Size of the giant component in a random geometric graph

Ghurumuruhan Ganesan

Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, New Delhi, 7 S. J. S. Sansanwal Marg, New Delhi 110016, India. E-mail: guru9r@isid.ac.in

Received 16 April 2012; revised 1 June 2012; accepted 5 June 2012

Abstract

In this paper, we study the size of the giant component C_{G} in the random geometric graph $G=G\left(n, r_{n}, f\right)$ of n nodes independently distributed each according to a certain density $f(\cdot)$ in $[0,1]^{2}$ satisfying $\inf _{x \in[0,1]^{2}} f(x)>0$. If $\frac{c_{1}}{n} \leq r_{n}^{2} \leq c_{2} \frac{\log n}{n}$ for some positive constants c_{1}, c_{2} and $n r_{n}^{2} \longrightarrow \infty$ as $n \rightarrow \infty$, we show that the giant component of G contains at least $n-\mathrm{o}(n)$ nodes with probability at least $1-\mathrm{e}^{-\beta n r_{n}^{2}}$ for all n and for some positive constant β. We also obtain estimates on the diameter and number of the non-giant components of G.

Résumé. Dans cet article nous étudions la composante principale C_{G} dans le graphe géométrique aléatoire $G=G\left(n, r_{n}, f\right)$ avec n nœuds indépendants, chacun étant distribué selon une densité $f(\cdot)$ dans $[0,1]^{2}$ telle que $\inf _{x \in[0,1]^{2}} f(x)>0 . \operatorname{Si} \frac{c_{1}}{n} \leq r_{n}^{2} \leq c_{2} \frac{\log n}{n}$ pour des constantes positives c_{1}, c_{2} et $n r_{n}^{2} \longrightarrow \infty$ quand $n \rightarrow \infty$, nous montrons que la composante principale de G contient au moins $n-\mathrm{o}(n)$ nœuds avec probabilité minorée par $1-\mathrm{e}^{-\beta n r_{n}^{2}}$ pour tout n et pour une constante positive β. Nous obtenons aussi des estimations sur les diamètres et sur le nombre des plus petites composantes de G.

MSC: Primary 60D05; secondary 60C05
Keywords: Random geometric graphs; Size of giant component; Number of components

1. Introduction

Consider n nodes independently distributed in $S=[0,1]^{2}$ each according to a certain density $f(\cdot)$ and say two nodes $u=\left(x_{u}, y_{u}\right), v=\left(x_{v}, y_{v}\right) \in \mathbb{R}^{2}$ are connected to each other if the Euclidean distance $d(u, v)$ between them is less than r_{n}. We denote the resulting random geometric graph (RGG) as $G=G\left(n, r_{n}, f\right)$. Throughout the paper we assume the density f on $[0,1]^{2}$ satisfies

$$
\begin{equation*}
0<\inf _{x \in[0,1]^{2}} f(x) \leq \sup _{x \in[0,1]^{2}} f(x)<\infty . \tag{1}
\end{equation*}
$$

Random graphs as described above are important in many applications and properties like emergence of giant component, connectivity and area coverage have been studied before [2,4-6] for a variety of random graphs.

For the case of RGGs, we recollect the pertinent results below for convenience.
Theorem [4,6]. If $r_{n}^{2}=\frac{c_{1}}{n}$ for some constant $c_{1}>0$ sufficiently large and the density $f(\cdot)$ satisfies (1), then:
(a) There exists a constant $\varepsilon=\varepsilon\left(c_{1}\right)>0$ so that
$\mathbb{P}\left(G\right.$ contains a component C_{G} such that $\left.\# C_{G} \geq \varepsilon n\right) \longrightarrow 1$
and

$$
\frac{\# C_{G}}{n} \longrightarrow 2 \varepsilon \text { in probability }
$$

as $n \rightarrow \infty$. If $r_{n}^{2}=c_{2} \frac{\log n}{n}$ for some constant $c_{2}>0$ and the density $f(\cdot)$ satisfies (1), we have:
(b) If c_{2} is sufficiently large, then $\mathbb{P}(G$ is connected $) \longrightarrow 1$ as $n \rightarrow \infty$.
(c) If c_{2} is sufficiently small, then $\liminf _{n} \mathbb{P}(G$ is not connected $)>0$.

Here and henceforth any constant will always be independent of n and $\# C_{G}$ denotes the number of nodes in C_{G}. Part (a) of the above result describes the size of the giant component C_{G} of G. Parts (b) and (c) describe the behaviour of G in the densely connected regime. Indeed when the density f is uniform, parts (b) and (c) are proved in Corollary 3.1 and Corollary 2.1, respectively, of [4]. The proof for non-uniform f satisfying (1) is analogous. Part (a) and related results are discussed in Chapter 11 of [6]. Also, it is known that $\varepsilon\left(c_{1}\right) \longrightarrow \frac{1}{2}$ as $c_{1} \rightarrow \infty$ (see Chapters 9 and 11 of [6]).

Not much is known about the graph for intermediate values of r_{n}. The size of the giant component is not known as a function of r_{n}. Our main contribution in this paper is developing techniques to analyze the structure of giant component in the intermediate range i.e., when $\frac{c_{1}}{n} \leq r_{n}^{2} \leq c_{2} \frac{\log n}{n}$ for sufficiently large positive constants c_{1}, c_{2} and obtain estimates on the size and diameter of non-giant components (Theorem 1). The advantage of our approach is that it can also be used to study related problems in RGGs.

