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Abstract. Observations are made on a point process Ξ in R
d in a window Qλ of volume λ. The observation, or ‘score’ at a

point x, here denoted ξ(x,Ξ), is a function of the points within a random distance of x. When the input Ξ is a Poisson or binomial
point process, the large λ limit theory for the total score

∑
x∈Ξ∩Qλ

ξ(x,Ξ ∩ Qλ), when properly scaled and centered, is well
understood. In this paper we establish general laws of large numbers, variance asymptotics, and central limit theorems for the total
score for Gibbsian input Ξ . The proofs use perfect simulation of Gibbs point processes to establish their mixing properties. The
general limit results are applied to random sequential packing and spatial birth growth models, Voronoi and other Euclidean graphs,
percolation models, and quantization problems involving Gibbsian input.

Résumé. On observe un processus ponctuel Ξ dans R
d dans une fenêtre Qλ de volume λ. L’observation en un point x que l’on

note ξ(x,Ξ) est une fonction des points situés à une distance aléatoire de x. Quand Ξ est un processus de Poisson ponctuel
ou Binomial, la limite pour λ grand de la somme totale

∑
x∈Ξ∩Qλ

ξ(x,Ξ ∩ Qλ) (convenablement recentrée et normalisée) est
bien comprise. Dans ce papier, nous étudions cette somme totale quand Ξ est Gibbsien et prouvons la loi des grands nombres, la
variance asymptotique et un théorème de la limite centrale. Les preuves reposent sur la simulation parfaite de processus ponctuels
Gibbsiens pour établir leurs propriétés de mélange. Ces résultats généraux sont appliqués dans différents contextes comme des
modèles de croissance et de percolation, des graphes de Voronoi et des problèmes de quantification pour des entrées Gibbsiennes.
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1. Introduction

Functionals of geometric structures often admit the representation∑
x∈X

ξ(x, X ), (1.1)

where X ⊂ R
d is finite and where the function ξ , defined on pairs (x, X ), represents the ‘score’ or ‘interaction’ of x

with respect to X . When X consists of either λ i.i.d. random variables, λ ∈ N, or Poisson points of intensity λ > 0,
and when ξ satisfies the spatial dependency condition known as stabilization, the papers [2,20–25] develop the large
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λ limit theory for the properly normalized sums (1.1). The main goals of this paper are to (i) establish general weak
laws of large numbers, variance asymptotics, and central limit theorems for (1.1) for Gibbsian input X on dilating
volume λ windows as λ → ∞ and (ii) apply the general results to deduce the limit theory of functionals of Gibbsian
input arising in computational and discrete stochastic geometry.

Stabilization of scores ξ with respect to a reference Poisson point process Pτ on R
d of constant intensity τ ∈ (0,∞)

is defined as follows. Say that ξ is translation invariant if ξ(x, X ) = ξ(x + z, X + z) for all z ∈ R
d . Let Br(x) denote

the Euclidean ball centered at x with radius r ∈ R
+ := [0,∞). Letting 0 denote the origin of R

d , a translation invariant
ξ is stabilizing on Pτ if there exists an a.s. finite random variable R := Rξ (τ) (a ‘radius of stabilization’) such that

ξ
(
0, Pτ ∩ BR(0)

) = ξ
(
0,

(
Pτ ∩ BR(0)

) ∪ A
)

for all locally finite A ⊂ R
d \ BR(0). Here and elsewhere when x /∈ X , we write ξ(x, X ) for ξ(x, X ∪ {x}), unless

notated otherwise.
For all λ ≥ 1, consider the point measures

μλ :=
∑

u∈Pτ ∩Qλ

ξ(u, Pτ ∩ Qλ)δλ−1/du,

where δx denotes the unit point mass at x whereas Qλ is the volume λ window [−λ1/d/2, λ1/d/2]d . Let B(Q1)

denote the class of all bounded f :Q1 → R and for all random measures μ on R
d we put 〈f,μ〉 := ∫

f dμ and
μ̄ := μ − E[μ].

Stabilization of Borel measurable translation invariant ξ on Pτ ∩ Qλ,λ ∈ [1,∞], when combined with moment
conditions on ξ , yields for all f ∈ B(Q1) the law of large numbers [21,24]

lim
λ→∞λ−1〈f,μλ〉 = τE

[
ξ(0, Pτ )

] ∫
Q1

f (x)dx in L2 (1.2)

and, under further conditions on the tail behavior of Rξ (τ), variance asymptotics [2,20]

lim
λ→∞λ−1 Var

[〈f,μλ〉
] = τV ξ (τ )

∫
Q1

f (x)dx. (1.3)

Here, for all τ > 0

V ξ (τ ) := E
[
ξ(0, Pτ )

2] + τ

∫
Rd

E
[
ξ
(
0, Pτ ∪ {z})ξ(

z, Pτ ∪ {0})] − (
Eξ(0, Pτ )

)2 dz.

Additionally [2,20], the finite-dimensional distributions (λ−1/2〈f1,μλ〉, . . . , λ−1/2〈fk,μλ〉), f1, . . . , fk ∈ B(Q1),
converge to a mean zero Gaussian field with covariance kernel

(f, g) �→ τV ξ (τ )

∫
Q1

f (x)g(x)dx. (1.4)

It is natural to ask whether analogs of (1.2)–(1.4) hold when Pτ is replaced by weakly dependent input, including
Gibbsian input P βΨ , where β is the inverse temperature and where the potential Ψ is in some general class of
potentials, e.g. the set Ψ ∗ of potentials consisting of (i) a pair potential function, (ii) a continuum Widom–Rowlinson
potential, (iii) an area interaction potential, (iv) a hard-core potential, and (v) a potential generating a truncated Poisson
point process (see below for further details of such potentials). Given D ⊂ R

d open and bounded, Ψ ∈ Ψ ∗, the
distribution of P βΨ

D := P βΨ ∩ D has a Radon–Nikodym derivative with respect to the reference process Pτ given by

dL(P βΨ
D )

dL(Pτ ∩ D)
(X ) := exp(−βΨ (X ∩ D))

Z(βΨD)
, (1.5)

with X finite and Z(βΨD) := E[exp(−βΨ (Pτ ∩ D))] the normalizing constant.
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We answer this question affirmatively and use a graphical construction of P βΨ
D to show that if Ψ ∈ Ψ ∗, then

there is a range of τ and β such that the processes defined by (1.5) extend to Gibbs processes P βΨ on R
d . The

graphical construction of the extended process P βΨ , while of separate interest, also shows for this range of τ and β

that P βΨ is exponentially mixing, as are the weighted empirical measures
∑

x∈P βΨ ξ(x, P βΨ )δx , provided ξ satisfies
an exponential stabilization condition. This leads to the analogs of (1.2)–(1.4) when Pτ is replaced by the infinite
volume Gibbsian input P βΨ ,Ψ ∈ Ψ ∗. See Theorems 2.1–2.3.

Stabilizing functionals of geometric graphs over Gibbsian input on large cubes, as well as functionals of random
sequential packing models defined by Gibbsian input on large cubes, consequently satisfy weak laws of large numbers,
variance asymptotics, and central limit theorems as the cube size tends to infinity. Our general results also yield
the limit theory for the total edge length of Voronoi tessellations with Gibbsian input. Precise theorems appear in
Sections 5 and 6, which includes asymptotics for functionals of communication networks and continuum percolation
models over Gibbsian point sets, as well as asymptotics for the distortion error arising in Gibbsian quantization of
probability measures.

Terminology

Throughout Ψ denotes a translation and rotation invariant energy functional defined on finite point sets X ⊂ R
d , with

values in [0,∞]. By translation invariant we mean Ψ (X ) = Ψ (y + X ) for all y ∈ R
d and by rotation invariant we

mean Ψ (X ) = Ψ (X ′) for all rotations X ′ of X . Given a finite point set X in R
d , and an open bounded set D ⊆ R

d , we
define ΨD(X ) := Ψ (X ∩ D). We always assume that Ψ is non-degenerate, that is Ψ ({x}) < ∞ for all x ∈ R

d ∪ {∅}.
We also assume that

ΨD(X ) ≤ ΨD

(
X ′) for X ⊆ X ′ (1.6)

and thus Ψ is hereditary, that is if Ψ (X ) = ∞ for some X then Ψ (X ′) = ∞ for all X ′ ⊇ X . Given a potential Ψ

define for finite X ⊂ R
d the local energy function

Δ(0, X ) := ΔΨ (0, X ) := Ψ
(

X ∪ {0}) − Ψ (X ), 0 /∈ X . (1.7)

When both Ψ (X ∪ {0}) and Ψ (X ) are ∞ we set Δ(0, X ) := 0. Note that ΔΨ (x, X ) = ΔΨ (0, X − x) is the ‘energy’
required to insert x into the configuration X and the so-called conditional intensity exp(−βΔΨ (x, X )) determines the
law of P βΨ . Ψ has finite interaction range if there is rΨ ∈ (0,∞) such that for all finite X ⊂ R

d we have

ΔΨ (0, X ) = ΔΨ
(
0, X ∩ BrΨ (0)

)
. (1.8)

Gibbs point processes with potentials Ψ in the class Ψ ∗

(i) Point processes with a pair potential function. A large class of Gibbs point processes, known as pairwise inter-
action point processes [29], has Hamiltonian

Ψ (X ) :=
∑
i<j

φ
(|xi − xj |

)
, X := {xi}ni=1, (1.9)

with φ : [0,∞) → [0,∞) and where | · | denotes the Euclidean norm. We assume that either φ has compact support or
that it satisfies the superstability condition

φ(r) ≤ K1 exp(−K2r), r ∈ [r0,∞) (1.10)

and φ(r) = ∞ for r ∈ (0, r0). Thus there is a hard-core exclusion forbidding the presence of two points within distance
less than r0, see [27]. The case of compact support includes the Strauss process, where φ(u) = α1(u ≤ r0) for some
α > 0; see [1,29], and Section 10.4 of [5] for details.

(ii) Point processes defined by the continuum Widom–Rowlinson model. Consider the point process P βΨ defined in
terms of the continuum Widom–Rowlinson model from statistical physics, also called the penetrable spheres mixture
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model (Section 10.4 of [5]). Here we have spheres of type A and B , with common radii equal to a, with interpenetrat-
ing spheres of similar types but hard-core exclusion between the two types. Let X := {xi}ni=1 be the centers of type A

spheres and let Y := {yi}mi=1 be the centers of type B spheres. As in Section 10.4 of [5] we have

Ψ (X ∪ Y ) = α1n + α2m + α3, d(X , Y ) > 2a (1.11)

and otherwise Ψ (X ∪ Y ) = ∞. Here and below αi, i = 1,2,3 are positive constants.
(iii) Area interaction point processes. These are Gibbs-modified germ grain processes, where the grain shape is a

fixed compact convex set K; see Section 2 of [11], [1], and Section 10.4 of [5] for details. As in [5], these processes
have Hamiltonian

Ψ (X ) = Vol

(
n⋃

i=1

(xi ⊕ K)

)
+ α1n + α2, X := {xi}ni=1. (1.12)

(iv) Point processes given by the hard-core model. A natural model falling into the framework of our theory is
the hard-core model, extensively studied in statistical mechanics. In its basic version, the model conditions a Poisson
point process to contain no two points at distance less than 2r0, with r0 > 0 denoting a parameter of the model. This
model has Hamiltonian

Ψ (X ) = α1n + α2, X := {xi}ni=1, (1.13)

if no two points of X are within distance 2r0 and otherwise Ψ (X ) = ∞.
(v) Truncated Poisson processes. The hard-core gas is a particular example of a truncated Poisson process. A trun-

cated Poisson process arises by conditioning a Poisson point process on a constraint event. For example, we may fix
k ∈ N and r0 ∈ (0,∞) and require that no ball of radius r0 contain more than k points from the process. In this case,

Ψ (X ) = ∞ if there is x ∈ R
d such that card

(
X ∩ Br0(x)

)
> k (1.14)

and otherwise Ψ (X ) = 0.

2. Limit theory for stabilizing functionals on Gibbsian input

Poisson-like processes

A point process Ξ on R
d is stochastically dominated by the reference process Pτ if for all Borel sets B ⊂ R

d and n ∈ N

we have P[card(Ξ ∩B) ≥ n] ≤ P[card(Pτ ∩B) ≥ n]. We say that Ξ is Poisson-like if (i) Ξ is stochastically dominated
by Pτ and (ii) there exists C1 := C1(τ ) ∈ (0,∞) and r1 := r1(τ ) ∈ (0,∞) such that for all r ∈ [r1,∞), x ∈ R

d , and
any point set Er (x) in Bc

r (x), the conditional probability of Br(x) not being hit by Ξ , given that Ξ ∩Br(x)c coincides
with Er (x), satisfies

P
[
Ξ ∩ Br(x) = ∅|{(Ξ ∩ Br(x)c

) = Er (x)
}] ≤ exp

(−C1r
d
)
. (2.1)

Stochastic domination and (2.1) provide stochastic bounds on the number of points in large balls analogous to those
satisfied by homogeneous Poisson point processes and thus the terminology Poisson-like. Lemma 3.3 below shows
that Gibbs processes P βΨ ,Ψ ∈ Ψ ∗, are Poisson-like.

