Small positive values for supercritical branching processes in random environment

Vincent Bansayea and Christian Böinghoffb

aCMAP, Ecole Polytechnique, Route de Saclay, 91405 Palaiseau Cedex, France. E-mail: vincent.bansaye@polytechnique.edu

bDepartment of Mathematics, Goethe-University Frankfurt/Main, Deutschland. E-mail: boeinghoff@math.uni-frankfurt.de

Received 14 March 2012; revised 15 October 2012; accepted 1 January 2013

Abstract. Branching Processes in Random Environment (BPREs) \((Z_n: n \geq 0)\) are the generalization of Galton–Watson processes where in each generation the reproduction law is picked randomly in an i.i.d. manner. In the supercritical case, the process survives with positive probability and then almost surely grows geometrically. This paper focuses on rare events when the process takes positive but small values for large times.

We describe the asymptotic behavior of \(P(1 \leq Z_n \leq k | Z_0 = i)\), \(k, i \in \mathbb{N}\) as \(n \to \infty\). More precisely, we characterize the exponential decrease of \(P(Z_n = k | Z_0 = i)\) using a spine representation due to Geiger. We then provide some bounds for this rate of decrease.

If the reproduction laws are linear fractional, this rate becomes more explicit and two regimes appear. Moreover, we show that these regimes affect the asymptotic behavior of the most recent common ancestor, when the population is conditioned to be small but positive for large times.

MSC: 60J80; 60K37; 60J05; 60F17; 92D25

Keywords: Supercritical branching processes; Random environment; Large deviations; Phase transitions

1. Introduction

A branching process in random environment (BPRE) is a discrete time and discrete size population model going back to \([7,29]\). In each generation, an offspring distribution is picked at random, independently from one generation to the other. We can think of a population of plants having a one-year life-cycle. In each year, the outer conditions vary in a random fashion. Given these conditions, all individuals reproduce independently according to the same mechanism. Thus, it satisfies both the Markov and branching properties.

Recently, the problems of rare events and large deviations have attracted attention \([9,10,12,20,24,25]\). However, the problem of small positive values has not been treated except in the easiest case which assumes non-extinction,
i.e. \(\mathbb{P}(Z_1 \geq 1 | Z_0 = 1) \geq 1 \) (see [9]). For Galton–Watson processes, the explicit equivalent of this probability is well-known (see e.g. [8], Chapter I, Section 11, Theorem 3). In particular, denoting by \(f \) the probability generating function of the reproduction law, we have for \(k \) large enough,

\[
\varrho := \lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(1 \leq Z_n \leq k | Z_0 = 1) = \log f'(p_e),
\]

(1.1)

where \(p_e = \mathbb{P}(3n \in \mathbb{N}: Z_n = 0 | Z_0 = 1) \). Moreover, the rate of decrease remains equal to \(\varrho \) if \(k_n \) decreases sub-exponentially. It means that as soon as \(k_n / \exp(\delta n) \to 0 \) as \(n \to \infty \) for every \(\delta > 0 \), then \(\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(1 \leq Z_n \leq k_n | Z_0 = 1) = \varrho \). In this paper, we focus on the existence and characterization of \(\varrho \) in the random environment framework. It is organized as follows.

First, we give the classical notations and properties of BPRE. In the next section, we state our results. We prove the existence of \(\varrho \) and a characterization of its value via a spine construction, give a lower bound and an upper bound which have natural interpretations. Finally, we specify our results in the linear fractional case, where two regimes appear, which are also visible in the time of the most recent common ancestor (MRCA).

In the rest of the paper, the proofs of these results are presented. Section 3 deals with a tree construction due to Geiger, which is used in Section 4 to characterize \(\rho \). In Section 5.2, we prove that \(\rho > 0 \) under suitable assumptions. In Section 5.3, we prove a lower bound for \(\varrho \) in terms of the rate function of the associated random walk. Finally, in Sections 6.1 and 6.2 the statements for the linear fractional case are proved using the general results obtained before, whereas in Section 7, we present some details on two examples.

For the formal definition of a branching process \(Z \) in random environment, let \(Q \) be a random variable taking values in \(\Delta \), the space of all probability measures on \(\mathbb{N}_0 = \{0, 1, 2, \ldots\} \). We denote by

\[
m_q := \sum_{k \geq 0} k q([k])
\]

the mean number of offsprings of \(q \in \Delta \). For simplicity of notation, we will shorten \(q(\cdot) \) to \(q(\cdot) \) throughout this paper. An infinite sequence \(E = (Q_1, Q_2, \ldots) \) of independent, identically distributed (i.i.d.) copies of \(Q \) is called a random environment. Then the integer valued process \((Z_n: n \geq 0) \) is called a branching process in the random environment \(E \) if \(Z_0 \) is independent of \(E \) and it satisfies

\[
\mathcal{L}(Z_n|E, Z_0, \ldots, Z_{n-1}) = Q_n^{s Z_{n-1}} \quad \text{a.s.}
\]

(1.2)

for every \(n \geq 1 \), where \(q^\ast z \) is the \(z \)-fold convolution of the measure \(q \). We introduce the probability generating function (p.g.f.) of \(Q_n \), which is denoted by \(f_n \) and defined by

\[
f_n(s) := \sum_{k=0}^\infty s^k Q_n(k) \quad (s \in [0, 1]).
\]

In the whole paper, we denote indifferently the associated random environment by \(E = (f_1, f_2, \ldots) \) and \(E = (Q_1, Q_2, \ldots) \). The characterization (1.2) of the law of \(Z \) becomes

\[
\mathbb{E}[s^{Z_n}|E, Z_0, \ldots, Z_{n-1}] = f_n(s)Z_{n-1} \quad \text{a.s.} \ (0 \leq s \leq 1, n \geq 1).
\]

Many properties of \(Z \) are mainly determined by the random walk associated with the environment \((S_n: n \in \mathbb{N}_0) \) which is defined by

\[
S_0 = 0, \quad S_n - S_{n-1} = X_n \quad (n \geq 1),
\]

where

\[
X_n := \log m_{Q_n} = \log f_n'(1)
\]

are i.i.d. copies of the logarithm of the mean number of offsprings \(X := \log(m_Q) = \log(f'(1)) \).
Thus, one can check easily that
\[
\mathbb{E}[Z_n | Q_1, \ldots, Q_n, Z_0 = 1] = e^{s_n} \quad \text{a.s.}
\] \hspace{1cm} (1.3)

There is a well-known classification of BPRE [7], which we recall here in the case $\mathbb{E}[X] < \infty$. In the subcritical case ($\mathbb{E}[X] < 0$), the population becomes extinct at an exponential rate in almost every environment. Also in the critical case ($\mathbb{E}[X] = 0$), the process becomes extinct a.s. if we exclude the degenerated case when $\mathbb{P}(Z_1 = 1 | Z_0 = 1) = 1$. In the supercritical case ($\mathbb{E}[X] > 0$), the process survives with positive probability under quite general assumptions on the offspring distributions (see [29]). Then $\mathbb{E}[Z_1 \log^+(Z_1)/f'(1)] < \infty$ ensures that the martingale $e^{-s_n} Z_n$ has a positive finite limit on the non-extinction event:
\[
\lim_{n \to \infty} e^{-s_n} Z_n = W \quad \text{a.s.,} \quad \mathbb{P}(W > 0) = \mathbb{P}(\forall n \in \mathbb{N}: Z_n > 0 | Z_0 = 1) > 0.
\]

The problem of small positive values is linked to the left tail of W and the existence of harmonic moments. In the Galton–Watson case, we refer to [6,15,28]. For BPRE, Hambly [19] gives the tail of I and introduce the set $\text{Cl}_n = \{ j \geq 1: \mathbb{P}(Q(j) > 0, Q(0) > 0) > 0 \}$.

Let us define
\[
\mathcal{I} := \{ j \geq 1: \mathbb{P}(Q(j) > 0, Q(0) > 0) > 0 \}
\]
and introduce the set $\text{Cl}(\mathcal{I})$ of integers that can be reached from $z \in \mathcal{I}$, i.e.
\[
\text{Cl}(\mathcal{I}) := \{ k \geq 1: \exists n \geq 0 \text{ with } \mathbb{P}_z(Z_n = k) > 0 \}.
\]

Analogously, we define $\text{Cl}(\mathcal{I})$ as the set of integers which can be reached from \mathcal{I} by the process Z. More precisely,
\[
\text{Cl}(\mathcal{I}) := \{ k \geq 1: \exists n \geq 0 \text{ and } j \in \mathcal{I} \text{ with } \mathbb{P}_j(Z_n = k) > 0 \}.
\]

We observe that $\mathcal{I} \subseteq \text{Cl}(\mathcal{I})$ and if $\mathbb{P}(Q(0) + Q(1) < 1) > 0$ and $\mathbb{P}(Q(0) > 0, Q(1) > 0) > 0$, then $\text{Cl}(\mathcal{I}) = \mathbb{N}$.

We are interested in the event $\{ Z_n = j \}$ for large n. First, we recall that the case $\mathbb{P}(Z_1 = 0) = 0$ is easier and the rate of decrease of the probability is known [9]. Indeed, then Z is nondecreasing and for $k \geq j \in \mathbb{N}$ such that $\mathbb{P}_k(Z_l = j) > 0$ for some $l \geq 0$, we have
\[
\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}_k(Z_n = j) = -k \varrho, \quad \text{with } \varrho = -\log \mathbb{P}_1(Z_1 = 1).
\]
We note that in the case \(P_1(Z_1 = 1) = P(Z_1 = 0) = 0 \), the branching process grows exponentially in almost every environment and the probability on the left-hand side is zero if \(n \) is large enough. Thus, let us now focus on the supercritical case with possible extinction, which ensures that \(I \) is not empty. The expression of \(\rho \) in the next theorem will be used to get the other forthcoming results.

Theorem 2.1. We assume that \(\mathbb{E}[X] > 0 \) and \(P(Z_1 = 0) > 0 \). Then the following limits exist and coincide for all \(k, j \in \text{Cl}(I) \),

\[
\rho := - \lim_{n \to \infty} \frac{1}{n} \log P_k(Z_n = j) = - \lim_{n \to \infty} \frac{1}{n} \log \mathbb{E} \left[Q_n(z_0) f_{0,n}(0)^{z_0-1} \prod_{i=1}^{n-1} f_i(f_{i,n}(0)) \right]
\]

where \(z_0 \) is the smallest element of \(I \). The common limit \(\rho \) belongs to \([0, \infty)\).

The proof is given in Section 4 and results from Lemmas 4.1 and 4.2.

The right-hand side expression of \(\rho \) correspond to the event \(\{Z_n = j\} \) explained by a “spine structure”. More precisely, one individual survives until generation \(n \) and gives birth to the \(j \) survivors in the very last generations, whereas the other subtrees become extinct (see forthcoming Lemma 3.2 for details). However, we are seeing in the linear fractional case (Corollary 2.3) that a multi-spine structure can also explain \(\{Z_n = j\} \) in some regime. Thus the optimal strategy is nontrivial and will here only be discussed in the linear fractional case.

The proof of Theorem 2.1 is easy if we consider the limit of \(\frac{1}{n} \log P_1(Z_n = 1) \) as \(n \to \infty \). In this case, a direct calculation of the first derivative of \(f_{0,n} \) yields the claim. However, the proof for the general case is more involved. Here, we use probabilistic arguments, which rely on a spine decomposition of the conditioned branching tree via Geiger construction.

We also note that we need to focus on \(i, j \in \text{Cl}(I) \). Indeed, \(\lim_{n \to \infty} \frac{1}{n} \log P_1(Z_n = i) \) and \(\lim_{n \to \infty} \frac{1}{n} \log P_1(Z_n = j) \) may both exist and be finite for \(i \neq j \), but have different values. To see that, one can consider two environments \(q_1 \) and \(q_2 \) such that

\[
P(Q_1 = q_1) = 1 - P(Q_1 = q_2) > 0; \quad q_1(1) = 1; q_2(0) + q_2(2) = 1.
\]

Moreover, the case \(-\infty < \limsup_{n \to \infty} \frac{1}{n} \log P_k(Z_n = k) < \liminf_{n \to \infty} \frac{1}{n} \log P_1(Z_n = k) < 0 \) with \(k > 1 \) is also possible. These results are developed in the two examples given in Section 7 at the end of this paper.

In the Galton–Watson case, \(f \) is constant and for every \(i \geq 0 \), \(f_i = f \) a.s. Then \(f_{i,n}(0) \to p_e \) as \(n \to \infty \) and we recover the classical result (1.1).

The results and remarks above could lead to the conjecture \(\rho = -\log \mathbb{E}[f'(p(f))] \), where \(p(f) = \inf\{s \in [0, 1]: f(s) = s\} \). Roughly speaking, it would correspond to integrate the value obtained in the Galton–Watson case with respect to the environment. The two following results show that this is not true in general.

To prove that the probability of staying small but alive decays exponentially (i.e. \(\rho > 0 \)) requires some assumptions. To avoid too much technicalities, we are assuming

Assumption 1. There exists \(\gamma > 0 \) such that \(Q(0) < 1 - \gamma \) a.s. and \(\mathbb{E}[|X|] < \infty \).

Similarly, to give an upper bound of \(\rho \) in terms of the rate function of the random walk \(S \), we require the following Assumption. The non-lattice condition is only required for a functional limit result which is taken from [2], whereas the truncated moment assumption is classically used for lower bounds of the survival probability of BPREs.

Assumption 2. We assume that \(S \) is non-lattice, i.e. for every \(r > 0 \), \(P(X \in r\mathbb{Z}) < 1 \).

Moreover, there exist \(\varepsilon > 0 \) and \(a \in \mathbb{N} \) such that for every \(x > 0 \),

\[
\mathbb{E}\left[(\log^+ \xi Q(a))^{2+\varepsilon} | X > -x \right] < \infty,
\]

where \(\log^+ x := \log(\max(x, 1)) \) and \(\xi Q(a) \) is the truncated standardized second moment

\[
\xi Q(a) := \sum_{y=a}^{\infty} y^2 q(y)/m^2_q, \quad a \in \mathbb{N}, q \in \Delta.
\]
Proposition 2.2. We assume that there exists \(s > 0 \) such that \(\mathbb{E}[e^{-sX}] < \infty \).

(i) If Assumption 1 is fulfilled, then \(\rho > 0 \).

(ii) If \(\mathbb{P}(X \geq 0) = 1 \) or Assumption 2 holds, then
\[
\varrho \leq -\log \inf_{\lambda \geq 0} \mathbb{E}\left[\exp(\lambda X)\right].
\]

We note that the exponential moment assumption is equivalent to the existence of a proper rate function \(\Lambda \) for the lower deviations of \(S \). The lower bound (i) is proved in Section 5.2. The second bound is the rate function of the random walk \(S \) evaluated in 0, say \(\Lambda(0) \). Indeed, recalling that \(\mathbb{E}[X] > 0 \), the supremum in the Legendre transform can be taken over \(\mathbb{R}^+ \) instead of \(\mathbb{R} \). Extracting \(-1\) yields the upper bound above. It is proved in Section 5.3 and used for the proof of the next Corollary 2.3. It can be reached and has a natural interpretation in terms of environmental stochasticity. Indeed, one way to keep the population bounded but alive comes from a ‘critical environmental’, which means \(S_n \approx 0 \). Then \(\mathbb{E}[Z_n|\mathcal{E}] = \exp(S_n) \) is neither small nor large and one can expect that the population is positive but bounded. The event \(\{S_n \approx 0\} \) is a large deviation event whose probability decreases exponentially with rate \(\Lambda(0) \). This bound is thus directly explained by the environmental stochasticity.

Now, we focus on the linear fractional case. We derive an explicit expression of \(\varrho \) and describe the position of the most recent common ancestor of the population conditioned to be positive but small. We recall that a probability generating function of a random variable \(R \) is linear fractional (LF) if there exist positive real numbers \(m \) and \(b \) such that
\[
f(s) = 1 - \frac{1 - s}{m^{-1} + bm^{-2}(1 - s)/2},
\]
where \(m = f'(1) \) and \(b = f''(1) \). This family includes the probability generating function of geometric distributions, with \(b = 2m^2 \). More precisely, LF distributions are geometric laws with a second free parameter \(b \) which allows to change the probability of the event \(\{R = 0\} \).

Corollary 2.3. We assume that \(f \) is a.s. linear fractional, \(\mathbb{E}[|X|] < \infty, \mathbb{E}[X^2e^{-X}] < \infty \) and \(\mathbb{P}(Z_1 = 0) > 0 \).

We assume also that either \(\mathbb{P}(X \geq 0) = 1 \) or Assumption 2 hold. Then
\[
\varrho = \begin{cases}
- \log \mathbb{E}[e^{-X}], & \text{if } \mathbb{E}[Xe^{-X}] \geq 0, \\
- \log \inf_{\lambda \geq 0} \mathbb{E}[\exp(\lambda X)] & (= \Lambda(0)), \text{ else.}
\end{cases}
\]

This result is also stated in the Ph.D. of one of the authors and can be found in [11]. On the level of large deviation (log scale), two regimes in the supercritical case are visible.