Before we state the main result, we define the diameter of a graph. The diameter of any subgraph H of G is defined as

$$
\operatorname{diam}(H)=\sup _{u, v} d_{H}(u, v)
$$

where $d_{H}(u, v)$ represents the graph distance between the nodes u and v in H and the supremum is taken over all pairs u, v belonging to the vertex set of H. We state the main result of the paper below. Let \mathcal{T}_{G} denote the collection of all components of G. For a fixed $\beta>0$ we define the following events: Let

$$
U_{n}=U_{n}(\beta)=\left\{\# \mathcal{T}_{G} \leq \frac{1}{r_{n}^{2}} \mathrm{e}^{-\beta n r_{n}^{2}}\right\}
$$

denote the event that the number of components of G is less than $\frac{1}{r_{n}^{2}} \mathrm{e}^{-\beta n r_{n}^{2}}$,

$$
V_{n}=V_{n}(\beta)=\left\{\text { there exists } C_{0} \in \mathcal{T}_{G} \text { such that } \# C_{0} \geq n-n \mathrm{e}^{-\beta n r_{n}^{2}}\right\}
$$

denote the event that there exists a (giant) component C_{0} in \mathcal{T}_{G} whose size is at least $n-n \mathrm{e}^{-\beta n r_{n}^{2}}$ and

$$
W_{n}=W_{n}(\beta)=V_{n} \cap\left\{\sup _{C \in \mathcal{T}_{G} \backslash C_{0}} \operatorname{diam}(C) \leq \frac{1}{\beta}\left(\frac{\log n}{n r_{n}^{2}}\right)^{2}\right\}
$$

denote the event that the diameter of every component of G other than the giant component C_{0} is less than $\frac{1}{\beta}\left(\frac{\log n}{n r_{n}^{2}}\right)^{2}$.
Theorem 1. Consider the graph $G=G\left(n, r_{n}, f\right)$, where the density $f(x)$ satisfies (1) and the radius r_{n} satisfies

$$
\begin{equation*}
\frac{c_{1}}{n} \leq r_{n}^{2} \leq \frac{c_{2} \log n}{n} \tag{2}
\end{equation*}
$$

for some fixed positive constants c_{1} and c_{2}. Let U_{n} and W_{n} be events as defined above and fix $\delta>1$. If $n r_{n}^{2} \longrightarrow \infty$ as $n \rightarrow \infty$, there exists a positive constant $\beta=\beta(\delta)$ sufficiently small so that:
(i) $\mathbb{P}\left(U_{n}\right) \geq 1-\mathrm{e}^{-\beta n^{1-1 / \delta}}$ and
(ii) $\mathbb{P}\left(W_{n}\right) \geq 1-\mathrm{e}^{-\beta n r_{n}^{2}}$, for all $n \geq 1$.

The above result essentially says whenever r_{n} is in the intermediate range as in (2), a giant component of G exists with very high probability and moreover it contains nearly all the nodes.

2. Proof of Theorem 1

Divide the unit square S into small $\frac{r_{n}}{\Delta} \times \frac{r_{n}}{\Delta}$ closed squares $\left\{S_{i}\right\}_{i \geq 1}$ and choose $\Delta=\Delta_{n} \in[4,5]$ so that $\frac{\Delta}{r_{n}}$ is an integer. We choose such a Δ so that nodes in adjacent squares can be joined by an edge in G. Define S_{i} to be occupied if it has at least one node and vacant otherwise.

2.1. Proof of (i)

We first count the number of vacant squares in the set $\left\{S_{i}\right\}_{i}$. We then use the fact that for each vacant square S_{j}, the $\frac{8 r_{n}}{\Delta} \times \frac{8 r_{n}}{\Delta}$ square with same centre as S_{j} intersects at most 81 distinct components of G to prove (i). The choice of 8 is not crucial and any integer larger than 2 suffices since we only need to estimate the number of components "associated" with S_{j}. The total number of squares is $t=\left(\frac{\Delta}{r_{n}}\right)^{2}$. To obtain an estimate on the total number of vacant squares, we let $\left\{Z_{i}\right\}_{1 \leq i \leq t}$ be Bernoulli random variables taking values either zero or one. We set $Z_{i}=1$ if and only if the square S_{i} is vacant which happens if and only if none of the n nodes are in S_{i}.

We note that the sum $\sum_{i} Z_{i}$ equals k if and only if there are exactly k vacant squares. Since the random variables $\left\{Z_{i}\right\}_{i}$ are not independent, we cannot evaluate the probability that $\sum_{i} Z_{i}=k$ using standard binomial estimates. We therefore proceed as follows. The number of ways of choosing k squares from a total of t squares is $\binom{t}{k}$. The total area of the k squares is $k \frac{r_{n}^{2}}{\Delta^{2}} \geq \frac{k r_{n}^{2}}{25}$ since $\Delta \leq 5$. All the k squares chosen are empty with probability at most p_{k}^{n}, where

$$
\begin{equation*}
p_{k}=1-k \inf _{i} \int_{S_{i}} f(x) \mathrm{d} x \leq 1-\beta_{0} k r_{n}^{2} \leq \mathrm{e}^{-\beta_{0} k r_{n}^{2}} \tag{3}
\end{equation*}
$$

and $\beta_{0}=\frac{1}{25} \inf _{x \in[0,1]^{2}} f(x)>0$. Thus using the inequality $\binom{n}{k} \leq\left(\frac{n e}{k}\right)^{k}$, we have

$$
\begin{aligned}
\mathbb{P}\left(\sum_{i=1}^{t} Z_{i} \geq k\right) & \leq \sum_{j=k}^{t}\binom{t}{j} p_{j}^{n} \leq \sum_{j=k}^{t}\left(\frac{t \mathrm{e}}{j}\right)^{j} p_{j}^{n} \\
& \leq \sum_{j=k}^{t}\left(\frac{t \mathrm{e}}{j}\right)^{j} \mathrm{e}^{-j \beta_{0} n r_{n}^{2}} \leq \sum_{j=k}^{t}\left(\frac{t \mathrm{e}}{k}\right)^{j} \mathrm{e}^{-j \beta_{0} n r_{n}^{2}} .
\end{aligned}
$$