Stabilization

We next consider stabilization with respect to Poisson-like processes. Given a locally finite point set X and z ∈ R
d ,

write X z for X ∪ {z}.
Definition 2.1. ξ is a stabilizing functional in the wide sense if for every Poisson-like process Ξ , all x ∈ R

d , all
z ∈ R

d ∪ {∅}, and almost all realizations X of Ξ there exists R := Rξ (x, X z) ∈ (0,∞) (a ‘radius of stabilization’)
such that

ξ
(
x, X z ∩ BR(x)

) = ξ
(
x,

(
X z ∩ BR(x)

) ∪ A
)

(2.2)

for all locally finite point sets A ⊆ R
d \ BR(x).
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Wide sense stabilization of ξ on Ξ implies that ξ(x, X z) is wholly determined by the point configuration X z ∩
BRξ (x). It also yields ξ(x, X z ∩ Br(x)) = ξ(x, X z ∩ BRξ (x)) for r ∈ (Rξ ,∞). Stabilizing functionals in the wide
sense can thus be a.s. extended to the entire process Ξz, that is to say for all x ∈ R

d and z ∈ R
d ∪ {∅} we have

ξ
(
x,Ξz

) = lim
r→∞ ξ

(
x,Ξz ∩ Br(x)

)
a.s. (2.3)

Given s > 0, ε > 0, and a Poisson-like process Ξ , define the tail probability

t (s; ε) := sup
y∈Rd

sup
z∈Rd∪{∅}

P

[
sup

x∈Bε(y)∩Ξz

Rξ
(
x,Ξz

)
> s

]
.

Further, ξ is exponentially stabilizing in the wide sense if for every Poisson-like process Ξ we have

lim sup
ε→0

lim sup
s→∞

s−1 log t (s; ε) < 0. (2.4)

In the often studied setting of Poisson input Pτ [2,22–24], where Poisson points in disjoint balls are indepen-
dent, the scores ξ(x, Pτ ∩ BRξ (x,Pτ )(x)) and ξ(y, Pτ ∩ BRξ (y,Pτ )(y)) are independent, conditional on BRξ (x,Pτ )(x) ∩
BRξ (y,Pτ )(y) = ∅. In the setting of Gibbsian input P βΨ , this conditional independence fails, as Gibbs configurations
on disjoint sets are in general dependent. We shall use perfect simulation of Gibbs point processes P βΨ ,Ψ ∈ Ψ ∗,
to show that if ξ is exponentially stabilizing in the wide sense, then conditional independence holds provided the
stabilization balls are enlarged to contain the so-called ‘ancestor clan’ of the stabilization ball. It follows that if ξ is
exponentially stabilizing in the wide sense then the covariance of ξ(0, P βΨ ) and ξ(x, P βΨ ) decays exponentially fast
with |x|. This is a consequence of an exponential mixing property, called here ‘exponential clustering,’ as given in
Lemma 3.4. Exponential decay of spatial correlations is central to extending the limit results (1.2)–(1.4) to Gibbsian
input P βΨ .

The wide sense exponential stabilization involves probabilistic tail bounds on stabilization radii uniformly over
small neighborhoods of y rather than just at y itself; this assumption is of technical importance in the proof of
exponential clustering. We are unaware of examples of natural functionals ξ exhibiting exponential decay of the
stabilization radius just at y but not over its small neighborhoods. We are neither aware of interesting functionals
which stabilize over Poisson samples but not over Poisson-like samples. For these reasons, we shall abuse terminology
and use the term ‘stabilization’ to mean ‘stabilization in the wide sense,’ with a similar meaning for ‘exponentially
stabilizing.’

The next proposition, proved in Section 3, extends the definition of the local energy function ΔΨ ,Ψ ∈ Ψ ∗, and the
processes (1.5) to the infinite volume setting. Let vd := πd/2[Γ (1 + d/2)]−1 be the volume of the unit ball in R

d .

Proposition 2.1. (i) For all Ψ ∈ Ψ ∗ and locally finite X ⊂ R
d , the local energy ΔΨ (0, X ) :=

limr→∞ ΔΨ (0, X ∩ Br(0)) is well-defined.
(ii) For Ψ ∈ Ψ ∗ there is a regime RΨ ⊂ R

+ × R
+ such that if (τ,β) ∈ RΨ , then the processes defined by (1.5) ex-

tend to an infinite volume exponentially mixing Gibbs process P βΨ := P βΨ

Rd . If Ψ has finite range rΨ then (τ,β) ∈ RΨ

whenever τvd exp(−βmΨ
0 )(rΨ + 1)d < 1, where

mΨ
0 := inf

X locally finite
ΔΨ (0, X ). (2.5)

While the hereditary property (1.6) implies mΨ
0 ∈ [0,∞), Section 3.1 shows that mΨ

0 is strictly positive for some

Ψ ∈ Ψ ∗. Recall that Qλ := [−λ1/d/2, λ1/d/2]d , λ ≥ 1. Given P βΨ and ξ , let μ
ξ
λ be the re-scaled empirical measure

on Q1, that is

μ
ξ
λ := μ

ξ,βΨ
λ :=

∑
u∈P βΨ ∩Qλ

ξ
(
u,

(
P βΨ ∩ Qλ

) \ u
)
δλ−1/du. (2.6)
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Given Ψ ∈ Ψ ∗ and p ∈ [0,∞), we say that ξ satisfies the p-moment condition if for all (τ,β) ∈ RΨ ,

sup
λ∈[1,∞]

sup
u∈Qλ

sup
Y ∈C

E
∣∣ξ(

u,
(

P βΨ ∩ Qλ

) ∪ Y
)∣∣p < ∞, (2.7)

where C denotes the collection of all finite point sets in R
d . We now give general results extending (1.2)–(1.4) to

Gibbsian input. Recall that μ̄
ξ
λ := μ

ξ
λ − E[μξ

λ] and for all x ∈ R
d put

cξ (x) := cξ,βΨ (x) := Eξ
(
x, P βΨ

)
exp

(−βΔ
(
x, P βΨ

))
. (2.8)

Theorem 2.1 (WLLN). Let Ψ ∈ Ψ ∗. Assume that ξ is stabilizing as at (2.2) and satisfies the p-moment condition
(2.7) for some p > 1. For (τ,β) ∈ RΨ and f ∈ B(Q1) we have

lim
λ→∞λ−1

E
[〈
f,μ

ξ
λ

〉] = τcξ (0)

∫
Q1

f (x)dx. (2.9)

If (2.7) is satisfied for some p > 2 then limλ→∞ λ−1〈f,μ
ξ
λ〉 = τcξ (0)

∫
Q1

f (x)dx in L2.

In (2.9), both μ
ξ
λ and cξ (0) depend on the reference intensity τ via P βΨ , suppressed for notational brevity. Before

stating variance asymptotics, for Ψ ∈ Ψ ∗ and (τ,β) ∈ RΨ we put

cξ (x, y) := cξ,βΨ (x, y) := Eξ
(
x, P βΨ ∪ {y})ξ(

y, P βΨ ∪ {x}) exp
(−βΔ

({x, y}, P βΨ
))

, (2.10)

where for all x, y ∈ R
d we write Δ({x, y}, P βΨ ) := Δ(x, P βΨ ∪ {y}) + Δ(y, P βΨ ). By stationarity and isotropy

of P βΨ , we may show Δ({x, y}, P βΨ )
D= Δ(y, P βΨ ∪ {x}) + Δ(x, P βΨ ) and so the distribution of Δ({x, y}, P βΨ )

does not depend on the order in which x and y are inserted into P βΨ .

Theorem 2.2 (Variance asymptotics). Let Ψ ∈ Ψ ∗. Assume that ξ is exponentially stabilizing as at (2.4) and satisfies
the p-moment condition (2.7) for some p > 2. For (τ,β) ∈ RΨ and f ∈ B(Q1) we have

lim
λ→∞λ−1 Var

[〈
f,μ

ξ
λ

〉] = τvξ (τ )

∫
Q1

f (x)2 dx, (2.11)

where

vξ (τ ) := cξ2
(0) + τ

∫
Rd

[
cξ (0, z) − cξ (0)cξ (z)

]
dz < ∞. (2.12)

The measures μ̄
ξ
λ, λ ≥ 1, are in the domain of attraction of Gaussian white noise with scaling parameter λ1/2. Here

N(0, σ 2) denotes a mean zero normal random variable with variance σ 2.

Theorem 2.3 (CLT). Let Ψ ∈ Ψ ∗. Assume that ξ is exponentially stabilizing as at (2.4) and satisfies the p-moment
condition (2.7) for some p > 2. For (τ,β) ∈ RΨ and f ∈ B(Q1) we have as λ → ∞,

λ−1/2〈f, μ̄
ξ
λ

〉 D−→ N

(
0, τvξ (τ )

∫
Q1

f (x)2 dx

)
, (2.13)

and the finite-dimensional distributions (λ−1/2〈f1, μ̄
ξ
λ〉, . . . , λ−1/2〈fm, μ̄

ξ
λ〉), f1, . . . , fm ∈ B(Q1), converge to those

of a mean zero Gaussian field with covariance kernel

(f1, f2) �→ τvξ (τ )

∫
Q1

f1(x)f2(x)dx.
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If the limiting variance in (2.11) is strictly positive, if (2.7) is satisfied for some p > 2 and if q ∈ (2,3] with q < p,
then for all λ ≥ 2 and all f ∈ B(Q1)

sup
M∈R

∣∣∣∣P
[ 〈f, μ̄

ξ
λ〉√

Var[〈f, μ̄
ξ
λ〉]

≤ M

]
− P

[
N(0,1) ≤ M

]∣∣∣∣ ≤ C(logλ)qdλ1−q/2. (2.14)

Functionals with bounded perturbations

Theorems 2.1–2.3 are confined to translation invariant functionals ξ , but they extend to asymptotically negligible
bounded perturbations of translation-invariant functionals, described as follows. Assume that ξ is a translation invari-
ant functional, exponentially stabilizing in the wide sense, and let ξ̂ (·, ·;λ),λ ≥ 1, be the family of functionals

ξ̂ (x, X ;λ) = ξ(x, X ) + δ(x, X ;λ), λ ≥ 1. (2.15)

The correction (perturbation) δ(·, ·;λ) is not necessarily translation invariant but, for Ψ ∈ Ψ ∗, (τ,β) ∈ RΨ , and p > 0
it satisfies

lim
λ→∞ sup

u∈Qλ

E
∣∣δ(u, P βΨ ∩ Qλ;λ

)∣∣p = 0 (2.16)

and it also satisfies the wide sense exponential stabilization with the same stabilization radius Rξ as ξ . If these condi-
tions hold, we say that ξ̂ is an asymptotically negligible bounded perturbation of ξ or simply a bounded perturbation
of ξ . The asymptotic behavior of a bounded perturbation of a translation invariant functional coincides with that of
the functional itself, as seen by the next theorem.

Theorem 2.4. Let Ψ ∈ Ψ ∗ and let (τ,β) ∈ RΨ . Assume that ξ̂ is a bounded perturbation of ξ . If ξ and ξ̂ satisfy the
same moment and stabilization conditions, as in Theorems 2.1–2.3, then as λ → ∞, the respective asymptotic means,

variances and limiting distributions of 〈f,μ
ξ̂
λ〉 coincide with those of 〈f,μ

ξ
λ〉, f ∈ B(Q1).

Remarks.
(i) Point processes with marks. Let (A, F A,μA) be a probability space (the mark space) and consider the marked

Gibbs point process P̃ βΨ := {(x, a): x ∈ P βΨ , a ∈ A} in the space R
d × A with law given by the product measure of

the law of P βΨ and μA. The proofs of Theorems 2.1–2.3 go through with P βΨ replaced by P̃ βΨ .
(ii) Comparison with [9–11]. The results of [9] establish limit theory for functionals ξ of weakly dependent Gibbsian

input, but essentially these results require ξ to have a non-random radius of stabilization. Theorems 2.1–2.4 extend
[9] to functionals ξ having random radius of stabilization and give closed form expressions for limiting means and
variances. The assertions of Proposition 2.1(ii) could be deduced from [9–11] for finite range Ψ ∈ Ψ ∗ but not for
infinite range Ψ as at (1.9).

