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Abstract. In this paper, we study the size of the giant component CG in the random geometric graph G = G(n, rn, f ) of n nodes

independently distributed each according to a certain density f (·) in [0,1]2 satisfying infx∈[0,1]2 f (x) > 0. If c1
n ≤ r2

n ≤ c2
logn

n

for some positive constants c1, c2 and nr2
n −→ ∞ as n → ∞, we show that the giant component of G contains at least n − o(n)

nodes with probability at least 1 − e−βnr2
n for all n and for some positive constant β. We also obtain estimates on the diameter and

number of the non-giant components of G.

Résumé. Dans cet article nous étudions la composante principale CG dans le graphe géométrique aléatoire G = G(n, rn, f ) avec n

nœuds indépendants, chacun étant distribué selon une densité f (·) dans [0,1]2 telle que infx∈[0,1]2 f (x) > 0. Si c1
n ≤ r2

n ≤ c2
logn

n

pour des constantes positives c1, c2 et nr2
n −→ ∞ quand n → ∞, nous montrons que la composante principale de G contient au

moins n − o(n) nœuds avec probabilité minorée par 1 − e−βnr2
n pour tout n et pour une constante positive β. Nous obtenons aussi

des estimations sur les diamètres et sur le nombre des plus petites composantes de G.

MSC: Primary 60D05; secondary 60C05
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1. Introduction

Consider n nodes independently distributed in S = [0,1]2 each according to a certain density f (·) and say two nodes
u = (xu, yu), v = (xv, yv) ∈ R

2 are connected to each other if the Euclidean distance d(u, v) between them is less than
rn. We denote the resulting random geometric graph (RGG) as G = G(n, rn, f ). Throughout the paper we assume the
density f on [0,1]2 satisfies

0 < inf
x∈[0,1]2

f (x) ≤ sup
x∈[0,1]2

f (x) < ∞. (1)

Random graphs as described above are important in many applications and properties like emergence of giant com-
ponent, connectivity and area coverage have been studied before [2,4–6] for a variety of random graphs.

For the case of RGGs, we recollect the pertinent results below for convenience.

Theorem [4,6]. If r2
n = c1

n
for some constant c1 > 0 sufficiently large and the density f (·) satisfies (1), then:

(a) There exists a constant ε = ε(c1) > 0 so that

P(G contains a component CG such that #CG ≥ εn) −→ 1
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and

#CG

n
−→ 2ε in probability

as n → ∞. If r2
n = c2

logn
n

for some constant c2 > 0 and the density f (·) satisfies (1), we have:
(b) If c2 is sufficiently large, then P(G is connected) −→ 1 as n → ∞.
(c) If c2 is sufficiently small, then lim infn P(G is not connected) > 0.

Here and henceforth any constant will always be independent of n and #CG denotes the number of nodes in
CG. Part (a) of the above result describes the size of the giant component CG of G. Parts (b) and (c) describe the
behaviour of G in the densely connected regime. Indeed when the density f is uniform, parts (b) and (c) are proved
in Corollary 3.1 and Corollary 2.1, respectively, of [4]. The proof for non-uniform f satisfying (1) is analogous. Part
(a) and related results are discussed in Chapter 11 of [6]. Also, it is known that ε(c1) −→ 1

2 as c1 → ∞ (see Chapters
9 and 11 of [6]).

Not much is known about the graph for intermediate values of rn. The size of the giant component is not known
as a function of rn. Our main contribution in this paper is developing techniques to analyze the structure of giant
component in the intermediate range i.e., when c1

n
≤ r2

n ≤ c2
logn

n
for sufficiently large positive constants c1, c2 and

obtain estimates on the size and diameter of non-giant components (Theorem 1). The advantage of our approach is
that it can also be used to study related problems in RGGs.

