BIRGER IVERSEN

Local Chern classes

Annales scientifiques de l’É.N.S. 4e série, tome 9, n° 1 (1976), p. 155-169

<http://www.numdam.org/item?id=ASENS_1976_4_9_1_155_0>
LOCAL CHERN CLASSES

BY BIRGER IVERSEN

The purpose of this paper is to give a construction of local Chern classes as conjectured by Grothendieck [6] (XIV 7.2).

The construction is given in the framework of complex vector bundles on topological spaces where it appears as a generalization of the relative Chern classes obtained from the “difference construction” in K-theory notably used by Atiyah ([1]-[4]).

It will be clear that the constructions performed work equally well in other theories, especially the etale cohomology of algebraic geometry.

CONTENTS

1. Introduction.. 155
2. The canonical complex.. 157
3. Construction of the local Chern class.. 160
4. Properties of the local Chern character.................................... 162
5. Formulas without denominators... 164
6. Riemann-Roch formula for the Thom class............................. 165
7. Multiplicity in algebraic geometry.. 167

1. Introduction

By a complex K^* of vector bundles on a topological space X we understand a finite complex of \mathbb{C}-vector bundles each having constant rank. By the support of K^* we understand the complement to the set of points $x \in X$ for which K_x^* is an exact complex of vector spaces.

For a space X, $H^*(X; \mathbb{Z})$ denotes integral cohomology in the sense of sheaf theory, $\hat{H}^*(X; \mathbb{Z}) = \prod_i H^i(X; \mathbb{Z})$. For a closed subset we use interchangeably

$$H^*_Z(X; \mathbb{Z}) = H^*(X, X-Z; \mathbb{Z})$$

for cohomology with support in Z.
A theory of local Chern classes consists in assigning to a complex K' on X with support in Z a cohomology class
\[c^Z(K') \in \hat{H}_Z(X; Z) \]
with the following two properties

1. For a continuous map $f: X \to Y$, closed subsets $Z \subseteq X$, $V \subseteq Y$ with $f(X - Z) \subseteq Y - V$ and a complex L' on Y with support in V:
\[c^Z(f^*L') = f^*c^V(L'). \]

2. Let $r: \hat{H}_Z(X; Z) \to \hat{H}'(X; Z)$ denote the canonical map.
 Then
\[r(c^Z(K')) + 1 = \prod_i c_i(K^{2i})c_i(K^{2i-1})^{-1}. \]

The main result of this paper is

Theorem 1.3. — A theory of local Chern classes exists and is unique.

As usual we introduce a local Chern character
\[ch^Z(K') \in \hat{H}_Z(X; Q) \]
with the following properties:

1. **Functoriality.** — $f^*ch^Y(L') = ch^Z(f^*L').$
2. $r(ch^Z(K')) = \sum (-1)^i ch(K^i).$
3. **Decalage.** — $ch^Z(K'[1]) = -ch^Z(K').$
4. **Additivity.** — For complexes K' and L' on X with support in Z:
\[ch^Z(K' \oplus L') = ch^Z(K') + ch^Z(L'). \]
5. **Multiplicativity.** — Let K' and L' be complexes on X with support in Z and V, respectively. Then
\[ch^Z(K' \otimes L') = ch^Z(K')ch^Y(L'). \]

The proof of 1.3 is given in paragraphs 2 and 3 while paragraphs 4 and 5 derives multiplicative and additive properties of c^Z and $ch^Z.$

In paragraph 6 we derive Riemann-Roch formulas for the Thom class and paragraph 7 initiates applications to algebraic geometry.
In cases where X is an oriented topological manifold of dimension n, Poincaré duality

$$H^i_Z(X; \mathbb{Z}) \cong H_{n-i}(Z; \mathbb{Z})$$

transforms our local cohomology classes into homology classes. In cases where X is a smooth algebraic variety \mathbb{C}, this should be compared with the homology classes constructed by means of MacPherson's graph construction [5] compare [10], [14], [16].

It should also be mentioned that Illusie ([13] V.6) has constructed local Chern classes "à la Atiyah" in Hodge cohomology.

I should like to thank K. Suominen for stimulating my interest in these matters.

2. The canonical complex

Throughout this paragraph we shall work with the following data.