(iii) Comparison with functionals on Poisson input. Theorems 2.1–2.4 show that the established limit theory for
stabilizing functionals on Poisson input [2,20–25] is insensitive to weakly interacting Gibbsian modifications of the
input. Thus weak laws of large numbers and central limit theorems for functionals on homogeneous Poisson input
given previously in [2,20–25] extend to analogous results for functionals ξ on processes P βΨ whenever (τ,β) ∈ RΨ .
To make this extension more transparent, notice that if the input P βΨ is Poisson, then by Proposition 2.1(i) with
Ψ ≡ 0, the local energies ΔΨ (x, P βΨ ) and ΔΨ ({x, y}, P βΨ ) vanish. Hence Theorem 2.1 extends the Poisson weak
law of large numbers given in Theorem 2.1 of [24], Theorem 2.2 extends the variance asympotics of [2] and [20], and
Theorem 2.3 extends the central limit theory of [2,20,25].

(iv) Numerical evaluation of limits. When Ψ ∈ Ψ ∗, Section 3 shows that the point process P βΨ is intrinsically
algorithmic; this algorithmic scheme provides an exact (perfect) sampler [11]. It is computationally efficient and
yields a numerical evaluation of the limits (2.9) and (2.11).

(v) Extensions and generalizations. The low reference intensity and/or high inverse temperature requirements im-
posed in our results are restrictive but cannot be avoided because for general Ψ ∈ Ψ ∗ the processes P βΨ exhibit a
phase transition outside these regimes and the central limit theorem does not hold there. On the other hand, variance
asymptotics (2.11) and asymptotic normality (2.13) hold under weaker stabilization assumptions such as power-law
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stabilization (see Penrose [20]), but the additional technical details obscure the main ideas of our approach, and thus
we have not tried for the weakest possible stabilization conditions.

3. Exponential clustering of perfectly simulated Gibbs processes

We develop a variant of perfect simulation techniques originating in [9–11] to establish a spatial mixing property
of the simulated process P βΨ

D . Spatial mixing does not readily follow from standard simulation methods; see e.g.
Chapter 11 of [19]. The mixing property only holds for a range of τ and β , but this restriction appears unavoidable.
On the other hand, that the perfect simulation applies to potentials having infinite range, including pair potentials, is
possibly of independent interest.

More precisely, our goals here are to use perfect simulation to (i) show that if Ψ ∈ Ψ ∗, then there is a regime of τ

and β for which the point processes P βΨ
D at (1.5) extend to infinite volume point processes realized as spatial inter-

acting birth and death processes, (ii) prove Proposition 2.1, and (iii) deduce that the measures
∑

x∈P βΨ ξ(x, P βΨ )δx

are exponentially mixing whenever ξ is exponentially stabilizing.

3.1. Potentials with nearly finite range

When Ψ does not satisfy the finite range condition (1.8), the determination of the conditional intensity
exp(−ΔΨ (x, X )) in general requires knowledge of infinite configurations X , rendering it difficult to use it to al-
gorithmically construct P βΨ

D ,D ⊆ R
d . However if ΔΨ is well approximated by a finite range local energy function

on an exponential scale, as in Definition 3.1 below, then we may algorithmically construct P βΨ
D as well as its infinite

volume version P βΨ ; see Sections 3.2 and 3.3, respectively. Algorithmic constructions facilitate showing exponential
clustering, as seen in Section 3.4.

Fix Ψ and write Δ(·, ·) := ΔΨ (·, ·) as at (1.7). Assume for all r ∈ (0,∞) that there are non-negative, translation
invariant functions Δ[r](·, ·) and Δ[r](·, ·) such that for all finite X ⊂ R

d

Δ[r]
(
0, X ∩ Br(0)

) ≤ Δ(0, X ) ≤ Δ[r](0, X ∩ Br(0)
)
. (3.1)

Assume that Δ[r] and Δ[r] are respectively decreasing and increasing in r , that is for all locally finite X ⊂ R
d , and all

r ′ > r we have

Δ[r ′]
(
0, X ∩ Br ′(0)

) ≥ Δ[r]
(
0, X ∩ Br(0)

)
, Δ[r ′](0, X ∩ Br ′(0)

) ≤ Δ[r](0, X ∩ Br(0)
)
. (3.2)

We set by convention Δ[0](·, ·) := ∞ and Δ[0](·, ·) := 0.

Definition 3.1. Let Ψ be a translation and rotation invariant potential satisfying (1.6). Given β > 0, we say that βΨ

has nearly finite range (equivalently P βΨ
D has nearly finite range for any bounded open D) if there is a decreasing

continuous function ψ(β) : R+ → [0,1] such that ψ(β)(0) = 1, ψ(β)(r) decays exponentially in r , and for all r ∈
(0,∞) and locally finite X ⊂ R

d we have

exp
(−βΔ[r]

(
0, X ∩ Br(0)

)) − exp
(−βΔ[r](0, X ∩ Br(0)

)) ≤ ψ(β)(r). (3.3)

Conditions (3.1)–(3.3) show that the sequence exp(−βΔ(0, X ∩ Br(x))), r = 1,2, . . . is Cauchy. Thus for locally
finite X , card(X ) = ∞, we define exp(−βΔ(0, X )) := limr→∞ exp(−βΔ(0, X ∩ Br(0))). The local energy function
on infinite sets X is thus given by

Δ[∞](0, X ) := Δ(0, X ) := lim
r→∞Δ

(
0, X ∩ Br(0)

)
, (3.4)

justifying the terminology ‘nearly finite range’ and proving Proposition 2.1(i).
Poisson point processes have nearly finite range, since in this case Ψ ≡ 0 and Δ ≡ 0. Also, if Ψ has finite

range rΨ ∈ (0,∞), then βΨ,β > 0, has nearly finite range. Indeed, for r ∈ (0, rΨ ], we put Δ[r](0, X ∩ Br(0)) :=
supr≤ρ≤rΨ Δ(0, X ∩ Bρ(0)) and Δ[r](0, X ∩ Br(0)) := infr≤ρ≤rΨ Δ(0, X ∩ Bρ(0)), whereas for r ∈ (rΨ ,∞) we put
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Δ[r] = Δ[r] = Δ. With these choices for Δ[r] and Δ[r], we have that βΨ,β > 0, has nearly finite range by putting
ψ(β) : R+ → [0,1] to equal one on [0, rΨ ] and to be the linear function decreasing down to zero on [rΨ , rΨ + 1] and
zero thereafter.

Lemma 3.1. The potentials βΨ,Ψ ∈ Ψ ∗ and β > 0, have nearly finite range.

Proof. (i) Point processes with a pair potential function. If the pair potential φ in (1.9) has support in [0, r0], then
ΔΨ has finite range with rΨ set to r0. On the other hand, suppose φ has infinite range, but satisfies (1.10). In this
set-up φ(r) = ∞ for r ∈ (0, r0) and so we only consider configurations X where the hard-core exclusion condition is
satisfied. We assert that βΨ has nearly finite range for any β > 0. Indeed, letting A(r, r0), r > 0, be the collection of
finite point configurations A in R

d \ Br(0) such that any two points in A are at distance at least r0, put

p(r) := sup
A∈A(r,r0)

∑
y∈A

φ
(|y|), r ∈ [r0,∞)

and p(r) = 0 for r ∈ (0, r0). By condition (1.10), we have that p(r) decays exponentially fast to 0 as r → ∞. Since
the minimum interaction coming from points outside Br(0) is 0, we put for all r ∈ (0,∞)

Δ[r]
(
0, X ∩ Br(0)

) :=
∑

y∈X ∩Br(0)

φ
(|y|)

and

Δ[r](0, X ∩ Br(0)
) := sup

A∈A(r,r0)

Δ
(
0,

(
X ∩ Br(0)

) ∪ A
)
.

Then Δ[r] and Δ[r] are translation invariant and are respectively increasing and decreasing in r . Since the maximum
interaction coming from configurations in R

d \ Br(0) is bounded by p(r), we have

Δ[r]
(
0, X ∩ Br(0)

) ≤ Δ(0, X ) ≤ Δ[r](0, X ∩ Br(0)
) ≤ p(r) + Δ[r]

(
0, X ∩ Br(0)

)
.

For all β > 0 we have

exp
(−βΔ[r]

(
0, X ∩ Br(0)

)) − exp
(−βΔ[r](0, X ∩ Br(0)

))
≤ exp

(−βΔ[r]
(
0, X ∩ Br(0)

))(
1 − exp

(−βp(r)
)) ≤ min

(
1, βp(r)

)
,

since 1 − exp(−u) ≤ u for u ∈ [0,1]. Thus βΨ has nearly finite range with ψ(β)(r) := min(1, βp(r)).
(ii) Point processes defined by the continuum Widom–Rowlinson model. With Ψ as in (1.11), notice that

Ψ is nearly of finite range on configurations X ∪ Y where d(X , Y ) ≤ 2a, since for all r ∈ (0,∞) we have
Δ[r](0, (X ∪ Y ) ∩ Br(0)) = Δ[r](0, (X ∪ Y ) ∩ Br(0)) = 0. On the remaining configurations we may put
Δ[r](0, (X ∪ Y )∩Br(0)) = min(α1, α2) and Δ[r](0, (X ∪ Y )∩Br(0)) = max(α1, α2) provided x is distant at least 2a

from both X and Y , and otherwise Δ[r](0, (X ∪ Y )∩Br(0)) = Δ[r](0, (X ∪ Y )∩Br(0)) = ∞. Here mΨ
0 = min(α1, α2)

where mΨ
0 is at (2.5).

(iii) Area interaction point processes. The set difference
⋃n+1

i=1 (xi ⊕ K)Δ
⋃n

i=1(xi ⊕ K) is a function of xn+1,
diam(K), and those xi, i ≤ n, for which |xi − xn+1| < diam(K). For all β > 0, it follows that βΨ , with Ψ as in
(1.12), has finite range rΨ := diam(K) and so has nearly finite range. Here mΨ

0 = α1.
(iv) Point processes given by the hard-core model. With Ψ as in (1.13), it follows for all β > 0 that βΨ has finite

range with rΨ set to 2r0 and thus has nearly finite range. Here mΨ
0 = α1.

(v) Truncated Poisson processes. Let Ψ be as in (1.14). Then βΨ has finite range with rΨ set to r0 and thus has
nearly finite range. �
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3.2. Graphical construction of nearly finite range Gibbs processes

For P βΨ
D given in law by (1.5), Ψ ∈ Ψ ∗, we algorithmically construct Gibbs point processes P βΨ on R

d . The perfect
simulation, in the spirit of Fernández, Ferrari and Garcia [9–11], is valid for (τ,β) belonging to a regime in R

+ × R
+

depending on Ψ and it makes use of the nearly finite range property of Ψ . The construction goes as follows. Let
D ⊂ R

d be an open bounded set and let (ρD(t))t∈R be a stationary homogeneous free birth and death process in D

with the following dynamics:

• A new point x ∈ D is born in ρD(t) during the time interval [t − dt, t] with probability τ dx dt ,
• An existing point x ∈ ρD(t) dies during the time interval [t −dt, t] with probability dt , that is the lifetimes of points

of the process are independent standard exponential.

The unique stationary and reversible measure for this process is the law of the point process Pτ ∩ D.
Next consider the following trimming procedure performed on (ρD(t))t∈R, paralleling the ideas developed in

[9–11]. Trimming requires that an attempted birth in the free birth and death process pass an additional stochas-
tic test to determine if it is an actual birth. This goes as follows.

Given a potential Ψ with nearly finite range and β > 0, we put ψ := ψ(β), as in Definition 3.1. For a birth site of a
point x ∈ D at some time t ∈ R, draw a random natural number η from the geometric distribution with parameter 1/2,
that is to say P[η = k] = 2−k, k = 1,2, . . . . Let r0 := 0 and put rk := ψ−1(2−k), k = 1,2, . . . where for all v ∈ (0,1]
we have ψ−1(v) := infu∈R+{ψ(u) = v}. Letting γ

βΨ
D (t−) ∩ Br(x) denote the set of accepted points in ρD(t−) ∩

Br(x), we accept x with probability

2η
[
exp

(−βΔ[rη](x, γ
βΨ
D (t−) ∩ Brη(x)

)) − exp
(−βΔ[rη−1](x, γ

βΨ
D (t−) ∩ Brη−1(x)

))]
(3.5)

and we reject x with the complementary probability, provided the acceptance/rejection statuses of all points in
ρD(t−)∩Brη(x) are determined, otherwise proceed recursively to determine the statuses of points in ρD(t−)∩Brη(x).
The acceptance probability at (3.5) does in fact belong to [0,1], as needed for the above procedure to be well defined.
Indeed, whereas non-negativity is trivial by monotonicity, to see that (3.5) does not exceed 1 we add to it the non-
negative number 2η[exp(−βΔ[rη−1](x, γ

βΨ
D (t−)∩Brη−1(x)))− exp(−βΔ[rη](x, γ

βΨ
D (t−)∩Brη(x)))] and using (3.3)

we upper bound the resulting sum by 2η(ψ(rη−1) − ψ(rη)) = 1, as required.
Before discussing properties of this recursive construction, we must first ensure that it actually terminates. The

acceptance status of a point x at its birth time t only depends on the status of points in ρD(t−) ∩ Brη(x), that is to
say depends on accepted births before time t , still alive at time t , and belonging to Brη(x) ∩ D. We call these points

ancestors of x. In general, given a subset B ⊆ D, a time t0 ∈ R, and β > 0, we let AβΨ
B (t0) ⊂ R

d denote the set of
accepted births in ρD(t0)∩B (where the acceptance probability is given by (3.5)), their ancestors, the ancestors of their
ancestors and so forth throughout all past generations. The set AβΨ

B (t0) is the ancestor clan of B with respect to the
birth and death process (ρD(t))t∈R and is a ‘backwards in time oriented percolation cluster,’ where two nodes in space-
time are linked with a directed edge if one is the ancestor of another. In order that our recursive status determination
procedure terminates for all points of ρD(t) in B , it suffices that the ancestor clan AβΨ

B (t0) is a.s. finite for all t0 ∈ R.
This is easily checked to be a.s. the case for each B ⊆ D – indeed, since D is bounded, a.s. there exists some
s ∈ (−∞, t0) such that ρD(s) = ∅ and thus no ancestor clan of a point alive at time t0 can go past s backwards in time.