Before we state the main result, we define the diameter of a graph. The diameter of any subgraph H of G is defined
as

diam(H) = sup
u,v

dH (u, v),

where dH (u, v) represents the graph distance between the nodes u and v in H and the supremum is taken over all
pairs u,v belonging to the vertex set of H . We state the main result of the paper below. Let TG denote the collection
of all components of G. For a fixed β > 0 we define the following events: Let

Un = Un(β) =
{

#TG ≤ 1

r2
n

e−βnr2
n

}

denote the event that the number of components of G is less than 1
r2
n

e−βnr2
n ,

Vn = Vn(β) = {
there exists C0 ∈ TG such that #C0 ≥ n − ne−βnr2

n
}

denote the event that there exists a (giant) component C0 in TG whose size is at least n − ne−βnr2
n and

Wn = Wn(β) = Vn ∩
{

sup
C∈TG\C0

diam(C) ≤ 1

β

(
logn

nr2
n

)2}

denote the event that the diameter of every component of G other than the giant component C0 is less than 1
β
(

logn

nr2
n

)2.

Theorem 1. Consider the graph G = G(n, rn, f ), where the density f (x) satisfies (1) and the radius rn satisfies

c1

n
≤ r2

n ≤ c2 logn

n
(2)

for some fixed positive constants c1 and c2. Let Un and Wn be events as defined above and fix δ > 1. If nr2
n −→ ∞ as

n → ∞, there exists a positive constant β = β(δ) sufficiently small so that:

(i) P(Un) ≥ 1 − e−βn1−1/δ
and

(ii) P(Wn) ≥ 1 − e−βnr2
n , for all n ≥ 1.
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The above result essentially says whenever rn is in the intermediate range as in (2), a giant component of G exists
with very high probability and moreover it contains nearly all the nodes.

2. Proof of Theorem 1

Divide the unit square S into small rn
Δ

× rn
Δ

closed squares {Si}i≥1 and choose Δ = Δn ∈ [4,5] so that Δ
rn

is an integer.
We choose such a Δ so that nodes in adjacent squares can be joined by an edge in G. Define Si to be occupied if it
has at least one node and vacant otherwise.

2.1. Proof of (i)

We first count the number of vacant squares in the set {Si}i . We then use the fact that for each vacant square Sj ,
the 8rn

Δ
× 8rn

Δ
square with same centre as Sj intersects at most 81 distinct components of G to prove (i). The choice

of 8 is not crucial and any integer larger than 2 suffices since we only need to estimate the number of components
“associated” with Sj . The total number of squares is t = ( Δ

rn
)2. To obtain an estimate on the total number of vacant

squares, we let {Zi}1≤i≤t be Bernoulli random variables taking values either zero or one. We set Zi = 1 if and only if
the square Si is vacant which happens if and only if none of the n nodes are in Si .

We note that the sum
∑

i Zi equals k if and only if there are exactly k vacant squares. Since the random variables
{Zi}i are not independent, we cannot evaluate the probability that

∑
i Zi = k using standard binomial estimates. We

therefore proceed as follows. The number of ways of choosing k squares from a total of t squares is
(
t
k

)
. The total area

of the k squares is k
r2
n

Δ2 ≥ kr2
n

25 since Δ ≤ 5. All the k squares chosen are empty with probability at most pn
k , where

pk = 1 − k inf
i

∫
Si

f (x)dx ≤ 1 − β0kr2
n ≤ e−β0kr2

n (3)

and β0 = 1
25 infx∈[0,1]2 f (x) > 0. Thus using the inequality

(
n
k

) ≤ ( ne
k

)k , we have

P

(
t∑

i=1

Zi ≥ k

)
≤

t∑
j=k

(
t

j

)
pn

j ≤
t∑

j=k

(
te

j

)j

pn
j

≤
t∑

j=k

(
te

j

)j

e−jβ0nr2
n ≤

t∑
j=k

(
te

k

)j

e−jβ0nr2
n .

Setting k = ete−θnr2
n for some constant θ < β0 to be determined later and letting β1 = β0 −θ , we get for all sufficiently

large n that

P

(
t∑

i=1

Zi ≥ ete−θnr2
n

)
≤

t∑
j=k

e−jβ1nr2
n

≤ e−kβ1nr2
n

1 − e−β1nr2
n

≤ 2e−kβ1nr2
n

= 2 exp
(−ete−θnr2

nβ1nr2
n

)
= 2 exp

(−β1eΔ2ne−θnr2
n
)

≤ 2 exp
(−16eβ1ne−θnr2

n
)
,
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where we use t = Δ2r−2
n and Δ ≥ 4, respectively, in obtaining the last two expressions. We use the fact that nr2

n −→
∞ to obtain the third inequality. In what follows, the constants {βi}i≥1 are not necessarily same in each occurrence.
Let δ > 1 be any constant. Since r2

n ≤ c2
logn

n
for some c2 > 0 (see (2)), we choose θ sufficiently small so that

θnr2
n ≤ θc2 logn ≤ 1

δ
logn.