Setting $k=$ et $\mathrm{e}^{-\theta n r_{n}^{2}}$ for some constant $\theta<\beta_{0}$ to be determined later and letting $\beta_{1}=\beta_{0}-\theta$, we get for all sufficiently large n that

$$
\begin{aligned}
\mathbb{P}\left(\sum_{i=1}^{t} Z_{i} \geq \mathrm{e} t \mathrm{e}^{-\theta n r_{n}^{2}}\right) & \leq \sum_{j=k}^{t} \mathrm{e}^{-j \beta_{1} n r_{n}^{2}} \\
& \leq \frac{\mathrm{e}^{-k \beta_{1} n r_{n}^{2}}}{1-\mathrm{e}^{-\beta_{1} n r_{n}^{2}}} \leq 2 \mathrm{e}^{-k \beta_{1} n r_{n}^{2}} \\
& =2 \exp \left(-\mathrm{e} \mathrm{e}^{-\theta n r_{n}^{2}} \beta_{1} n r_{n}^{2}\right) \\
& =2 \exp \left(-\beta_{1} \mathrm{e} \Delta^{2} n \mathrm{e}^{-\theta n r_{n}^{2}}\right) \\
& \leq 2 \exp \left(-16 \mathrm{e} \beta_{1} n \mathrm{e}^{-\theta n r_{n}^{2}}\right),
\end{aligned}
$$

where we use $t=\Delta^{2} r_{n}^{-2}$ and $\Delta \geq 4$, respectively, in obtaining the last two expressions. We use the fact that $n r_{n}^{2} \longrightarrow$ ∞ to obtain the third inequality. In what follows, the constants $\left\{\beta_{i}\right\}_{i \geq 1}$ are not necessarily same in each occurrence. Let $\delta>1$ be any constant. Since $r_{n}^{2} \leq c_{2} \frac{\log n}{n}$ for some $c_{2}>0$ (see (2)), we choose θ sufficiently small so that

$$
\theta n r_{n}^{2} \leq \theta c_{2} \log n \leq \frac{1}{\delta} \log n
$$

This implies that

$$
\mathbb{P}\left(\sum_{i=1}^{t} Z_{i} \geq \mathrm{e} t \mathrm{e}^{-\theta n r_{n}^{2}}\right) \leq 2 \exp \left(-16 \mathrm{e} \beta_{1} n^{1-1 / \delta}\right) .
$$

Also, for each vacant square S_{j}, the $\frac{8 r_{n}}{\Delta} \times \frac{8 r_{n}}{\Delta}$ square with same centre as S_{j} intersects at most 81 distinct components of G. Since $t=\frac{\Delta^{2}}{r_{n}^{2}} \leq \frac{25}{r_{n}^{2}}$, we get from the above equation that

$$
\mathbb{P}\left(\# \mathcal{T}_{G} \geq 2025 \mathrm{e} r_{n}^{-2} \mathrm{e}^{-\theta n r_{n}^{2}}\right) \leq 2 \exp \left(-16 \mathrm{e} \beta_{1} n^{1-1 / \delta}\right)
$$

and (i) follows.
The rest of the proof is devoted to establishing (ii). The idea is to tile S horizontally and vertically into rectangles and show that each rectangle contains a crossing of edges in the longer direction with high probability. We then join together these crossings to form a "backbone" and show that it forms a part of the giant component. Throughout, we define $K_{n}=\frac{\log n}{n r_{n}^{2}}$ and allow K_{n} to be an integer. (Later, we show that the tiling is (slightly) modified if K_{n} is not an integer without any change in the argument.)

From (2), we have that $K_{n} \geq \frac{1}{c_{2}}$. For positive integers m_{1} and m_{2}, let R be any $\frac{m_{2} r_{n}}{\Delta} \times \frac{m_{1} K_{n} r_{n}}{\Delta}$ rectangle contained in S which contains exactly $m_{1} m_{2} K_{n}$ of the squares from $\left\{S_{i}\right\}_{i}$. We define a left-right crossing in R to be any set of distinct squares $L=\left(S_{j_{1}}, \ldots, S_{j_{l}}\right)$ such that:
(a) For every i, the squares $S_{j_{i}}$ and $S_{j_{i+1}}$ share an edge.
(b) $S_{j_{1}}$ intersects the left face of R and $S_{j_{l}}$ intersects the right face.

If every square in L is occupied, we say that L is an occupied left-right crossing. We define analogously occupied top-bottom and vacant crossings of R. The only difference in the definition of vacant crossings is that "edge" in condition (a) above is replaced by "corner". Figure 1 illustrates an occupied left-right crossing in a $\frac{m_{2} r_{n}}{\Delta} \times \frac{m_{1} K_{n} r_{n}}{\Delta}$ rectangle R. The nodes in the rectangle are illustrated as dark dots and the sequence of grey squares form an occupied left-right crossing in R. We need the following estimate on the probability of occurrence of an occupied left-right crossing in R.

Fig. 1. Occupied left-right crossing in the rectangle R for some $\Delta \geq 4$.

Fig. 2. Vacant top-bottom crossing of a 4×9 rectangle in \mathbb{Z}^{2} from the site x. Circled sites are occupied.

Lemma 2. For $n \geq N_{0}$ (independent of the choices of m_{1} and m_{2}), the event that an occupied left-right crossing occurs in R has probability at least

$$
\begin{equation*}
1-\frac{m_{2}}{n^{m_{1} \delta_{1}}} \tag{4}
\end{equation*}
$$

for some constant $\delta_{1}>0$ (independent of the choices of m_{1} and m_{2}).
We use the above estimate to construct a "backbone" of G and thus prove (ii). Before we do so, we prove Lemma 2. The proof is independent of the rest of the proof of Theorem 1.

Proof of Lemma 2. To prove (4), we identify the centre of each square S_{i} contained in R with a vertex in \mathbb{Z}^{2} in the natural way. Thus the rectangle R has an equivalent rectangle \tilde{R} consisting of sites in \mathbb{Z}^{2}. Say that a site is occupied if the corresponding square S_{i} is occupied and vacant otherwise. Analogous to crossings in R, define occupied and vacant crossings in \tilde{R}.