Having defined the trimming procedure above, we recursively remove from ρD(t) the points rejected at their birth,
and we write (γ

βΨ
D (t))t∈R for the resulting process. Clearly, (γ

βΨ
D (t))t∈R is stationary since ρD(t) is stationary and

the acceptance/rejection procedure is time-invariant as well. The trimmed process (γ
βΨ
D (t))t∈R evolves according to

the following dynamics:

(D1) Add a new point x in the volume element dx with intensity τ exp(−βΔ(x, γ
βΨ
D (t)))dx dt ,

(D2) Remove an existing point with intensity dt .

Indeed, by (3.5) the acceptance probability of a birth attempt x ∈ D is
∞∑

k=1

1

2k
· 2k

[
exp

(−βΔ[rk](x, γ
βΨ
D (t−) ∩ Brk (x)

)) − exp
(−βΔ[rk−1](x, γ

βΨ
D (t−) ∩ Brk−1(x)

))]

= exp
(−βΔ

(
x, γ

βΨ
D (t−)

))
,
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where equality follows by (3.4) as required. These are the standard Monte-Carlo dynamics for P βΨ
D as given at (1.5)

and the law of P βΨ
D is its unique invariant distribution. Consequently, similarly to [9–11], the point process γ

βΨ
D (t)

coincides in law with P βΨ
D for all t ∈ R. In the next section we shall see that γ

βΨ
D (t) represents the perfect simulation

of an infinite volume measure in the finite window D.
To this end we use the perfect simulation of P βΨ

D to deduce that its ancestor clans (backwards oriented percolation
clusters) have an exponentially decaying spatial diameter. More precisely, if Ψ has nearly finite range, we establish
regimes involving τ and β for which there exists a constant C2 := C2(τ,β) such that for all t > 0,M > 0, D ⊂ R

d ,
and all B ⊂ D,

P
[
diam

(
AβΨ

B (t)
) ≥ M + diam(B)

] ≤ C2 Vol(B) exp

(
− M

C2

)
. (3.6)

Let D ⊂ R
d be open and bounded. Looking backwards in time t , by the dynamics (D1), an individual in the

trimmed process (γ
βΨ
D (t))t∈R observes ancestors with intensity at most τ exp(−βmΨ

0 )dt (Erd
η )vd where we recall

that vd is the volume of the unit ball in R
d and mΨ

0 is at (2.5). Note that Erd
η < ∞ by the exponential decay of ψ .

Since the same individual vanishes with intensity dt , the number of ancestors in the trimmed process is dominated by
a subcritical continuous time branching process as soon as the above intensity is bounded by dt . Thus, if

RΨ := {
(u, v) ∈ R

+ × R
+: uvd exp

(−vmΨ
0

)(
Erd

η

)
< 1

}
, (3.7)

then for (τ,β) ∈ RΨ , branching process arguments originating in Hall [15] and used later in [9], show the exponen-
tial decay of the diameter of the ancestor clan arising from a single point, and thus (3.6) holds. Thus (τ,β) ∈ RΨ

whenever τvd exp(−βmΨ
0 )(Erd

η ) < 1. When Ψ has finite range rΨ , then as seen already, we may choose ψ(β)

such that it vanishes on [rΨ + 1,∞). In this case, rη ≤ rΨ + 1 always holds, and so (τ,β) ∈ RΨ whenever
τvd exp(−βmΨ

0 )(rΨ + 1)d < 1.

3.3. The infinite volume Gibbs process P βΨ

Put Dn := [−n,n]d . When (τ,β) ∈ RΨ and when Ψ has nearly finite range, we construct the infinite volume limit
(thermodynamic limit) for P βΨ

Dn
as n → ∞, which goes as follows. Consider the infinite volume version ρ(t) := ρRd (t)

of the free birth and death process, with dynamics those of ρD(t) with D replaced by R
d . Then ρ(t) coincides in law

with Pτ for each t ∈ R. Since the constant C2 in (3.6) does not depend on D, (3.6) shows that the ancestor clans
AβΨ

B (t) are a.s. finite, uniformly in subsets B ⊂ R
d . Thus the above trimming procedure is also valid for the infinite

volume process (ρ(t))t∈R, yielding the stationary trimmed process γ βΨ (t) := γ
βΨ

Rd (t), t ∈ R.

For (τ,β) ∈ RΨ , perfect simulation thus implies that γ
βΨ

Rd (t) satisfies (3.6) for all B ⊂ R
d and has the dynamics

(D1) and (D2) with D set to R
d . The following lemma summarizes the key properties of this limit process, proving

part of Proposition 2.1(ii).

Lemma 3.2. Let Ψ have nearly finite range and let (τ,β) ∈ RΨ . The thermodynamic limit of P βΨ
Dn

as n → ∞
is the Gibbs point process P βΨ which coincides in law with γ βΨ (0) and hence with γ βΨ (t) for all t . Also,
(τ,β) ∈ RΨ whenever τvd exp(−βmΨ

0 )(Erd
η ) < 1. When Ψ has finite range rΨ it suffices that (τ,β) satisfy

τvd exp(−βmΨ
0 )(rΨ + 1)d < 1.

The next result implies that if ξ is stabilizing in the wide sense, then ξ is stabilizing on P βΨ ,Ψ ∈ Ψ ∗.

Lemma 3.3. Let Ψ ∈ Ψ ∗. For (τ,β) ∈ RΨ the Gibbs process P βΨ is Poisson-like.

Proof. Fix (τ,β) ∈ RΨ . The stochastic domination by Pτ comes from the relation γ βΨ (0) ⊆ ρ(0) in the graphical
construction of P βΨ , where ρ(0) coincides in law with Pτ . We now show that P βΨ satisfies (2.1). By the graphical



Geometric functionals of Gibbs point processes 1169

construction, it suffices to show there is C1 := C1(τ,β) and r1 := r1(τ,β) such that for all r ∈ [r1,∞), x ∈ R
d , and

point sets Er (x) ⊂ Bc
r (x), we have

P
[
γ βΨ (0) ∩ Br(x) = ∅|{(γ βΨ (0) ∩ Br(x)c

) = Er (x)
}] ≤ exp

(−C1r
d
)
. (3.8)

Non-degeneracy (defined in Section 1) and translation invariance of Ψ imply that Δ(x,∅) < ∞ uniformly in
x ∈ R

d . Since Ψ has nearly finite range, conditions (3.1)–(3.3) show there are functions Δ[ ](·, ·) and r0 ∈ (0,∞)

such that σ := supx∈Rd Δ[r0](x,∅) < ∞. Let r ∈ [2r0,∞) and let Br0(y1), . . . ,Br0(yk) be disjoint balls of radius r0
in Br(x), k := k(r, r0) = Ω((r/r0)

d).
Let F := {(γ βΨ (0) ∩ Br(x)c) = Er (x)}. Define the events Ei(r0) := {γ βΨ (t) ∩ Br0(yi) = ∅}, i = 1, . . . , k. For

i = 1,2, . . . , let Fi := ⋂i
j=0 Ej(r0), and let F0 be the common probability space on which all random variables

are defined. For all i = 1, . . . , k, let pi
10 be the probability of Br0(yi) becoming empty, conditional on F ∩ Fi−1.

Then pi
10 ≤ dt since Br0(yi) becomes empty only when the last point of γ βΨ (0) in Br0(yi) dies, which happens with

intensity at most dt . Let pi
01 be the probability that ball Br0(yi) gets filled, conditional on F ∩Fi−1. Then by definition

of σ we have pi
01 ≥ τ exp(−βσ)Vol(Br0/2(yi))dt regardless of the status of γ βΨ (0) in the balls Br0(yj ), j �= i.

Let πi
0 be the probability of ball Br0(yi) being empty, conditional on F ∩ Fi−1, that is πi

0 := P[Ei(r0)|F ∩ Fi−1].
Similarly, let πi

1 be the probability that Br0(yi) contains a point from γ βΨ (0), conditional on F ∩ Fi−1, so that
πi

1 ≤ P[Ec
i (r0)|F ∩Fi−1]. Detailed balance for the reversible process γ βΨ (t), conditional on F ∩Fi−1, gives πi

0p
i
01 =

πi
1p

i
10 for all i = 1, . . . , k, implying

P
[
Ei(r0)|F ∩ Fi−1

] · τ exp(−βσ)Vol
(
Br0/2(yi)

)
dt ≤ P

[
Ec

i (r0)|F ∩ Fi−1
]

dt. (3.9)

Let α := τ exp(−βσ)Vol(Br0/2(y1))/(1 + τ exp(−βσ)Vol(Br0/2(y1))) and note that since σ decreases with increas-
ing r0, we have α = Ω(rd

0 ). The inequality (3.9) yields P[Ec
i (r0)|F ∩ Fi−1] ≥ α. Thus we have

P
[
Ei(r0)|F ∩ Fi−1

] ≤ 1 − α, i = 1, . . . , k.

It follows that

P[Fk | F ] =
k∏

i=1

P[Fi ∩ F ]
P[Fi−1 ∩ F ] =

k∏
i=1

P
[
Ei(r0) | F ∩ Fi−1

] ≤ (1 − α)k.

Since k = Ω((r/r0)
d) and α = Ω(rd

0 ) we obtain P[Fk | F ] = exp(−Ω(rd)). This proves (3.8). �

Perfect simulation reveals localization properties for P βΨ which might not otherwise be apparent. The next section
further exploits perfect simulation to show mixing properties of P βΨ .

3.4. Exponential clustering of weighted Gibbs measures

When (3.6) holds, the measures
∑

x∈P βΨ δx are exponentially spatially mixing in the sense that the total variation dis-
tance between the restriction of these measures to disjoint convex sets decays exponentially with the distance between
these sets. This is a consequence of a more general mixing property for the weighted measures

∑
x∈P βΨ ξ(x, P βΨ )δx ,

which goes as follows. Let Ξ be a point process on R
d with law given with respect to Pτ and let ξ be a functional.

Put μξ,Ξ := ∑
x∈Ξ ξ(x,Ξ)δx and for D ⊂ R

d , let μξ,Ξ |D be the restriction of the measure μξ,Ξ to D. Let μ1 ⊗ μ2
denote the product measure of μ1 and μ2.

Definition 3.2. We say that μξ,Ξ exponentially clusters if there exists C3 > 0 such that for all k ≥ 2 and all
x1, . . . , xk ∈ R

d

P
[
μξ,Ξ |⋃k

i=1 B1(xi )
�=

k⊗
i=1

(
μξ,Ξ |B1(xi )

)] ≤ kC3 exp

(
− 1

C3
min

1≤i �=j≤k
dist(xi, xj )

)
.
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Thus, under exponential clustering, the restriction of the measure μξ,Ξ to a union of k balls behaves like a k-fold
product measure with a small error. Write μξ,βΨ for μξ,P βΨ

.

Lemma 3.4. Let Ψ ∈ Ψ ∗. If (τ,β) ∈ RΨ and if ξ is exponentially stabilizing then μξ,βΨ exponentially clusters.

Proof. For y ∈ R
d , let Ry := Rξ (y, P βΨ ) and let Ey := ⋃

x∈P βΨ ∩B1(y) BRx (x) be the ‘stabilization region’ for y.