This implies that

P

(
t∑

i=1

Zi ≥ ete−θnr2
n

)
≤ 2 exp

(−16eβ1n
1−1/δ

)
.

Also, for each vacant square Sj , the 8rn
Δ

× 8rn
Δ

square with same centre as Sj intersects at most 81 distinct components

of G. Since t = Δ2

r2
n

≤ 25
r2
n

, we get from the above equation that

P
(
#TG ≥ 2025er−2

n e−θnr2
n
) ≤ 2 exp

(−16eβ1n
1−1/δ

)
and (i) follows.

The rest of the proof is devoted to establishing (ii). The idea is to tile S horizontally and vertically into rectangles
and show that each rectangle contains a crossing of edges in the longer direction with high probability. We then join
together these crossings to form a “backbone” and show that it forms a part of the giant component. Throughout, we
define Kn = logn

nr2
n

and allow Kn to be an integer. (Later, we show that the tiling is (slightly) modified if Kn is not an

integer without any change in the argument.)
From (2), we have that Kn ≥ 1

c2
. For positive integers m1 and m2, let R be any m2rn

Δ
× m1Knrn

Δ
rectangle contained

in S which contains exactly m1m2Kn of the squares from {Si}i . We define a left–right crossing in R to be any set of
distinct squares L = (Sj1, . . . , Sjl

) such that:

(a) For every i, the squares Sji
and Sji+1 share an edge.

(b) Sj1 intersects the left face of R and Sjl
intersects the right face.

If every square in L is occupied, we say that L is an occupied left–right crossing. We define analogously occupied
top–bottom and vacant crossings of R. The only difference in the definition of vacant crossings is that “edge” in
condition (a) above is replaced by “corner”. Figure 1 illustrates an occupied left–right crossing in a m2rn

Δ
× m1Knrn

Δ

rectangle R. The nodes in the rectangle are illustrated as dark dots and the sequence of grey squares form an occupied
left–right crossing in R. We need the following estimate on the probability of occurrence of an occupied left–right
crossing in R.

Fig. 1. Occupied left–right crossing in the rectangle R for some Δ ≥ 4.
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Fig. 2. Vacant top–bottom crossing of a 4 × 9 rectangle in Z
2 from the site x. Circled sites are occupied.

Lemma 2. For n ≥ N0 (independent of the choices of m1 and m2), the event that an occupied left–right crossing
occurs in R has probability at least

1 − m2

nm1δ1
(4)

for some constant δ1 > 0 (independent of the choices of m1 and m2).

We use the above estimate to construct a “backbone” of G and thus prove (ii). Before we do so, we prove Lemma 2.
The proof is independent of the rest of the proof of Theorem 1.

Proof of Lemma 2. To prove (4), we identify the centre of each square Si contained in R with a vertex in Z
2 in the

natural way. Thus the rectangle R has an equivalent rectangle R̃ consisting of sites in Z
2. Say that a site is occupied

if the corresponding square Si is occupied and vacant otherwise. Analogous to crossings in R, define occupied and
vacant crossings in R̃.

We now use the fact that either a left–right occupied crossing or a top–bottom vacant crossing must always occur
in R̃ but not both (see e.g., [1] or [3]). To evaluate the probability of a vacant top–bottom crossing, we fix a point x

in the top face of R̃ and consider a vacant crossing of length k starting from x (see Fig. 2 for illustration). The area

enclosed by the corresponding vacant top–bottom crossing Π1 in R ⊂ R
2 is kr2

n

Δ2 ≥ kr2
n

25 , since Δ ≤ 5. The probability
that a particular node is present in Π1 is (see (3))∫

Π1

f (x)dx ≥ kβ0r
2
n,

where β0 = 1
25 infx∈[0,1]2 f (x) > 0. Therefore the probability that Π1 is vacant is less than

(
1 − kβ0r

2
n

)n ≤ e−knβ0r
2
n .

