further that <Sf is of finite height. Then ^r yields a /^-divisible (connected) group scheme
GVSpec W, following the equivalence of categories given in [34]. Associated to the
/^-divisible group GVSpec W one has the Gal (K/K)-module TG1' ®z Qp, where TG' = TO
denotes the Tate module. One has also the Gal (K/K)-module coming from etale cohomo-
logy at the geometric generic point

H^Xx^K.T^c^z.Qp.

QUESTION. — Can one define, in the above situation, a natural injective homomorphism
of Gal (K/K)-modules

TG^z.Qp^H^XxwK, T^oo)®z,Qp7

(d) It would be interesting to prove that H2 (Xx w K, T [ipj ®zp Qp is a Gal (K/K)-
module of Hodge-Tate type, for a reasonably large class of surfaces. In this direction
see IV, §2, Remark 4 below.

I. — Formal Groups

1. CARTIER MODULES. — To begin, let us set some terminology for this section :
k, a perfect field of characteristic p, often taken to be algebraically closed in the key

propositions below;
W, the Witt vectors of k\
K, the field of fractions of W;
(p : k -^ k, the p-ih power map x —> x1^ referred to as the Frobenius automorphism of k;
(p ; \v —^ W, the lifting ofthe/?-th power map, referred to as the Frobenius automorphism

o/W.
<p : K --> K, the map induced by the Frobenius automorphism of W, on its field of

fractions, called the Frobenius automorphism of K.

(3) This program has been carried out now by Bloch [6], 4.5, [7] under the hypothesis that p > dim X.

ANNALES SCIENTinQUES DE L'ECOLE NORMALE SUPERIEURE 13



94 M. ARTIN AND B. MAZUR

DEFINITION. — A Cartier module is a pair (M,/) where M is a free W-module of finite
rank and /: M —> M is an endomorphism which is compatible with (p, in the sense that

/(^.m)=(p(a)f(m)

for all a e W and m e M. (In other words / is a ^-linear endomorphism.)
Carrier modules form a category where morphisms are defined in the evident way.

We shall abbreviate our notation by referring to the "Cartier module M" when the
(p-linear endomorphism / which goes along with M admits no possible confusion of
identity.

If M is a Cartier module, let V = M ®w K- Then V is a finite dimensional vector
space over K with a (p-linear endomorphism /, such that / preserves a W-lattice in V
(/ preserves M).

Let sf = K [T] be the noncommutative polynomial ring in one variable T over K
where the commutation law is given by

(p(a).T=T.a for all aeK.

The vector space V above may be regarded as a left ^-module by letting T act as /:
T.r=/(r), i;6V.

For integers r, s, with s ^ 1, let U,.̂  denote the left ^/-module
u^^/^.cr^jO.

We refer to U,.̂  as the canonical j^-module of pure slope r / s and multiplicity s. One can
check that U,.̂  is a K-vector space of dimension s.

In the case r ^ 0, the action of T on Uy^ preserves the W-lattice
wET^wlTj.cr-^cru,.,

This is an inclusion since
w^].^5-^) == W[T] rw.cr-j/).

If r < 0, then T preserves no W-lattice in U,.̂ .
One has the following relation for any integers r, s, with s ^ 1 m ^ 1:

IT ^HT y"^mr^rns — V^r,®/ •

Moreover, Uy^ is a simple j^-module if and only if (r, s) = 1.

PROPOSITION (Dieudonne, Manin [25]). — Let k be algebraically closed. Let V be a
finite dimensional vector space over K admitting a (^-linear endomorphism T. Then V may
be regarded as a left ^/-module via the action ofT, and for a unique choice of integers r^s^
with Si ^ 1 such that r^s^ < r^s^ < ... < r^/s^ the left ^/-module V may be expressed
uniquely as a direct sum

(1.1) V= ®V^,
1=1

where V^/^ is an ^-submodule o/*V, noncanonically isomorphic to the s/-module Ur^.

4® SERIE — TOME 10 — 1977 — N° 1



FORMAL GROUPS 95

The action of T on V preserves a W-lattice if and only if the integers r. which occur
are all non-negative.

We refer to (1.1) as the canonical slope decomposition of V, and we say that V has slopes
rjsi with multiplicity s^ (i = 1, ..., t). It is clear from the above proposition that the
numerical data consisting of the slopes of V given with their multiplicities determine V,
up to noncanonical isomorphism. This numerical data is most conveniently represented
by a "Newton polygon" (see [23], [25] and [26].) We refer to V^/^ c V as the part o/V
of pure slope r,/^,.