Let (τ,β) ∈ RΨ and x1, . . . , xk ∈ R
d . Put Ei := Exi

,1 ≤ i ≤ k. Put r0 := 1
2 mini �=j dist(xi, xj ) and assume with-

out loss of generality that r0 > 1. Recalling the notation of Section 3.2, let Ai := AβΨ
Ei

(0) denote the ancestor

clan of the stabilization region for xi at time t = 0. Recalling that P βΨ coincides in law with γ βΨ (0), the event
μξ,βΨ |⋃k

i=1 B1(xi )
�= ⊗k

i=1(μ
ξ,βΨ |B1(xi )) is a subset of the event that at least one of the ancestor clans Ai ,1 ≤ i ≤ k,

is not contained in the respective ball Br0(xi). Indeed, if all clans Ai ,1 ≤ i ≤ k, were contained in their respective
balls Br0(xi), then the scores over points in P βΨ ∩ B1(xi) would depend on disjoint and hence independent por-
tions of the free birth-and-death process in the graphical construction. To complete the proof it suffices to show that
P[Ai �⊆ Br0(xi)],1 ≤ i ≤ k, decays exponentially with r0. This goes as follows.

By the wide sense exponential stabilization of ξ with respect to the Poisson-like process P βΨ , there exist positive
constants ε0, s0 and C4 such that for all ε ∈ (0, ε0), s ∈ (s0,∞) we have

sup
y∈Rd

P
[

sup
x∈Bε(y)∩P βΨ

Rξ
(
x, P βΨ

)
> s

]
≤ exp(−C4s).

Consequently, for each 1 ≤ i ≤ k, the diameter of the union
⋃

x∈P βΨ ∩B1(xi )
BRx (x) of such balls also has exponentially

decaying tails. Indeed, choose ε0, s0, and C4 as above and cover B1(xi) by m = O(ε−d
0 ) balls of radius ε0 to conclude

from the union bound that for all M ∈ (s0,∞)

P

[
sup

x∈P βΨ ∩B1(xi )

Rx > M
]

≤ m exp(−C4M). (3.10)

Finally, note that

P
[
Ai �⊆ Br0(xi)

] ≤ P
[
diam(Ai ) ≥ 2r0

]
≤ P

[
diam(Ai ) ≥ r0 + diam(Ei),diam(Ei) ≤ r0

] + P
[
diam(Ei) ≥ r0

]
.

The exponential decay (3.6) implies that the first probability on the right-hand side decays exponentially fast with r0.
Since {diam(Ei) ≥ r0} ⊂ {supx∈P βΨ ∩B1(xi )

Rx > r0}, the bound (3.10) implies that the second probability decays
exponentially fast with r0. Thus P[Ai �⊆ Br0(xi)] decays exponentially with r0 uniformly for i = 1,2, . . . , k. This
completes the proof of Lemma 3.4. �

Lemma 3.5. Let Ψ ∈ Ψ ∗. If (τ,β) ∈ R
Ψ and if ξ is exponentially stabilizing then there is a constant C5 such that for

all x and z ∈ R
d , λ ≥ 1, the absolute value of the difference of

Eξ
(
x,

(
P βΨ ∩ Qλ

) ∪ {x + z})ξ(
x + z,

(
P βΨ ∩ Qλ

) ∪ {x}) exp
(−Δ

({x, x + z}, P βΨ ∩ Qλ

))
and

Eξ
(
x, P βΨ ∩ Qλ

)
exp

(−Δ
(
x, P βΨ ∩ Qλ

))
Eξ

(
x + z, P βΨ ∩ Qλ

)
exp

(−Δ
({x + z}, P βΨ ∩ Qλ

))
is bounded by C5 exp(−|z|/C5).

Proof. For x ∈ R
d , let Dx := diam(AβΨ

Ex
(0)), where Ex is the stabilization region for x, as given in the proof

of Lemma 3.4. That lemma and its proof show that on the event E := {max(Dx,Dx+z) ≤ |z|/2}, the two scores
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ξ(x, ((P βΨ ∩ Qλ) ∪ {x + z}) ∩ BDx (x)) and ξ(x + z, ((P βΨ ∩ Qλ) ∪ {x}) ∩ BDx+z (x + z)) are independent. Like-
wise, on E, the point x + z is not in the ancestor clan for x and so on E we have Δ(x, (P βΨ ∩ Qλ) ∪ {x + z}) =
Δ(x, P βΨ ∩ Qλ). On E we thus have exp(−βΔ({x, x + z}, P βΨ ∩ Qλ)) = exp(−βΔ(x, (P βΨ ∩ Qλ) ∪ {x + z})) ·
exp(−βΔ({x + z}, P βΨ ∩ Qλ)) is the product of independent random variables exp(−βΔ(x, P βΨ ∩ Qλ)) and
exp(−βΔ({x + z}, P βΨ ∩ Qλ)). The moment condition (2.7) and Hölder’s inequality combine to give the result;
see Lemma 4.1 in [2] and Lemma 4.2 in [20] for details. �

4. Proof of main results

Throughout Ψ ∈ Ψ ∗ is a fixed potential, (τ,β) ∈ RΨ is fixed, and recalling (2.6), we write μ
ξ
λ for μ

ξ,βΨ
λ .

Proof of Theorem 2.1. We first show (2.9). We have for f ∈ B(Q1)

λ−1
E

[〈
f,μ

ξ
λ

〉] = λ−1
E

∑
u∈P βΨ ∩Qλ

f
(
λ−1/du

)
ξ
(
u,

(
P βΨ ∩ Qλ

) \ u
)
.

Given P βΨ ∩ D in R
d \ du, the conditional probability of observing an extra point of P βΨ ∩ D in the volume el-

ement du, given that configuration without that point, equals τ exp(−βΔ(u, P βΨ ∩ D))du as determined by the
dynamics (D1) of the construction of P βΨ . Here τ du corresponds to the birth attempt intensity at u whereas
exp(−βΔ(u, P βΨ ∩ D)) comes from the acceptance probability. By the integral characterization of Gibbs point pro-
cesses, as in Chapter 6.4 of [19], it follows from the Georgii–Nguyen–Zessin formula that

λ−1
E

[〈
f,μ

ξ
λ

〉] = λ−1τ

∫
Qλ

f
(
λ−1/du

)
Eξ

(
u, P βΨ ∩ Qλ

)
exp

(−βΔ
(
u, P βΨ ∩ Qλ

))
du = τ

∫
Q1

f (x)c
ξ
λ(x)dx,

where

c
ξ
λ(x) := Eξ

(
λ1/dx, P βΨ ∩ Qλ

)
exp

(−βΔ
(
λ1/dx, P βΨ ∩ Qλ

))
, x ∈ Q1. (4.1)

By translation invariance of ξ and stationarity of P βΨ we have

c
ξ
λ(x) = Eξ

(
0, P βΨ ∩ (−λ1/dx + Qλ

))
exp

(−βΔΨ
(
0, P βΨ ∩ (−λ1/dx + Qλ

)))
.

For x ∈ Q1 \ ∂Q1, we have by (2.3) that limλ→∞ ξ(0, P βΨ ∩ (−λ1/dx + Qλ)) = ξ(0, P βΨ ) a.s. whereas
Proposition 2.1(i) gives that limλ→∞ exp(−βΔΨ (0, P βΨ ∩ (−λ1/dx + Qλ))) = exp(−βΔΨ (0, P βΨ )) always holds.
By the moment assumption we get that c

ξ
λ(x) → cξ (0), and dominated convergence yields λ−1

E[〈f,μ
ξ
λ〉] →

τcξ (0)
∫
Q1

f (x)dx, which gives (2.9). To get L2 convergence when ξ satisfies the moment condition (2.7) for some
p > 2, one can follow the approach of Penrose [20]. �

Proof of Theorem 2.2. Using again the integral characterization of Gibbs point processes we have

λ−1 Var
[〈
f,μ

ξ
λ

〉] = τ

∫
Q1

f (x)2c
ξ2

λ (x)dx + τ 2λ

∫
Q1

∫
Q1

[
c
ξ
λ(x, y) − c

ξ
λ(x)c

ξ
λ(y)

]
f (y)f (x)dy dx,

where c
ξ2

λ is as in (4.1) and where for x, y ∈ Q1

c
ξ
λ(x, y) := Eξ

(
λ1/dx,

(
P βΨ ∩ Qλ

) ∪ {
λ1/dy

})
ξ
(
λ1/dy,

(
P βΨ ∩ Qλ

) ∪ {
λ1/dx

})
× exp

(−βΔ
({

λ1/dx,λ1/dy
}
, P βΨ ∩ Qλ

))
.
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Next, put y = x + λ−1/dz, where z ranges over −λ1/dx + Qλ and dy = λ−1 dz. This gives

λ−1 Var
[〈
f,μ

ξ
λ

〉] = τ

∫
Q1

f (x)2c
ξ2

λ (x)dx

+ τ 2
∫

Q1

∫
−λ1/dx+Qλ

[
c
ξ
λ

(
x, x + λ−1/dz

)
− c

ξ
λ(x)c

ξ
λ

(
x + λ−1/dz

)]
f

(
x + λ−1/dz

)
f (x)dz dx. (4.2)

We have for x ∈ Q1 and z ∈ −λ1/dx + Qλ

c
ξ
λ

(
x, x + λ−1/dz

) = Eξ
(
λ1/dx,

(
P βΨ ∩ Qλ

) ∪ {
λ1/dx + z

})
ξ
(
λ1/dx + z,

(
P βΨ ∩ Qλ

) ∪ {
λ1/dx

})
× exp

(−βΔ
({

λ1/dx,λ1/dx + z
}
, P βΨ ∩ Qλ

))
.

By translation invariance of ξ we obtain

c
ξ
λ

(
x, x + λ−1/dz

) = Eξ
(
0,

(
P βΨ ∩ (

Qλ − λ1/dx
)) ∪ {z})ξ(

z,
(

P βΨ ∩ (
Qλ − λ1/dx

)) ∪ {0})
× exp

(−βΔ
({0, z}, P βΨ ∩ (

Qλ − λ1/dx
)))

.

By the convergence (2.3) and Proposition 2.1(i), when x ∈ Q1 \ ∂Q1 we get limλ→∞ c
ξ
λ(x, x + λ−1/dz) = cξ (0, z)

where cξ (·, ·) is at (2.10). Likewise, as in the proof of Theorem 2.1, for all z ∈ R
d , we have limλ→∞ c

ξ
λ(x +λ−1/dz) =

cξ (z) and in particular we have limλ→∞ c
ξ
λ(x) = cξ (0). By Lemma 3.5, we have that [cξ

λ(x, x+λ−1/dz)−c
ξ
λ(x)c

ξ
λ(x+

λ−1/dz)] is dominated by an integrable function of z uniformly in x and λ. When f is continuous, it follows by
dominated convergence that the double integral in (4.2) converges to

lim
λ→∞ τ 2

∫
Q1

∫
−λ1/dx+Qλ

[
c
ξ
λ

(
x, x + λ−1/dz

) − c
ξ
λ(x)c

ξ
λ

(
x + λ−1/dz

)]
f

(
x + λ−1/dz

)
f (x)dz dx

= τ 2
∫

Q1

∫
Rd

[
cξ (0, z) − cξ (0)cξ (z)

]
f (x)2 dz dx. (4.3)

As in the proof of Theorem 2.1, the first integral in (4.2) converges to τcξ2
(0)

∫
Q1

f (x)2 dx, completing the proof of
Theorem 2.2 when f is continuous.

More generally, for f ∈ B(Q1), we may follow verbatim the arguments in the proof of Theorem 2.1 of Penrose
[20], which we include for completeness. For x, z ∈ R

d , put

g
ξ
λ(x, z) := c

ξ
λ

(
x, x + λ−1/dz

) − c
ξ
λ(x)c

ξ
λ

(
x + λ−1/dz

)
, g

ξ∞(0, z) := cξ (0, z) − cξ (0)cξ (z).

If x ∈ Q1 is a Lebesgue point of f then for any M > 0 we have

lim
λ→∞

∫
BM(x)

g
ξ
λ(x, z)

(
f

(
x + λ−1/dz

) − f (x)
)

dz = 0,

since by Lemma 3.5, gξ
λ(x, z) is bounded uniformly in λ,x, z. Combining this limit with limλ→∞ g

ξ
λ(x, z) = g

ξ∞(0, z),
the dominated convergence theorem gives

lim
λ→∞

∫
BM(x)

g
ξ
λ(x, z)f

(
x + λ−1/dz

)
dz =

∫
BM(x)

g
ξ∞(0, z)f (x)dz. (4.4)

By Lemma 3.5, g
ξ
λ(x, z) decays to zero exponentially fast in |z|, from which it follows by boundedness of f that

lim
M→∞ lim

λ→∞

∫
Rd\BM(x)

∣∣gξ
λ(x, z)f

(
x + λ−1/dz

) − g
ξ∞(x, z)f (x)

∣∣dz = 0. (4.5)
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By the Lebesgue density theorem, almost every x ∈ Q1 is a Lebesgue point of f . Thus (4.4) and (4.5) give for almost
every x ∈ Q1 that

lim
λ→∞

∫
−λ1/dx+Qλ

g
ξ
λ(x, z)f

(
x + λ−1/dz

)
dz =

∫
Rd

g
ξ∞(x, z)f (x)dz.