If \(\mathbb{E}[Xe^{-X}] < 0 \), the event \(\{Z_n = k\} \) is a typical event in a suitable exceptional environment, say “critical”. This rare event is then explained (only) by the environmental stochasticity.

If \(\mathbb{E}[Xe^{-X}] \geq 0 \), we recover a term analogous to the Galton–Watson case, which is smaller than \(\Lambda(0) \). The rare event is then due to demographical stochasticity.

These two regimes seem to be analogous to the two regimes in the subcritical case, which deal with the asymptotic behavior of \(Z_n \), see e.g. [13,17,18]. Such regimes for supercritical branching processes have already been observed in [23] in the continuous framework (which essentially represents linear fractional offspring-distributions).

Let us now focus on the most recent common ancestor (MRCA) of the population conditioned on this rare event. More precisely, let \(T^n \) be the set of all ordered, rooted trees of height exactly \(n \). We refer to [27] for classical definitions. We say that an individual \(i_{n_2} \) in generation \(n_2 \) stems from an individual \(i_{n_1} \) iff there are individuals \(i_{n_2-1}, \ldots, i_{n_1+1} \) such that \(i_{n_2} \) is a child of \(i_{n_2-1} \), \(i_{n_2-1} \) is a child of \(i_{n_2-2}, \ldots, \) and \(i_{n_1+1} \) is a child of \(i_{n_1} \). Let \(T_n \in T^n \) be the random branching tree, generated by the process \((Z_k)_{0 \leq k \leq n} \) conditioned on \(Z_n > 0 \) and denote by \(\text{MRCA}_n \) the most recent common ancestor of the population at time \(n \). More precisely, we consider the events
\[
A^+_k := \{ \text{all individuals in generation } n \text{ stem from one individual in generation } n - k \}
\]
and define the age of the MRCA in generation \(n \) as the number of generations one has to go back in the past until all individuals in generation \(n \) have a single common ancestor:
\[
\text{MRCA}_n := \min\{k = 1, 2, \ldots, n | A^+_k \text{ holds} \}.
\]
The case \(\mathbb{P}(Z_1 = 0) = 0 \) is trivial: extinction is not possible, so \(q = -\log \mathbb{P}_1(Z_1 = 1) \) and \(\mathbb{P}_2(\text{MRCA}_n = n|Z_n = 2) = 1 \). It is excluded in the statement below. Moreover, for the sake of simplicity, we restrict the study of the MRCA to starting from one individual and conditioning on \(Z_n = 2 \).

Corollary 2.4. We make the same assumptions as in the previous corollary.

(i) If \(\mathbb{E}[Xe^{-X}] < 0 \), then

\[
\liminf_{n \to \infty} \mathbb{P}_1(\text{MRCA}_n = n|Z_n = 2) > 0; \quad \liminf_{n \to \infty} \mathbb{P}_1(\text{MRCA}_n = 1|Z_n = 2) > 0.
\]

(ii) If \(\mathbb{E}[Xe^{-X}] = 0 \), then for every sequence \((x_n)n \in \mathbb{N}\) such that \(x_n \in [1,n] \) for every \(n \), we have

\[
\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}_1(\text{MRCA}_n = x_n|Z_n = 2) = 0.
\]

Moreover, under the additional assumption \(\mathbb{E}[f''(1)] < \infty \), there exist two positive finite constants \(c, C \) such that for every \(n \in \mathbb{N}, \)

\[
c \leq n\mathbb{P}_1(\text{MRCA}_n = n|Z_n = 2) \leq C
\]

and if \(\mathbb{E}[f''(1)/(1 - f(0))^2] < \infty \), then for every \(\delta \in (0,1) \), there exist two positive finite constants \(c', C' \) such that for every \(n \in \mathbb{N}, \)

\[
c' \leq n^{3/2}\mathbb{P}_1(\text{MRCA}_n = \lfloor \delta n \rfloor|Z_n = 2) \leq C'.
\]

(iii) If \(\mathbb{E}[Xe^{-X}] > 0 \) and \(\mathbb{E}[e^{(-1-s)X}] < \infty \) for some \(s > 0 \), then for every \(\delta \in (0,1), \)

\[
\limsup_{n \to \infty} \frac{1}{n} \log \mathbb{P}_1(\text{MRCA}_n > \delta n|Z_n = 2) < 0.
\]

Thus three regimes appear for the most recent common ancestor of the population.

If \(\mathbb{E}[Xe^{-X}] > 0 \), which we call the ‘strongly’ supercritical case, the MRCA is at the end (close to the actual time). The probability that the MRCA is far away from the final generations decreases exponentially. Such a result is classical for branching processes which do not explode, such as subcritical Galton–Watson processes conditioned on survival. It corresponds to a spine decomposition of the population whose subtrees become extinct [22]. Conditionally on \(\{Z_n = 2\} \), \(S \) is still a random walk with positive drift and will be typically large. Thus the conditioned process is typically small throughout all generations (as in the Galton–Watson case) as growing and then becoming small again within the favorable environment has a very small probability. Consequently, the MRCA will be close to generation \(n \).

But in the ‘weakly’ supercritical case (\(\mathbb{E}[Xe^{-X}] < 0 \), conditionally on \(\{Z_n = 2\} \), the MRCA is either at the beginning (close to the root of the tree) or at the end (close to generation \(n \)). Such a situation is much less usual. It has already been observed in [14] for the subcritical reduced tree of linear fractional BPRE conditioned to survive. Here, as indicated in the proof of Proposition 2.2(ii), the random walk \(S \) conditioned on \(\{Z_n = 2\} \) typically looks like an excursion. It means that \(S \) is conditioned on the event \(\{\min\{S_0, \ldots , S_n\} \geq 0, S_n \leq c\} \). In such an environment, subtrees that are either born at the beginning or at the end may survive until the end. All subtrees being born at some generation \(\lfloor \delta n \rfloor \), \(\delta \in (0,1) \) experience an unfavorable environment and become extinct. This can be seen as follows. During an excursion from 0 to \(n \), typically \(S_{\lfloor \delta n \rfloor} > 0 \) and thus \(e^{S_{\lfloor \delta n \rfloor}} \ll 0 \) and the corresponding subtree will become extinct.

Finally, in the intermediate case (\(\mathbb{E}[Xe^{-X}] = 0 \), the MRCA is close to the end, but the probability that the MRCA is far away from the end only decreases polynomially. The intermediately supercritical regime is in-between the two regimes described above and conditioned on \(\{Z_n = 2\} \), the typical environment will neither be an excursion nor a random walk with positive drift.

One can expect several more detailed results describing the three regimes, which are beyond the scope of this paper.
3. The Geiger construction for a branching process in varying environment (BPVE)

In this section, we work in a quenched environment, which means that we fix the environment \(e := (q_1, q_2, \ldots) \). We consider a branching process in varying environment \(e \) and denote by \(P(\cdot) \) (resp. \(E \)) the associated probability (resp. expectation), i.e.

\[
P(Z_1 = k_1, \ldots, Z_n = k_n) = \mathbb{P}(Z_1 = k_1, \ldots, Z_n = k_n | \mathcal{E} = e).
\]

Thus \((f_1, f_2, \ldots)\) is now fixed and the probability generating function of \(Z \) is given by

\[
E[s^{Z_n} | Z_0 = k] = f_{0,n}(s)^k \quad (0 \leq s \leq 1).
\]

We use a construction of \(Z \) conditioned on survival, which is due to [16], Proposition 2.1, and extends the spine construction of Galton–Watson processes [22]. In each generation, the individuals are labeled by the integers \(i = 1, 2, \ldots \) in a breadth-first manner (“from the left to the right”). We follow then the ‘ancestral line’ of the leftmost individual labeled \(L \) and Figure 1) and for every \(n \) distribution of \(Z \) we use a construction of \(Z \).

Let us give more details of this construction. We assume that the process starts with \(Z_0 = z \) and denote \(P_z(\cdot) := P(\cdot | Z_0 = z) \). We define for \(0 \leq k < n \),

\[
p_{k,n} := P(Z_n > 0 | Z_k = 1) = 1 - f_{k,n}(0), \quad p_{n,n} := 1.
\]

We can specify the distribution of the number \(Y_k \) of unconditioned trees founded by the ancestral line in generation \(k \), at the right of \(\mathbb{L}_k \). In generation 0, for \(0 \leq i \leq z - 1 \),

\[
P_z(Y_0 = i | Z_0 > 0) := P_z(\mathbb{L}_0 = z - i | Z_0 > 0) = \frac{P(Z_n > 0 | Z_0 = 1) P(Z_n = 0 | Z_0 = 1) z^{-i-1}}{P(Z_n > 0 | Z_0 = 1)}.
\]

More generally, for all \(1 \leq k \leq n \) and \(i \geq 0 \), (3.1) yields

\[
P(Y_k = i | Z_n > 0) := P(Z_k - \mathbb{L}_k = i | Z_n > 0, Z_{k-1} = 1)
\]

\[
= \sum_{j=i+1}^{\infty} P(Z_k = j, \mathbb{L}_k = j - i | Z_n > 0, Z_{k-1} = 1)
\]

\[
= \frac{p_{k,n}}{p_{k-1,n}} \sum_{j=i+1}^{\infty} q_j f_{k,n}(0)^{j-i-1}.
\]

Finally, we note that \(f_{n,n}(0) = 0 \), thus for \(k = n \), we have \(P(Y_n = i | Z_n > 0) = \frac{q_n(i+1)}{p_{n-1,n}} \).
Here, we do not require the full description of the conditioned tree since we are only interested in the population alive at time \(n \). Thus we do not have to consider the trees conditioned on extinction, which grow to the left of \(L \). We can construct the population alive in generation \(n \) using the i.i.d random variables \(\hat{Y}_0, \hat{Y}_1, \hat{Y}_2, \ldots, \hat{Y}_n \) whose distribution is specified by (3.2) and (3.3):

\[
P(\hat{Y}_k = i) = P(Y_k = i | Z_n > 0).
\]

Let \((\hat{Z}^{(k)}_j)_{j \geq 0} \) be independent branching processes in varying environment which are distributed as \(Z \) for \(j > k \) and satisfy

\[
\hat{Z}^{(k)}_j := 0 \quad \text{for} \quad j < k, \quad \hat{Z}^{(k)}_k := \hat{Y}_k.
\]

More precisely, for all \(0 \leq k \leq n \) and \(z_0, \ldots, z_n \geq 0 \),

\[
P(\hat{Z}^{(k)}_0 = 0, \ldots, \hat{Z}^{(k)}_{k-1} = 0, \hat{Z}^{(k)}_k = z_k, \hat{Z}^{(k)}_{k+1} = z_{k+1}, \ldots, \hat{Z}^{(k)}_n = z_n) = P(\hat{Y}_k = z_k)P(Z_{k+1} = z_{k+1}, \ldots, Z_n = z_n | Z_k = z_k).
\]

The sizes of the independent subtrees generated by the ancestral line in generation \(k \), which may survive until generation \(n \), are given by \((\hat{Z}^{(k)}_j)_{0 \leq j \leq n}, 0 \leq k \leq n - 1 \). In particular,

\[
\mathcal{L}(Z_n | Z_n > 0) = \mathcal{L}(\hat{Z}^{(0)}_n + \cdots + \hat{Z}^{(n-1)}_n + \hat{Y}_n + 1).
\]

(3.4)

Lemma 3.1. The probability that all subtrees emerging before generation \(n \) become extinct before generation \(n \) is given for \(z \geq 1 \) by

\[
P_z(\hat{Z}^{(0)}_n + \cdots + \hat{Z}^{(n-1)}_n = 0) = \prod_{k=0}^{n-1} P_z(\hat{Z}^{(k)}_n = 0) = \frac{p_{n-1,n}}{p_{-1,n}} \prod_{k=0}^{n-1} f'_k(f_{k,n}(0)),
\]

where we use the following convenient notation \(f_0(s) := s^z, p_{-1,n} := P(Z_n > 0) \).
Proof. First, we compute the probability that the subtree generated by the ancestral line in generation k does not survive until generation n, i.e. $\{\hat{Z}_n^{(k)} = 0\}$. By (3.3), for $k \geq 1$,

$$
P(\hat{Z}_n^{(k)} = 0) = \sum_{i=0}^{\infty} P_z(\hat{Y}_k = i) P(Z_n = 0 | Z_k = i)
$$

$$
= \frac{p_{k,n}}{p_{k-1,n}} \sum_{i=0}^{\infty} \sum_{j=i+1}^{\infty} q_k(j) f_{k,n}(0)^{j-1} \cdot f_{k,n}(0)^i
$$

$$
= \frac{p_{k,n}}{p_{k-1,n}} \sum_{i=0}^{\infty} \sum_{j=i+1}^{\infty} q_k(j) f_{k,n}(0)^{j-1}
$$

$$
= \frac{p_{k,n}}{p_{k-1,n}} \sum_{j=1}^{\infty} j q_k(j) f_{k,n}(0)^{j-1}
$$

$$
= \frac{p_{k,n}}{p_{k-1,n}} f_k'(f_{k,n}(0)). \tag{3.5}
$$

Similarly, we get from (3.2) that

$$
P_z(\hat{Z}_n^{(0)} = 0) = \sum_{i=0}^{z-1} P_z(Y_0 = i | Z_n > 0) P(Z_n = 0 | Z_0 = i)
$$

$$
= \sum_{i=0}^{z-1} \left(1 - f_{0,n}(0) \right) f_{0,n}(0)^{z-i-1} f_{0,n}(0)^i
$$

$$
= \frac{p_{0,n}}{p_{-1,n}} z f_{0,n}(0)^{z-1} = \frac{p_{0,n}}{p_{-1,n}} f_0'(f_{0,n}(0))
$$

with the convention $f_0(s) = s^z$. Adding that the subtrees given by $(\hat{Z}_j^{(k)})_{j \geq 0}$ are independent, a telescope argument yields the claim. \square

For the next lemma, we introduce the last generation before n when the environment allows extinction:

$$
\kappa_n := \sup \{ 1 \leq k \leq n : q_k(0) > 0 \}, \quad (\sup \emptyset = 0).
$$

Note that κ_n only depends on the environment up to generation n.

Lemma 3.2. Let z_0 be the smallest element in I. Then,

$$
P_{z_0}(Z_n = z_0 | Z_n > 0) = q_{\kappa_n}(z_0) \frac{p_{k-1,n}}{p_{k,n}} \times \prod_{k=0}^{\kappa_n-1} \frac{p_{k,k_n}}{p_{k-1,k_n}} f_k'(f_{k,n}(0)) \times \prod_{j=\kappa_n+1}^{n} q_j(1)^{z_0},
$$

where we recall the following convenient notation $f_0(s) = s^z$, $p_{-1,n} = P_z(Z_n > 0)$.

Proof. By definition of I and z_0, $q(0) > 0$ implies $q(k) = 0$ for every $1 \leq k < z_0$. We first deal with the case $\kappa_n > 0$. Then,

$$
q_{\kappa_n}(0) > 0, \quad q_{\kappa_n}(k) = 0 \quad \text{if } 1 \leq k < z_0; \quad q_{\kappa_n+1}(0) = \cdots = q_n(0) = 0.
$$

In particular the number of individuals in generation κ_n is at least z_0 times the number of individuals in generation $\kappa_n - 1$ who leave at least one offspring in generation κ_n. Moreover, as extinction is not possible after generation κ_n, it holds that $Z_{\kappa_n} \leq Z_{\kappa_n+1} \leq \cdots \leq Z_n$.