Since the number of vacant top–bottom crossings of length k starting from x is less than 8k (at each step no more
than eight choices are possible), the probability that there exists a vacant top–bottom crossing of k squares starting
from the square Sx with centre x and contained in R is bounded above by 8ke−knβ0r

2
n . Any top–bottom crossing

starting from Sx must necessarily contain at least m1Kn and no more than m1m2Kn squares. Therefore the probability
that there exists a vacant top–bottom crossing starting from Sx and contained in R is bounded above by

m1m2Kn∑
k=m1Kn

8ke−kβ0nr2
n ≤ (

e−β1nr2
n
)m1Kn

for a fixed constant 0 < β1 < β0 and all n ≥ N0, for some constant N0 independent of the choices of m1 and m2. In
the above, we use the fact that nr2

n −→ ∞ and therefore that 8e−β0nr2
n < e−β1nr2

n for all n sufficiently large. Since
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(a) (b)

Fig. 3. Construction of the backbone. (a) The event En in the unit square. Each horizontal wavy line is an occupied left–right crossing of rn
Δ

× rn
Δ

squares as in Fig. 1. (b) Start horizontal tiling from below. The two topmost 1 × MKnrn
Δ rectangles in the tiling overlap. Perform a vertical tiling

analogously.

there are m2 possibilities for Sx , the probability that there exists a vacant top–bottom crossing of R is bounded above
by

m2
(
e−β1nr2

n
)m1Kn = m2e−β1m1 logn

= m2

(
1

nβ1

)m1

since Kn = logn

nr2
n

. �

2.2. Proof of (ii)

Tile the square S horizontally into a set of rectangles RH each of size 1 × MrnKn

Δ
and also vertically into rectangles

each of size MrnKn

Δ
× 1 for some fixed integer constant M ≥ 1 to be determined later. The argument below is for a

perfect tiling as in Fig. 3(a). Otherwise we perform an analogous argument with tiling as in Fig. 3(b). Let R be a fixed
1× MKnrn

Δ
rectangle in the tiling RH and let δ > 1 be a fixed constant. From (4), we know that R contains an occupied

left–right crossing with probability at least

1 − Δ

rn

1

nMδ1
≥ 1 − Δ√

c1

√
n

nMδ1
≥ 1 − 1

nδ+2

if M is sufficiently large. Fix such an M . The first inequality above is because r2
n ≥ c1

n
for some constant c1 (see (2)).

Let EH
n denote the event that every rectangle in RH contains an occupied left–right crossing in G satisfying (a)–(b)

described above. The number of rectangles in RH is less than

Δ

MrnKn

≤ Δ

Mrn

1

c2
≤ Δ

Mc2

√
n√
c1

≤ D1
√

n

for some constant D1 > 0. In evaluating the above we again use (2). The first inequality is because Kn = logn

nr2
n

≥ 1
c2

by

our choice of rn in (2) and the second inequality follows because r2
n ≥ c1

n
. It follows that

P
(
EH

n

) ≥ 1 − D1
√

n

nδ+2
≥ 1 − 1

nδ+1
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for all n sufficiently large. Following an analogous analysis for the vertically tiled rectangles described in the first
paragraph of the proof and defining an analogous event EV

n with occupied top–bottom crossings, we have that
P(EV

n ) ≥ 1 − 1
nδ+1 . Thus if En = EH

n ∩ EV
n , we have that

P(En) ≥ 1 − 2

nδ+1
. (5)

In Fig. 3(a), we depict the occurrence of the event En. We see that the event En results in a connected set of rn
Δ

× rn
Δ

squares B ⊆ {Si}i forming a “backbone” of crossings in S. Let C0 denote the component of G containing nodes in B.
In the above, we have assumed that Kn = logn

nr2
n

is an integer. If not, we set Kn = � logn

nr2
n

� and starting from the

base of the square S, we perform an analogous horizontal tiling as above. The only difference is that the two topmost
rectangles could overlap as seen in Fig. 3(b). A similar situation occurs in the vertical tiling. Following an analogous
analysis as above, we obtain (5) and a corresponding backbone. The rest of the argument below remains unchanged.