A topological space X, a sequence of vector bundles $(K^i)_{i \in \mathbb{Z}}$ on X with $K^i = 0$ except for finitely many $i \in \mathbb{Z}$.

$$v_i = \text{rank } K^i.$$

We shall assume that there exists a sequence $(\lambda_i)_{i \in \mathbb{Z}}$ of integers with

$$\lambda_i + \lambda_{i+1} = v_i, \quad i \in \mathbb{Z},$$

$$\lambda_i \geq 0, \quad i \in \mathbb{Z}.$$

Put $K = \oplus_{i \in \mathbb{Z}} K^i$. The flag manifold whose sections are flags in K of nationality v_i will be denoted Fl_v. The fixed flag defined by

$$F_i = \oplus_{t \leq i} K^t$$

is denoted F_i.

Definition 2.1. — $T \subseteq Fl_v$ denote the closed subspace whose sections are flags D_i with the property that

$$F_{i-1} \subseteq D_i \subseteq F_{i+1}, \quad i \in \mathbb{Z}.$$

The canonical projection is denoted $p: T \rightarrow X$. The restriction to T of the canonical flag on Fl_v will be denoted E_i. On T we have a canonical complex C^i given by

$$C^i = E_i/p^*F_{i-1},$$

$$\partial^i : E_i/p^*F_{i-1} \rightarrow E_{i+1}/p^*F_{i}$$
is induced by the inclusion $E_i \subseteq E_{i+1}$. \(\delta^{i+1} \delta^i = 0 \) since

$$p^* F_{i-1} \subseteq E_i \subseteq p^* F_{i+1}, \quad i \in \mathbb{Z}. $$

Finally T_ψ is the complement in T of the support of C, and $p_\psi: T_\psi \rightarrow X$ denotes the restriction of p to T_ψ.

Lemma 2.2. — A section of T over X represented by a flag D, is a section of T_ψ if and only if for all $x \in X$:

$$\text{rank}(D_{i,x} \cap F_{i,x}/F_{i-1,x}) = \lambda_i.$$

Proof. — By definition D, represents a section of T_ψ if and only if the complex

$$\cdots \rightarrow D_{i-1}/F_{i-2} \rightarrow D_i/F_{i-1} \rightarrow D_{i+1}/F_i \rightarrow \cdots$$

has exact fibres for all $x \in X$. Note that D_i/F_{i-1} has rank v_i, and the lemma follows from the definition of $(\lambda_i)_{i \in \mathbb{Z}}$.

Theorem 2.3. — Let $i_\psi: T_\psi \rightarrow T$ denote the inclusion. Then

$$i_\psi^*: H^*(T; \mathbb{Z}) \rightarrow H^*(T_\psi; \mathbb{Z})$$

is surjective.

Proof. — Define

$$G_h = \prod_i \text{Grass}_{\lambda_i}(K^i) \rightarrow X,$$

where $p_i: \text{Grass}_{\lambda_i}(K^i) \rightarrow X$ is the fibre space whose sections are rank λ_i-subbundles of K^i.

$$f_h : T_\psi \rightarrow G_h$$

denotes the map which on the level of sections (compare 2.2) transforms

$$D_i \mapsto (D_i \cap F_i/F_{i-1})_{i \in \mathbb{Z}}.$$

We shall first prove

$$(2.4) \quad f_h^* : H^*(G_h; \mathbb{Z}) \rightarrow H^*(T_\psi; \mathbb{Z})$$

is an isomorphism.

We shall prove that f_h is a fibration with fibres of type A^d (A^d: affine space of dimension $d = \sum \lambda_i^2$). For this assume $X = P^i$. The fibre of f_h above $B' \in G_h$ consists of sequences $(G^i)_{i \in \mathbb{Z}}$, where G^i is a λ_{i+1}-plane in $2\lambda_{i+1}$-space B^{i+1}/B^i intersection the λ_{i+1}-plane F_i/B^i in zero.
Next define

\[G_v = \prod_i \text{Grass}_i(K^i \oplus K^{i+1}) \]

and maps

- \(f_v : T \to G_v, \quad D_i \mapsto (D_i/F_{i-1})_{i \in \mathbb{Z}}; \)
- \(g : G_h \to G_v, \quad B_i \mapsto (B^i \oplus B^{i+1})_{i \in \mathbb{Z}}; \)
- \(s_h : G_h \to T_{\psi}; \)
- \(B'_{i \in \mathbb{Z}} \mapsto (\oplus K^i \oplus B^i \oplus B^{i+1})_{i \in \mathbb{Z}}, \)

where in each case the transformation on the level of sections is given.