Let us consider the event \(Z_n = z_0 > 0 \). Then \(Z_{\kappa_n - 1} > 0 \) and \(Z_{\kappa_n} \geq z_0 \). So \(Z_{\kappa_n} = Z_{\kappa_n + 1} = \cdots = Z_n = z_0 \) and only a single individual in generation \(\kappa_n - 1 \) leaves one offspring (or more) in generation \(\kappa_n \). This individual lives on the ancestral line. Thus all the subtrees to the right of the ancestral line which are born before generation \(\kappa_n \), i.e. \(\hat{Z}_{\kappa_n}^{(0)} = \cdots = \hat{Z}_{\kappa_n}^{(\kappa_n - 1)} = 0 \). In generation \(\kappa_n - 1 \), the individual on the ancestral line has \(z_0 \) offsprings and \(\hat{Y}_{\kappa_n} = z_0 - 1 \). After generation \(\kappa_n \), all the individuals must leave exactly one offspring to keep the population constant until generation \(n \), since \(q_{\kappa_n + 1}^{(0)} = \cdots = q_n^{(0)} = 0 \). This probability is then given by \(q_j^{(1)z_0} \) in generation \(j > \kappa_n \). Moreover, (3.3) simplifies to \(P(\hat{Y}_{\kappa_n} = z_0 - 1) = q_{\kappa_n}(z_0) / p_{\kappa_n - 1, \kappa_n} \). We refer to Figure 2 for a picture. Using the previous lemma, it can be written as follows:

\[
P_{z_0}(Z_n = z_0) = \mathbb{P}_{z_0}(\hat{Z}_{\kappa_n} = \cdots = \hat{Z}_{\kappa_n - 1} = 0) \mathbb{P}(\hat{Y}_{\kappa_n} = z_0 - 1) \mathbb{P}_{z_0}(\hat{Z}_{\kappa_n}^{(\kappa_n)} + \cdots + \hat{Z}_{\kappa_n}^{(n - 1)} + Y_n + 1 = z_0)
= \left[\prod_{k=0}^{\kappa_n - 1} \frac{p_{k,n}}{p_{k-1,n}} \right] \frac{q_{\kappa_n}(z_0)}{p_{\kappa_n - 1, \kappa_n}} \mathbb{P}_{z_0}(\hat{Z}_{\kappa_n}^{(\kappa_n)} + \cdots + \hat{Z}_{\kappa_n}^{(n - 1)} + Y_n + 1 = z_0)
= q_{\kappa_n}(z_0) \left[\prod_{k=0}^{\kappa_n - 1} \frac{p_{k,n}}{p_{k-1,n}} \right] \left[\prod_{j=\kappa_n + 1}^{n} q_j^{(1)z_0} \right].
\]

Recall that after generation \(\kappa_n \), each individual has at least one offspring and thus \(p_{j,n} = p_{j,\kappa_n} \) for any \(j < \kappa_n \). This ends up the proof in the case \(\kappa_n > 0 \). The case when \(\kappa_n = 0 \) is easier. Indeed,

\[
P_{z_0}(Z_n = z_0) = \mathbb{P}_{z_0}(Z_1 = \cdots = Z_n = z_0) = \prod_{j=1}^{n} q_j^{(1)z_0}
\]
since \(q_{\kappa_n + 1}^{(0)} = \cdots = q_n^{(0)} = 0 \) and \(Z \) is nondecreasing until generation \(n \). \(\square \)

4. Proof of Theorem 2.1: The probability of staying positive but bounded

In this section, we prove Theorem 2.1 with the help of two lemmas. The first lemma establishes the existence of a proper ‘common’ limit.

Lemma 4.1. Assume that \(z \geq 1 \) satisfies \(\mathbb{P}(Q(0) > 0, Q(z) > 0) > 0 \).

Then for all \(k, j \in Cl([z]) \), the following limits exist in \([0, \infty)\) and coincide

\[
\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}_k(Z_n = j) = \lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}_z(Z_n = z).
\]
Moreover, for every sequence \(k_n \) such that \(k_n \geq n \) for \(n \) large enough and \(k_n/n \to 0 \) as \(n \to \infty \),
\[
\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}_z(Z_n = z) = \lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}_z(1 \leq Z_n \leq k_n).
\]

Proof. Note that for every \(k \geq 1 \), \(\mathbb{P}_k(Z_1 = z) > 0 \) since
\[
\mathbb{P}_k(Z_1 = z|Q_1) \geq Q_1(0)^{k-1} Q_1(z), \quad \mathbb{P}(Q(0) > 0, Q(z) > 0) > 0.
\]
We know that by Markov property, for all \(m, n \geq 1 \),
\[
\mathbb{P}_z(Z_{n+m} = z) \geq \mathbb{P}_z(Z_n = z) \mathbb{P}_z(Z_m = z).
\]
Adding that \(\mathbb{P}_z(Z_1 = z) > 0 \), we obtain that the sequence \((a_n)_{n \in \mathbb{N}} \) defined by \(a_n := -\log \mathbb{P}_z(Z_n = z) \) is finite and subadditive. Then Fekete’s lemma ensures that \(\lim_{n \to \infty} a_n/n \) exists and belongs to \([0, \infty)\). Next, if \(j, k \in \text{Cl}([z]) \), there exist \(l, m \geq 0 \) such that \(\mathbb{P}_z(Z_l = j) > 0 \) and \(\mathbb{P}_z(Z_m = k) > 0 \). We get
\[
\mathbb{P}_k(Z_{n+l+1} = j) \geq \mathbb{P}_k(Z_1 = z) \mathbb{P}_z(Z_n = z) \mathbb{P}_z(Z_l = j)
\]
and
\[
\mathbb{P}_z(Z_{m+n+1} = z) \geq \mathbb{P}_z(Z_m = k) \mathbb{P}_k(Z_n = j) \mathbb{P}_j(Z_1 = z).
\]
Adding that \(\mathbb{P}_j(Z_1 = z) > 0 \), we obtain
\[
\liminf_{n \to \infty} \frac{1}{n} \log \mathbb{P}_k(Z_n = j) \geq \lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}_z(Z_n = z) \geq \limsup_{n \to \infty} \frac{1}{n} \log \mathbb{P}_k(Z_n = j),
\]
which yields the first result.

For the second part of the lemma, we first observe that \(\mathbb{P}_z(Z_n = z) \leq \mathbb{P}_z(1 \leq Z_n \leq k_n) \) for \(n \) large enough. To prove the converse inequality, we define for \(\varepsilon > 0 \) the set
\[
A_{\varepsilon} := \{ q \in \Delta | q(0) > \varepsilon, q(z) > \varepsilon \}.
\]
According to the definition of \(\mathcal{I} \) and the assumption, \(\mathbb{P}(Q \in A_{\varepsilon}) > 0 \) if \(\varepsilon \) is chosen small enough. Thus, we get
\[
\mathbb{P}_z(Z_n = z) \geq \mathbb{P}_z(1 \leq Z_n \leq k_n) \min_{1 \leq j \leq k_n} \mathbb{P}_j(Z_1 = z)
\]
\[
\geq \mathbb{P}_z(1 \leq Z_n \leq k_n) \mathbb{P}(Q \in A_{\varepsilon}) \min_{1 \leq j \leq k_n} \mathbb{E}[\mathbb{P}_1(Z_1 = z) \mathbb{P}_1(Z_1 = 0) Q^{j-1} | Q \in A_{\varepsilon}]
\]
\[
\geq \mathbb{P}_z(1 \leq Z_n \leq k_n) \mathbb{P}(Q \in A_{\varepsilon}) e^{kn}.
\]
Using the logarithm of this expression and letting \(n \to \infty \) yields
\[
\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}_z(Z_n = z) \geq \limsup_{n \to \infty} \left(\frac{1}{n} \log \mathbb{P}_z(1 \leq Z_n \leq k_n) + \log(e) \frac{k_n}{n} \right).
\]
Adding that \(k_n = o(n) \) by assumption gives the claim.

Now, we prove a representation of the limit \(\rho \) in terms of generating functions. It will be useful in the rest of the paper.

Lemma 4.2. Assume that \(\mathbb{P}_1(Z_1 = 0) > 0 \). Then for all \(i, j \in \text{Cl}(\mathcal{I}) \),
\[
\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}_i(Z_n = j) = \lim_{n \to \infty} \frac{1}{n} \log \mathbb{E} \left[Q_n(z_0) f_{0,n}(0)^{z_0-1} \prod_{i=1}^{n-1} f_i^j(f_{i,n}(0)) \right],
\]
where \(z_0 \) is the smallest element in \(\mathcal{I} \).
We note that $\mathbb{P}_1(Z_1 = 0) > 0$ is equivalent to $\mathbb{P}(Q(0) > 0) > 0$ and in view of Lemma 4.1, we only have to prove the result for $k = j = z_0$, where z_0 is the smallest element in \mathcal{I}. Differentiation of the probability generating function of Z_0 yields the result for $z_0 = 1$. The generalization of the result for $z_0 \neq 1$ via higher order derivatives of generating functions appears to be complicated. Instead, we use probabilistic arguments, involving the Geiger construction of the previous section.

Proof of Lemma 4.2. First, the result is obvious when $z_0 = 1 \in \mathcal{I}$ since

$$\mathbb{P}(Z_n = 1|\mathcal{E}) = \frac{d}{ds} f_{0,n}(s) \bigg|_{s=0} = f'_n(0) \cdot \prod_{i=1}^{n-1} f'_i(f_{i,n}(0)).$$

For the case $z_0 > 1$, we start by proving the lower bound. Using (3.4), Lemma 3.1, (3.2) and recalling that $\mathbb{P}(Z_n > 0|\mathcal{E}) = p_{-1,n}$, we have

$$\mathbb{P}(Z_n = z_0) = \mathbb{E}\left[\mathbb{P}(Z_n = z_0|Z_n > 0, \mathcal{E})\mathbb{P}(Z_n > 0|\mathcal{E}) \right]$$

which equals

$$= \mathbb{E}\left[\mathbb{P}(\hat{Z}_n^{(0)} + \cdots + \hat{Z}_n^{(n-1)} = z_0|\mathcal{E})\mathbb{P}(Z_n > 0|\mathcal{E}) \right]$$

or

$$\geq \mathbb{E}\left[\mathbb{P}(\hat{Z}_n^{(0)} + \cdots + \hat{Z}_n^{(n-1)} = 0|\mathcal{E})\mathbb{P}(Z_n > 0|\mathcal{E}) \right]$$

yields the result for $z_0 = 0, 1, \ldots, n$. We decompose the event $\{Z_n = z_0\}$ according to κ_n:

$$\mathbb{P}(Z_n = z_0) = \sum_{k=0}^{n} \mathbb{E}\left[\mathbb{P}(Z_n = z_0|\mathcal{E}, Z_n > 0)\mathbb{P}(Z_n > 0|\mathcal{E}); \kappa_n = k \right].$$

Using that conditionally on $\kappa_n = k$, $\mathbb{P}(Z_n > 0|\mathcal{E}) = \mathbb{P}(Z_k > 0|\mathcal{E})$ and Lemma 3.2, we get by independence

$$\mathbb{P}(Z_n = z_0) = \sum_{k=0}^{n} \mathbb{E}\left[\mathbb{P}(Z_n > 0|\mathcal{E})\mathbb{P}(Z_k > 0|\mathcal{E})\prod_{i=0}^{k-1} f'_i(f_{i,k}(0)) \prod_{j=k+1}^{n} Q_j(1)^{z_0}; \kappa_n = k \right]$$

where

$$\leq \sum_{k=0}^{n} \mathbb{E}\left[Q_k(z_0) \prod_{i=0}^{k-1} f'_i(f_{i,k}(0)) \prod_{j=k+1}^{n} \mathbb{E}[Q_j(1)^{z_0}] \right]$$

$$= \sum_{k=1}^{n} \mathbb{E}\left[Q_k(z_0) \prod_{i=0}^{k-1} f'_i(f_{i,k}(0)) \mathbb{E}[Q_j(1)^{z_0}]^{n-k-1} + \mathbb{E}[Q_j(1)^{z_0}]^{n} \right].$$
Let \((a_n)_{n \in \mathbb{N}}\) be a sequence in \(\mathbb{R}^+\) and \(b > 0\). Then, by standard results on the exponential rate of sums, we have

\[
\limsup_{n \to \infty} \frac{1}{n} \log \sum_{k=1}^{n} a_k b^{n-k} = \max \left\{ \limsup_{n \to \infty} \frac{1}{n} \log a_n, \log b \right\}.
\]

Thus

\[
\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}_{z_0}(Z_n = z_0) \\
\leq \max \left\{ \limsup_{n \to \infty} \frac{1}{n} \log \mathbb{E} \left[Q_n(z_0) \prod_{i=0}^{n-1} f_i(f_{i,n}(0)) \right] ; \log \mathbb{E}[Q(1)^{z_0}] \right\}.
\]

We now prove that the first term always realizes the maximum. Using that \(f^0_i(f_{0,n}(0)) = z_0 f^0_{0,n} = z_0 \mathbb{P}_1(Z_n = 0)\) and \(f^0_i(f_{i,n}(0)) \geq f^0_i(0)\), we have

\[
\mathbb{E} \left[Q_n(z_0) \prod_{i=0}^{n-1} f_i(f_{i,n}(0)) \right] \geq z_0 \mathbb{E} \left[Q_n(z_0) \mathbb{P}_1(Z_n = 0) \prod_{i=1}^{n-1} Q_i(1) \right] \\
\geq z_0 \mathbb{E} \left[Q_n(z_0) \left(Q_n(0) \prod_{i=1}^{n-1} Q_i(1) \right) \prod_{i=1}^{z_0-1} Q_i(1) \right] \\
\geq z_0 \mathbb{E} \left[Q_n(z_0) Q_n(0)^{z_0-1} \right] \mathbb{E} \left[Q(1)^{z_0} \right]^n.
\]

By definition of \(z_0\), \(\mathbb{E}[Q_n(z_0) Q_n(0)^{z_0-1}] > 0\), and we can conclude

\[
\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}_{z_0}(Z_n = z_0) \leq \limsup_{n \to \infty} \frac{1}{n} \log \mathbb{E} \left[Q_n(z_0) f_{0,n}(0)^{z_0-1} \prod_{i=1}^{n} f_i(f_{i,n}(0)) \right].
\]

We end up the proof by checking the convergence of the sequence on the right-hand side above. We use again (3.4) and Lemma 3.1 to write

\[
\phi_n := \mathbb{P}_{z_0}(\hat{Z}^{(0)}_n + \cdots + \hat{Z}^{(n-1)}_n = 0, Z_n = z_0) \\
= \mathbb{E} \left[\mathbb{P}_{z_0}(\hat{Z}^{(0)}_n + \cdots + \hat{Z}^{(n-1)}_n = 0|\mathcal{E}) \mathbb{P}(\hat{Y}_n = z_0 - 1) \right] \\
= \mathbb{E} \left[Q_n(z_0) \prod_{i=0}^{n} f_i(f_{i,n}(0)) \right].
\]

(4.3)

It is the probability of having \(z_0\)-many individuals in generation \(n\), where all individuals in generation \(n\) have a common ancestor in generation \(n-1\). By Markov property, for \(k = 1, \ldots, n\)

\[
\mathbb{P}_{z_0}(\hat{Z}^{(0)}_k + \cdots + \hat{Z}^{(k-1)}_k = 0, Z_k = z_0) \\
\geq \mathbb{P}_{z_0}(\hat{Z}^{(0)}_k + \cdots + \hat{Z}^{(k-1)}_k = 0, Z_k = z_0) \mathbb{P}_{z_0}(\hat{Z}^{(0)}_{n-k} + \cdots + \hat{Z}^{(n-1)}_{n-k} = 0, Z_{n-k} = z_0).
\]

The same subadditivity arguments as in the proof of Lemma 4.1 applied to \(\phi_n\) yield the existence of the limit of \(\frac{1}{n} \log \phi_n\) and

\[
\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}_{z_0}(Z_n = z_0) = \lim_{n \to \infty} \frac{1}{n} \log \phi_n = \lim_{n \to \infty} \frac{1}{n} \log \mathbb{E} \left[Q_n(z_0) f_{0,n}(0)^{z_0-1} \prod_{i=1}^{n} f_i(f_{i,n}(0)) \right].
\]

(4.4)

This ends up the proof. \(\square\)
5. Proof of Proposition 2.2

5.1. Preliminaries on random walks

In this section, we will shortly present some standard results on random walks which we use. In all following results, we take $S_0 = 0$. We assume that there exists $s > 0$ such that $\mathbb{E}[Xe^{-sX}] = 0$. This suggests to change to a measure P, defined by

$$P(X \in dx) := \frac{e^{-sX} \mathbb{P}(X \in dx)}{\mu},$$

where $\mu := \mathbb{E}[e^{-sX}]$. We note that $\mathbb{E}[X] = \mu^{-1} \mathbb{E}[Xe^{-sX}] = 0$, and that S is a recurrent random walk under P. In the following proofs, we use the change of measure described here. We define

$$L_n := \min\{S_1, \ldots, S_n\}$$

and

$$M_n := \min\{S_1, \ldots, S_n\}.$$

The following result is directly derived from [2], Proposition 2.1. For lattice random walks, the claims result e.g. from [30], Theorem 6.

Lemma 5.1. Assume that $\mathbb{E}[X] = 0$ and $\text{Var}(X) < \infty$. Then for every $\theta > 0$, there exists $d = d(\theta)$ such that

$$\mathbb{E}[e^{-\theta S_n}; L_n \geq 0] \sim dn^{-3/2} \quad (n \to \infty)$$

and

$$\mathbb{E}[e^{\theta S_n}; M_n < 0] \sim dn^{-3/2} \quad (n \to \infty).$$

The following lemma results from [2], Equation (2.5) therein.

Lemma 5.2. Assume that $\mathbb{E}[X] = 0$ and $\text{Var}(X) < \infty$. Then for every $c > 0$ large enough, there exists $d = d(c)$ such that

$$\mathbb{P}(L_n \geq 0, S_n \leq c) \sim dn^{-3/2} \quad (n \to \infty).$$

Remark. In the non-lattice case, the result holds for every $c > 0$. In the lattice case, c must be chosen such that $\mathbb{P}(0 \leq S_1 \leq c) > 0$.