We note that the tiling of S into vertical and horizontal rectangles induces a tiling of S into MrnKn

Δ
× MrnKn

Δ
size

squares {S′
i}i . If the event En occurs, then the resulting backbone B (and hence the component C0) intersects each

square S′
i “vertically” and “horizontally” as shown in Fig. 3(a). Therefore, if there exists a connected component C of

G distinct from C0, it must necessarily be contained in a 2MKn

Δ
× 2MKn

Δ
square with centre at some rn

Δ
× rn

Δ
square Si .

In Fig. 4, the square A1A2A3A4 of Fig. 3(a) is magnified and a component C distinct from C0 is shown. The centre
of the hatched rn

Δ
× rn

Δ
square is also the centre of A1A2A3A4.

Clearly in such a component C, the minimum number of edges traversed in going from any node u to any other
node v is at most ( 2MKn

Δ
)2 < (2MKn)

2 and therefore diam(C) < (2MKn)
2. To summarize, so far we have proved that

if event En occurs, then a backbone B and hence the component C0 containing all the nodes in squares comprising
the backbone and possibly other nodes exist. Moreover, any component of G distinct from C0 has diameter less than
(2MKn)

2. Recall that TG is the set of all components of G and for θ > 0 let

Fn = Fn(θ) =
{ ∑

C∈TG : diam(C)<(2MKn)2

#C < ne−θnr2
n

}

denote the event that the sum of sizes of components whose diameter does not exceed (2MKn)
2 is less than ne−θnr2

n .
We have the following estimate on probability of occurrence of the event Fn.

Fig. 4. The square A1A2A3A4 in Fig. 3(a) is magnified to show a component not attached to the backbone.
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Lemma 3. We have

P(Fn) ≥ 1 − e−θ1nr2
n (6)

for some positive constants θ and θ1.

Before we prove the above result, we complete the proof of (ii). Whenever En ∩Fn occurs, the component C0 con-
tains at least n − ne−θnr2

n nodes and is therefore the giant component. Also, the diameter of any non-giant component
is less than (2MKn)

2. Choosing θ1 > 0 smaller if necessary, we have from (5) and (6) that the event En ∩ Fn occurs
with probability

P(En ∩ Fn) ≥ 1 − e−θ1nr2
n − 2

nδ+1
≥ 1 − 2e−θ1nr2

n

for all n sufficiently large. In the above estimate, we have used the fact (2) that nr2
n ≤ c2 logn for some positive

constant c2. This proves (ii) and hence Theorem 1. The proof of Lemma 3 is independent of the proof of Theorem 1
and is provided below.

Proof of Lemma 3. Say that a set of squares C ⊆ {Si}i is a cluster if they form a connected set in R
2. We say that the

cluster C is occupied if every square in the cluster is occupied.
Fix i and consider the square Si . If Si is occupied, denote Ci to be the maximal occupied cluster containing Si . Set

Xi to be the number of nodes in Ci if Ci is contained in the 2(2MKn)
2rn × 2(2MKn)

2rn square Sin
i with same centre

as Si . Otherwise set Xi to be zero. Thus,
∑

i Xi is an upper bound on the sum of size of components whose diameter
is less than 2(2MKn)

2. In the beginning of the proof of (ii), we recall that to obtain the estimate (2MKn)
2 on the

diameter of a component not attached to the backbone, we had considered a 2MKn × 2MKn square appropriately
centred (like A1A2A3A4 in Fig. 4). In this subsection, however, we are not given any information regarding the
backbone. Therefore, to obtain a bound on the size of a component whose diameter is less than (2MKn)

2 the only
information we have is that the component is enclosed in a (slightly bigger) 2(2MKn)

2 × 2(2MKn)
2 square.