By dominated convergence again, (4.3) holds for f ∈ B(Q1), completing the proof of Theorem 2.2. �

Proof of Theorem 2.3. When f is continuous on Q1 and when ξ satisfies the moment condition (2.7) for all
p ∈ (0,∞), we may nearly verbatim follow the cumulant methods of Section 5 of [2] (these methods are clarified
and further developed in Section 3 of [31], which provides the correct centering of the associated moment measures).
The exponential clustering Lemma 3.4 replaces the clustering Lemma 5.2 of [2] and shows that all cumulants of
〈f, μ̄

ξ
λ〉 are of order λ. Hence, upon the λ−k/2-re-scaling with k being the order of the cumulant, the cumulants of

order higher than two vanish asymptotically and thus yield the required Gaussian limit; see [2,31] for details.
More generally, when f ∈ B(Q1) and when ξ satisfies the moment condition (2.7) for some p > 2, the rate (2.14)

holds by following verbatim the approach of [25], which is based on Stein’s method. Indeed, Lemma 3.4 establishes
the independence of μ

ξ
λ over distant discretized sub-cubes on a high probability event, as required by the dependency

graph arguments of [25]. Combining (2.11) and (2.14) yields (2.13) for f ∈ B(Q1). This completes the proof of
Theorem 2.3. �

Proof of Theorem 2.4. For all f ∈ B(Q1) we claim that

lim
λ→∞λ−1

E
〈
f,μ

ξ̂
λ

〉 = lim
λ→∞λ−1

E
〈
f,μ

ξ
λ

〉 + lim
λ→∞λ−1

E

∑
u∈P βΨ ∩Qλ

fλ(u)δ
(
u,

(
P βΨ ∩ Qλ

) \ u;λ)

= lim
λ→∞λ−1

E
〈
f,μ

ξ
λ

〉
. (4.6)

Indeed, by (2.16) with p = 1 the penultimate limit in (4.6) is O(supu∈Qλ
E|δ(u, P βΨ ∩ Qλ;λ)|) = o(1). This shows

that the mean asymptotics of Theorem 2.1 are unchanged if ξ is replaced by ξ̂ .
Next, when δ satisfies the moment condition (2.16) with p = 2, we assert that for all f ∈ B(Q1)

lim
λ→∞λ−1 Var

[ ∑
u∈P βΨ ∩Qλ

f
(
λ−1/du

)
δ
(
u,

(
P βΨ ∩ Qλ

) \ u;λ)] = 0. (4.7)

This assertion is enough to conclude the proof. Indeed, with f ∈ B(Q1) fixed, let

H
ξ
λ := λ−1/2

∑
u∈P βΨ ∩Qλ

f
(
λ−1/du

)
ξ
(
u,

(
P βΨ ∩ Qλ

) \ u
)
,

Hδ
λ := λ−1/2

∑
u∈P βΨ ∩Qλ

f
(
λ−1/du

)
δ
(
u,

(
P βΨ ∩ Qλ

) \ u;λ)
.

Now Cov(H
ξ
λ ,Hδ

λ) ≤ (Var[Hξ
λ ]Var[Hδ

λ ])1/2 and it follows by (2.11) and (4.7) that Cov(H
ξ
λ ,Hδ

λ ) → 0 as λ → ∞.

Thus since Var[Hξ
λ + Hδ

λ ] = Var[Hξ
λ ] + Var[Hδ

λ ] + 2 Cov(H
ξ
λ ,Hδ

λ ) we get limλ→∞ Var[Hξ
λ + Hδ

λ ] =
τV ξ (τ )

∫
Q1

f (x)2 dx, that is Theorem 2.2 is unchanged if ξ is replaced by ξ̂ . Also, (4.6) and (4.7) show that Hδ
λ

D−→ 0

and thus Theorem 2.3 is likewise unchanged if ξ is replaced by ξ̂ .
To show the asserted limit (4.7) we argue as follows. Put for all x, y ∈ Q1

cδ
λ(x) := E

[
δ
(
λ1/dx, P βΨ ∩ Qλ;λ

)
exp

(−βΔ
({

λ1/dx
}
, P βΨ ∩ Qλ

))]
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and

cδ
λ(x, y) := E

[
δ
(
λ1/dx,

(
P βΨ ∪ {

λ1/dy
}) ∩ Qλ;λ

)
δ
(
λ1/dy,

(
P βΨ ∪ {

λ1/dx
}) ∩ Qλ;λ

)
× exp

(−βΔ
({

λ1/dx,λ1/dy
}
, P βΨ ∩ Qλ

))]
.

As in the proof of Theorem 2.2 we have

Var
[
Hδ

λ

] = τ

∫
Q1

f (x)2cδ2

λ (x)dx + τ 2λ

∫
Q1

∫
Q1

[
cδ
λ(x, y) − cδ

λ(x)cδ
λ(y)

]
f (x)f (y)dy dx.

Putting y = x + λ−1/dz gives

Var
[
Hδ

λ

] = τ

∫
Q1

f (x)2cδ2

λ (x)dx

+ τ 2
∫

Q1

∫
−λ1/dx+Qλ

[
cδ
λ

(
x, x + λ−1/dz

) − cδ
λ(x)cδ

λ

(
x + λ−1/dz

)]
f

(
x + λ−1/dz

)
f (x)dz dx. (4.8)

As λ → ∞, the first integral in (4.8) goes to zero by (2.16) with p = 2 there. The assumed exponential stabilization
of δ and Lemma 3.5 give that [cδ

λ(x, x + λ−1/dz)− cδ
λ(x)cδ

λ(x + λ−1/dz)] is dominated by an integrable function of z.
By (2.16) again with p = 2 and Cauchy–Schwarz, we get for all x ∈ Q1 that limλ→∞[cδ

λ(x, x+λ−1/dz)−cδ
λ(x)cδ

λ(x+
λ−1/dz)] = 0 uniformly in z ∈ −λ1/dx + Qλ. Thus for all x ∈ Q1 the dominated convergence theorem yields

lim
λ→∞

∫
−λ1/dx+Qλ

[
cδ
λ

(
x, x + λ−1/dz

) − cδ
λ(x)cδ

λ

(
x + λ−1/dz

)]
f

(
x + λ−1/dz

)
f (x)dz = 0

and the bounded convergence theorem gives that the second integral in (4.8) goes to zero as λ → ∞. This concludes
the proof of Theorem 2.4. �

5. Applications

5.1. RSA packing and spatial birth growth models with Gibbsian input

Let X ⊂ R
d be locally finite. Elements x ∈ X are assigned i.i.d. time marks τx , independent of X and distributed uni-

formly in [0,1]. Consider a sequence of unit volume d-dimensional Euclidean balls B1,B2, . . . with centers arriving
sequentially at points x ∈ X and at arrival times τx . The first ball B1 to arrive is packed and recursively, for i = 2,3, . . .

let the ith ball be packed if it does not overlap any ball in B1,B2, . . . ,Bi−1 which has already been packed. Define
the packing functional ξ(x, X ) to be either 0 or 1, depending on whether the ball arriving at x is either packed or
discarded.

When X is the realization of a Poisson point process on Qλ, this packing process is known as random sequential
adsorption (RSA) with Poisson input on Qλ [8]. It is also possible to let the number of points falling into Qλ tend
to ∞, which gives rise to the RSA process with infinite input; in such cases, RSA packing terminates when it is no
longer possible to pack additional balls. In dimension d = 1, this process is known as the Rényi car parking problem
[26]. In the infinite input setting and when d = 1 Rényi [26] (respectively Dvoretzky and Robbins [7]) proved that
the total number of parked balls satisfies a weak law of large numbers (respectively central limit theorem) as λ → ∞;
these results were shown to hold for all dimensions in [20] and [28].

Limit results for RSA packing generally assume that the input is either a Poisson or binomial point process. To
the best of our knowledge, RSA packing problems with Gibbsian input P βΨ have not been considered, though it is
natural to consider packing models with input satisfying some intrinsic repulsivity, as in the Widom–Rowlinson or
hard core model. The following theorem widens the scope of the existing limit results for RSA packing. Assign to the
points of P βΨ i.i.d. marks in [0,1], thus putting us in the set-up of Remark (i) following Theorem 2.4. Given P βΨ ,
define the packing measure μ

ξ,βΨ
λ as in (2.6) and note that its total mass is the total number of balls packed on Qλ

from the collection of balls with centers in P βΨ ∩ Qλ and with distinct arrival times in [0,1]. Note that ξ is bounded
and thus satisfies all moment conditions of Theorems 2.1–2.3.



Geometric functionals of Gibbs point processes 1175

Theorem 5.1. The packing functional ξ is exponentially stabilizing as at (2.4). Consequently, if Ψ ∈ Ψ ∗ and
(τ,β) ∈ RΨ , then μ̄

ξ,βΨ
λ satisfies the conclusions of Theorems 2.1–2.3.

Remark. As spelled out in [23], Theorem 5.1 also applies to related packing models, including (i) spatial birth growth
models with Gibbsian input, (ii) RSA models with balls replaced by particles of random size whose spatial locations
are described by Gibbsian input, and (iii) ballistic deposition models with Gibbsian input.

Proof of Theorem 5.1. The approach in [23] shows that ξ is exponentially stabilizing on Poisson-like sets. Indeed,
we may couple any Poisson-like set Ξ with the dominating Poisson point process Pτ such that Pτ contains Ξ a.s.
The arguments in [23] show that the packing status of a point x in a configuration X depends on X only through its
algorithmically determined sub-configuration Cl[x, X ] referred to as the causal cluster of x in the presence of X .
The causal cluster Cl[x, X ] is non-decreasing in X . In particular, using Ξ ⊆ Pτ we get Cl[x,Ξ ] ⊆ Cl[x, Pτ ] a.s.
for x ∈ Ξ . However, by the arguments in Section 4 of [23], the causal clusters generated by points of Pτ exhibit
exponential decay, and hence so do causal clusters of points in Ξ showing that the packing functional ξ is ex-
ponentially stabilizing in the wide sense on Poisson-like sets, in particular on P βΨ . This completes the proof of
Theorem 5.1. �

5.2. Functionals of Euclidean graphs on Gibbsian input

In many cases, showing exponential stabilization of functionals of geometric graphs over Poisson input [2,22], can be
reduced to upper bounding the probability that regions in R

d are devoid of points by a term which decays exponentially
with the volume of the region. When the underlying point set is Poisson, as in [2,22], then we obtain the desired
exponential decay. When the input is Poisson-like, the desired exponential decay follows from condition (2.1). In this
way the existing stabilization proofs for functionals over Poisson point sets carry over to functionals on Poisson-like
input. This extends central limit theorems for functionals of Euclidean graphs on Poisson input to the corresponding
central limit theorems for functionals defined over Gibbsian input. The following applications illustrate this.

(i) k-nearest neighbors graph. The k-nearest neighbors (undirected) graph on the vertex set X , denoted NG(X ),
is the graph obtained by including {x, y} as an edge whenever y is one of the k points nearest to x and/or x is one of
the k points nearest to y. The k-nearest neighbors (directed) graph on X , denoted NG′(X ), is obtained by placing a
directed edge between each point and its k-nearest neighbors. In case X = {x} is a singleton, x has no nearest neighbor
and the nearest neighbor distance for x is set by convention to 0.

Total edge length of k-nearest neighbors graph. Given x ∈ R
d and a locally finite point set X ⊂ R

d , the nearest
neighbors length functional ξ(x, X ) is one half the sum of the edge lengths of edges in NG(X ∪ {x}) which are
incident to x. Define the point measure μ

ξ,βΨ
λ as in (2.6) and note that its total mass is the total edge length of

NG(P βΨ ∩ Qλ). The next result generalizes Theorem 6.1 of [22], which is restricted to nearest neighbor graphs
defined on Poisson input.

Theorem 5.2. The nearest neighbors length functional ξ is exponentially stabilizing as at (2.4) and satisfies the
p-moment condition (2.7) for some p > 2. Consequently, if Ψ ∈ Ψ ∗ and (τ,β) ∈ RΨ , then μ̄

ξ,βΨ
λ satisfies the con-

clusions of Theorems 2.1–2.3.