We now use the fact that either a left-right occupied crossing or a top-bottom vacant crossing must always occur in \tilde{R} but not both (see e.g., [1] or [3]). To evaluate the probability of a vacant top-bottom crossing, we fix a point x in the top face of \tilde{R} and consider a vacant crossing of length k starting from x (see Fig. 2 for illustration). The area enclosed by the corresponding vacant top-bottom crossing Π_{1} in $R \subset \mathbb{R}^{2}$ is $\frac{k r_{n}^{2}}{\Delta^{2}} \geq \frac{k r_{n}^{2}}{25}$, since $\Delta \leq 5$. The probability that a particular node is present in Π_{1} is (see (3))

$$
\int_{\Pi_{1}} f(x) \mathrm{d} x \geq k \beta_{0} r_{n}^{2},
$$

where $\beta_{0}=\frac{1}{25} \inf _{x \in[0,1]^{2}} f(x)>0$. Therefore the probability that Π_{1} is vacant is less than

$$
\left(1-k \beta_{0} r_{n}^{2}\right)^{n} \leq \mathrm{e}^{-k n \beta_{0} r_{n}^{2}}
$$

Since the number of vacant top-bottom crossings of length k starting from x is less than 8^{k} (at each step no more than eight choices are possible), the probability that there exists a vacant top-bottom crossing of k squares starting from the square S_{x} with centre x and contained in R is bounded above by $8^{k} \mathrm{e}^{-k n \beta_{0} r_{n}^{2}}$. Any top-bottom crossing starting from S_{x} must necessarily contain at least $m_{1} K_{n}$ and no more than $m_{1} m_{2} K_{n}$ squares. Therefore the probability that there exists a vacant top-bottom crossing starting from S_{x} and contained in R is bounded above by

$$
\sum_{k=m_{1} K_{n}}^{m_{1} m_{2} K_{n}} 8^{k} \mathrm{e}^{-k \beta_{0} n r_{n}^{2}} \leq\left(\mathrm{e}^{-\beta_{1} n r_{n}^{2}}\right)^{m_{1} K_{n}}
$$

for a fixed constant $0<\beta_{1}<\beta_{0}$ and all $n \geq N_{0}$, for some constant N_{0} independent of the choices of m_{1} and m_{2}. In the above, we use the fact that $n r_{n}^{2} \longrightarrow \infty$ and therefore that $8 \mathrm{e}^{-\beta_{0} n r_{n}^{2}}<\mathrm{e}^{-\beta_{1} n r_{n}^{2}}$ for all n sufficiently large. Since

Fig. 3. Construction of the backbone. (a) The event E_{n} in the unit square. Each horizontal wavy line is an occupied left-right crossing of $\frac{r_{n}}{\Delta} \times \frac{r_{n}}{\Delta}$ squares as in Fig. 1. (b) Start horizontal tiling from below. The two topmost $1 \times \frac{M K_{n} r_{n}}{\Delta}$ rectangles in the tiling overlap. Perform a vertical tiling analogously.
there are m_{2} possibilities for S_{x}, the probability that there exists a vacant top-bottom crossing of R is bounded above by

$$
\begin{aligned}
m_{2}\left(\mathrm{e}^{-\beta_{1} n r_{n}^{2}}\right)^{m_{1} K_{n}} & =m_{2} \mathrm{e}^{-\beta_{1} m_{1} \log n} \\
& =m_{2}\left(\frac{1}{n^{\beta_{1}}}\right)^{m_{1}}
\end{aligned}
$$

since $K_{n}=\frac{\log n}{n r_{n}^{2}}$.

2.2. Proof of (ii)

Tile the square S horizontally into a set of rectangles \mathcal{R}_{H} each of size $1 \times \frac{M r_{n} K_{n}}{\Delta}$ and also vertically into rectangles each of size $\frac{M r_{n} K_{n}}{\Delta} \times 1$ for some fixed integer constant $M \geq 1$ to be determined later. The argument below is for a perfect tiling as in Fig. 3(a). Otherwise we perform an analogous argument with tiling as in Fig. 3(b). Let R be a fixed $1 \times \frac{M K_{n} r_{n}}{\Delta}$ rectangle in the tiling \mathcal{R}_{H} and let $\delta>1$ be a fixed constant. From (4), we know that R contains an occupied left-right crossing with probability at least

$$
1-\frac{\Delta}{r_{n}} \frac{1}{n^{M \delta_{1}}} \geq 1-\frac{\Delta}{\sqrt{c_{1}}} \frac{\sqrt{n}}{n^{M \delta_{1}}} \geq 1-\frac{1}{n^{\delta+2}}
$$

if M is sufficiently large. Fix such an M. The first inequality above is because $r_{n}^{2} \geq \frac{c_{1}}{n}$ for some constant c_{1} (see (2)). Let E_{n}^{H} denote the event that every rectangle in \mathcal{R}_{H} contains an occupied left-right crossing in G satisfying (a)-(b) described above. The number of rectangles in \mathcal{R}_{H} is less than

$$
\frac{\Delta}{M r_{n} K_{n}} \leq \frac{\Delta}{M r_{n}} \frac{1}{c_{2}} \leq \frac{\Delta}{M c_{2}} \frac{\sqrt{n}}{\sqrt{c_{1}}} \leq D_{1} \sqrt{n}
$$

for some constant $D_{1}>0$. In evaluating the above we again use (2). The first inequality is because $K_{n}=\frac{\log n}{n r_{n}^{2}} \geq \frac{1}{c_{2}}$ by our choice of r_{n} in (2) and the second inequality follows because $r_{n}^{2} \geq \frac{c_{1}}{n}$. It follows that

$$
\mathbb{P}\left(E_{n}^{H}\right) \geq 1-\frac{D_{1} \sqrt{n}}{n^{\delta+2}} \geq 1-\frac{1}{n^{\delta+1}}
$$

for all n sufficiently large. Following an analogous analysis for the vertically tiled rectangles described in the first paragraph of the proof and defining an analogous event E_{n}^{V} with occupied top-bottom crossings, we have that $\mathbb{P}\left(E_{n}^{V}\right) \geq 1-\frac{1}{n^{\delta+1}}$. Thus if $E_{n}=E_{n}^{H} \cap E_{n}^{V}$, we have that

$$
\begin{equation*}
\mathbb{P}\left(E_{n}\right) \geq 1-\frac{2}{n^{\delta+1}} \tag{5}
\end{equation*}
$$

In Fig. 3(a), we depict the occurrence of the event E_{n}. We see that the event E_{n} results in a connected set of $\frac{r_{n}}{\Delta} \times \frac{r_{n}}{\Delta}$ squares $\mathcal{B} \subseteq\left\{S_{i}\right\}_{i}$ forming a "backbone" of crossings in S. Let C_{0} denote the component of G containing nodes in \mathcal{B}.