From the previous results, it follows that

Corollary 5.3. Assume that $\mathbb{E}[X] = 0$ and $\text{Var}(X) < \infty$. Then for every $\theta > 1$,

$$\mathbb{E}[e^{-S_n + \theta L_n}] = O(n^{-3/2}).$$

Proof. We use a decomposition according to the first minimum of the random walk, i.e. let

$$\tau_n := \min\{k \in \{0, \ldots, n\} | S_k = L_n \land 0\}.$$
Decomposing at the first minimum and using duality yields

\[
\mathbb{E}\left[e^{-S_n + \theta L_n}\right] = \sum_{k=0}^{n} \mathbb{E}\left[e^{-\sum_{i=1}^{k} (S_i - S_{i-1})}; \tau_n = k\right]
\]

\[
= \sum_{k=0}^{n} \mathbb{E}\left[e^{-S_k} e^{(\theta - 1)S_k}; \tau_k = k, \min_{i=k, \ldots, n} (S_n - S_i) \geq 0\right]
\]

\[
= \sum_{k=0}^{n} \mathbb{E}\left[e^{(\theta - 1)S_k}; \tau_k = k\right] \mathbb{E}\left[e^{-S_{n-k}}; L_{n-k} \geq 0\right]
\]

\[
= \sum_{k=0}^{n} \mathbb{E}\left[e^{(\theta - 1)S_k}; M_k < 0\right] \mathbb{E}\left[e^{-S_{n-k}}; L_{n-k} \geq 0\right].
\]

The last step follows from duality (see e.g. [1]). Recall that by assumption, \(\theta - 1 > 0\). Applying Lemma 5.1 now yields that there is a \(c < \infty\) such that for \(n\) large enough

\[
\mathbb{E}\left[e^{-S_n + \theta L_n}\right] \leq c \left(\frac{1}{n^{3/2}} + \sum_{k=1}^{n-1} \frac{1}{(n - k)^{3/2} k^{3/2}} \right)
\]

\[
\leq c \left(\frac{2d}{n^{3/2}} + \frac{2d}{[n/2]^{3/2} \sum_{k=0}^{[n/2]} k^{3/2}} \right) = O(n^{-3/2}),
\]

which is the claim of the corollary. \(\square\)

In the next lemma, we will use probability measures \(\mathbb{P}^+\) and \(\mathbb{P}^-\) which e.g. have been introduced in [2]. Here, we recall the definition. Define the renewal functions \(u : \mathbb{R} \to \mathbb{R}\) and \(v : \mathbb{R} \to \mathbb{R}\) by

\[
u(x) = 1 + \sum_{k=1}^{\infty} \mathbb{P}(-S_k > x, \min\{S_1, \ldots, S_k\} \geq 0), \quad x \leq 0,
\]

\[
u(0) = u(0) = 1,
\]

and 0 elsewhere. Using the identities

\[
\mathbb{E}\left[u(x + X); X + x \geq 0\right] = u(x), \quad x \geq 0,
\]

\[
\mathbb{E}\left[v(x + X); X + x < 0\right] = v(x), \quad x \leq 0,
\]

which hold for every oscillating random walk, one can construct probability measures \(\mathbb{P}^+\) and \(\mathbb{P}^-\): Define the filtration \(\mathcal{F} = (\mathcal{F}_n)_{n \geq 0}\), where \(\mathcal{F}_n = \sigma(Q_1, \ldots, Q_n, Z_0, \ldots, Z_n)\). Then \(S\) is adapted to \(\mathcal{F}\) and \(X_{n+1}\) (as well as \(Q_{n+1}\) is independent of \(\mathcal{F}_n\) for all \(n \geq 0\). Now, for every bounded, \(\mathcal{F}_n\)-measurable random variable \(R_n\) we can define

\[
\mathbb{E}_x^+\left[R_n\right] = \frac{1}{u(x)} \mathbb{E}_x\left[R_n u(S_n); L_n \geq 0\right], \quad x \geq 0,
\]

\[
\mathbb{E}_x^-\left[R_n\right] = \frac{1}{v(x)} \mathbb{E}_x\left[R_n v(S_n); M_n < 0\right], \quad x \leq 0.
\]

The probability measures \(\mathbb{P}_x^+\) and \(\mathbb{P}_x^-\) correspond to conditioning the random walk \(S\) on not to enter \((-\infty, 0)\) and \([0, \infty)\) respectively.
More precisely, if \(R_n \to R \) a.s. with respect to \(P^+ \) (resp. \(P^- \)), then

\[
\lim_{n \to \infty} P(R_n \in \cdot | L_n \geq 0) \to P^+(R \in \cdot),
\]

\[
\lim_{n \to \infty} P(R_n \in \cdot | M_n < 0) \to P^-(R \in \cdot).
\]

The first result is proved in [4], Lemma 2.5, in the more general setting of random walks in the domain of attraction of a stable law. The proof of the second claim is analogous.

We end up with an asymptotic result in the critical case, which is stated and proved only in the non-lattice case.

Lemma 5.4. We assume that \(E[X] = 0, \ Var(X) < \infty, \) and that \(E[(\log^+ \xi_Q(a))^2 + \varepsilon] < \infty \) for some \(\varepsilon > 0. \) Then, for every \(c > 0, \)

\[
\lim_{n \to \infty} P(Z_n > 0 | L_n \geq 0, S_n \leq c) > 0.
\]

Proof. The proof follows essentially [2] and we just present the main steps. First, Lemmas 5.1 and 5.2 ensure that for all \(\theta, c > 0 \) large enough, there exists \(d > 0 \) such that

\[
E[e^{-\theta S_n}; L_n \geq 0] \sim dP(L_n \geq 0, S_n \leq c) \quad (n \to \infty).
\]

(5.2)

Secondly, we recall the well-known estimate (see e.g. [5], Lemma 2)

\[
P(Z_n > 0 | \mathcal{E}) \geq \frac{1}{e^{-S_n} + \sum_{i=0}^{n-1} \eta_i e^{-S_i}} \quad \text{a.s.},
\]

where \(\eta_i := \sum_{y=1}^{\infty} y(y - 1) Q_i(y) / m_i^2 \). Then, we rewrite

\[
E\left[\frac{1}{e^{-S_n} + \sum_{i=0}^{n-1} \eta_i e^{-S_i}; L_n \geq 0, S_n \leq c} \right]
\]

\[
\geq E\left[\frac{1}{1 + \sum_{i=0}^{n/2} \eta_i e^{-S_i} + e^{-S_{[n/2]}} \sum_{i=[n/2]+1}^{n-1} \eta_i e^{S_{i-[n/2]} - S_i}; L_n \geq 0, S_n \leq c} \right]
\]

\[
\geq E\left[\frac{(c - S_n) + 1}{1 + \sum_{i=0}^{n/2} \eta_i e^{-S_i} + \sum_{i=[n/2]+1}^{n-1} \eta_i e^{S_{i-[n/2]} - S_i}; L_n \geq 0} \right]
\]

\[
= E[\varphi(U_n, \tilde{V}_n, S_n); L_n \geq 0]
\]

\[
\geq e^{-c/2} E[e^{-S_n/2} \varphi(U_n, \tilde{V}_n, S_n); L_n \geq 0],
\]

where \(U_n := \sum_{i=0}^{n/2} \eta_i e^{-S_i}, \tilde{V}_n := \sum_{i=[n/2]+1}^{n-1} \eta_i e^{S_{i-[n/2]} - S_i} \) and \(\varphi(u, v, z) = (1 + u + v)^{-1} (c - z)^+ \wedge 1. \) Using (5.2), it becomes (with \(\theta = 1/2 \))

\[
\liminf_{n \to \infty} P(Z_n > 0 | L_n \geq 0, S_n \leq c) \geq \frac{d^{-1} \liminf_{n \to \infty} e^{-c/2} E[e^{-S_n/2} \varphi(U_n, \tilde{V}_n, S_n); L_n \geq 0]}{E[e^{-S_n/2}; L_n \geq 0]}.
\]

Due to monotonicity and Lemma 3.1 in [2], the limits of \(U_\infty = \lim_{n \to \infty} U_n \) and \(V_\infty = \lim_{n \to \infty} \sum_{i=0}^{[n/2]} \eta_i e^{S_i} \) exist and are finite respectively under the probabilities \(P^+ \)-a.s. and \(P^- \)-a.s. Thus all conditions of Proposition 2.5 in [2] are met. Applying this proposition with \(\theta = 1/2, \) there exists a non zero measure \(\nu_{1/2} \) on \(\mathbb{R}^+ \) which gives the convergence of the right-hand side above and

\[
\liminf_{n \to \infty} P(Z_n > 0 | L_n \geq 0, S_n \leq c) \geq \int_{\mathbb{R}^+} \varphi(u, v, -z) P^+(U_\infty \in du) P^-(V_\infty \in dv) \nu_{1/2}(dz) > 0.
\]
Note that in the function φ, z is changed to $-z$ for duality reasons (see [2] for details). As U_∞ and V_∞ are a.s. finite with respect to the corresponding measures, this yields the claim.

Remark. The proof may be adapted to the lattice case, by proving for example that

$$\lim_{n \to \infty} \mathbb{P}^+ \left(\sum_{i=0}^{n/2} \eta_{i+1} e^{-S_i} < d, S_n/\sqrt{n} \in (a, b) \right) > 0.$$

We note that $\mathbb{P}^+ \left(\sum_{i=0}^{\infty} \eta_{i+1} e^{-S_i} < \infty \right) = \mathbb{P}^- \left(\sum_{i=1}^{\infty} \eta_i e^{S_i} < \infty \right) = 1$ has been proved in [4] also for the non-lattice case. But the main remaining problem is that Proposition 2.5 in [2] is only stated for non-lattice random walks. The generalization of this result is a technically involved task and beyond the scope of this paper.

5.2. Proof of Proposition 2.2(i): $\rho > 0$

Under Assumption 1, we now prove that $\rho > 0$. It means that the probability of staying small but alive is exponentially small. The proof relies again on the Geiger construction and results of the previous section.

We assume that there exists $\gamma > 0$ such that $Q(0) < 1 - \gamma$ a.s. and $\mathbb{E}[|X|] < \infty$. Let z_0 be the smallest element in \mathcal{T}. Using (4.3) and (4.4), we get

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}_{z_0}(Z_n = z_0) = \lim_{n \to \infty} \frac{1}{n} \log \mathbb{E}[\mathbb{P}_{z_0}(\hat{Z}_n(0) + \cdots + \hat{Z}_n(n-1) = 0, \hat{Y}_n = z_0 - 1|\mathcal{E}) \mathbb{P}_{z_0}(Z_n > 0|\mathcal{E})]$$

$$
\leq \lim_{n \to \infty} \frac{1}{n} \log \mathbb{E} \left[\prod_{j=0}^{n-1} \mathbb{P}(\hat{Z}_n(j) = 0|\mathcal{E}) \right]
$$

$$\leq \lim_{n \to \infty} \frac{1}{n} \log \mathbb{E} \left[\exp \left(\sum_{j=0}^{n-1} \mathbb{P}(\hat{Z}_n(j) = 0|\mathcal{E}) \right) \right].$$

The fact that $\log(x) \leq x - 1$ yields

$$\mathbb{E} \left[\exp \left(\sum_{j=0}^{n-1} \mathbb{P}(\hat{Z}_n(j) = 0|\mathcal{E}) \right) \right] \leq \mathbb{E} \left[\exp \left(- \sum_{j=0}^{n-1} \mathbb{P}(\hat{Z}_n(j) > 0|\mathcal{E}) \right) \right].$$

It remains to prove that this last expectation decreases exponentially. From (3.5), we get

$$\mathbb{P}(\hat{Z}_n(j) = 0|\mathcal{E}) = \frac{p_{j,n}}{p_{j-1,n}} f^j(f_{j,n}(0)) = \frac{1 - f_{j,n}(0)}{1 - f_j(f_{j,n}(0))} f^j(f_{j,n}(0)) = h_j(f_{j,n}(0)), \quad (5.3)$$

where for $s \in [0, 1)$,

$$h(s) := \frac{f'(s)}{g(s)}, \quad g(s) := \frac{1 - f(s)}{1 - s}. $$

We will now show that $g(1) = f'(1)$, $h(1) = 1$. As already noticed in [12], for every $s \in [0, 1)$

$$g(s) = \sum_{k=0}^{\infty} \frac{1 - s^k}{1 - s} \frac{f^{(k)}(0)}{k!} = \sum_{k=1}^{\infty} \frac{1 + s + s^2 + \cdots + s^{k-1}}{k!} \frac{f^{(k)}(0)}{k!}.$$

Thus $f'(1) = g(1) = 1$ and $h(1) = 1$. Moreover, $f'(0) \neq 1$ ensures that for every $k > 1$ and $s < 1$, $k s^{k-1} < (1 + s + s^2 + \cdots + s^{k-1})$, so $h(s) < 1$. A straightforward calculation shows that h has exactly one minimum in some $s_0 \in (0, 1)$. Adding that h is increasing for $s > s_0$ and $h(s_0) \leq h(0)$, we have every $t \in (0, 1)$ that

$$h(s) \leq \max\{h(0), h(t)\} \quad \text{for} \ s \leq t. \quad (5.4)$$
First, we deal with \(f_{j,n}(0) = \mathbb{P}(Z_n = 0|\mathcal{E}, Z_j = 1) \) in (5.3). For this purpose, we use a truncation argument. Let \(a \in \mathbb{N} \) be fixed for the moment and introduce

\[
\tilde{Q}(j) := Q(j), \quad 1 \leq j < a, \quad \tilde{Q}(a) = Q([a, \infty)).
\]

We refrain from indicating the dependence on \(a \) in our notation. The corresponding truncated random variables are denoted similarly, e.g. by \(\tilde{X}, \tilde{S}, \tilde{f} \). Note that \(\tilde{f}''(1) \leq a^2 \). By dominated convergence, we get that

\[
\lim_{a \to \infty} \mathbb{E}[\tilde{X}] = \mathbb{E}[X] > 0.
\]

Thus if \(a \) is chosen large enough, \(\tilde{S} \) is still a random walk with positive drift and \(\mathbb{E}[\tilde{f}'(1)] > 1 \). Also note that with respect to the truncated offspring distributions, \(\tilde{Z}_n \) is stochastically smaller than \(Z_n \) and thus \(\mathbb{P}(\tilde{Z}_n = 0) \geq \mathbb{P}(Z_n = 0) \). Applying this together with a well-known formula for the extinction probability (see e.g. [5], Lemma 2), we get that

\[
\mathbb{P}(Z_n = 0|\mathcal{E}, Z_j = 1) \leq \mathbb{P}(\tilde{Z}_n = 0|\mathcal{E}) \leq 1 - \frac{1}{e^{\tilde{S}_n} + \sum_{k=1}^{n-1} \tilde{\eta}_{k+1} e^{-(\tilde{S}_k - \tilde{S}_j)}} \\
\leq 1 - \frac{1}{a^2 \sum_{k=j}^{\infty} e^{-2\tilde{X}_{k+1} - (\tilde{S}_k - \tilde{S}_j)}}.
\]

where we used that \(\tilde{\eta} = \tilde{f}''(1)/\tilde{f}'(1) \leq a^2 e^{-2\tilde{X}} \) a.s. We now aim at bounding \(\sum_{k=j}^{\infty} \exp(-2\tilde{X}_{k+1} - (\tilde{S}_k - \tilde{S}_j)) \). First, the assumption \(Q(0) < 1 - \gamma \) implies that \(\tilde{X} \geq \log(\gamma) \) a.s. Thus

\[
\mathbb{P}(Z_n = 0|\mathcal{E}, Z_j = 1) \leq \mathbb{P}(\tilde{Z}_n = 0|\mathcal{E}) \leq 1 - \frac{\gamma^2}{a^2 \sum_{k=j}^{\infty} e^{-(\tilde{S}_k - \tilde{S}_j)}}.
\]

Next, we introduce the random walk \(\tilde{S}_n := \tilde{S}_n - \varepsilon n \) with \(0 < \varepsilon < \mathbb{E}[\tilde{X}] \). It is still a random walk with positive drift and we have

\[
f_{j,n}(0) \leq 1 - \frac{\gamma^2}{a^2 \sum_{k=j}^{\infty} e^{-(\tilde{S}_k - \tilde{S}_j)} e^{-(k-j)\varepsilon}}.
\]

Let us now consider the prospective minima (see e.g. [4], p. 661) of \(\tilde{S} \) which are defined by \(v(0) := 0 \) and

\[v(j) := \inf\{n > v(j-1): \tilde{S}_k > \tilde{S}_n \forall k > n\}.
\]

Then we can estimate for \(j \geq 1 \) (note that \(\tilde{S}_n \geq \tilde{S}_v(j) \) for all \(k \geq v(j), j \geq 1 \))

\[
f_{v(j),n}(0) \leq 1 - \frac{\gamma^2}{a^2 \sum_{k=v(j)}^{\infty} e^{-(\tilde{S}_k - \tilde{S}_v(j)) e^{-(k-v(j))\varepsilon}}} \\
\leq 1 - \frac{\gamma^2}{a^2 \sum_{k=v(j)}^{\infty} e^{-(k-v(j))\varepsilon}} = 1 - \frac{\gamma^2(1 - e^{-\varepsilon})}{a^2}.
\]

From (5.4), setting \(d := \gamma^2(1 - e^{-\varepsilon})/a^2 \in (0, 1) \), we get for \(j \geq 1 \),

\[
\mathbb{P}(\tilde{Z}_n^{v(j)}) > 0|\mathcal{E}) = 1 - h_{v(j)}(f_{v(j),n}(0)) \geq 1 - \max\{h(0), h_{v(j)}(1-d)\} \\
= \min\{1 - h(0), 1 - h_{v(j)}(1-d)\} =: A_{v(j)}.
\]

From the classical random walk theory, \(U_j := v(j) - v(j-1) \) (and also \(Q_{v(j)} \)) are i.i.d. random variables (see [4]). We now prove that for \(\delta > 0 \) small enough that the probability that there are less than \(\delta n \)-many prospective minima
is exponentially small. Note that $\mathbb{E}[\tilde{X}] > 0$ implies $\mathbb{E}[\nu(1)] < \infty$. Let $0 < \delta < \mathbb{E}[\nu(1)]^{-1}$. Then

$$
P\left(\left\{ j \geq 0: \nu(j) \leq \delta n \right\} \right) \leq \mathbb{P}(\nu([\delta n]) > n) \leq \mathbb{P}\left(\sum_{j=1}^{[\delta n]} U_j > \frac{1}{\delta} n\delta \right) \leq e^{-\delta n\Psi(\delta^{-1})}, \tag{5.5}$$

where Ψ is the rate function of the process $(\sum_{j=1}^{n} U_j)_{n}$, which is a random walk with nonnegative increments. Thus it remains to prove that $\Psi(\theta) > 0$ for some $\theta > \mathbb{E}[U_1] = \mathbb{E}[\nu(1)]$. From large deviations theory, we just need to check that the tail of $\nu(1)$ decreases exponentially. This follows from

$$
P(\nu(1) > k) \leq P(S_j \leq 0 \text{ for some } j > k) \leq \sum_{j=k}^{\infty} P(S_j \leq 0) \leq \sum_{j=k}^{\infty} e^{-\hat{A}(0)j} = \frac{e^{-\hat{A}(0)k}}{1 - e^{-\hat{A}(0)}},$$

where \hat{A} is the rate function of \tilde{S}. This rate function is proper since $\log(1 - \gamma) \leq \tilde{X} \leq a$ a.s. Adding that $\mathbb{E}[\tilde{X}] > 0$ ensures that $\hat{A}(0) > 0$ and we can conclude that $\Psi(\theta) > 0$.