Proof. An easy modification of the proof of Lemma 6.1 of [22] shows that ξ is exponentially stabilizing on Poisson-
like point sets. Moreover, Lemma 6.2 of [22] shows that ξ satisfies the p-moments condition (2.7) for all p, completing
the proof of Theorem 5.2. �

Number of components in nearest neighbors graph. Let k = 1. Given a locally finite point set X , define the com-
ponent count functional ξ [c](x, X ) to be the reciprocal of the cardinality of the component in NG(X ∪ {x}) which
contains x. Thus

∑
x∈X ξ [c](x, X \ {x}) denotes the total number of finite components of NG(X ). Put

μ
ξ,βΨ
λ :=

∑
u∈P βΨ ∩Qλ

ξ [c](u,
(

P βΨ ∩ Qλ

) \ u
)
δλ−1/du.
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Theorem 5.3. The component count functional ξ [c] is exponentially stabilizing as at (2.4) and satisfies the p-moment
condition (2.7) for some p > 2. Consequently, if Ψ ∈ Ψ ∗ and (τ,β) ∈ RΨ , then μ̄

ξ,βΨ
λ satisfies the conclusions of

Theorems 2.1–2.3.

Proof. We establish that ξ [c] is exponentially stabilizing on Poisson-like sets Ξ and appeal to Theorems 2.1–2.3.
When k = 1, the Poisson-like properties of the input process and the methods of Häggström and Meester [14] and
Kozakova, Meester, and Nanda [16] show there are no infinite clusters in NG(Ξ). Moreover, the proofs of Theo-
rems 1.1, 1.2 and Propositions 2.2 and 2.3 of [16] and property (2.1) of Poisson-like processes show that the finite
clusters in NG(Ξ) have (super)exponentially decaying cardinalities and diameters.

This may be seen as follows. Let G be the directed graph whose vertices are the points in Ξ and such that there
is a directed edge from x ∈ Ξ to y ∈ Ξ if y is the nearest neighbor of x. Let E(n,L, j) be the event that there are
directed paths in G , one from 0 to some s′, containing exactly j points in Ξ besides 0, and one from some s to the
same s′, containing exactly n− j points in Ξ besides s′, and such that the Euclidean norm of s exceeds L. As in [16],
the empty ball probabilities (2.1) give

P
[
E(n,L, j)

] ≤
∫

Sj

exp

(
−C Vol

(
j⋃

i=1

Bi ∪
n⋃

i=j+1

B ′
i

))
dx1 · · · dxn,

where C is a constant depending on C3, Bi := B|xi |(si) is the open ball centered at si of radius |xi |, with a similar
definition for B ′

i := B|xi |(si). Here Sj are the points in (Rd)n satisfying conditions (i)–(iii) on p. 533 of [16]. This
inequality is the analog of (7) of [16], where there C = 1. This yields the crucial Proposition 2.2 of [16], provided Wi

are now i.i.d. random variables on R
d with density proportional to exp(−C Vol(B|w|(0)).

We show exponential stabilization of ξ [c] as follows. Let R(y), y ∈ R
d , be the maximal radius of the cluster

in NG(Ξ) intersecting B1(y). Then by the above results, there is a c ∈ (0,∞) such that uniformly in y we have
P[R(y) > t] ≤ c−1 exp(−ct). Then

S(x) := sup
y∈BR(x)

(x)∩Ξ

R(y)

has an exponentially decaying tail as well. Indeed, covering a ball of radius M with O(Md) unit balls, we use the
exponential decay of nearest neighbor cluster diameters and the union bound to obtain

P
[
S(x) > M

] ≤ P
[
S(x) > M,R(x) ≤ M

] + P[R(x) > M] ≤ c−1Md exp(−cM) + c−1 exp(−cM)

for some c > 0, as required. To proceed, we can also show that 4S(x) is a radius of stabilization for ξ [c] at x; see
the proof of Lemma 6.1 of [22]. Since ξ [c] trivially satisfies the p moments condition (2.7) for all p, the proof of
Theorem 5.3 is complete. �

(ii) Gibbs–Voronoi tessellations. Given X ⊂ R
d and x ∈ X , the set of points in R

d closer to x than to any other
point of X is the interior of a possibly unbounded convex polyhedral cell C(x, X ). The Voronoi tessellation induced
by X is the collection of cells C(x, X ), x ∈ X . When X is the realization of the Poisson point set Pτ , this generates
the Poisson–Voronoi tessellation of R

d . As in [6,17], it is useful to study the case when there are geometric hard-core
interactions between cells, where the Hamiltonian is defined in terms of edges and faces of the Poisson–Voronoi tes-
sellation. We adopt a different approach, first defining the Gibbs point process P βΨ and then the Voronoi tessellation
of this process, sometimes called the Ord process [19]. Our general results establish the limit theory for the total edge
length of the Gibbs–Delaunay tessellation, yielding a closed form expression for the mean Voronoi cell perimeter on
a Gibbs point process. This goes as follows.

Given X ⊂ R
d , let L(x, X ) denote one half the total edge length of the finite length edges in the cell C(x, X ∪{x})

(thus we do not take infinite edges into account). It is easy to see that L is exponentially stabilizing on Poisson-
like sets Ξ . Indeed, when d = 2, it suffices to follow the arguments in the proof of Theorem 8.1 of [22], where the
stabilization arguments involve finding a minimum edge length such that the 12 isosceles triangles with this edge
length and with common vertex each have at least one point from Ξ in them. Since Ξ is Poisson-like we may follow
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the arguments in [22] verbatim to see that L stabilizes. See Section 6.3 of [20] for the case d > 2, where it is also
shown that L satisfies the moment condition (2.7) for p = 3. Putting

μ
L,βΨ
λ :=

∑
u∈P βΨ ∩Qλ

L
(
u,

(
P βΨ ∩ Qλ

) \ u
)
δλ−1/du

we have thus proved the following theorem.

Theorem 5.4. The Voronoi length functional L is exponentially stabilizing as at (2.4) and satisfies the p-moment
condition (2.7) for some p > 2. Consequently, if Ψ ∈ Ψ ∗ and (τ,β) ∈ RΨ , then μ̄

L,βΨ
λ satisfies the conclusions of

Theorems 2.1–2.3. In particular for all f ∈ B(Q1) we have

lim
λ→∞λ−1

E
[〈
f,μ

L,βΨ
λ

〉] = τE
[
L

(
0, P βΨ

)
exp

(−βΔ
(
0, P βΨ

))] ∫
Q1

f (x)dx.

Putting τ = 1 and f ≡ 1 gives an asymptotic Gibbs–Voronoi cell length of EL(0, P βΨ ) exp(−βΔ(0, P βΨ )), which
should be compared with the asymptotic Poisson–Voronoi cell length EL(0, P1). Since the Gibbs–Voronoi cells are
more regular, we suspect that their mean cell length is larger, but we are unable to prove this for the P βΨ in this paper.

(iii) Other proximity graphs. There are further examples where showing exponential stabilization of functionals of
geometric graphs (in the wide sense) involves upper bounding the probability that regions in R

d are devoid of Poisson-
like points. Such estimates are available in the Poisson setting and it is not difficult to extend them to Poisson-like
point sets. In this way, by modifying the methods of [22] (Sections 7 and 9) and [2] (Section 3.1), we obtain weak laws
of large numbers and central limit theorems for the total edge length of the sphere of influence graph, the Delaunay
graph, the Gabriel graph, and the relative neighborhood graph over Gibbsian input P βΨ .

5.3. Gibbsian continuum percolation

Let X be a locally finite point set and connect all pairs of points which are at most a unit distance apart. The resulting
graph is equivalent to the basic model of continuum percolation, in which one considers the union of the radius 1
balls centered at points of X , see Section 12.10 in [13]. Let ξ [c](x, X ) be the reciprocal of the cardinality of the
component in the percolation graph on X ∪ {x} containing x, so that N(X ) = ∑

x∈X ξ [c](x, X ) counts the number of
finite components in G.

Section 9 of [22] discusses central limit theorems for N(Pτ ∩ Qλ). Using Theorem 2.3 we generalize these results
to obtain a central limit theorem for the number of components N(P βΨ ∩Qλ) in the continuum percolation model on
Gibbsian input in the subcritical regime, possibly of interest in the context of sensor networks on Gibbsian point sets.
We assume Ψ ∈ Ψ ∗ and (τ,β) ∈ RΨ , with τ in the subcritical regime for continuum percolation (see Section 12.10
in [13]). We argue that ξ [c] is exponentially stabilizing on Poisson-like sets Ξ as follows. If τ is subcritical, then Ξ

is also subcritical by stochastic domination. Consequently, the diameter of the connected cluster emanating from a
given point has exponentially decaying tails; see [13]. This yields the required exponential stabilization upon noting
that ξ [c](x, ·) does not depend on point configurations outside the connected cluster at x. Moreover, ξ [c] is bounded
above by one and thus satisfies the moments condition (2.7). Hence by Theorems 2.1–2.3, N(P βΨ ∩ Qλ) satisfies the
weak law of large numbers and central limit theorem, exactly as in the statement of Theorem 5.3.

5.4. Functionals on Gibbsian loss networks

Fix an integer m ∈ N. Attach to each point of the reference point process Pτ a bounded, convex, deterministic grain
K . Similar to the truncated Poisson process, let the potential Ψ be infinite whenever the grain K at one point has
non-empty intersection with more than m other grains. This condition prohibits overcrowding, and, for more general
repulsive models, one can put Ψ large and finite whenever the grain K at one point has non-empty intersection with
a large number (some number less than m) of other grains. The resulting process P βΨ , (τ,β) ∈ RΨ , whose existence
follows by Lemma 3.2, represents a version of spatial loss networks appearing in mobile and wireless communications.

Let K be an open convex cone in R
d (a cone is a set that is invariant under dilations) with apex at the origin.

In the context of communication networks, (K + x) represents the broadcast range of a transmitter at x. Given



1178 T. Schreiber and J. E. Yukich

x, y ∈ P βΨ , we say that y is connected to x, written x → y, if there is a sequence of points {xi}ni=1 ∈ (K + x) ∩ P βΨ ,
|xi − xi+1| ≤ 1, |x1 − x| ≤ 1 and |y − xn| ≤ 1. If the length of this sequence does not exceed a given m, we write
x →m y. We thus have x → y iff there is a path joining x to y, whose edges link points of P βΨ lying inside K and
which are of at most unit length. For all r > 0 let BK

r (x) := x + (K ∩ Br(0)).
Coverage functionals. The functional

ξ
(
x, P βΨ \ x

) := sup
{
r ∈ R :x → y for all y ∈ BK

r (x) ∩ P βΨ and BK
r (x) ∩ P βΨ �= ∅

}
determines the maximal coverage range of the network at x in the direction of the cone K. The coverage measure is
μ

ξ
λ := ∑

u∈P βΨ ∩Qλ
ξ(u, (P βΨ ∩Qλ)\u)δλ−1/du. When τ belongs to the subcritical regime for continuum percolation,

P βΨ is in turn subcritical because of Poisson domination. Since the continuum percolation clusters generated by any
Poisson-like set Ξ have exponentially decaying diameter, it follows that ξ stabilizes in the wide sense (recall the above
proof for the number of components in the continuum percolation model) and that ξ has an exponential moment.
Theorems 2.1 and 2.3 yield a weak law of large numbers and central limit theorem for the coverage measure μ

ξ
λ and

the total coverage
∑

u∈P βΨ ∩Qλ
ξ(u, (P βΨ ∩ Qλ) \ u).

Network reach functional. Say that the network has reach at least r at x if x → y for all y ∈ BK
r (x) ∩ P βΨ

and BK
r (x) ∩ P βΨ �= ∅. Put ξr (x, P βΨ \ x) := 1 if the network has reach at least r at x and otherwise put

ξr(x, P βΨ \ x) := 0. Theorems 2.1 and 2.3 yield a weak law of large numbers and central limit theorem for the
total network reach

∑
u∈P βΨ ∩Qλ

ξr(u, (P βΨ ∩ Qλ) \ u).
Number of customers obtaining coverage. Independently mark each point x of P βΨ with mark T (transmitter)

with probability p > 0 and with mark R (receiver) with the complement probability. Define the reception functional
ξ(x, P βΨ \ x) to be 1 if x is marked with T or (when x is marked with R) if z → x for some z in the transmit-
ter set {z ∈ P βΨ : z marked with T }. Put ξ(x, P βΨ \ x) to be zero otherwise. Thus ξ(x, ·) counts when a customer
at x gets coverage. We are in the setting of Remark (i) following Theorem 2.4 and the limit theory for the sum∑

u∈P βΨ ∩Qλ
ξ(u, (P βΨ ∩ Qλ) \ u), which counts the total number of customers obtaining network coverage, is given

by Theorems 2.1–2.3.
Connectivity functional. Given a broadcast range r > 0 and the transmitter set {z ∈ P βΨ : z marked with T }, let

cr(x, P βΨ ) be the minimum number, say m, such that every point in y ∈ BK
r (x) ∩ P βΨ can be reached from some

transmitter z ∈ P βΨ with m or fewer edges or hops, that is to say there exists a transmitter z such that z →m y

for all y ∈ BK
r (x) ∩ P βΨ . Thus all receivers in the broadcast range r > 0 can be linked to a transmitter in m or

fewer hops. Small values of cr(x, P βΨ ) represent high network connectivity; of course cr(x, P βΨ ) can admit in-
finite values. Next, for n > 0 set ξr,n(x, P βΨ ) := 1 if cr(x, P βΨ ) ≤ n and 0 otherwise. For each r, n > 0, Theo-
rems 2.1 and 2.3 provide a weak law of large numbers and central limit theorem for the connectivity functional∑

u∈P βΨ ∩Qλ
ξr,n(u, (P βΨ ∩ Qλ) \ u) as λ → ∞.