In the above, we have assumed that $K_{n}=\frac{\log n}{n r_{n}^{2}}$ is an integer. If not, we set $K_{n}=\left\lceil\frac{\log n}{n r_{n}^{2}}\right\rceil$ and starting from the base of the square S, we perform an analogous horizontal tiling as above. The only difference is that the two topmost rectangles could overlap as seen in Fig. 3(b). A similar situation occurs in the vertical tiling. Following an analogous analysis as above, we obtain (5) and a corresponding backbone. The rest of the argument below remains unchanged.

We note that the tiling of S into vertical and horizontal rectangles induces a tiling of S into $\frac{M r_{n} K_{n}}{\Delta} \times \frac{M r_{n} K_{n}}{\Delta}$ size squares $\left\{S_{i}^{\prime}\right\}_{i}$. If the event E_{n} occurs, then the resulting backbone \mathcal{B} (and hence the component C_{0}) intersects each square S_{i}^{\prime} "vertically" and "horizontally" as shown in Fig. 3(a). Therefore, if there exists a connected component C of G distinct from C_{0}, it must necessarily be contained in a $\frac{2 M K_{n}}{\Delta} \times \frac{2 M K_{n}}{\Delta}$ square with centre at some $\frac{r_{n}}{\Delta} \times \frac{r_{n}}{\Delta}$ square S_{i}. In Fig. 4, the square $A_{1} A_{2} A_{3} A_{4}$ of Fig. 3(a) is magnified and a component C distinct from C_{0} is shown. The centre of the hatched $\frac{r_{n}}{\Delta} \times \frac{r_{n}}{\Delta}$ square is also the centre of $A_{1} A_{2} A_{3} A_{4}$.

Clearly in such a component C, the minimum number of edges traversed in going from any node u to any other node v is at most $\left(\frac{2 M K_{n}}{\Delta}\right)^{2}<\left(2 M K_{n}\right)^{2}$ and therefore $\operatorname{diam}(C)<\left(2 M K_{n}\right)^{2}$. To summarize, so far we have proved that if event E_{n} occurs, then a backbone \mathcal{B} and hence the component C_{0} containing all the nodes in squares comprising the backbone and possibly other nodes exist. Moreover, any component of G distinct from C_{0} has diameter less than $\left(2 M K_{n}\right)^{2}$. Recall that \mathcal{T}_{G} is the set of all components of G and for $\theta>0$ let

$$
F_{n}=F_{n}(\theta)=\left\{\sum_{C \in \mathcal{T}_{G}: \operatorname{diam}(C)<\left(2 M K_{n}\right)^{2}} \# C<n \mathrm{e}^{-\theta n r_{n}^{2}}\right\}
$$

denote the event that the sum of sizes of components whose diameter does not exceed $\left(2 M K_{n}\right)^{2}$ is less than $n \mathrm{e}^{-\theta n r_{n}^{2}}$. We have the following estimate on probability of occurrence of the event F_{n}.

Fig. 4. The square $A_{1} A_{2} A_{3} A_{4}$ in Fig. 3(a) is magnified to show a component not attached to the backbone.

Lemma 3. We have

$$
\begin{equation*}
\mathbb{P}\left(F_{n}\right) \geq 1-\mathrm{e}^{-\theta_{1} n r_{n}^{2}} \tag{6}
\end{equation*}
$$

for some positive constants θ and θ_{1}.
Before we prove the above result, we complete the proof of (ii). Whenever $E_{n} \cap F_{n}$ occurs, the component C_{0} contains at least $n-n \mathrm{e}^{-\theta n r_{n}^{2}}$ nodes and is therefore the giant component. Also, the diameter of any non-giant component is less than $\left(2 M K_{n}\right)^{2}$. Choosing $\theta_{1}>0$ smaller if necessary, we have from (5) and (6) that the event $E_{n} \cap F_{n}$ occurs with probability

$$
\mathbb{P}\left(E_{n} \cap F_{n}\right) \geq 1-\mathrm{e}^{-\theta_{1} n r_{n}^{2}}-\frac{2}{n^{\delta+1}} \geq 1-2 \mathrm{e}^{-\theta_{1} n r_{n}^{2}}
$$

for all n sufficiently large. In the above estimate, we have used the fact (2) that $n r_{n}^{2} \leq c_{2} \log n$ for some positive constant c_{2}. This proves (ii) and hence Theorem 1. The proof of Lemma 3 is independent of the proof of Theorem 1 and is provided below.

Proof of Lemma 3. Say that a set of squares $\mathcal{C} \subseteq\left\{S_{i}\right\}_{i}$ is a cluster if they form a connected set in \mathbb{R}^{2}. We say that the cluster \mathcal{C} is occupied if every square in the cluster is occupied.