Finally, we use that $A_{\nu(j)}$ are independent to get

$$P_{z_0}(Z_n = z_0) \leq \mathbb{E}\left[\exp\left(-\sum_{j=0}^{n-1} P(Z_n^{(j)} > 0|\mathcal{E}) \right) \right]$$

$$\leq \mathbb{P}\left(\left\{ j \geq 0: \nu(j) \leq \delta n \right\} \right) + \mathbb{E}\left[\exp\left(-\sum_{j=0}^{\delta n} A_{\nu(j)} \right) \right]$$

$$\leq \mathbb{P}\left(\left\{ j \geq 0: \nu(j) \leq \delta n \right\} \right) + \mathbb{E}[\exp(-A_{\nu(1)})]^{\delta n}.$$

Recalling that $A_{\nu(j)} \geq 0$ and $P(A_{\nu(j)} > 0) = P(h(0) < 1) = P(f'(0) \neq 1) > 0$, we get

$$\mathbb{E}[\exp(-A_{\nu(1)})] < 1.$$

Then (5.5) ensures that $\rho > 0$.

Remark. To get Proposition 2.2(i), Assumption 1 can be replaced by assuming that there exists c such that $\eta \leq c$ a.s. The proof is very similar. In this case, the truncation is not required and we may estimate

$$P(Z_n = 0|\mathcal{E}, Z_j = 1) = \overline{P}(Z_n = 0) \leq 1 - \frac{1}{e^{-S_n} + \sum_{k=1}^{n-1} \eta_k e^{-(S_{k+1} - S_j)}} \leq 1 - \frac{1}{c \sum_{k=j}^{\infty} e^{-(S_{k+1} - S_j)}}.$$

5.3. **Proof of Proposition 2.2(ii): $\varrho \leq \Lambda(0)$**

Here, we prove the second part of Proposition 2.2 which ensures that $\varrho \leq \Lambda(0)$. It means that small but positive values can always be realized by a suitable exceptional environment, which is ‘critical’. We focus on the nontrivial case when $\Lambda(0) < \infty$. The proof of Proposition 2.2(ii) can then be splitted into two subcases, which correspond to the two following propositions.

Proposition 5.5. Under Assumption 2 and $P(X < 0) > 0$, we have $\rho \leq \Lambda(0)$.

Proposition 5.6. Assume that $P(X \geq 0) = 1$ and $P(X = 0) > 0$. Then

$$\rho \leq -\log P(X = 0) = \Lambda(0). \tag{5.6}$$
Proof of Proposition 5.5. We recall that \(I := \{ j \geq 1; \ P(Q(j) > 0, Q(0) > 0) > 0 \} \). We use a standard approximation argument and consider the event \(E_{x,n} := \{ \min_{i=1,\ldots,n} X_i > x \} \) for \(x < 0 \). Then, \(P(X > x) > 0 \) since we are in the supercritical regime and for every \(s \geq 0 \), \(E[|Xe^{-sX}|X > x] < \infty \). As \(P(X > 0) > 0 \), we may choose \(x \) small enough such that \(P(x < X < 0) > 0 \). Then \(E[|Xe^{-sX}|X > x] \) tends to infinity as \(s \to \infty \). Moreover \(E[e^{-sX}|X > x] \) is differentiable with respect to \(s \) for \(s > 0 \). We call \(v_x \) a point where the minimum of this function is reached. In particular,

\[
\inf_{s \geq 0} E[e^{-sX}|X > x] = E[e^{-v_x X}|X > -x].
\]

The second part of Lemma 4.1 ensures that for every \(s \in I \) and for every sequence \(k_n = o(n) \),

\[
\lim_{n \to \infty} \frac{1}{n} \log P(Z_n = z) = \lim_{n \to \infty} \frac{1}{n} \log P(1 \leq Z_n \leq k_n) = -\rho.
\]

Let us now change to the measure \(P \), defined by

\[
P(X \in dy) = \frac{e^{-v_x y} P(X \in dy|X > x)}{\mu},
\]

where \(\mu := E[e^{-v_x X}|X > x] \). Under \(P \), \(E[|X|] = 0 \) and \(S \) is a recurrent random walk.

Let \(c > 0 \) be so large such that \(P(L_n \geq 0, S_n \leq c) > 0 \) for every \(n \). Then

\[
P_z(1 \leq Z_n \leq k_n|E_{x,n}) = \mu^n E[\P_z(1 \leq Z_n \leq k_n|E) e^{v_x S_n}] \\
\geq \mu^n E[\P_z(1 \leq Z_n \leq k_n|E); L_n \geq 0, S_n \leq c].
\]

We note that \(\P_z(1 \leq Z_n \leq k_n|E) = \P_z(Z_n > 0|E) - \P_z(Z_n > k_n|E) \) a.s. and by Markov inequality, \(\P_z(Z_n > k|E) \leq \frac{e^{-c/k}}{k} \) a.s. It ensures that

\[
P_z(1 \leq Z_n \leq k_n|E_{x,n}) \geq \mu^n E[P(Z_n > 0|E) - e^{-c/k}; L_n \geq 0, S_n \leq c].
\]

Plugging this into (5.8) and setting \(b_n := P(L_n \geq 0, S_n \leq c) \), we get

\[
P_z(1 \leq Z_n \leq k_n) \geq \mu^n b_n [P(Z_n > 0|L_n \geq 0, S_n \leq c) - e^{-c/k}] P(X > x)^n.
\]

By construction of \(E \), \(\Var(X) \leq \mu^{-1} E[X^2 e^{-v_x X}|X > x] < \infty \). Then from Lemma 5.2, we have \(b_n = O(n^{-3/2}) \) and \(\lim_{n \to \infty} \frac{1}{n} \log b_n = 0 \). Let \(k_n = n^{-1/2} \). The fact that Assumption 2 holds under \(P \) entails that it holds also under \(P \).

Indeed,

\[
\E[\left(\log + \xi_Q(a)\right)^{2+\varepsilon}|X > x] = \mu \E[e^{v_x X}(\log + \xi_Q(a))^{2+\varepsilon}] \\
\geq \mu e^{-v_x} \E[\left(\log + \xi_Q(a)\right)^{2+\varepsilon}],
\]

as \(X > x (x < 0) \) \(P \)-a.s. Thus we can use Lemma 5.4 and (5.9) to get

\[
\liminf_{\varepsilon \to 0} \frac{1}{n} \log P_z(1 \leq Z_n \leq k_n) \geq \log \mu + \log P(X > x) \\
= \log \E[e^{-v_x X}|X > x] + \log P(X > x) \\
= -\sup_{s \leq 0} \{-\log \E[e^{-sX}|X > x]\}.
\]
By monotone convergence, we let $x \to -\infty$ and

$$
\liminf_{n \to \infty} \frac{1}{n} \log \mathbb{P}_z(1 \leq Z_n \leq k_n) \geq - \sup_{s \leq 0} \left\{ - \log \mathbb{E}[e^{-sX}] \right\} = - \Lambda(0).
$$

As $k_n = o(n)$, we apply Lemma 4.1 to end up the proof. \hfill \Box

Proof of Proposition 5.6. As $\mathbb{P}(X \geq 0) = 1$, we have $\mathbb{P}(S_n = 0) = \mathbb{P}(X = 0)^n$ and $\Lambda(0) = - \log \mathbb{P}(X = 0).

If $\mathbb{P}(Q(1) = 1|X = 0) = 1$, the proof is trivial. So let us work with the assumptions $\mathbb{P}(X = 0) > 0$ and $\mathbb{P}(Q(1) = 1|X = 0) < 1$.

By conditioning on the environment, we get for $z \in \mathcal{I}$ that

$$
\mathbb{P}_z(Z_n = z) \geq \mathbb{P}(X = 0)^n \cdot \mathbb{P}_z(Z_n = z|X_1 = 0, \ldots, X_n = 0).
$$

For simplicity, we introduce a new measure \mathbb{P} on the space of all probability measures on \mathbb{N}_0 with expectation 1. It is defined for every measurable $A \subset \Delta$ by

$$
\mathbb{P}(Q \in A) := \frac{\mathbb{P}(Q \in A; m_Q = 1)}{\mathbb{P}(m_Q = 1)} = \frac{\mathbb{P}(Q \in A; m_Q = 1)}{\mathbb{P}(X = 0)}.
$$

Note that $\mathbb{P}(X = 0) = 1$ and there exists $z \geq 1$ such that $\mathbb{P}(Q(z) > 0, Q(0) > 0) > 0$. With respect to \mathbb{P}, $(Z_n; n \in \mathbb{N}_0)$ is still a branching process in random environment. By Lemma 4.1, there exists $\tilde{\rho} \in [0, \infty)$ such that

$$
\tilde{\rho} = - \lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}_z(Z_n = z)
$$

$$
= - \lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}_z(Z_n = z|X_1 = 0, \ldots, X_n = 0)
$$

$$
= - \lim_{n \to \infty} \frac{1}{n} \log \mathbb{E}\left[Q_n(z) f_{0,n}^{z-1}(0) \prod_{i=1}^{n-1} f_i'(f_{i,n}(0)) \bigg| X_1 = 0, \ldots, X_n = 0 \right].
$$

Next, we use convexity arguments. First, for all $i \leq k$ and $s \in [0, 1]$, $f_{i,k}(s) \geq 1 - f_{i,k}'(1)(1-s)$. As $\mathbb{P}(f_{i,k}'(1) = 1) = 1$, we get

$$
f_{i,k}(s) \geq s \quad \mathbb{P}\text{-a.s.} \quad (5.10)
$$

Also recall that $f_{0,n}(0) = f_{0,n-1}(f_n(0))$ and by (5.10), $f_{i,n}(0) \geq f_n(0) = Q_n(0)$. Thus, for every $a \in \mathbb{N}$,

$$
\liminf_{n \to \infty} \frac{1}{n} \log \mathbb{E}\left[Q_n(z) f_{0,n}^{z-1}(0) \prod_{i=1}^{n-1} f_i'(f_{i,n}(0)) \bigg| X_1 = 0, \ldots, X_n = 0 \right]
$$

$$
\geq \liminf_{n \to \infty} \frac{1}{n} \log \mathbb{E}\left[Q_n(z) Q_n(0)^{z-1} \prod_{i=1}^{n-a} f_i'(f_{n-a,n}(0)) \prod_{i=n-a+1}^{n-1} f_i'(f_{i,n}(0)) \bigg| Q_1, \ldots, Q_{n-a} \right].
$$

For $\varepsilon > 0$ fixed, we choose $k = k_\varepsilon \in \mathbb{N}$ large enough such that $\mathbb{P}(Q([1, k]) > \varepsilon) \geq 1 - \varepsilon$. Then, conditionally on $\{Q([1, k]) > \varepsilon\}$, $f'(s) \geq \sum_{j=1}^{k} Q(k)s^k \geq \varepsilon s^k$ a.s. for $s \in [0, 1]$. Using this inequality, (5.10) and $f_{i,n}(0) \leq f_{i,n-1}(0)$, we have

$$
\tilde{\mathbb{E}}\left[Q_n(z) Q_n(0)^{z-1} \prod_{i=1}^{n-a} f_i'(f_{n-a,n}(0)) \prod_{i=n-a+1}^{n-1} f_i'(f_{i,n}(0)) \bigg| Q_1, \ldots, Q_{n-a} \right]
$$

$$
\geq \tilde{\mathbb{E}}\left[Q_n(z) Q_n(0)^{z-1} \prod_{i=1}^{n-a} f_i'(f_{n-a,n}(0)) \right].
$$
tives are convex, nonnegative and nondecreasing functions, thus the product of finitely many is again convex. Indeed generating functions, as well as all their derivatives are convex, nonnegative and nondecreasing functions, thus

\[(fg)'' = f''g + 2g'f' + fg'' \geq 0. \]

Similarly, the product of the derivatives of generating functions is again convex. For more details on the product of nonnegative, convex and nondecreasing functions, we refer to [26]. Applying Jensen’s inequality to the convex function \(\prod_{i=1}^{n-a} f'_i \), the independence of the environments ensures that

\[
\mathbb{E} \left[\prod_{i=1}^{n-a} f'_i(f_{n-a,n-1}(0)); Q_{n-a+1}(1, k]) > \varepsilon, \ldots, Q_{n-1}(1, k]) > \varepsilon \right| \mathcal{Q} \]

\[
\geq \prod_{i=1}^{n-a} f'_i(\mathbb{E}[f_{n-a,n-1}(0)]; Q_{n-a+1}(1, k]) > \varepsilon, \ldots, Q_{n-1}(1, k]) > \varepsilon \right| \mathcal{Q} \]

\[
= \prod_{i=1}^{n-a} f'_i(\mathbb{E}[f_{0,a-1}(0); Q_{a-1}(1, k]) > \varepsilon, \ldots, Q_{n-1}(1, k]) > \varepsilon \right] \quad \hat{\mathbb{P}} \text{-a.s.}
\]

Using this inequality yields

\[
\liminf_{n \to \infty} \frac{1}{n} \log \mathbb{E} \left[f_{0,n}^{-1}(0) \prod_{i=1}^{n} f'_i(f_i,n(0)) \bigg| X_1 = 0, \ldots, X_n = 0 \right]
\]

\[
\geq \liminf_{n \to \infty} \frac{1}{n} \log \left(\mathbb{E} \left[\prod_{i=1}^{n-a} f'_i(\mathbb{E}[f_{0,a-1}(0); Q_{a-1}(1, k]) > \varepsilon, \ldots, Q_{n-1}(1, k]) > \varepsilon \right] \right)
\]

\[
\times \mathbb{E}[e^{a-2}Q_n(0)^{-1}(0)Q_n(0)^{(a-2)k}] \right)
\]

\[
= \liminf_{n \to \infty} \frac{1}{n} \log \mathbb{E}[f'(\mathbb{E}[f_{0,a-1}(0); Q_{a-1}(1, k]) > \varepsilon, \ldots, Q_{n-1}(1, k]) > \varepsilon]]^{n-a}
\]

\[
= \log \mathbb{E}[f'(\mathbb{E}[f_{0,a-1}(0); Q_{a-1}(1, k]) > \varepsilon, \ldots, Q_{n-1}(1, k]) > \varepsilon]].
\]

Finally, \(Z \) is a critical branching process in random environment under the probability \(\hat{\mathbb{P}} \) so \(\hat{\mathbb{P}}(Z_{a-1} = 0| \mathcal{E}) = f_{0,a-1}(0) \to 1 \hat{\mathbb{P}} \)-a.s. as \(a \to \infty \) (see e.g. [29]). Letting \(a \to \infty, \varepsilon \to 0 \) and recalling that \(\hat{\mathbb{P}}(Q(1, k]) > \varepsilon) \geq 1 - \varepsilon \).
yields by dominated convergence
\[
\log \mathbb{E}[f'(\mathbb{E}[f_{0,a-1}(0); Q_1([1,k]) > \epsilon, \ldots, Q_{a-1}([1,k]) > \epsilon])] \to \log \mathbb{E}[f'(1)] = 0.
\]

Then,
\[
\liminf_{n \to \infty} \frac{1}{n} \log \mathbb{E}\left[f_{0,n}^{-1}(0) \prod_{i=1}^{n-1} f'_i(f_{i,n}(0)) \bigg| X_1 = 0, \ldots, X_n = 0 \right] \geq 0.
\]

This yields the claim. \hfill \Box

Remark. Note that the bound \(f'(s) \leq f'(1) \) for \(s \in [0,1] \) immediately yields that \(\limsup_{n \to \infty} \frac{1}{n} \log \mathbb{P}(Z_n = z) \leq \log \mathbb{E}[X] \). In particular, we recover that for a BPRE with \(X = 0 \) a.s., the probability of staying bounded but positive is not exponentially small.