Continuing with the hypothesis that k is algebraically closed, let M be a Cartier module.
By the slopes and multiplicities of M we shall mean the slopes of V = M ®^y K with their
multiplicities. If a is a non-negative rational number, let M, <= M denote the sub-Cartier
module defined by

M,=MnV,cV,
where V, <= V is the part of V of pure slope a.

By the construction of M^ we have:
(i) M, is a saturated submodule of M in the sense that if x e M andpx e M^ then x e M,.
(ii) V, = M, ®wK^ and M, has pure slope a.
(iii) If M' c: M is a sub-Cartier module of pure slope a, then M' <= M^.
Thus, M, deserves the name: the part of M of pure slope a.
If a; (i = 1, ..., t) are distinct non-negative rational numbers, then the natural map

(1.2) ©M,,->M
i

is an injection. Moreover, if the a, run through all the slopes of M, the cokemel of (1.2)
is a W-torsion module. We then refer to (1.2) as the slope decomposition of M.

If a = a^ is a slope of M, let N, denote the module obtained from M/( © M^) by
i ̂  10

annihilating its W-torsion. This is a Cartier module of pure slope a, and if M -^ M' is
any map of Cartier modules such that M' has pure slope a, it must factor through N,.
We refer to N, at the maximal quotient of M of pure slope a. Clearly N^ ®^K ^ V,,
and the natural map

(1.3) M^^

is an injection whose cokemel is W-torsion. Thus by (1.2), the map

(1.4) M^riNa,
1=1

is also an injection whose cokemel is W-torsion.
One final notion: We say that two Carrier modules M, M' are equivalent (M = M')

if M ®^ K = V is isomorphic as j^-module to M7 ®w K = V'. This is the same as
asserting that M and M' have the same slopes and multiplicities. It is also the same

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERDEURE
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as asking that there exist a morphism h : M —> M' which is injective and whose cokemel
is W-torsion. Thus the slope decompositions (1.2) and (1.4) are equivalences of Cartier
modules, and consequently any Cartier module is equivalent to a direct sum of Carrier
modules of pure slope.

The classification of Cartier modules up to isomorphism and not just equivalence is
undoubtedly a subtle matter involving further numerical invariants, such as the lengths
of the cokemels of the morphisms A, of (1.3) (compare [25]).

Examples:

(1) Let r be a formal Lie group of finite height h over k. Let M denote its Dieudonne
module. For definiteness we take M to be the module of typical curves of r as defined
in Carrier's theory (c/. §3).

Since T is of finite height h, the module M is free of rank h over W. There are two
operators F and V on M with the following properties:

(i) F is (p-linear; V is (p~ 1-linear;
(ii) V is topologically rdlpotent as an endomorphism of M;

(iii) FV = VF = p.

Therefore (M, F) is a Carrier module. One may retrieve the operator V from the
Carrier module (M, F) using the commutation relations (iii) and the fact that M has no
^-torsion. The existence of such a topologically nilpotent operator V insures that the
slopes of the Carrier module (M, F) are rational numbers in the half-open interval [0, 1).
Conversely, any Carrier module whose slopes are in the interval [0, 1) is equivalent to
a Dieudonne module. This can be shown as follows: Adjoin formally an operator V
with the property FV = VF = p, and check that the module obtained in this way is iso-
geneous to the old one.

Or, one may take M7 £ M ® Q to be : M' = ^ j?" F-" M and check that M' is stable
n ^ O

under F and under V = p.F 1 and, moreover, M' is equivalent to M.
If r, r' are two formal Lie groups of finite height whose Dieudonne modules are M, M'

respectively, then M is equivalent to M' if and only if F and r' are isogenous
Let r be an arbitrary (finite dimensional) formal Lie group over k, and consider multi-

plication by p" in F. One checks immediately that the image F of p" is independent of n
for large n, and that F is a formal Lie group of finite height. The Dieudonne module
of r is equivalent to the quotient of the Dieudonne module of F, modulo W-torsion.

If r, r' are arbitrary (finite dimensional) formal groups over k, with Dieudonne
modules M, M' respectively, we say that F and P are equivalent if M E= M' (i. e. if
M ®w K = V is isomorphic to M' ®w K = V as e^-modules). This is the same as
asking that r and r' be isogenous.

(2) Cartier modules coming from crystalline cohomology. Let X/k be a proper and
smooth scheme. Then the crystalline cohomology group [5] H^y, (X/W) is a W-module
of finite type endowed with a (p-linear operator F induced by the Frobenius morphism.

4° SERIE — TOME 10 — 1977 — N° 1