We have the following diagram

\[
\begin{array}{ccc}
T & \xleftarrow{f_v} & T_{\psi} \\
| & & | \\
f_v \downarrow & & f_h \downarrow s_h \\
G_v & \xleftarrow{g} & G_h
\end{array}
\]

with

\[f_v s_h = g, \quad f_h s_h = 1 \]

\((f_v s_h \neq g f_h).\)

Let us grant (2.5 below) that \(g^* \) is surjective.

- \(s_h^* f_h^* = 1 \) and whence by 2.4;
- \(f_h^* s_h^* = 1 \), on the other hand;
- \(s_h^* i_h^* f_v^* = g^* \) and whence;
- \(i_h^* f_v^* = f_h^* g^* \). Thus \(i_h^* \) surjective.

Q. E. D.

Lemma 2.5. — The map

\[g : \prod_i \text{Grass}_i K^i \to \prod_i \text{Grass}_i K^i \oplus K^{i+1}, \]

\[B'_{i \in \mathbb{Z}} \mapsto (B^i \oplus B^{i+1})_{i \in \mathbb{Z}} \]

induces a surjective map \(g^* \) on integral cohomology.

Proof. — Let \(P^i \) denote the canonical \(\lambda_i \)-bundle on \(\text{Grass}_i(K^i) \). Consider

\[H'(\prod_i \text{Grass}_i K^i; \mathbb{Z}) \]

as a \(H'(X; \mathbb{Z}) \)-algebra. As is well known this algebra is generated by the homogeneous components of

\[\text{pr}_i^* c.(P^i), \quad i \in \mathbb{Z}. \]
Consider the composite of \(g \) and the \(i \)'th projection
\[
\prod_i \text{Grass}_i K^i \to \text{Grass}_i K^i \oplus K^{i+1}
\]
to see that
\[
\text{pr}_i \ast \text{c.}(P^i) \text{pr}_{i+1} \ast \text{c.}(P^{i+1})
\]
and the inverse to that element belongs to the image of \(g^\ast \). It is now clear by decreasing induction that \(\text{pr}_i \ast \text{c.}(P_i) \) and \(\text{pr}_i \ast \text{c.}(P_i)^{-1} \) belong to the image of \(g^\ast \).

Q. E. D.

Proposition 2.6. — The \(H^\ast(X; Z) \)-module \(H^\ast(T_{\varphi}; Z) \) is finitely generated free and for any map \(X' \to X \).

\[
H^\ast(T_{\varphi}; Z) \otimes_{H^\ast(X; Z)} H^\ast(X'; Z) \to H^\ast(T_{\varphi} \times_X X'; Z)
\]
is an isomorphism.

Proof. — By 2.4 we may replace \(T_{\varphi} \) by a product of Grassmannian bundles for which this is well known.

Q. E. D.

3. Construction of the local Chern class

With the notation of paragraph 2 let \((\partial^i)_{i \in \mathbb{Z}} \) be a family of linear maps \(\partial^i: K^i \to K^{i+1} \) with \(\partial^{i+1} \partial^i = 0, i \in \mathbb{Z} \). Define a flag \(s_\ast (\partial^\ast) \) in \(K = \bigoplus_i K^i \) as follows: \(s_\ast (\partial^\ast) \) is the graph of the map

\[
\bigoplus_{i \leq i} K^i \to \bigoplus_{i > i} K^i,
\]

\((\ldots, k_{i-2}, k_{i-1}, k_i) \mapsto (\partial^i k_i, 0^i, \ldots)\).