Fix i and consider the square S_{i}. If S_{i} is occupied, denote \mathcal{C}_{i} to be the maximal occupied cluster containing S_{i}. Set X_{i} to be the number of nodes in \mathcal{C}_{i} if \mathcal{C}_{i} is contained in the $2\left(2 M K_{n}\right)^{2} r_{n} \times 2\left(2 M K_{n}\right)^{2} r_{n}$ square $S_{i}^{\text {in }}$ with same centre as S_{i}. Otherwise set X_{i} to be zero. Thus, $\sum_{i} X_{i}$ is an upper bound on the sum of size of components whose diameter is less than $2\left(2 M K_{n}\right)^{2}$. In the beginning of the proof of (ii), we recall that to obtain the estimate $\left(2 M K_{n}\right)^{2}$ on the diameter of a component not attached to the backbone, we had considered a $2 M K_{n} \times 2 M K_{n}$ square appropriately centred (like $A_{1} A_{2} A_{3} A_{4}$ in Fig. 4). In this subsection, however, we are not given any information regarding the backbone. Therefore, to obtain a bound on the size of a component whose diameter is less than $\left(2 M K_{n}\right)^{2}$ the only information we have is that the component is enclosed in a (slightly bigger) $2\left(2 M K_{n}\right)^{2} \times 2\left(2 M K_{n}\right)^{2}$ square.

We first estimate $\mathbb{P}\left(\left\{\# \mathcal{C}_{i}=k\right\} \cap\left\{X_{i} \neq 0\right\}\right)$ for $k \geq 1$. Suppose that $X_{i} \neq 0$ and therefore that the cluster \mathcal{C}_{i} is contained in the square $S_{i}^{i n}$. Our aim now is to obtain a sufficiently large number of vacant squares "attached to" \mathcal{C}_{i}. Consider \mathcal{C}_{i} as a set in \mathbb{R}^{2} and let $\partial_{1}, \ldots, \partial_{T}$ be its disjoint boundaries. Each ∂_{i} is a circuit of edges ($e_{i, 1}, \ldots, e_{i, L_{i}}$) (not necessarily self-avoiding) such that $e_{i, 1}$ and $e_{i, L_{i}}$ touch each other. Since \mathcal{C}_{i} is connected, one of the boundaries, say ∂_{1}, contains all squares of \mathcal{C}_{i} and all the other boundaries in its interior. Also, any square S_{j} that has an edge $e_{1, j} \in \partial_{1}$ and not contained in \mathcal{C}_{i} is necessarily vacant.

Let π_{1} denote the set of distinct vacant squares that contain some edge in ∂_{1}. The path ∂_{1} contains $L_{1} \geq 2$ edges of which at least $\frac{L_{1}}{2}$ of them have an endvertex in the interior of the unit square S. (Here we use the fact that the cluster \mathcal{C}_{i} is contained in $S_{i}^{\text {in }}$. If we did not have such a bounding box for the cluster \mathcal{C}_{i}, the above statement will not hold; e.g. consider the event that each square in $\left\{S_{k}\right\}_{k}$ contains at least one node.) From the discussion in the previous paragraph, each such "interior" edge has a vacant square "attached" to it. Since each vacant square is counted at most four times (once for each of its four edges), this implies that $\# \pi_{1} \geq \frac{L_{1}}{8}$. In Fig. 5, the dark grey square is S_{i} and the grey squares form \mathcal{C}_{i}. The set of vacant squares π_{1} is shown by the squares marked Π and the curve of thick lines represents ∂_{1}.

To compute the probability that such a vacant set of squares occurs, we set the centre of S_{i} to be the origin and draw X - and Y-axes parallel to the sides of S_{i}. Let $e_{1, \text { last }}$ be the "last" edge in ∂_{1} that intersects the X-axis at ($x_{\text {last }}, 0$). In other words, if an edge $e_{1, j}$ in ∂_{1} intersects the X-axis at ($x_{j}, 0$), then $x_{\text {last }}>x_{j}$. In Fig. 5, the edge $e_{1, \text { last }}$ is also shown. Clearly, there are at most L_{1} possibilities for the location of edge $e_{1, \text { last }}$. Also, the number of choices for ∂_{1} starting from $e_{1, \text { last }}$ is less than $4^{L_{1}}$.

Now, the total area of squares in π_{1} is at least $\frac{L_{1}}{8} \frac{r_{n}^{2}}{\Delta^{2}} \geq \frac{L_{1}}{8} \frac{r_{n}^{2}}{25}$ since $\Delta \leq 5$. Given ∂_{1}, with probability at least $\frac{L_{1}}{8} \beta_{0} r_{n}^{2}$ a particular node is present in π_{1} where $\beta_{0}=\frac{1}{25} \inf _{x \in[0,1]^{2}} f(x)>0$ is as in (3). Therefore with probability at most

$$
\left(1-\frac{1}{8} \beta_{0} L_{1} r_{n}^{2}\right)^{n} \leq \mathrm{e}^{-\beta_{0} L_{1} n r_{n}^{2} / 8}
$$

none of the n nodes are present in π_{1}.

Fig. 5. The occupied cluster \mathcal{C}_{i} and the set of vacant squares π_{1} (marked by the symbol Π) are shown for the square S_{i} that is denoted by the dark square.

If \mathcal{C}_{i} contains k squares, then the number of edges L_{1} in ∂_{1} satisfies $\frac{\sqrt{k}}{4} \leq L_{1} \leq 4 k$. The upper bound is clear. To see why the lower bound is true, suppose that ∂_{1} has less than $\frac{\sqrt{k}}{4}$ edges. It is then necessary that ∂_{1} is contained in the $\frac{\sqrt{k}}{2} \frac{r_{n}}{\Delta} \times \frac{\sqrt{k}}{2} \frac{r_{n}}{\Delta}$ square $S_{p k}$ with the same centre as S_{i}. The square $S_{p k}$ contains at most $\frac{k}{4}$ squares from $\left\{S_{j}\right\}_{j}$. This is a contradiction since the path ∂_{1} contains \mathcal{C}_{i} in its interior and \mathcal{C}_{i} contains k squares. Thus for $k \geq 1$ we have from the above discussion that

