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Abstract. First, noncompact Cantor sets along with their defining trees are introduced as a natural generalization of p-adic num-
bers. Secondly we construct a class of jump processes on a noncompact Cantor set from given pairs of eigenvalues and measures.
At the same time, we have concrete expressions of the associated jump kernels and transition densities. Then we construct intrinsic
metrics on noncompact Cantor set to obtain estimates of transition densities and jump kernels under some regularity conditions on
eigenvalues and measures. Finally transient random walks on the defining tree are shown to induce a subclass of jump processes
discussed in the second part.

Résumé. Nous commençons par introduire des ensembles de Cantor non-compacts, ainsi que leurs arbres associés. Ils peuvent
être considerés comme une généralisation naturelle des nombres p-adiques. Nous construisons ensuite une classe de processus
de saut sur un ensemble de Cantor non-compact, à l’aide d’un couple de valeurs propres et de mesures. De plus, nous obtenons
des expressions concrètes pour les noyaux de la chaleurs associés à ces processus de saut et pour les probabilités de transition
correspondantes. Sous certaines hypothèses de régularité sur les valeurs propres et les mesures, nous construisons ensuite des
métriques intrinsèques sur cet ensemble de Cantor non-compact afin d’obtenir des estimations fines sur les noyaux de la chaleur et
les probabilités de transitions. Finalement, nous montrons que les marches aléatoires sur l’arbre définissant l’ensemble de Cantor
non-compact induisent une sous-classe des processus de saut discutés dans la seconde partie de l’article.
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1. Introduction

As is pointed out in the introduction of Albeverio and Karwowski [2], various theories of physics have been con-
structed on the collection of p-adic numbers Qp . Some of them took advantage of the algebraic structure and sym-
metries of Qp and others made use of the hierarchical structure of it. See [9,12,19] for concise reviews and detailed
references.

In this paper, we are going to study the construction and asymptotic behaviors of jump processes on noncompact
Cantor sets, which are generalization of p-adic numbers Qp from the view point of hierarchical structure. Recall that
the p-adic numbers Qp is the collection of “limit points” of the homogeneous tree with degree p + 1 in a particular
order. See Fig. 1 for the case p = 2. We will generalize this respect of Qp and define noncompact Cantor set as the
collection of “limit points” of an ordered tree which is called the defining tree of a noncompact Cantor set. Such
a generalization has been formulated by Albeverio and Karwowski in [2], where a noncompact Cantor set is called
leaves of multibranching trees. Topologically, a noncompact Cantor set turns out to be merely the (ternary) Cantor set
minus one point by Proposition 2.6. This is why we call those “limits points” of an ordered tree noncompact Cantor
set. From physical point of view, we give a description of how stochastic particles are moving around on a limit of a
hierarchical structure.
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Fig. 1. Structures of tree with a vertex x as the root.

There are numeous studies of stochastic processes on totally disconnected state spaces. For example, Evans has
considered Lévy processes on a totally disconnected group in [13]. In this direction, Aldous and Evans have con-
structed Dirichlet forms on general totally disconnected spaces in [5].

As for p-adic numbers Qp , a class of jump processes has been intensively studied by Albeverio, Karwowski and
their coworkers in [1–4,17]. They first considered transition probabilities from balls to balls and then obtained a
continuous time process and associated Dirichlet form as a limit in [1]. Moreover, the eigenfunctions of the associated
self-adjoint operator have been shown to form a kind of Haar’s wavelet basis on Qp . In [17], the construction of
processes in [1] has been extended to cases with inhomogeneous underlying measures on Qp and the asymptotic and
spectral results as in [1] have been obtained for this broadened class in [4]. Furthermore, an exact expression of the
heat kernel associated to a process constructed in [1] has been presented in [3] in relation with trace formula. In [2],
most of the parts of those results have been generalized to a class of jump processes on leaves of multibranching trees,
which we mentioned above.

On the other hand, regular Dirichlet forms on the Cantor set have been constructed as traces of random walks on
trees in [18]. (A regular Dirichlet form naturally corresponds to a Hunt process, which is a jump process in our case.
See [14] for example.) Note that the Martin boundary of a random walk on a tree is (homeomorphic to) the Cantor
set by [10]. By this fact, if f is a real valued function on the Cantor set belonging to a suitable class like bounded
measurable or L1 for example, we have a harmonic function Hf on the tree with given boundary value f on the
Cantor set as

(Hf )(x) =
∫

Σ

G(x, y)

G(φ,y)
f (y)νφ(dy),

where φ is a fixed reference point, Σ is the Cantor set, G is the Green function of the random walk, νφ is the hitting
distribution starting from φ. In [18], a regular Dirichlet form on the Cantor set was constructed as the energy of the
harmonic function Hf associated with the random walk. It was shown that eigenfunctions of the associated self-
adjoint operator formed a kind of Haar’s wavelet on the Cantor set as in the case of p-adic numbers Qp obtained
in [1,2,17]. Moreover, an explicit expression and asymptotic behaviors of associated transition density have been
obtained by introducing an intrinsic metric on the Cantor set. Since a noncompact Cantor set is the Cantor set minus
one point, one may naturally expect to obtain a class of jump processes on a noncompact Cantor set from the processes
constructed above on the Cantor set by ignoring the one point removed from the Cantor set. (See Section 11 for the
exact meaning of “ignoring.”) In fact, we are going to see that this is the case.