Clearly,

\[
F_{i-1} \subseteq s_\ast (\partial^\ast) \subseteq F_{i+1}, \quad i \in \mathbb{Z}.
\]

Thus we may interpret \(s_\ast (\partial^\ast) \) as a section of \(p: T \to X \)

\[
s_\ast (\partial^\ast): X \to T.
\]

Clearly

\[
(3.1) \quad s_\ast (\partial^\ast) \ast C' = (K', \partial^\ast).
\]
Let now $Z \subseteq X$ denote a closed subset such that $\text{Supp} \,(K', \partial') \subseteq Z$ then
\[s_*(\partial')(X - Z) \subseteq T_{\varphi}. \]

Consider the exact sequence, (2.3):
\[0 \to \check{H}^r(T, T_{\varphi}; Z) \to \check{H}^r(T; Z) \to \check{H}^r(T_{\varphi}; Z) \to 0. \]

The image by i_{φ}^* of the cohomology class
\[c_*(C') - 1 = \prod c_i(C^{2i}) c_j(C^{2i-1})^{-1} - 1 \]
is zero since C' is exact on T_{φ}. Let
\[\gamma_T \in \check{H}^r(T, T_{\varphi}; Z) \]
denote the cohomology class characterized by
\[(3.2) \quad r_*(\gamma_T) + 1 = c_*(C'). \]

Definition 3.3. — Consider the map induced by $s_*(\partial')$
\[s_*(\partial')^* : \check{H}^r(T, T_{\varphi}; Z) \to \check{H}^r(T; Z) \]
and define the local Chern class of (K', ∂') supported in Z by
\[c^Z(K', \partial') = s_*(\partial')^* \gamma_T. \]

Proof of 1.3. — Follows from 3.1 and 3.2.

Q. E. D.

As above we consider the cohomology class
\[\gamma_X \in \check{H}^r(T, T_{\varphi}; Q) \]
characterized by
\[(3.4) \quad r_*(\gamma_X) = \sum (-1)^i \text{ch}(C^i). \]

Definition 3.5:
\[\text{ch}^Z(K', \partial') = s_*(\partial')^* \gamma_X. \]

The local Chern character thus defined satisfies clearly 1.4-6. Let us remark that \(\text{ch}^Z \) can be derived directly from \(c^Z \) by means of the theory of λ-rings, compare paragraph 5.
4. Properties of the local Chern character

In this paragraph we shall prove the multiplication property 1.8 of ch^Z. The proof of the additive property 1.7 is similar but simpler and will not be given. Finally, we give some variants of the additive property.

Proof of 1.8. — Let us first note that 1.8 is true if the canonical map

$$H^z_{Z/nY}(X; Z) \rightarrow H^z(X; Z)$$

is injective. We are going to reduce the problem to this case. Let $T = T(K')$ and $S = T(L')$ with a slight abuse of notation. It will now suffice to prove that

$$H^z(T \times S; Z) \rightarrow H^z(S \times T \cup T \times S; Z)$$

is surjective. Here and in the following all products are formed in the category of spaces/\text{X}. $H^z(-)$ denotes integral cohomology. Let us first recall that if $Z \subseteq Y$ is a closed subset of the space Y and if $U \subseteq Y$ is an open subset, then there is a canonical exact sequence

$$\rightarrow H^z_{Z-U}(X) \rightarrow H^z_Z(X) \rightarrow H^z_Z(U) \rightarrow H^z(X) \rightarrow.$$

Put $X = S - S_\psi$ and $Y = T - T_\psi$. It follows from 2.6 that the following commutative diagram is exact $[\otimes$ is formed in the category of $H(X)$-modules$]$:

$$\begin{array}{cccccc}
0 & & H^z(S_\psi) & \otimes & H^z_Y(T) & \\
\downarrow & & \downarrow & & \downarrow & \\
0 \rightarrow H^z_X(S \times T) & \rightarrow & H^z(S \times T) & \rightarrow & H^z(S_\psi \times T) & \\
\downarrow & & \downarrow & & \downarrow & \\
0 \rightarrow H^z_X(S_\psi \times T_\psi) & \rightarrow & H^z(S_\psi \times T_\psi) & \rightarrow & H^z_Y(S \times T_\psi) & \\
\downarrow & & \downarrow & & & \\
0 & & 0 & & & \\
\end{array}$$

From this follows that

$$H^z_X(S \times T) \rightarrow H^z_X(S \times T_\psi)$$

is surjective by remarking that $H^z(S) \otimes H^z_Y(T) \rightarrow H^z(S_\psi) \otimes H^z_Y(T)$ is surjective, taking into account the map from $H^z(S) \otimes H^z_Y(T)$ into the kernel of $H^z(S \times T) \rightarrow H^z(S \times T_\psi)$. Next, apply the above long exact sequence to $(S \times T, S \times T_\psi, X \times T)$ to get the exact sequence

$$\rightarrow H^z_X(S \times T) \rightarrow H^z_X(S \times T) \rightarrow H^z_X(S \times T_\psi) \rightarrow$$