We first estimate P({#Ci = k} ∩ {Xi �= 0}) for k ≥ 1. Suppose that Xi �= 0 and therefore that the cluster Ci is
contained in the square Sin

i . Our aim now is to obtain a sufficiently large number of vacant squares “attached to” Ci .
Consider Ci as a set in R

2 and let ∂1, . . . , ∂T be its disjoint boundaries. Each ∂i is a circuit of edges (ei,1, . . . , ei,Li
)

(not necessarily self-avoiding) such that ei,1 and ei,Li
touch each other. Since Ci is connected, one of the boundaries,

say ∂1, contains all squares of Ci and all the other boundaries in its interior. Also, any square Sj that has an edge
e1,j ∈ ∂1 and not contained in Ci is necessarily vacant.

Let π1 denote the set of distinct vacant squares that contain some edge in ∂1. The path ∂1 contains L1 ≥ 2 edges
of which at least L1

2 of them have an endvertex in the interior of the unit square S. (Here we use the fact that the
cluster Ci is contained in Sin

i . If we did not have such a bounding box for the cluster Ci , the above statement will not
hold; e.g. consider the event that each square in {Sk}k contains at least one node.) From the discussion in the previous
paragraph, each such “interior” edge has a vacant square “attached” to it. Since each vacant square is counted at most
four times (once for each of its four edges), this implies that #π1 ≥ L1

8 . In Fig. 5, the dark grey square is Si and the
grey squares form Ci . The set of vacant squares π1 is shown by the squares marked Π and the curve of thick lines
represents ∂1.

To compute the probability that such a vacant set of squares occurs, we set the centre of Si to be the origin and
draw X- and Y -axes parallel to the sides of Si . Let e1,last be the “last” edge in ∂1 that intersects the X-axis at (xlast,0).
In other words, if an edge e1,j in ∂1 intersects the X-axis at (xj ,0), then xlast > xj . In Fig. 5, the edge e1,last is also
shown. Clearly, there are at most L1 possibilities for the location of edge e1,last. Also, the number of choices for ∂1
starting from e1,last is less than 4L1 .

Now, the total area of squares in π1 is at least L1
8

r2
n

Δ2 ≥ L1
8

r2
n

25 since Δ ≤ 5. Given ∂1, with probability at least L1
8 β0r

2
n

a particular node is present in π1 where β0 = 1
25 infx∈[0,1]2 f (x) > 0 is as in (3). Therefore with probability at most(

1 − 1

8
β0L1r

2
n

)n

≤ e−β0L1nr2
n/8

none of the n nodes are present in π1.
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Fig. 5. The occupied cluster Ci and the set of vacant squares π1 (marked by the symbol Π ) are shown for the square Si that is denoted by the dark
square.

If Ci contains k squares, then the number of edges L1 in ∂1 satisfies
√

k
4 ≤ L1 ≤ 4k. The upper bound is clear. To

see why the lower bound is true, suppose that ∂1 has less than
√

k
4 edges. It is then necessary that ∂1 is contained in

the
√

k
2

rn
Δ

×
√

k
2

rn
Δ

square Spk with the same centre as Si . The square Spk contains at most k
4 squares from {Sj }j . This

is a contradiction since the path ∂1 contains Ci in its interior and Ci contains k squares. Thus for k ≥ 1 we have from
the above discussion that

P
({#Ci = k} ∩ {Xi �= 0})
≤

∑
√

k/4≤l≤4k

e−lβ0nr2
n/8l4l

≤ 4k
∑

√
k/4≤l≤4k

(
4e−β0nr2

n/8)l

≤ ke−θ0nr2
n

√
k (7)

for a fixed positive constant θ0 <
β0
40 and all n ≥ N0, where N0 is a constant that does not depend on k. Here we use

the fact that nr2
n −→ ∞ and hence that 4e−β0nr2

n/8 < e−5θ0nr2
n for some constant θ0 > 0 and for all sufficiently large n.

Letting N(A) denote the number of nodes in the set A, we therefore have that

EXi = E

∑
C0

∑
Sj ∈C0

N(Sj )1(Ci = C0)1(Xi �= 0)

= I1 + I2,

where the summation in the first line is over all clusters C0 that contain the square Si and are contained in Sin
i . In the

above equation,

I1 = E

∑
C0

∑
Sj ∈C0

N(Sj )1(Ci = C0)1
(
N(C0) ≥ 2ekδ0nr2

n

)
1(Xi �= 0),

I2 = EXi − I1 and δ0 = 1
16 supx∈S f (x).