$$
\begin{align*}
& \mathbb{P}\left(\left\{\# \mathcal{C}_{i}=k\right\} \cap\left\{X_{i} \neq 0\right\}\right) \\
& \quad \leq \sum_{\sqrt{k} / 4 \leq l \leq 4 k} \mathrm{e}^{-l \beta_{0} n r_{n}^{2} / 8} l 4^{l} \\
& \quad \leq 4 k \sum_{\sqrt{k} / 4 \leq l \leq 4 k}\left(4 \mathrm{e}^{-\beta_{0} n r_{n}^{2} / 8}\right)^{l} \\
& \quad \leq k \mathrm{e}^{-\theta_{0} n r_{n}^{2} \sqrt{k}} \tag{7}
\end{align*}
$$

for a fixed positive constant $\theta_{0}<\frac{\beta_{0}}{40}$ and all $n \geq N_{0}$, where N_{0} is a constant that does not depend on k. Here we use the fact that $n r_{n}^{2} \longrightarrow \infty$ and hence that $4 \mathrm{e}^{-\beta_{0} n r_{n}^{2} / 8}<\mathrm{e}^{-5 \theta_{0} n r_{n}^{2}}$ for some constant $\theta_{0}>0$ and for all sufficiently large n. Letting $N(A)$ denote the number of nodes in the set A, we therefore have that

$$
\begin{aligned}
\mathbb{E} X_{i} & =\mathbb{E} \sum_{\mathcal{C}_{0}} \sum_{S_{j} \in \mathcal{C}_{0}} N\left(S_{j}\right) \mathbf{1}\left(\mathcal{C}_{i}=\mathcal{C}_{0}\right) \mathbf{1}\left(X_{i} \neq 0\right) \\
& =I_{1}+I_{2}
\end{aligned}
$$

where the summation in the first line is over all clusters \mathcal{C}_{0} that contain the square S_{i} and are contained in $S_{i}^{i n}$. In the above equation,

$$
I_{1}=\mathbb{E} \sum_{\mathcal{C}_{0}} \sum_{S_{j} \in \mathcal{C}_{0}} N\left(S_{j}\right) \mathbf{1}\left(\mathcal{C}_{i}=\mathcal{C}_{0}\right) \mathbf{1}\left(N\left(\mathcal{C}_{0}\right) \geq 2 \mathrm{e} k \delta_{0} n r_{n}^{2}\right) \mathbf{1}\left(X_{i} \neq 0\right),
$$

$I_{2}=\mathbb{E} X_{i}-I_{1}$ and $\delta_{0}=\frac{1}{16} \sup _{x \in S} f(x)$.
To evaluate I_{1} and I_{2}, we need a couple of preliminary estimates. For a fixed \mathcal{C}_{0} containing k squares, we estimate $\mathbb{P}\left(N\left(\mathcal{C}_{0}\right) \geq 2 \mathrm{e} k \delta_{0} n r_{n}^{2}\right)$ first. Indeed since a particular node is present in \mathcal{C}_{0} with probability at most $q_{k}=k \delta_{0} r_{n}^{2}$, we
have that

$$
\begin{align*}
\mathbb{P}\left(N\left(\mathcal{C}_{0}\right) \geq 2 \mathrm{e} n q_{k}\right) & \leq \sum_{2 \mathrm{e} n q_{k} \leq j \leq n}\binom{n}{j} q_{k}^{j} \\
& \leq \sum_{2 \mathrm{e} n q_{k} \leq j \leq n}\left(\frac{n \mathrm{e}}{j}\right)^{j} q_{k}^{j} \\
& \leq \sum_{2 \mathrm{e} n q_{k} \leq j \leq n}\left(\frac{n \mathrm{e}}{2 \mathrm{e} n q_{k}}\right)^{j} q_{k}^{j} \\
& \leq \sum_{j \geq 2 \mathrm{e} n q_{k}}\left(\frac{1}{2}\right)^{j} \\
& \leq \mathrm{e}^{-2 \beta_{2} k n r_{n}^{2}} \tag{8}
\end{align*}
$$

for some positive constant β_{2} independent of k, i and the choice of \mathcal{C}_{0}. In the third inequality above, we have used the estimate $\binom{n}{k} \leq\left(\frac{n \mathrm{e}}{k}\right)^{k}$. Also, the expected number of nodes in any square S_{i} is bounded above by

$$
\begin{equation*}
\sup _{j} \mathbb{E} N\left(S_{j}\right)=n \sup _{j} \int_{S_{j}} f(x) \mathrm{d} x \leq n \sup _{x \in[0,1]^{2}} f(x) \frac{r_{n}^{2}}{\Delta^{2}} \leq D_{1} n r_{n}^{2} \tag{9}
\end{equation*}
$$

for some positive constant D_{1} since $\sup _{x \in[0,1]^{2}} f(x)<\infty$ (see (1)) and $\Delta \geq 4$. Analogously,

$$
\begin{equation*}
\sup _{j} \mathbb{E} N\left(S_{j}\right)^{2} \leq D_{2}\left(n r_{n}^{2}\right)^{2} \tag{10}
\end{equation*}
$$

for some positive constant D_{2}.
To evaluate I_{1}, we now use Cauchy-Schwarz inequality to obtain that

$$
\begin{aligned}
I_{1} & \leq \sum_{k \geq 1} \sum_{\# \mathcal{C}_{0}=k} \sum_{S_{j} \in \mathcal{C}_{0}} \mathbb{E} N\left(S_{j}\right) \mathbf{1}\left(N\left(\mathcal{C}_{0}\right) \geq 2 \mathrm{e} k \delta_{0} n r_{n}^{2}\right) \\
& \leq \sum_{k \geq 1} \sum_{\# \mathcal{C}_{0}=k} \sum_{S_{j} \in \mathcal{C}_{0}}\left(\mathbb{E} N^{2}\left(S_{j}\right)\right)^{1 / 2} \mathbb{P}\left(N\left(\mathcal{C}_{0}\right) \geq 2 \mathrm{e} k \delta_{0} n r_{n}^{2}\right)^{1 / 2} \\
& \leq D_{3} n r_{n}^{2} \sum_{k \geq 1} \sum_{\# \mathcal{C}_{0}=k} \sum_{S_{j} \in \mathcal{C}_{0}} \mathrm{e}^{-k \beta_{2} n r_{n}^{2}}
\end{aligned}
$$