4* série — TOME 9 — 1976 — N° 1
from which we conclude that
\[H_{X \times Y}^*(S \otimes T) \to H_{X \times T}^*(S \otimes T) \]
is injective. From the following exact sequence and 2.6
\[\to H_{X \times T}^*(S \otimes T) \to H^*(S \otimes T) \to H^*(S_{\mathbb{P}} \otimes T) \to \]
follows that
\[H_{X \times T}^*(S \otimes T) \to H^*(S \otimes T) \]
is injective. Compose the last two results and write still another long exact sequence to derive the result.

Q. E. D.

Proposition 4.1. — Let \(K'' \) denote a finite double complex on the topological space \(X \). Suppose \(Z \) is a closed subset of \(X \) such that \(K''_p \), has support in \(Z \) for all \(p \in \mathbb{Z} \). Then
\[\text{ch}^2(\text{tot } K'') = \sum (-1)^p \text{ch}^2(K''_p), \]
where \(\text{tot } K'' \) denotes the total single complex associated to \(K'' \).

Proof. — We shall first change notation and let \(K'' \) denote the double indexed family of vector bundles on \(X \) underlying the above double complex. Let \(C(K'') \) denote the fibre space over \(X \) whose sections are pairs \((\partial', \partial'') \) of endomorphisms of \(K'' \) such that \((K'', \partial', \partial'') \) form a double complex. Let \(E'' \) denote the canonical double complex on \(C(K'') \) and \(C_{\mathbb{P}} \) the complement of the support of \(\text{tot } E'' \).

Consider now a fixed pair \((\partial', \partial'') \) as above and assume that \((K'', 0, \partial'') \) has support in \(Z \). Consider the map of spaces \(X: \)
\[\theta: X \times \mathbb{A}^1 \to C(K'') \]
which on the section level is given by
\[t \mapsto (K'', t \partial', \partial''). \]
Clearly
\[\theta(X - Z) \subseteq C_{\mathbb{P}} \]
and
\[\theta^*(\text{tot } E'') = \text{tot}(K'', t \partial', \partial''). \]
Conclusion by (1.6), (1.7) and a simple homotopy argument.

Q. E. D.
Corollary 4.2. — Consider an exact sequence of complexes of vector bundles on X:

$$0 \to K' \to L' \to M' \to 0$$

and suppose all three complexes have support in the closed subset Z of X. Then

$$\text{ch}^Z(L') = \text{ch}^Z(K') + \text{ch}^Z(M').$$

Proof. — Consider an appropriate double complex and apply 4.1 twice.

Q. E. D.

Corollary 4.3. — Let $f: K' \to L'$ be a linear map of complexes on X and let K' and L' have support in Z. If for all $x \in X$:

$$H'(f_x): H'(K'_x) \to H'(L'_x)$$

is an isomorphism, then

$$\text{ch}^Z(K') = \text{ch}^Z(L').$$

Proof. — Construct the mapping cone and apply 4.2.

Q. E. D.

5. Formulas without denominators

Let Z be a closed subspace of the space X and consider the commutative graded ring with 1:

$$Z \oplus \tilde{H}_Z^c(X; Z^+).$$

To this we associate

$$1 + \tilde{H}_Z^c(X; Z)^+ = 1 + \prod_{l \geq 1} H^2_{2l}(X; Z)$$

which is an abelian group under cup product. Recall that $1 + \tilde{H}_Z^c(X; Z)^+$ comes equipped with a product \star with the property

$$(1 + x_m + \text{higher terms}) \star (1 + y_n + \text{higher terms}) =$$

$$1 - \frac{(n+m-1)!}{(m-1)!(n-1)!} x_m y_n + \text{higher terms}$$

(5.1)

[6] (0, App. § 3).
If \(K' \) is a complex on \(X \) with support in \(Z \), we put

\[
\tilde{c}^Z(K') = 1 + c^Z(K'),
\]

\[
\tilde{c}^Z(K') \in 1 + \hat{H}^*_e(X; Z)^+.
\]