To evaluate I1 and I2, we need a couple of preliminary estimates. For a fixed C0 containing k squares, we estimate
P(N(C0) ≥ 2ekδ0nr2

n) first. Indeed since a particular node is present in C0 with probability at most qk = kδ0r
2
n , we
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have that

P
(
N(C0) ≥ 2enqk

) ≤
∑

2enqk≤j≤n

(
n

j

)
q

j
k

≤
∑

2enqk≤j≤n

(
ne

j

)j

q
j
k

≤
∑

2enqk≤j≤n

(
ne

2enqk

)j

q
j
k

≤
∑

j≥2enqk

(
1

2

)j

≤ e−2β2knr2
n (8)

for some positive constant β2 independent of k, i and the choice of C0. In the third inequality above, we have used the
estimate

(
n
k

) ≤ ( ne
k

)k . Also, the expected number of nodes in any square Si is bounded above by

sup
j

EN(Sj ) = n sup
j

∫
Sj

f (x)dx ≤ n sup
x∈[0,1]2

f (x)
r2
n

Δ2
≤ D1nr2

n (9)

for some positive constant D1 since supx∈[0,1]2 f (x) < ∞ (see (1)) and Δ ≥ 4. Analogously,

sup
j

EN(Sj )
2 ≤ D2

(
nr2

n

)2 (10)

for some positive constant D2.
To evaluate I1, we now use Cauchy–Schwarz inequality to obtain that

I1 ≤
∑
k≥1

∑
#C0=k

∑
Sj ∈C0

EN(Sj )1
(
N(C0) ≥ 2ekδ0nr2

n

)

≤
∑
k≥1

∑
#C0=k

∑
Sj ∈C0

(
EN2(Sj )

)1/2
P
(
N(C0) ≥ 2ekδ0nr2

n

)1/2

≤ D3nr2
n

∑
k≥1

∑
#C0=k

∑
Sj ∈C0

e−kβ2nr2
n

for some positive constant D3 independent of i. In obtaining the final estimate, we use (8) and (10) and the notation∑
#C0=k refers to the sum over all clusters C0 containing k squares of which one of them is Si . Since the number of

such clusters is less than 8k , we get

I1 ≤ D3nr2
n

∑
k≥1

k8ke−kβ2nr2
n ≤ D4nr2

ne−β3nr2
n

for some positive constants D4 and β3, independent of i.
To evaluate I2 we write

I2 = E

∑
k≥1

∑
#C0=k

∑
Sj ∈C0

N(Sj )1(Ci = C0)1
(
N(C0) ≤ 2ekδ0nr2

n

)
1(Xi �= 0)

≤ 2eδ0nr2
nE

∑
k≥1

k
∑

#C0=k

∑
Sj ∈C0

1(Ci = C0)1(Xi �= 0)
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= 2eδ0nr2
nE

∑
k≥1

k2
∑

#C0=k

1(Ci = C0)1(Xi �= 0)

= 2eδ0nr2
n

∑
k≥1

k2
P
({#Ci = k} ∩ {Xi �= 0})

≤ 2eδ0nr2
n

∑
k≥1

k3e−θ0nr2
n

√
k ≤ D5nr2

ne−β5nr2
n

for some positive constants D5 and β5 independent of i, where the second inequality follows from the estimate (7).
From the estimates of I1 and I2, we therefore have that

EXi ≤ D6nr2
ne−β6nr2

n (11)

for some positive constants D6 and β6 independent of i.
The number of squares in {Si}i is Δ2r−2

n . By Markov inequality, we therefore have for θ > 0 that

P

(Δ2r−2
n∑

i=1

Xi ≥ ne−θnr2
n

)
≤

∑
i EXi

n
eθnr2

n

≤ (
Δ2r−2

n

)D6nr2
ne−β6nr2

n

n
eθnr2

n ≤ D7e−θ1nr2
n

for some positive constants θ1 and D7, if θ is sufficiently small. Since Fn = {∑i Xi < ne−θnr2
n }, this proves the

lemma. �
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