for some positive constant D_{3} independent of i. In obtaining the final estimate, we use (8) and (10) and the notation $\sum_{\# \mathcal{C}_{0}=k}$ refers to the sum over all clusters \mathcal{C}_{0} containing k squares of which one of them is S_{i}. Since the number of such clusters is less than 8^{k}, we get

$$
I_{1} \leq D_{3} n r_{n}^{2} \sum_{k \geq 1} k 8^{k} \mathrm{e}^{-k \beta_{2} n r_{n}^{2}} \leq D_{4} n r_{n}^{2} \mathrm{e}^{-\beta_{3} n r_{n}^{2}}
$$

for some positive constants D_{4} and β_{3}, independent of i.
To evaluate I_{2} we write

$$
\begin{aligned}
I_{2} & =\mathbb{E} \sum_{k \geq 1} \sum_{\# \mathcal{C}_{0}=k} \sum_{S_{j} \in \mathcal{C}_{0}} N\left(S_{j}\right) \mathbf{1}\left(\mathcal{C}_{i}=\mathcal{C}_{0}\right) \mathbf{1}\left(N\left(\mathcal{C}_{0}\right) \leq 2 \mathrm{e} k \delta_{0} n r_{n}^{2}\right) \mathbf{1}\left(X_{i} \neq 0\right) \\
& \leq 2 \mathrm{e} \delta_{0} n r_{n}^{2} \mathbb{E} \sum_{k \geq 1} k \sum_{\# \mathcal{C}_{0}=k} \sum_{S_{j} \in \mathcal{C}_{0}} \mathbf{1}\left(\mathcal{C}_{i}=\mathcal{C}_{0}\right) \mathbf{1}\left(X_{i} \neq 0\right)
\end{aligned}
$$

$$
\begin{aligned}
& =2 \mathrm{e} \delta_{0} n r_{n}^{2} \mathbb{E} \sum_{k \geq 1} k^{2} \sum_{\# \mathcal{C}_{0}=k} \mathbf{1}\left(\mathcal{C}_{i}=\mathcal{C}_{0}\right) \mathbf{1}\left(X_{i} \neq 0\right) \\
& =2 \mathrm{e} \delta_{0} n r_{n}^{2} \sum_{k \geq 1} k^{2} \mathbb{P}\left(\left\{\# \mathcal{C}_{i}=k\right\} \cap\left\{X_{i} \neq 0\right\}\right) \\
& \leq 2 \mathrm{e} \delta_{0} n r_{n}^{2} \sum_{k \geq 1} k^{3} \mathrm{e}^{-\theta_{0} n r_{n}^{2} \sqrt{k}} \leq D_{5} n r_{n}^{2} \mathrm{e}^{-\beta_{5} n r_{n}^{2}}
\end{aligned}
$$

for some positive constants D_{5} and β_{5} independent of i, where the second inequality follows from the estimate (7). From the estimates of I_{1} and I_{2}, we therefore have that

$$
\begin{equation*}
\mathbb{E} X_{i} \leq D_{6} n r_{n}^{2} \mathrm{e}^{-\beta_{6} n r_{n}^{2}} \tag{11}
\end{equation*}
$$

for some positive constants D_{6} and β_{6} independent of i.
The number of squares in $\left\{S_{i}\right\}_{i}$ is $\Delta^{2} r_{n}^{-2}$. By Markov inequality, we therefore have for $\theta>0$ that

$$
\begin{aligned}
\mathbb{P}\left(\sum_{i=1}^{\Delta^{2} r_{n}^{-2}} X_{i} \geq n \mathrm{e}^{-\theta n r_{n}^{2}}\right) & \leq \frac{\sum_{i} \mathbb{E} X_{i}}{n} \mathrm{e}^{\theta n r_{n}^{2}} \\
& \leq\left(\Delta^{2} r_{n}^{-2}\right) \frac{D_{6} n r_{n}^{2} \mathrm{e}^{-\beta_{6} n r_{n}^{2}}}{n} \mathrm{e}^{\theta n r_{n}^{2}} \leq D_{7} \mathrm{e}^{-\theta_{1} n r_{n}^{2}}
\end{aligned}
$$

for some positive constants θ_{1} and D_{7}, if θ is sufficiently small. Since $F_{n}=\left\{\sum_{i} X_{i}<n \mathrm{e}^{-\theta n r_{n}^{2}}\right\}$, this proves the lemma.

Acknowledgments

I thank Professor Rahul Roy for a careful reading of the manuscript and a referee for comments which led to an improvement of the paper. The support from a National Board for Higher Mathematics scholarship and a Sandwich Ph.D. programme scholarship is gratefully acknowledged. I thank Kristina Mattson for help with the typesetting.

References

[1] B. Bollobas and O. Riordan. Percolation. Cambridge Univ. Press, New York, 2006. MR2283880
[2] M. Franceschetti, O. Dousse, D. N. C. Tse and P. Thiran. Closing gap in the capacity of wireless networks via percolation theory. IEEE Trans. Inform. Theory 53 (2007) 1009-1018. MR2302808
[3] G. Grimmett. Percolation, 2nd edition. Grundlehren der Mathematischen Wissenschaften 321. Springer, Berlin, 1999. MR1707339
[4] P. Gupta and P. R. Kumar. Critical power for asymptotic connectivity in wireless networks. In Stochastic Analysis, Control, Optimization and Applications 547-566. Systems Control Found. Appl. Birkhäuser, Boston, MA, 1999.
[5] S. Muthukrishnan and G. Pandurangan. The bin-covering technique for thresholding random geometric graph properties. In Proc. SODA 989-998. ACM, New York, 2005. MR2298358
[6] M. Penrose. Random Geometric Graphs. Oxford Studies in Probability 5. Oxford Univ. Press, Oxford, 2003. MR1986198