6. The linear fractional case: Proof of Corollary 2.3

In this section, we assume that the offspring distributions have generating functions of linear fractional form, i.e.
\[
f(s) = 1 - \frac{1 - s}{m^{-1} + bm^{-2}(1 - s)/2},
\]

where \(m = f'(1) \) and \(b = f''(1) \).

Under this assumption, direct calculations with generating functions are feasible, i.e. we can explicitly calculate the generating function of \(Z_n \), conditioned on the environment. We also assume that \(\mathbb{E}[|X|] < \infty \), \(\mathbb{P}(Z_1 = 0) > 0 \) and that either \(\mathbb{P}(X \geq 0) = 1 \) or Assumption 2 hold, such that Proposition 2.2(ii) holds.

In the next subsection, we prove Corollary 2.3. It gives an expression of \(\varphi \) which depends on the sign of \(\mathbb{E}[X \exp(-X)] \). Afterwards, we prove Corollary 2.4 which concerns the MRCA. Let us define \(\eta_k := b_k m_k^{-2}/2 \) and recall that \(f_{j,n} = f_{j+1} \circ \cdots \circ f_n \). Then for all \(n \in \mathbb{N} \) and \(s \in [0,1] \) (see [24], p. 156)

\[
f_{0,n}(s) = 1 - \frac{(1 - s)}{e^{-S_n} + (1 - s) \sum_{k=0}^{n-1} \eta_{k+1} e^{-S_k}}
\]

resp.
\[
f_{j,n}(0) = 1 - \frac{1}{e^{-(S_n-S_j)} + \sum_{k=j+1}^{n} \eta_k e^{-(S_{k-1}-S_j)}}.
\]

Let us state some direct consequences resulting from this formula which will be used later. Taking the derivative,

\[
f'_{0,n}(s) = \frac{e^{-S_n}}{(e^{-S_n} + (1 - s) \sum_{k=0}^{n-1} \eta_{k+1} e^{-S_k})^2}.
\]

Note that for every \(s \in [0,1] \), applying (6.1)

\[
f'_{0,n}(s)(1-s)^2 = \frac{e^{-S_n}}{((1 - s) e^{-S_n} + \sum_{k=0}^{n-1} \eta_{k+1} e^{-S_k})^2}
\]

\[
\leq e^{-S_n} \frac{1}{(e^{-S_n} + \sum_{k=0}^{n-1} \eta_{k+1} e^{-S_k})^2}
\]

\[
= e^{-S_n}(1 - f_{0,n}(0))^2 = e^{-S_n} \mathbb{P}(Z_n > 0|\mathcal{E})^2.
\]
Moreover,
\[f'_j(s) = \frac{e^{-X_j}}{(e^{-X_j} + \eta_j(1 - s))^2} \]
and we can now compute the value of \(\varrho \).

6.1. **Determination of the value of \(\varrho \)**

By Proposition 2.2(ii), \(\rho \leq \Lambda(0) \). Then it remains to prove that \(\rho = -\log \mathbb{E}[e^{-X}] \) if \(\mathbb{E}[Xe^{-X}] \geq 0 \) and \(\rho \geq \Lambda(0) \) otherwise. For that purpose, we use the representation of \(\rho \) in terms of generating functions. Combining (6.1) and (6.4) we get

\[
f'_j(f_{j,n}(0)) = e^{-X_j} \left(e^{-X_j + \frac{\eta_j}{e^{-(S_n - S_j)}} + \sum_{k=j+1}^{n} \eta_k e^{-(S_{k-1} - S_j)}} \right)^{-2}
= e^{-X_j} \left(e^{-S_n - S_j} + \sum_{k=j+1}^{n} \eta_k e^{-(S_{k-1} - S_j)} \right)^{-2}
= e^{-X_j} \left(\frac{\mathbb{P}(Z_n > 0|Z_{j-1} = 1, \mathcal{E})}{\mathbb{P}(Z_n > 0|Z_j = 1, \mathcal{E})} \right)^2.
\]

Since \(\mathbb{P}(Z_n > 0|Z_n = 1) = 1 \), we get

\[
P_1(Z_n = 1) = \mathbb{E}_1 \left[\prod_{j=1}^{n} f'_j(f_{j,n}(0)) \right]
= \mathbb{E}_1 \left[\prod_{j=1}^{n} e^{-X_j} \frac{\mathbb{P}(Z_n > 0|Z_{j-1} = 1, \mathcal{E})}{\mathbb{P}(Z_n > 0|Z_j = 1, \mathcal{E})} \right]^2
= e^{-S_n} \mathbb{P}(Z_n > 0|\mathcal{E}, Z_0 = 1)^2. \tag{6.5}
\]

First, we consider the case \(\mathbb{E}[Xe^{-X}] \geq 0 \). Bounding the probability above by 1 immediately yields

\[
\mathbb{E} \left[\prod_{j=1}^{n} f'_j(f_{j,n}(0)) \right] \leq \mathbb{E}[e^{-S_n}] = \mathbb{E}[e^{-X}]^n.
\]

Thus \(\rho \geq -\log \mathbb{E}[e^{-X}] \). To get the converse inequality, we change to the measure \(\hat{P} \), defined by

\[
\hat{P}(X \in dx) = \frac{e^{-x} \mathbb{P}(X \in dx)}{\mathbb{E}[e^{-X}]}.
\]

This measure is well-defined as \(\mathbb{E}[X^2e^{-X}] < \infty \) implies \(\mathbb{E}[e^{-X}] < \infty \). Then by Jensen’s inequality,

\[
\mathbb{E}_1[\mathbb{E}[e^{-S_n}\mathbb{P}(Z_n > 0|\mathcal{E})^2]] = \mathbb{E}[e^{-X}]^n \mathbb{E}_1[\mathbb{P}_1(Z_n > 0|\mathcal{E})^2] \geq \mathbb{E}[e^{-X}]^n \hat{P}_1(Z_n > 0)^2.
\]

We observe that \(\mathbb{E}[X] = \mathbb{E}[Xe^{-X}] \geq 0 \), such that under \(\hat{P} \), \(S_n \) is a random walk with nonnegative drift. It ensures that the branching process is still critical or supercritical with respect to \(\hat{P} \). Thus, under Assumption 2 and as \(\hat{E}[X] = \mathbb{E}[X^2e^{-X}] < \infty, \hat{P}(Z_n > 0) > Cn^{-1/2} \) for some \(C > 0 \) as \(n \to \infty \) (see e.g. [4] for the critical case, whereas \(\mathbb{P}(Z_n > 0) \) has a positive limit in the supercritical case). Letting \(n \to \infty \) and adding that \(1 \in \mathcal{I} \), we get

\[
\rho = -\lim_{n \to \infty} \frac{1}{n} \log \mathbb{E} \left[\prod_{j=1}^{n} f'_j(f_{j,n}(0)) \right] \leq -\log \mathbb{E}[e^{-X}].
\]
Secondly, we consider $\mathbb{E}[X e^{-X}] < 0$. Then there exists $v \in (0, 1)$ such that $\mathbb{E}[X e^{-vX}] = 0$ and we change to the measure \mathbb{P} defined in (5.7) (here without truncation). Applying this change of measure and the well-known estimate $\mathbb{P}(Z_n > 0|\mathcal{E}) \leq e^{L_n} a.s.$, we get that

$$\mathbb{E}[e^{-S_n} \mathbb{P}(Z_n > 0|\mathcal{E}, Z_0 = 1)^2] \leq \mathbb{E}[e^{-vX}]^n \mathbb{E}[e^{(-1+v)S_n + 2L_n} a.s].$$

Note that $L_n \wedge 0 \leq \min(S_n, 0)$ and $v \in (0, 1)$ that $(-1 + v)S_n + 2L_n \wedge 0 \leq 0$, and thus

$$\mathbb{E}[e^{-S_n} \mathbb{P}(Z_n > 0|\mathcal{E}, Z_0 = 1)^2] \leq \mathbb{E}[e^{-vX}]^n.$$

This yields $\rho \geq -\log \mathbb{E}[e^{-vX}] = \Lambda(0)$ since $\Lambda(0) = \sup_x \{ -\log \mathbb{E}[e^{S}]) \}$ and the condition $\mathbb{E}[X e^{-X}] = 0$ implies that the supremum is taken in $s = -v$.

6.2. Proof of the limit theorems for the MRCA

The three cases (i–ii–iii) in Corollary 2.4 result respectively from Lemma 6.1, Lemmas 6.2, 6.4, 6.5 and Lemma 6.7 below. In all this section, we assume that the assumptions of Corollary 2.3 are met, i.e. that $\mathbb{E}[X^2 e^{-X}] < \infty$, $\mathbb{E}[|X|] < \infty$ and either $\mathbb{P}(X \geq 0) = 1$ or Assumption 2 holds.

Lemma 6.1. If $\mathbb{E}[X e^{-X}] < 0$, then

$$\liminf_{n \to \infty} \mathbb{P}_1(\text{MRCA}_n = n|Z_n = 2) \in (0, 1)$$

and

$$\liminf_{n \to \infty} \mathbb{P}_1(\text{MRCA}_n = 1|Z_n = 2) \in (0, 1).$$

Proof. Conditionally on \mathcal{E}, the branching property holds and ensures that

$$\mathbb{P}_1(\text{MRCA}_n = n|Z_n = 2) \geq \mathbb{P}_1(Z_1 = 2) : \frac{\mathbb{E}[\mathbb{P}_1(Z_{n-1} = 1|\mathcal{E})^2]}{\mathbb{P}_1(Z_n = 2)},$$

which corresponds to two subtrees being founded by $Z_0 = 1$ and staying equal to 1 in all generations.

Next, we recall that linear fractional offspring distributions are stable with respect to compositions and have geometrically decaying probability weights (see e.g. [24]). In particular,

$$\mathbb{P}_1(Z_n = 2|\mathcal{E}) \leq \mathbb{P}_1(Z_n = 1|\mathcal{E})$$

(6.6)

and therefore

$$\mathbb{P}_1(\text{MRCA}_n = n|Z_n = 2) \geq \mathbb{P}_1(Z_1 = 2) \cdot \frac{\mathbb{E}[\mathbb{P}_1(Z_{n-1} = 1|\mathcal{E})^2]}{\mathbb{P}_1(Z_n = 1)}.$$ \hspace{1cm} (6.7)

Note that $\mathbb{E}[X e^{-X}] < 0$ implies that there exists $v \in (0, 1)$ such that $\mathbb{E}[X e^{-vX}] = 0$. Thus we can apply the same change of measure as in the proof of Proposition 5.5. With the definition of \mathbb{P} therein (again without truncation), we get

$$\frac{\mathbb{E}[\mathbb{P}_1(Z_n = 1|\mathcal{E})^2]}{\mathbb{P}_1(Z_n = 1)} = \frac{\mathbb{E}[e^{S_n} \mathbb{P}_1(Z_n = 1|\mathcal{E})^2]}{\mathbb{E}[e^{S_n} \mathbb{P}_1(Z_n = 1|\mathcal{E})]}.$$ \hspace{1cm} (6.8)

From (6.5), we know that

$$\mathbb{P}_1(Z_n = 1|\mathcal{E}) = f_{0,n}(1) = e^{-S_n} \mathbb{P}_1(Z_n > 0|\mathcal{E})^2 \leq e^{-S_n + 2L_n} \ a.s.$$ \hspace{1cm} (6.9)
Combining this with Jensen inequality yields for every $c > 0$,
\[
E[e^{S_n}P_1(Z_n = 1|E)]^2 \geq E[e^{-2S_n + \nu S_n}P_1(Z_n > 0|E)^4; L_n \geq 0, S_n < c]
\geq e^{(-2+\nu)c}E[P_1(Z_n > 0|E)^4; L_n \geq 0, S_n < c]
\geq e^{(-2+\nu)c}P(L_n \geq 0, S_n < c)E[P_1(Z_n > 0|E)^4|L_n \geq 0, S_n < c]
\geq e^{(-2+\nu)c}P(L_n \geq 0, S_n < c)P(Z_n > 0|L_n \geq 0, S_n < c)^4
\geq dP(L_n \geq 0, S_n < c)
\]
(6.10)

for some constant $d > 0$, where the last line follows from Lemma 5.4. For the denominator in (6.8), by (6.9), we get similarly
\[
E[e^{S_n}P_1(Z_n = 1|E)] \leq E[e^{-(1-\nu)S_n+2L_n}].
\]

Finally, we use $E[X^2 \exp(-X)]$ to ensure that $E[X^2] < \infty$ and apply Lemmas 5.1 and 5.2. Then,
\[
\liminf_{n \to \infty} \frac{E[e^{S_n}P_1(Z_n = 1|E)]}{E[e^{S_n}P_1(Z_n = 1|E)\}
\geq \liminf_{n \to \infty} \frac{P(L_n \geq 0, S_n < c)}{E[e^{-(1-\nu)S_n+2L_n}] > 0}.
\]

Recalling (6.7) yields the first part of the lemma. Similarly, we note that by the Markov property,
\[
P_1(MRCA_n = 1, Z_n = 2) \geq P_1(Z_{n-1} = 1)P(Z_1 = 2).
\]

Recalling that $P_1(Z_{n-1} = 1) \geq P_1(Z_{n-1} = 2)$ from (6.6) yields the second claim. \hfill \Box

The next three lemmas cover the ‘intermediate’ regime. First, we prove that the probability of $\{MRCA_n = x_n\}$ doesn’t decay exponentially for every $1 \leq x_n \leq n$.

Lemma 6.2. If $E[X e^{-X}] = 0$, then for every $1 \leq x_n \leq n$
\[
\lim_{n \to \infty} \frac{1}{n} \log P_1(MRCA_n = x_n|Z_n = 2) = 0.
\]

Proof. Let $E[X e^{-X}] = 0$ and note that $MRCA_n \geq 1$. Conditionally on E, the branching property holds and guarantees that as in the previous proof that for every $1 \leq x_n \leq n$,
\[
P_1(MRCA_n = x_n|Z_n = 2) \geq P_1(Z_n-x_n = 2) \cdot \frac{E[P_1(Z_{x_n} = 1|E)^2]}{P_1(Z_n = 2)}.
\]

As $E[X \exp(-X)] \geq 0$, we know from the previous subsection that $\log E[e^{-X}] = \lim_{n \to \infty} P_1(Z_n = 2)$. Thus we get for $1 \leq x_n \leq n$,
\[
\liminf_{n \to \infty} \frac{1}{n} \log P_1(MRCA_n = x_n|Z_n = 2)
\geq \liminf_{n \to \infty} \left\{ (1 - x_n/n) \log E[e^{-X}] + \frac{1}{n} \log E[P_1(Z_{x_n} = 1|E)^2] \right\} - \log E[e^{-X}].
\]

For the last term, we use the change of measure of the previous lemma with $\nu = 1$, i.e.
\[
P(X \in dx) = \frac{e^{-x}P(X \in dx)}{E[e^{-X}]}.
\]
Applying (6.10), we get that
\[
\mathbb{E}[\mathbb{P}_1(Z_{x_n} = 1|\mathcal{E})^2] \geq d\mathbb{E}[e^{-X}]^n\mathbb{P}(L_{x_n} \geq 0, S_{x_n} < c).
\]
As \(\mathbb{E}[e^{-X}] = 0\), \(S\) is a recurrent random walk under \(\mathbb{P}\). Using again Lemma 5.2, \(\mathbb{P}(L_n \geq 0, S_n < c) \sim dn^{-3/2}\), and
\[
\lim\inf_{n \to \infty} \frac{1}{n} \log \mathbb{P}_1(MRCA_n = x_n|Z_n = 2) \geq \log \mathbb{E}[e^{-X}] - \log \mathbb{E}[e^{-X}] + \lim\inf_{n \to \infty} \{-x_n/n \log \mathbb{E}[e^{-X}] + x_n/n \log \mathbb{E}[e^{-X}]\} = 0.
\]
It gives the expected lower bound, whereas the upper bound follows is simply due to the fact that the probabilities are less than 1. □

The following lemma is required to prove limit results for the MRCA in the intermediately supercritical case. To avoid technicalities, we impose an additional moment condition.