6. Gibbsian quantization for non-singular probability measures

Quantization for probability measures concerns the best approximation of a d-dimensional probability measure P by
a discrete measure supported by a set Xn having n atoms. It involves a partitioning problem of the underlying space
and it arises in information theory, cluster analysis, stochastic processes, and mathematical models in economics [12].
The goal is to optimally represent P , here assumed non-singular with density h, with a point set Xn, where optimality
involves minimizing the Lr stochastic quantization error (or ‘random distortion error’), r ∈ (0,∞), given by

I (Xn) :=
∫

Rd

(
min
x∈Xn

|y − x|
)r

P (dy) =
∑
x∈Xn

∫
C(x,Xn)

|y − x|rP (dy).

As in Section 5.2(ii), C(x, X ) is the Voronoi cell around x with respect to X .
The minimal quantization error is minXn

I (Xn). When E|X|p < ∞ for some p > r , with X having distribution P ,
then the seminal work of Bucklew and Wise [3,12] shows that

lim
n→∞nr/d min

Xn

I (Xn) = Qr,d‖h‖d/(d+r), (6.1)
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where ‖h‖d/(d+r) denotes the d/(d + r) norm of the density h and where the so-called r th quantization coefficient
Qr,d is some positive constant not known to have a closed form expression.

When Xn consists of n i.i.d. random variables, the first order asymptotics for I (Xn) were first investigated by
Zador [32] and later by Graf and Luschgy [12], Cohort [4], and Yukich [30], who also obtained central limit theorems.
Letting Xn consist of n i.i.d. random variables with common density hd/(d+r)/

∫
hd/(d+r), where h is the density of P ,

Zador’s theorem shows limn→∞ nr/dI (Xn) = v
−r/d
d Γ (1 + r/d)‖h‖d/(d+r) whence (see Proposition 9.3 in [12]) the

upper bound

Qr,d ≤ v
−r/d
d Γ (1 + r/d). (6.2)

Molchanov and Tontchev [18] discuss the possibility of quantization of P via Poisson point sets and our purpose
here is to establish asymptotics of the quantization error on Gibbsian input. This is done as follows. For λ > 0 and a
finite point configuration X we define X(λ) := λ−1/d X . We write X̃ := X ∩Q1 so that in particular X̃(λ) := λ−1/d X ∩
Q1. Consider the random point measures induced by the distortion arising from P̃ βΨ

(λ) , namely

μ
βΨ
λ :=

∑
x∈P̃ βΨ

(λ)

∫
C(x,P̃ βΨ

(λ)
)

|y − x|rP (dy)δx. (6.3)

Clearly, when f ≡ 1 then 〈f,μ
βΨ
λ 〉 gives another expression for the distortion I (P̃ βΨ

(λ) ). On the other hand, if
f = 1(B), then 〈f, ·〉 measures the local distortion. This section establishes mean and variance asymptotics for
〈f,μ

βΨ
λ 〉 as well as central limit theorems. Since the functional (x, X ) �→ ∫

C(x,X )
|y − x|rh(y)dy is not transla-

tion invariant for h not constant, we will appeal to Theorem 2.4. Recalling that τ is the reference intensity, we
put

MβΨ (τ) :=
∫

C(0,P βΨ )

|w|r dw exp
(−βΔ

(
0, P βΨ

))
.

Note that MβΨ (τ) depends on τ through P βΨ . Changing the order of integration we have

E
[
MβΨ (τ)

] = E

[∫
Rd

|w|r1
(

P βΨ ∩ B|w|(w) = ∅
)

exp
(−βΔ

(
0, P βΨ

))
dw

]

=
∫

Rd

|w|rE[
exp

(−βΔ
(
0, P βΨ

))
1
(

P βΨ ∩ B|w|(w)
) = ∅)

]
dw. (6.4)

In the special case τ = 1 and Ψ ≡ 0 (i.e. P βΨ D= P1), we readily get EM0(1) = Γ (1 + r/d)v
−r/d
d . More generally we

have EM0(τ ) = τ−(1+r/d)Γ (1 + r/d)v
−r/d
d . Put

V βΨ (τ) := E
[
MβΨ (τ)2]

+ τ

∫
Rd

(
E

[∫
C(0,P βΨ ∪{y})

|w|r dw

∫
C(y,P βΨ ∪{0})

|w − y|r dw exp
(−βΔ

({0, y}, P βΨ
))] − (

EMβΨ (τ)
)2

)
dy.

We now give the limit theory for 〈f,μ
βΨ
λ 〉.

Theorem 6.1. Assume that the density h of P is continuous on Q1 and zero outside Q1. Assume Ψ ∈ Ψ ∗ and
(τ,β) ∈ RΨ . We have for each f ∈ B(Q1)

lim
λ→∞λr/d

〈
f,μ

βΨ
λ

〉 = τE
[
MβΨ (τ)

] ∫
Q1

f (x)h(x)dx in L2 (6.5)
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and

lim
λ→∞λ1+2r/d Var

[〈
f,μ

βΨ
λ

〉] = τV βΨ (τ)

∫
Q1

f (x)2h(x)dx. (6.6)

The finite-dimensional distributions λ−1/2+r/d(〈f1,μ
βΨ
λ 〉, . . . , 〈fk,μ

βΨ
λ 〉), f1, . . . , fk ∈ B(Q1), converge as λ → ∞

to those of a mean zero Gaussian field with covariance kernel

(f1, f2) �→ τV βΨ (τ)

∫
Q1

f1(x)f2(x)h(x)dx, f1, f2 ∈ B(Q1).

When f ≡ 1 the right-hand side of (6.5) gives

lim
λ→∞λr/d

〈
1,μ

βΨ
λ

〉 = lim
λ→∞λr/dI

(
P̃ βΨ

(λ)

) = τE
[
MβΨ (τ)

]
in L2.

The limit (6.1) is necessarily less than or equal to the right-hand side of the above, showing that in addition to the
bound (6.2), the r th quantization coefficient Qr,d satisfies

Qr,d ≤ (‖h‖d/(d+r)

)−1
τE

[
MβΨ (τ)

]
.

Recall from our discussion above that when Ψ ≡ 0 (i.e. P βΨ is Poisson) and when f ≡ 1, then the right-hand side of
(6.5) equals τ−r/dv

−r/d
d Γ (1 + r/d) and thus

Qr,d ≤ (‖h‖d/(d+r)

)−1
τ−r/dv

−r/d
d Γ (1 + r/d).

Whereas the distortion error (6.5) is relatively large for Poisson input, we expect that it can be made smaller by
restricting to point sets which enjoy built-in repulsivity while keeping the same mean point density. Indeed, given a
fixed mean number of test points it seems more economical to spread them equidistantly over the domain of target
distribution than to allow for local surpluses of test points in some regions, which only result in wasting test resources
with the quantization quality improvement considerably inferior to that which would be achieved should we shift the
extraneous points to regions of lower test point concentration. In other words, the right-hand side of (6.5) for repulsive
Gibbs point processes should be smaller than the corresponding distortion for the Poisson point process with the same
point density. These seem to be natural and interesting questions, yet we cannot handle them with our techniques.

Proof of Theorem 6.1. We deduce Theorem 6.1 from Theorem 2.4. We first assume that the density h of P is bounded
away from 0. Consider the following parametric family of functionals:

ξ̂ (x, X ;λ) :=
∫

C(x,X )

|y − x|r h(λ−1/dy)

h(λ−1/dx)
dy, (6.7)

where without loss of generality we assume that C(x, X ) denotes the intersection of λ1/dQ1 and the Voronoi cell
around x with respect to X , since h(λ−1/dy) vanishes off λ1/dQ1. Putting

ξ(x, X ) :=
∫

C(x,X )

|y − x|r dy (6.8)

and

δ(x, X ;λ) :=
∫

C(x,X )

|y − x|r h(λ−1/dy) − h(λ−1/dx)

h(λ−1/dx)
dy (6.9)

we obtain the bounded perturbed representation (2.15) for ξ̂ (·, ·;λ), namely we have ξ̂ (x, X ;λ) = ξ(x, X ) +
δ(x, X ;λ), with ξ translation invariant.
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As in both Theorem 8.1 of [22] and Section 6.3 of [20], it is seen that both ξ and δ, as given in (6.8) and (6.9),
stabilize exponentially on Poisson-like input with common stabilization radius determined by the diameter of the
Voronoi cell around the input point. To see that δ(·, ·;λ) also satisfies the bounded moments condition (2.16), we note
that ‖1/h‖∞ ≤ C gives for x ∈ Qλ

∣∣δ(x, X ;λ)
∣∣ ≤ C

∫
C(x,X )

|y − x|r ∣∣h(
λ−1/dy

) − h
(
λ−1/dx

)∣∣dy. (6.10)

Given a point set X recall that the Voronoi flower is F(x, X ) := ⋃
y B|y|(y), where the union ranges over the

vertices y belonging to the Voronoi cell C(x, X ). Since C(x, X ) ⊂ F(x, X ), (6.10) gives for all p > 0 and λ ≥ 1

sup
x∈Rd

E
∣∣δ(x, P βΨ ∩ Qλ;λ

)∣∣p ≤ sup
x∈Qλ

CE

[∫
F(x,P βΨ )

|y − x|r ∣∣h(
λ−1/dy

) − h
(
λ−1/dx

)∣∣dy

]p

.

Stationarity of P βΨ and uniform continuity of h give

sup
x∈Rd

E
∣∣δ(x, P βΨ ∩ Qλ;λ

)∣∣p ≤ CE

[∫
F(0,P βΨ )

|y|rωh

(
λ−1/d |y|)dy

]p

=: L(p, r, λ),

where ωh(·) is the modulus of continuity of h. Now [∫
F(0,P βΨ )

|y|rωh(λ
−1/d |y|)dy]p is dominated by an integrable

random variable uniformly over λ, namely by a constant multiple of the p(r + d)th power of the diameter of the
Voronoi flower on Poisson-like input, which decays exponentially fast. Since [∫

C(0,P βΨ )
|y|rωh(λ

−1/d |y|)dy]p a.s.
converges to zero as λ → ∞, the dominated convergence theorem implies that limλ→∞ L(p, r, λ) = 0. This gives
(2.16) and hence ξ̂ (·, ·;λ) is a bounded perturbation of ξ(·, ·).

To proceed, we note that μ
βΨ
λ defined at (6.3) satisfies for each f ∈ B(Q1)

〈
f,μ

βΨ
λ

〉 = λ−1−r/d
〈
f h,μ

ξ̂,βΨ
λ

〉
, (6.11)

where μ
ξ̂,βΨ
λ is the empirical measure for ξ̂ defined at (2.6), that is to say

μ
ξ̂,βΨ
λ :=

∑
u∈P βΨ ∩Qλ

ξ̂
(
u,

(
P βΨ ∩ Qλ

) \ u;λ)
δλ−1/du.

It is easily verified that ξ satisfies all assumptions of Theorems 2.1–2.3. Consequently, Theorem 2.4 can be applied

for ξ̂ , which yields Theorem 6.1 via the formula (6.11) allowing us to translate results for μ
ξ̂,βΨ
λ to the corresponding

results for μ
βΨ
λ . This completes the proof of Theorem 6.1 for h bounded away from 0.

Assume now that h fails to be bounded away from 0 and, for ε > 0 put hε := max(h, ε) and let μ
βΨ

λ;ε be the version

of μ
βΨ
λ with h replaced by hε . Using the definition of μ

βΨ
λ , and the exponential decay of the diameter of Voronoi

cells on Poisson-like input we easily conclude that

∣∣E[〈
f,μ

βΨ
λ

〉 − 〈
f,μ

βΨ

λ;ε
〉]∣∣ = O

(
λ−r/dε

)
, Var

[〈
f,μ

βΨ
λ

〉 − 〈
f,μ

βΨ

λ;ε
〉] = O

(
λ−1−2r/dε

)
. (6.12)

We may apply the first half of the current proof to hε , since hε is integrable and bounded away from 0 (though hε

does not integrate to one, hε can be easily renormalized to do so). Using (6.12) we obtain the required expectation and
variance asymptotics for 〈f,μ

βΨ
λ 〉 as well as the L2 weak law of large numbers. The remaining central limit theorem

statement for 〈f, μ̄
βΨ
λ 〉 follows directly by Stein’s method as in Theorem 2.3, which is not affected by h being not

bounded away from 0. This completes the proof of Theorem 6.1. �
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