With the notation of the corresponding formulas for \(\text{ch}^Z \), 1.4-8, we have

\[(5.2) \quad \tilde{c}^Z(f^*L') = f^*\tilde{c}^Y(L'), \]

\[(5.3) \quad r(\tilde{c}^Z(K')) = \prod_l c.(K^{2l}) c.(K^{2l-1})^{-1}, \]

\[(5.4) \quad \tilde{c}^Z(K'[1]) = \tilde{c}^Z(K')^{-1}, \]

\[(5.5) \quad \tilde{c}^Z(K' \oplus L') = \tilde{c}^Z(K')\tilde{c}^Z(L'), \]

\[(5.6) \quad \tilde{c}^Z \text{odd}(K' \otimes L') = \tilde{c}^Z(K') \star \tilde{c}^Y(L'). \]

These formulas are easily derived by the method developed in paragraph 4. From \textit{loc. cit.} follows

\[(5.7) \quad \text{Suppose } c^Z(K') = a_n + \text{higher terms, then } \text{ch}^Z(K') = 1/(-1)^n (n-1)! a_n + \text{higher terms}. \]

6. Riemann-Roch formula for the Thom class

Let \(\pi: E \rightarrow X \) denote a rank \(n \) vector bundle, and let \(\lambda_E \) denote the canonical complex on \(E \). Recall that \((\lambda_E)^l = \Lambda^l \pi^*E \). The Koszul complex, i.e. the complex dual to \(\lambda_E \) will be denoted \(\lambda_E^\vee \).

Proposition 6.1. — With the above notation

\[(-1)^n \text{Todd}(E^\vee) \text{ch}^X(\lambda_E) = \text{Todd}(E) \text{ch}^X(\lambda_E^\vee) = \text{Thom class of E}. \]

Proof. — Let \(\tilde{E} = \text{Proj}(E \oplus 1) \) and let \(H \) denote the canonical line bundle on \(\tilde{E} \). From the canonical imbedding ([1], p. 100):

\[H^\vee \subseteq E \oplus 1 \]

we derive the canonical section

\[s \in \Gamma(\tilde{E}, E \otimes H \otimes H). \]

The projection of \(s \) onto \(E \otimes H \) will be denoted

\[t \in \Gamma(\tilde{E}, E \otimes H). \]
The zero's of \(t \) all lie on the canonical section \(X \rightarrow \tilde{E} \). Consider the commutative diagram

\[
\begin{array}{ccc}
\tau \in \hat{H}^*_X(E; \mathbb{Q}) & \rightarrow & \hat{H}^*(\tilde{E}; \mathbb{Q}) \\
\downarrow & \Downarrow & \downarrow \\
\tau \in \hat{H}^*_X(E; \mathbb{Q}) & \rightarrow & \hat{H}^*(E; \mathbb{Q})
\end{array}
\]

where \(\tau \) denotes the Thom class. Let us first prove that

\[\tilde{r}(\tau) = c_n(E \otimes H). \]

For this let us note that \(\tilde{r} \) is injective. Namely, \(H^*(\tilde{E}; \mathbb{Q}) \rightarrow H^*(\tilde{E}-X; \mathbb{Q}) \) is surjective since the restriction to \(\tilde{E}-X \) of

\[1, c_1(H), \ldots, c_1(H)^{n-1} \]

form a basis for the \(H^*(X; \mathbb{Q}) \)-module \(H^*(E-X; \mathbb{Q}) \). Note that the restriction of \(c_n(E \otimes H) \) to \(\tilde{E}-X \) is zero because of the section \(t \). Let \(\sigma \in H^*_X(E) \) be such that

\[\tilde{r}(\sigma) = c_n(E \otimes H). \]

We shall show that \(\sigma \) is the Thom class. For this it suffices to treat the case \(X = P^i \). In this case \(c_n(E \otimes H) = c_1(H)^n \) and the statement is clear.