Lemma 6.3. Let \(\mathbb{E}[Xe^{-X}] = 0\) and \(\gamma = \mathbb{E}[e^{-X}]\). Assume that \(\mathbb{E}[f''(1)e^{-X}] < \infty\). Then
\[
0 < \lim\inf_{n \to \infty} \gamma^n n^{1/2} \mathbb{P}_1(Z_n = 2) \leq \lim\sup_{n \to \infty} \gamma^n n^{1/2} \mathbb{P}_1(Z_n = 2) < \infty,
\]
i.e. \(\mathbb{P}_1(Z_n = 2)\) is of the order \(\gamma^n n^{-1/2}\).

Proof. Using the change of measure to \(\mathbb{P}\) and (6.9),
\[
\mathbb{P}_1(Z_n = 2) = \mathbb{E}[e^{-S_n}\mathbb{P}_1(Z_n > 0|\mathcal{E})^2] = \gamma^n \mathbb{E}[\mathbb{P}(Z_n > 0|\mathcal{E})^2] \geq \gamma^n \mathbb{P}(Z_n > 0). \tag{6.11}
\]
Under \(\mathbb{P}\), \(\mathbb{E}[X] = 0\) and \(Z\) is a critical branching process in random environment. Under our assumptions, there is a constant \(d > 0\) such that (see [3], Theorem 1.1)
\[
\mathbb{P}(Z_n > 0) \sim dn^{-1/2}. \tag{6.12}
\]
Following the proof of the upper bound, using (6.11) and that \(\mathbb{P}(Z_n > 0) \leq e^{L_n}\) a.s., we have
\[
\mathbb{P}_1(Z_n = 2) = \gamma^n \mathbb{E}[\mathbb{P}(Z_n > 0|\mathcal{E})^2] \leq \gamma^n \mathbb{E}[e^{2L_n}].
\]
Our assumptions imply \(\mathbb{E}[X^2] < \infty\) and thus, as a direct consequence of [4], Lemma 2.1 and \(\int_{-\infty}^{0} e^u(-x) \, dx < \infty\),
\[
\mathbb{E}[e^{2L_n}] = O(n^{-1/2}).
\]
This proves the upper bound. □

The next lemma describes the probability of \(\{MRCA_n = n\}\) in the intermediate regime.

Lemma 6.4. Let \(\mathbb{E}[Xe^{-X}] = 0\) and assume that \(\mathbb{E}[f''(1)] < \infty\). Then
\[
0 < \lim\inf_{n \to \infty} n \mathbb{P}_1(MRCA_n = n|Z_n = 2) \leq \lim\sup_{n \to \infty} n \mathbb{P}_1(MRCA_n = n|Z_n = 2) < \infty,
\]
i.e. \(\mathbb{P}_1(MRCA_n = n|Z_n = 2)\) is of the order \(n^{-1}\).
Applying Lemma 6.3 again, we get that since
\[\text{Lemma 6.5.} \]
Let \(f \) be the function defined by
\[f(n) = \sum_{k=2}^{\infty} \binom{k}{2} \frac{k(k-1)}{2} \frac{1}{n^2}, \]
and \(f''(1) \) is its second derivative. Using also Corollary 5.3, we get
\[\frac{1}{n^2} \frac{k(k-1)}{2} \binom{k}{2} = \frac{1}{n^2} \frac{k^2}{2} - \frac{k}{2} = \frac{1}{2} \frac{k(k-1)}{2} \]
Using also Corollary 5.3, we get
\[f''(1) = \frac{1}{2} \frac{k(k-1)}{2} \]
and \(f''(1) = \frac{1}{2} \frac{k(k-1)}{2} \). Using (6.9) and independence yields
\[\mathbb{P}_1(MRCA_n = n, Z_n = 2) \leq \mathbb{E}[f''(1)] \mathbb{E}[e^{-2S_{n-1}} \mathbb{P}(Z_{n-1} > 0)] \leq \mathbb{E}[f''(1)] \mathbb{E}[e^{-2S_{n-1} + 4L_{n-1}}]. \]
Again, we change to the measure \(P \). Note that the assumptions of the lemma \(\mathbb{E}[f''(1)] < \infty \) ensures that \(\text{Var}(X) < \infty \). Using also Corollary 5.3, we get
\[\mathbb{P}_1(MRCA_n = n, Z_n = 2) = \mathbb{E}[f''(1)] \mathbb{E}[e^{-2S_{n-1} + 4L_{n-1}}] = O(n^{-3/2}). \]
Inserting this and applying Lemma 6.3 yields
\[\lim\sup_{n \to \infty} \mathbb{P}_1(MRCA_n = n | Z_n = 2) < \infty. \]
For the lower bound, we use similar arguments. First,
\[\mathbb{P}_1(MRCA_n = n, Z_n = 2) \geq \mathbb{P}_1(Z_1 = 2 | \mathcal{E}) \mathbb{P}_1(Z_{n-1} = 1 | \mathcal{E}, Z_1 = 1)^2 \text{ a.s.} \]
Let \(c > 0 \). Taking the expectation and using (6.9) yields
\[\mathbb{P}_1(MRCA_n = n, Z_n = 2) \geq \mathbb{P}_1(Z_1 = 2 | \mathcal{E}) \mathbb{E}[e^{-2S_{n-1}} | Z_{n-1} = 1 | \mathcal{E}]. \]
Moreover, by Lemma 5.4 and Jensen’s inequality,
\[\lim\inf_{n \to \infty} \mathbb{E}[\mathbb{P}_1(Z_n > 0 | \mathcal{E}) | L_n \geq 0, S_n \leq c] > 0. \]
Applying Lemma 6.3 again, we get that
\[\lim\inf_{n \to \infty} \mathbb{P}_1(MRCA_n = n | Z_n = 2) > 0. \]

The next Lemma describes the probability that the MRCA is neither at the beginning nor at the end:

Lemma 6.5. Let \(\mathbb{E}[X e^{-X}] = 0 \) and \(\mathbb{E}[(f''(1))/(1 - f(0))] < \infty \). Then for every \(\delta \in (0, 1) \)
\[0 < \lim\inf_{n \to \infty} n^{3/2} \mathbb{P}_1(MRCA_n = \lfloor \delta n \rfloor | Z_n = 2) \leq \lim\sup_{n \to \infty} n^{3/2} \mathbb{P}_1(MRCA_n = \lfloor \delta n \rfloor | Z_n = 2) < \infty, \]
i.e. \(\mathbb{P}_1(MRCA_n = \lfloor \delta n \rfloor | Z_n = 2) \) is of the order \(n^{-3/2} \).
Next, we set and note that

Next, using (6.13) and (6.9), we get that

We use the branching property and a decomposition according to the two subtrees which survive to get that a.s.

\[
\mathbb{P}(\text{MRCA}_n = [\delta n], Z_n = 2|E) = \sum_{k=1}^{\infty} \mathbb{P}(Z_{[(1-\delta)n]} = k|E)k\mathbb{P}(Z_n = 0|E, Z_{[(1-\delta)n]} = k - 1) \times \mathbb{P}(\text{MRCA}_n = [\delta n], Z_n = 2|E, Z_{[(1-\delta)n]} = 1) = \sum_{k=1}^{\infty} \mathbb{P}(Z_{[(1-\delta)n]} = k|E)k\mathbb{P}(Z_n = 0|E, Z_{[(1-\delta)n]} = 1)^k - 1 \times \mathbb{P}(\text{MRCA}_n = [\delta n], Z_n = 2|E, Z_{[(1-\delta)n]} = 1).
\]

Next, we set

\[
s := s(E) = \mathbb{P}(Z_n = 0|E, Z_{[(1-\delta)n]} + 1 = 1)
\]

and note that

\[
\mathbb{P}(Z_n = 0|E, Z_{[(1-\delta)n]} = 1) = f_{[(1-\delta)n]}(s).
\]

Thus we get that a.s.

\[
\mathbb{P}(\text{MRCA}_n = [\delta n], Z_n = 2|E) = f_{[(1-\delta)n]}(s)\mathbb{P}_1(\text{MRCA}_n = [\delta n], Z_n = 2|E, Z_{[(1-\delta)n]} = 1).
\] (6.15)

Next, using (6.13) and (6.9), we get that

\[
\mathbb{P}_1(\text{MRCA}_n = [\delta n], Z_n = 2|E, Z_{[(1-\delta)n]} = 1) \leq f_{[(1-\delta)n]} + 1(1)\mathbb{P}(Z_n = 1|E, Z_{[(1-\delta)n]} + 1 = 1)^2 + f_{[(1-\delta)n]} + 1(1)e^{-2(S_n - S_{[(1-\delta)n]} + 1)}\mathbb{P}(Z_n > 0|E, Z_{[(1-\delta)n]} + 1 = 1)^4 = f_{[(1-\delta)n]} + 1(1)e^{-2(S_n - S_{[(1-\delta)n]} + 1)}(1 - s)^4.
\] (6.16)

Combining (6.15) and (6.16), we have a.s.

\[
\mathbb{P}(\text{MRCA}_n = [\delta n], Z_n = 2|E) = f_{[(1-\delta)n]}(s)\mathbb{P}_1(\text{MRCA}_n = [\delta n], Z_n = 2|E, Z_{[(1-\delta)n]} = 1)(1)e^{-2(S_n - S_{[(1-\delta)n]} + 1)}(1 - s)^4.
\]

Moreover, from (6.3),

\[
f_{[(1-\delta)n]}(s)\left(1 - f_{[(1-\delta)n]}(s)\right)^2 \leq e^{-S_{[(1-\delta)n]}}\mathbb{P}(Z_{[(1-\delta)n]} > 0|E)^2 \ a.s.
\]

So

\[
\mathbb{P}(\text{MRCA}_n = [\delta n], Z_n = 2|E)
\]

\[
= e^{-S_{[(1-\delta)n]}}\mathbb{P}(Z_{[(1-\delta)n]} > 0|E)^2 f_{[(1-\delta)n]} + 1(1)e^{-2(S_n - S_{[(1-\delta)n]} + 1)}(1 - s)^4.
\]
As already used in [12], Proof of Lemma 1, we have for a generating function \(f \) of a random variable \(R \)

\[
\frac{1 - f(s)}{1 - s} = \sum_{k=0}^{\infty} s^k \mathbb{P}(R > k),
\]

which is obviously increasing in \(s \). Thus we get

\[
\frac{1 - s}{1 - f_1(1 - \delta)_{\mathbb{N}}(s)} \leq (\mathbb{P}(Z_{[1(1-\delta)_{\mathbb{N}}]} > 0 | Z_{[1(1-\delta)_{\mathbb{N}}]-1} = 1, \mathcal{E}))^{-1} = \frac{1}{1 - f_1(1 - \delta)_{\mathbb{N}}(0)},
\]

Combining these identities and using the independence of the environments yields:

\[
\mathbb{P}(MRCA_n = [\delta n], Z_n = 2) \leq \mathbb{E}[e^{-S_{[1(1-\delta)_{\mathbb{N}}}]} \mathbb{P}(Z_{[1(1-\delta)_{\mathbb{N}}]} > 0 | \mathcal{E})^2] \mathbb{E}[f''(1)/(1 - f(0))^2] \mathbb{E}[e^{-2S_{[\delta n]-1}} \mathbb{P}_1(Z_{[\delta n]-1} > 0 | \mathcal{E})^2],
\]

where we recall that by assumption \(\mathbb{E}[f''(1)/(1 - f(0))^2] < \infty \). As we have proved before, for every \(\delta \in (0, 1) \),

\[
\mathbb{E}[e^{-S_{[1(1-\delta)_{\mathbb{N}}]}]} \mathbb{P}(Z_{[1(1-\delta)_{\mathbb{N}}]} > 0 | \mathcal{E})^2] \leq \gamma^{(1-\delta)_{\mathbb{N}}} \mathbb{E}[e^{2S_{[1(1-\delta)_{\mathbb{N}}]}-1}] = \gamma^{(1-\delta)_{\mathbb{N}}} \mathcal{L}(n^{-1/2})
\]

and

\[
\mathbb{E}[e^{-2S_{[\delta n]-1}} \mathbb{P}_1(Z_{[\delta n]-1} > 0 | \mathcal{E})^2] \leq \gamma^{[\delta n]-1} \mathbb{E}[e^{-2S_{[\delta n]-1+2L_{[\delta n]-1}}} - 1] = \gamma^{[\delta n]-1} \mathcal{L}(n^{-3/2}).
\]

Together with Lemma 6.3, this yields the expected upper bound:

\[
\limsup_{n \to \infty} n^{3/2} \mathbb{P}_1(MRCA_n = [\delta n], Z_n = 2) < \infty.
\]

For the lower bound, we use

\[
\mathbb{P}_1(MRCA_n = [\delta n], Z_n = 2 | \mathcal{E}) \geq \mathbb{P}_1(Z_{[1(1-\delta)_{\mathbb{N}}]} = 1 | \mathcal{E}) \mathbb{P}_1(MRCA_n = [\delta n], Z_n = 2 | \mathcal{E}, Z_{[1(1-\delta)_{\mathbb{N}}]} = 1) \quad a.s.
\]

Both terms are independent and from Lemma 6.4, we get

\[
\liminf_{n \to \infty} \gamma^{-[\delta n]+1} n^{3/2} \mathbb{P}_1(MRCA_n = [\delta n], Z_n = 2 | Z_{[1(1-\delta)_{\mathbb{N}}]} = 1) > 0.
\]

From the previous lemmas,

\[
\liminf_{n \to \infty} \gamma^{-[1(1-\delta)_{\mathbb{N}}]} n^{1/2} \mathbb{P}_1(Z_{[1(1-\delta)_{\mathbb{N}}]} = 1) > 0.
\]

Thanks to Lemma 6.3, we obtain the expected lower bound. \(\square \)

For the next proof, we require the following auxiliary result.

Lemma 6.6. We assume that \(\mathbb{E}[Xe^{-X}] > 0 \). Then for every \(c > 0 \),

\[
\lim_{n \to \infty} \frac{1}{n} \log \inf_{z \geq cn^2} \mathbb{P}_z(Z_n = 2) = -\infty, \quad \limsup_{n \to \infty} \frac{1}{n} \log \mathbb{P}_1(1 \leq Z_n \leq cn^2) = \log \mathbb{E}[e^{-X}].
\]
Proof. First, we observe that on the event \(\{Z_n = 2\} \), at most two initial subtrees survive until generation \(n \). Using the branching property conditionally on \(E \), we have a.s.

\[
\inf_{z \geq \epsilon n^2} P_z(Z_n = 2 | E) \leq \sum_{k = [\epsilon n^2]}^{\infty} \binom{k}{2} P_1(Z_n = 0 | E) \cdot \epsilon n^2 - 2 P_1(1 \leq Z_n \leq 2 | E)^2
\]

\[
+ \sum_{k = [\epsilon n^2]}^{\infty} \binom{k}{1} P_1(Z_n = 0 | E) \cdot \epsilon n^2 - 1 P_1(1 \leq Z_n \leq 2 | E).
\]

Again, we use the geometric form of LF distributions to see that \(P(1 \leq Z_n \leq 2 | E) \leq 2 P(Z_n = 1 | E) \) a.s. Next, we use

\[
\sum_{k=n}^{\infty} k(k - 1) \alpha^{k-2} \leq n^2 \frac{\alpha^{n-2}}{(1 - \alpha)^2}, \quad \sum_{k=n}^{\infty} k \alpha^{k-1} \leq n \frac{\alpha^{n-1}}{(1 - \alpha)^2}
\]
to get

\[
\inf_{z \geq \epsilon n^2} P_z(Z_n = 2 | E)
\leq n^2 \left[c^2 P_1(Z_n = 0 | E) \cdot \epsilon n^2 - 2 P_1(1 \leq Z_n \leq 2 | E)^2 \right] + c \frac{P_1(Z_n = 0 | E) \cdot \epsilon n^2 - 1 P_1(1 \leq Z_n \leq 2 | E)}{(1 - P_1(Z_n = 0 | E))^2}
\]

\[
= n^2 \left[c^2 P_1(Z_n = 0 | E) \cdot \epsilon n^2 - 2 P_1(1 \leq Z_n \leq 2 | E)^2 \right] + c \frac{P_1(Z_n = 0 | E) \cdot \epsilon n^2 - 1 P_1(1 \leq Z_n \leq 2 | E)}{P_1(Z_n > 0 | E)^2}
\]

\[
= n^2 \left[c^2 P_1(Z_n = 0 | E) \cdot \epsilon n^2 - 2 e^{-2S_n} P_1(Z_n > 0 | E) + c P_1(Z_n = 0 | E) \cdot \epsilon n^2 - 1 e^{-S_n} \right]
\]

by using (6.5). Finally, as \(P(Z_n > 0 | E) \leq c S_n \) a.s., we get that a.s.

\[
\inf_{z \geq \epsilon n^2} P_z(Z_n = 2 | E) \leq (c^2 + c) n^2 P_1(Z_n = 0 | E) \cdot \epsilon n^2 - 1 e^{-S_n}.
\]

Next, we use again the change of measure

\[
P(X \in dx) = \frac{e^{-X} P(X \in dx)}{E[e^{-X}]}.
\]

Then

\[
\inf_{z \geq \epsilon n^2} P_z(Z_n = 2) \leq (c^2 + c) n^2 [E[e^{-X}]^n E[P(Z_\infty = 0 | E) \cdot \epsilon n^2 - 2]].
\]

Using Jensen’s inequality yields

\[
limit_{n \to \infty} \frac{1}{n} \log \inf_{z \geq \epsilon n^2} P_z(Z_n = 2) \leq \log E[e^{-X}] + \lim_{n \to \infty} n E[\log P(Z_\infty = 0 | E)].
\]

Finally, note that \(E[X e^{-X}] > 0 \) implies \(E[X] > 0 \). Thus \(P(P(Z_\infty = 0 | E) < 1) > 0 \) and therefore \(E[\log P(Z_\infty = 0 | E)] < 0 \). This yields the first result.