We shall now prove the first formula. Let \(\lambda^- \) denote the Koszul complex associated with the section \(t \) of \(E \otimes H \). The restriction of \(\lambda^- \) to \(E \) is \(\lambda^-_E \). Let us recall [8], Lemma 18 that for a rank \(n \) bundle \(N \) we have

\[(6.2) \quad \text{ch}(\lambda^-_N) = c_n(N) \text{Todd}(N)^{-1}. \]

The formula will now follow by applying (1.5) to \(\lambda^- \)

\[\tilde{r}(\text{ch}^xy^-) = \text{ch}(\lambda^-_E \otimes H) = c_n(E \otimes H) \text{Todd}(E \otimes H)^{-1}, \]

\[\text{Todd}(E \otimes H)^{-1} \equiv \text{Todd}(E)^{-1} \mod c_1(H), \]

\[c_n(E \otimes H) c_1(H) = 0 \]

as it follows from the fact that \(t \in \Gamma(\tilde{E}, E \otimes H \otimes H) \) has no zeros. Whence

\[\tilde{r}(\text{ch}^xy^-) = c_n(E \otimes H) \text{Todd}(E)^{-1}. \]

Q. E. D.

Remark. — The above formula should be considered as generalizations of formulas used in [2], [3], [4].
7. Multiplicity in algebraic geometry

In this paragraph we shall work in the framework of [7] and prove a fundamental relation 7.1 between local Chern classes and the multiplicity of local algebra [15], compare [2], 6.2.

Let V denote a smooth (connected) algebraic variety \mathbb{C} and $X \subseteq V$ a closed subvariety of codimension d. The local fundamental class will be denoted

$$\text{cl}^X \in \mathbb{H}^{2d}(V; \mathbb{Z}).$$

The fundamental class of X, i.e. the image of cl^X in $\mathbb{H}^{2d}(V; \mathbb{Z})$ will be denoted

$$\text{cl}(X) \in \mathbb{H}^{2d}(V; \mathbb{Z}).$$

For a coherent (algebraic) sheaf M on V with support in X, $l(M)$ denotes the length of the stalk of M at the generic point of X.

Theorem 7.1. — Let E' denote a complex of locally free coherent (algebraic) sheaves on V with $\text{Supp} (E') \subseteq X$. Then

$$\text{ch}^X(E') = \sum (-1)^k l(H^k(E')) \text{cl}^X + \text{higher terms.}$$

Proof. — Let O denote the local ring of V at the generic point of X, m denotes the maximal ideal of O. Let $K_m(O)$ denote the Grothendieck group of the category of finite complexes of finitely generated free O-modules with homology of finite length (modulo exact complexes). We are going to define a topological character

$$l : K_m(O) \to \mathbb{Z}.$$

Recall first that if U is a Zariski open subset of V with $X \cap U \neq \emptyset$, then the restriction map

$$\mathbb{H}^{2d}(V; \mathbb{Z}) \to \mathbb{H}^{2d}_{X \cap U}(U; \mathbb{Z})$$

is an isomorphism which carries cl^X to $\text{cl}^{X \cap U}$. From this follows that there is a character l as above such that for any complex E' as in the theorem

$$\text{ch}^X(E') = l(E') \text{cl}^X + \text{higher terms.}$$

As is well known $K_m(O) \cong \mathbb{Z}$ since O is a regular local ring [6]. Thus it will suffice to find a resolution E' of O/m by finitely generated free sheaves with $l(E') = 1$. Let us first consider the case $V = \mathbb{A}^d$, $X = \{0\}$. In this case we can take for E' the standard Koszul complex. That $l(E') = 1$ follows from 6.1.
In the general case choose a Zariski open set U of V and $f_1, \ldots, f_d \in \Gamma(U, O_Y)$ which defines $X \cap U$. This defines a map

$$f : U \to \mathbb{A}^d$$

with $f^{-1}(\{0\}) = U \cap X$. It follows that

$$f^* : H^{2d}_{(\emptyset)}(\mathbb{A}^d; \mathbb{Z}) \to H^{2d}_{X \cap U}(U; \mathbb{Z})$$

is an isomorphism. The pull-back of the complex considered before will now do the job.

Q. E. D.

Remark 7.2. — Taking in particular a resolution of the structure sheaf O_X of X we obtain by means of (5.7):

$$c_d(O_X) = (-1)^{d-1}(d-1)! \text{cl}(X)$$

Remark 7.3. Combining 7.1 and 1.8 we obtain Serre’s “alternating Tor-formula” [15] for the topological intersection number.

REFERENCES

(Manuscrit reçu le 27 octobre 1975.)

Birger IVERSEN,
Matematisk Institut,
Universitetsparken Ny Munkegade.
8000 Aarhus C,
Dannemark.