For the second claim, we use again the geometric form of the probabilities of LF distributions to get

\[
P_1(1 \leq Z_n \leq \epsilon n^2 | E) \leq [\epsilon n^2] P_1(Z_n = 1 | E).
\]
Thus, taking expectations yields
\[
\limsup_{n \to \infty} \frac{1}{n} \log P_1(1 \leq Z_n \leq cn^2) \leq \limsup_{n \to \infty} \frac{1}{n} \log \left(\left\lceil cn^2 \right\rceil P_1(Z_n = 1) \right)
\]
\[
= \limsup_{n \to \infty} \frac{1}{n} \log P_1(Z_n = 1) = \log E[e^{-X}].
\]
where the last result has been shown in the previous subsection.

Lemma 6.7. We assume that \(E[e^{-X}] > 0 \). Then, for every \(\delta \in (0, 1] \),
\[
\limsup_{n \to \infty} \frac{1}{n} \log P_1(MRCA_n > \delta n | Z_n = 2) < 0.
\]

Proof. First, we recall that the event \(\{MRCA_n = \lfloor \delta n \rfloor + 1 \} \) implies that there are at least two individuals in generation \(n - \lfloor \delta n \rfloor \) and that from this generation on, at least two subtrees survive until generation \(n \). As in the preceding lemmas, we use the branching property and a decomposition according to the two subtrees which survive and get that
\[
P_1(MRCA_n = \lfloor \delta n \rfloor + 1, Z_n = 2)
\]
\[
\leq \sum_{k=2}^{n^2} \binom{k}{2} P_1(Z_{n-\lfloor \delta n \rfloor} = k) E[P_1(Z_{\lfloor \delta n \rfloor} = 1|E)^2P(Z_{\lfloor \delta n \rfloor} = 0|E)^{k-2}] + \inf_{\varepsilon \geq n^2} P_\varepsilon(Z_{\lfloor \delta n \rfloor} = 2)
\]
\[
\leq A_n + B_n,
\]
where
\[
A_n := n^4 P_1(1 \leq Z_n - \lfloor \delta n \rfloor \leq n^2) E[P_1(Z_{\lfloor \delta n \rfloor} = 1|E)^2], \quad B_n := \inf_{\varepsilon \geq n^2} P_\varepsilon(Z_{\lfloor \delta n \rfloor} = 2).
\]

Letting \(n \) go to \(\infty \) and applying Lemma 6.6 yields
\[
\limsup_{n \to \infty} \frac{1}{n} \log P_1(MRCA_n = \lfloor \delta n \rfloor + 1, Z_n = 2)
\]
\[
\leq \max \left\{ \limsup_{n \to \infty} \frac{1}{n} \log A_n, \limsup_{n \to \infty} \frac{1}{n} \log B_n \right\}
\]
\[
= \max \left\{ \limsup_{n \to \infty} \frac{1}{n} \log A_n, -\infty \right\} = \limsup_{n \to \infty} \frac{1}{n} \log A_n. \quad (6.18)
\]

Next, let us treat the term named \(A_n \). By Lemma 6.6,
\[
\limsup_{n \to \infty} \frac{1}{n} \log P(1 \leq Z_n - \lfloor \delta n \rfloor \leq n^2) = (1 - \delta) \log E[e^{-X}]. \quad (6.19)
\]

Using (6.5) and \(P(Z_n > 0|E) \leq e^{t_n} \) a.s. yields
\[
E[P_1(Z_{\lfloor \delta n \rfloor} = 1|E)^2] \leq E[e^{-2S_{\lfloor \delta n \rfloor}} P_1(Z_{\lfloor \delta n \rfloor} > 0|E)^4] \leq E[e^{-2S_{\lfloor \delta n \rfloor} + 4L_{\lfloor \delta n \rfloor}}]. \quad (6.20)
\]

We recall the change of measure
\[
P(X \in dx) = \frac{e^{-x} P(X \in dx)}{E[e^{-X}]}.
\]
Then \(\mathbb{E}[X e^{-X}] > 0 \) assures that \(\mathbb{E}[X] > 0 \) and under \(P \), \(S \) is a random walk with positive drift. From (6.18), (6.19) and (6.20) we get

\[
\limsup_{n \to \infty} \frac{1}{n} \log P_1(MRCA_n = |\delta n| + 1, Z_n = 2) \\
\leq (1 - \delta) \log \mathbb{E}[e^{-X}] + \limsup_{n \to \infty} \frac{1}{n} \log \mathbb{E}[e^{-S(|\delta n|)+4L(|\delta n|)}] \\
= (1 - \delta) \log \mathbb{E}[e^{-X}] + \delta \log \mathbb{E}[e^{-X}] + \limsup_{n \to \infty} \frac{1}{n} \log \mathbb{E}[e^{-S(|\delta n|)+4L(|\delta n|)}] \\
= \log \mathbb{E}[e^{-X}] + \limsup_{n \to \infty} \frac{1}{n} \log \mathbb{E}[e^{-S(|\delta n|)+4L(|\delta n|)}].
\]

As \(\mathbb{E}[X e^{-X}] > 0 \), we know from the previous subsection that \(\lim_{n \to \infty} \frac{1}{n} \log P_1(Z_n = 2) = \log \mathbb{E}[e^{-X}] \). So the previous inequality yields

\[
\limsup_{n \to \infty} \frac{1}{n} \log P_1(MRCA_n = |\delta n| + 1 | Z_n = 2) \leq \limsup_{n \to \infty} \frac{1}{n} \log \mathbb{E}[e^{-S(|\delta n|)+4L(|\delta n|)}].
\]

Finally, we prove that \(\limsup_{n \to \infty} \frac{1}{n} \log \mathbb{E}[e^{-S(|\delta n|)+4L(|\delta n|)}] < 0 \) to conclude. Decomposing the expectation with \(0 < c < \mathbb{E}[X] \) and using \(4L(|\delta n|) - S(|\delta n|) \leq 0 \) yields

\[
\mathbb{E}[e^{-S(|\delta n|)+4L(|\delta n|)}] \leq e^{-c|\delta n|} + \mathbb{P}(4L(|\delta n|) - S(|\delta n|) > -c|\delta n|) \\
\leq e^{-c|\delta n|} + \mathbb{P}(S(|\delta n|) < c|\delta n|).
\]

As \(0 < c < \mathbb{E}[X] \), by standard results of large deviation theory, the probability on the right-hand side is exponentially small if \(\mathbb{E}[e^{-sX}] = \mathbb{E}[e^{(-1-s)X}] < \infty \) for some \(s > 0 \). This yields that

\[
\limsup_{n \to \infty} \frac{1}{n} \log P_1(MRCA_n = |\delta n| + 1 | Z_n = 2) < 0
\]

and thus

\[
\limsup_{n \to \infty} \frac{1}{n} \log P_1(MRCA_n > |\delta n| Z_n = 2) < 0.
\]

\section{Examples with two environments: Dependence on the initial and final population}

In this section, we focus on the importance of the initial population.

\begin{example}[the limits of \(\frac{1}{n} \log P_1(Z_n = i) \) and \(\frac{1}{n} \log P_1(Z_n = j) \) may be both finite, negative but different] Assume that the environment consists of two states \(q_1 \) and \(q_2 \) such that

\[
r := \mathbb{P}(Q_1 = q_1) = 1 - \mathbb{P}(Q_1 = q_2) > 0; \quad q_1(1) = 1; q_2(0) = p, q_2(2) = 1 - p,
\]

with \(p \in (0, 1) \). Then

\[
\frac{1}{n} \log P_1(Z_n = 1) = \log r, \quad \frac{1}{n} \log P_1(Z_n = 2) \geq \max \{ \log r; \log [(1 - r)2(1 - p)p]\},
\]

where the term \(\log r \) comes from a population which stays equal to 1 in the environment sequence \((q_1, q_1, q_1, \ldots) \) and the last term comes from a population which stays equal to 2 in the environment sequence \((q_2, q_2, q_2, \ldots) \). Thus if \(r \) is chosen small enough (i.e. \(r < \frac{2(1-p)p}{1+(1-p)p} \)),

\[
\lim_{n \to \infty} \frac{1}{n} \log P_1(Z_n = 1) < \lim_{n \to \infty} \frac{1}{n} \log P_1(Z_n = 2).
\]

\end{example}
Example 2 (the limits of \(\frac{1}{n} \log \mathbb{P}_k(Z_n = k) \) and \(\frac{1}{n} \log \mathbb{P}_1(Z_n = k) \) with \(k > 1 \) may be both finite, negative but different). Actually, in the case without extinction, we have

\[
\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}_1(Z_n = k) = \log \mathbb{P}(Z_1 = 1),
\]

as soon as \(\mathbb{P}_1(\exists n: Z_n = k) > 0 \) and the result is immediate. We give here an example with \(k = 2 \) and possible extinction. We first observe that such an example is not possible with one environment, i.e. in the Galton–Watson case. Then we introduce a simple example in the random environment case and check that it is not in contradiction to Theorem 2.1, before considering the asymptotic behavior of the probabilities involved.

Indeed, for Galton–Watson processes with reproduction law \(q \) such that \(q(0) > 0 \) and \(q(2) > 0 \), the fact that \(q(1) > 0 \) already ensures that the limits of \(\frac{1}{n} \log \mathbb{P}_2(Z_n = 2) \) and \(\frac{1}{n} \log \mathbb{P}_1(Z_n = 2) \) are equal. In the case \(q(1) = 0 \), we get that

\[
\mathbb{P}_1(Z_{n+1} = 2) = \mathbb{P}_1(Z_1 \geq 2, Z_{n+1} = 2) = \sum_{i \geq 2} q(i) \mathbb{P}_i(Z_n = 2)
\]

whereas killing one of the initial individuals starting from 2 and letting the other survive yields:

\[
\mathbb{P}_2(Z_{n+1} = 2) \geq 2q(0) \sum_{i \geq 2} q(i) \mathbb{P}_i(Z_n = 2).
\]

Thus \(\mathbb{P}_2(Z_{n+1} = 2) \geq 2q(0) \mathbb{P}_1(Z_n = 2) \). A converse inequality is clear, so the limits of \(\frac{1}{n} \log \mathbb{P}_2(Z_n = 2) \) and \(\frac{1}{n} \log \mathbb{P}_1(Z_n = 2) \) have to be equal in the Galton–Watson case with possible extinction.

Thus, we consider two environments to provide an example that the initial population size is also of importance even if extinction is possible. More precisely, let the environment consist of the two states \(q_1 \) and \(q_2 \) such that

\[
r := \mathbb{P}(Q_1 = q_1) = 1 - \mathbb{P}(Q_1 = q_2) > 0,
\]

\[
q_1(1) = p, \quad q_1(\alpha) = 1 - p, \quad q_2(0) = p, \quad q_2(2) = p, \quad q_2(\alpha) = 1 - 2p,
\]

with \(p \in (0, \frac{1}{2}) \) and \(\alpha > 2 \). Note \(k = 1 \notin \text{Cl}(I) \), so this example doesn’t contradict Theorem 2.1 where it is assumed that the initial population size is in \(\text{Cl}(I) \).

To prove that \(\mathbb{P}_1(Z_n = 2) \gg \mathbb{P}_2(Z_n = 2) \), we first observe that

\[
\liminf_{n \to \infty} \frac{1}{n} \log \mathbb{P}_1(Z_n = 2) \geq \log(rp),
\]

which comes from a population staying equal to 1 before the last generation in the environment sequence \((q_1, q_1, \ldots, q_1, q_2)\).

Next, let us estimate the extinction probability, given the environment. We first observe that any BPVE whose environments are either \(q_1 \) or \(q_2 \) is stochastically larger than the Galton–Watson process with reproduction law (and unique environment) \(q_2 \). As a consequence,

\[
\mathbb{P}_1(Z_n = 0|\mathcal{E}) \leq \mathbb{P}_1(Z_n = 0|Q_1 = q_1, \ldots, Q_n = q_2) \leq \mathbb{P}(Z_{\infty} = 0|Q_1 = q_2, Q_2 = q_2, \ldots) =: s_e \quad \text{a.s.}
\]

It is well-known that \(s_e \) is given as the first fix point of the generating function \(f_2 \) of \(q_2 \):

\[
s_e = f_2(s_e) = p + ps_e^2 + (1 - 2p)s_e^a.
\]

Let us now estimate \(s_e \). For \(s = 2p \), we have \(2p > f_2(2p) = p + 4p^2 + (1 - 2p)2a^p \) if \(a \) is large enough since \(p < 1/2 \). Thus \(s_e \leq 2p \) if only \(a \) is large enough.

We get then for all \(i \geq 1, k \leq n \),

\[
\mathbb{P}(Z_n = 0|\mathcal{E}, Z_k = i) \leq s_e^i \leq (2p)^i \quad \text{a.s.}
\]
Using this estimate and the explicit law of $P(Z_{k+1} = \cdot | Z_k = 2, Q_k = q_1)$, we obtain a.s.

$$P_2(Z_n = 2|\mathcal{E}, Q_k = q_1, Z_k = 2) = p^2 P(Z_n = 2|\mathcal{E}, Z_{k+1} = 2) + 2(1 - p)pP(Z_n = 2|\mathcal{E}, Z_{k+1} = 1 + a)$$

$$+ (1 - p)^2 P(Z_n = 2|\mathcal{E}, Z_{k+1} = 2a)$$

$$= P(Z_n = 2|\mathcal{E}, Z_{k+1} = 2) \left(p^2 + 2(1 - p)p \left(\frac{a + 1}{2} \right) P(Z_n = 0|\mathcal{E}, Z_{k+1} = 1 + a - 2) \right)$$

$$+ (1 - p)^2 \left(\frac{2a}{2} \right) P(Z_n = 0|\mathcal{E}, Z_{k+1} = 2a - 2) \right)$$

$$\leq P(Z_n = 2|\mathcal{E}, Z_{k+1} = 2) \left(p^2 + 2(1 - p)p \left(\frac{a + 1}{2} \right) (2p)^{a-1} + (1 - p)^2 \left(\frac{2a}{2} \right) (2p)^{2a-2} \right).$$

If p is small enough (depending on $a > 2$), we get that a.s.

$$P_2(Z_n = 2|\mathcal{E}, Q_k = q_1, Z_k = 2) \leq P(Z_n = 2|\mathcal{E}, Z_{k+1} = 2) 3p^2.$$

Analogously, if the environment q_2 occurs in generation k, we get that a.s.

$$P_2(Z_n = 2|\mathcal{E}, Q_k = q_2, Z_k = 2) = 2p^2 P(Z_n = 2|\mathcal{E}, Z_{k+1} = 2) + p^2 P(Z_n = 2|\mathcal{E}, Z_{k+1} = 4) + 2p(1 - 2p)P(Z_n = 2|\mathcal{E}, Z_{k+1} = a)$$

$$+ 2p(1 - p)^2 P(Z_n = 2|\mathcal{E}, Z_{k+1} = a + 2) + (1 - 2p)^2 P(Z_n = 2|\mathcal{E}, Z_{k+1} = 2a)$$

$$\leq P(Z_n = 2|\mathcal{E}, Z_{k+1} = 2) 3p^2.$$

Next, note that the population starting from $Z_0 = 2$ is either always ≥ 2 or extinct. Thus in each generation, there are at least two individuals and we may apply the estimates above for the subtrees emerging in generation k. Finally we get that

$$\limsup_{n \to \infty} \frac{1}{n} \log P_2(Z_n = 2) = \limsup_{n \to \infty} \frac{1}{n} \log P_2(Z_n = 2) \leq \log(3p^2).$$

We now choose p small enough such that $3p^2 < rp$ and recall (7.1) to get

$$\limsup_{n \to \infty} \frac{1}{n} \log P_2(Z_n = 2) < \liminf_{n \to \infty} \frac{1}{n} \log P_1(Z_n = 2).$$

Finally, we note that this example shows that, as in the case without extinction in [9], the initial population may be of importance for the asymptotic of the probability of staying small, but alive.

Acknowledgments

The authors wish to thank the anonymous referee for several comments and corrections of the earlier version of this paper, which have significantly improved its quality. This work partially was funded by project MANEGE ‘Modèles Aléatoires en Ecologie, Génétique et Évolution’ 09-BLAN-0215 of ANR (French national research agency), Chair Modelisation Mathematique et Biodiversite VEOLIA-Ecole Polytechnique-MNHN-F.X. and the professorial chair Jean Marjoulet.

References