Consequently, we have two classes of stochastic processes (Hunt processes and/or regular Dirichlet forms to be
exact) on a noncompact Cantor set. One of them has been constructed by Albeverio and Karwowski in [1] and the other
has induced by random walks on the trees associated with the noncompact Cantor set. These two classes have one
feature in common. Namely, the associated eigenfunctions form a kind of Haar’s wavelet basis. However, one is not
a subset of the other although they have non-empty intersection. In this paper, we introduce a natural class of regular
Dirichlet forms on a noncompact Cantor set which includes both classes. More precisely, let us denote a noncompact
Cantor set by Σ+. We are going to construct a closed form Q on Σ+ from a pair (λ,μ) of nonnegative function λ on
the tree defining Σ+ and a Radon measure μ on Σ+ so that λ and the counterpart of Haar’s wavelet basis associated
with μ give the eigenvalues and the eigenfunctions respectively of the non-negative self-adjoint operator associated
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with the closed form Q. Under a suitable condition, which is easily verified by the pair (λ,μ), the closed form Q is
shown to give a regular Dirichlet form on L2(Σ+,μ) which has the following expression:

Q(u, v) =
∫

Σ+×Σ+
J (ω, τ)

(
u(ω) − u(τ)

)(
v(ω) − v(τ)

)
μ(dω)μ(dτ) + λI (u, v)μ, (1.1)

where J (·, ·) is a nonnegative kernel explicitly determined by (λ,μ) and λI is the infimum of λ. By Theorem 3.2.1 of
[14], the first part of the above expression of Q regarding the integral kernel J (·, ·) corresponds to jumps and the latter
part λI (u, v)μ represents the decay of the total probability Px(Xt ∈ Σ+), where ({Xt }t>0, {Pω}ω∈Σ+) is the Hunt
process associated with the regular Dirichlet form Q on L2(Σ+,μ). If λI = 0, then Q is shown to be conservative in
Theorem 3.7.

Our next interest is the existence and asymptotic behaviors of a transition density p(t,ω, τ), which corresponds to
a fundamental solution in the case of parabolic PDE’s. In brief, p(t,ω, τ) is a transition density of a regular Dirichlet
form Q, i.e. a Hunt process ({Xt }t>0, {Pω}ω∈Σ+) if

(
e−Ltf

)
(ω) = Eω

(
f (Xt )

) =
∫

Σ+
p(t,ω, τ )f (τ)μ(dτ)

for any bounded measurable function f and any ω ∈ Σ+, where L is the nonnegative self-adjoint operator associated
with Q and Eω is the expectation with respect to Pω. Under a mild assumption, we will explicitly construct a transition
density p(t,ω, τ) in terms of λ and μ in Section 4.

To consider asymptotic behaviors of p(t,ω, τ), the first question is to find the best metric, if it ever exists, for the
purpose. Note that there exist plenty of metrics on Σ+ which provide the topology of Σ+ as the Cantor set minus one
point. Among them, we need to search the one which yields a nice estimate of p(t,ω, τ). In Section 5, we actually
construct such an intrinsic metric dλ from λ in an analogous way as in [18]. Roughly, it is defined so that the reciprocal
of λ gives the diameters of balls. Assuming a kind of regularity of the decay of λ and μ, we have the following estimate
of the transition density in terms of dλ in Theorem 6.2: there exists c > 0 such that

p(t,ω, τ) ≤ c min

{
t

μ(B(ω,dλ(ω, τ)))dλ(ω, τ)
,

1

μ(B(ω, t))

}
, (1.2)

for any ω,τ , where B(ω, r) = {τ |dλ(ω, τ) < r}. The right-hand side of (1.2) represents one of typical asymp-
totic behaviors of transition densities for jump processes. See [11] for example. We also have this type of tran-
sition density estimate in the case of the Cantor set in [18]. Note that the first term in the minimum of (1.2) is
realized on {(t,ω, τ )|d(ω, τ) ≥ t}, which is called the off-diagonal part, whereas the second term is realized on
{(t,ω, τ )|d(ω, τ) ≤ t}, which is called the near-diagonal part. For the near-diagonal lower estimate, we will have

c

μ(B(ω, t))
≤ p(t,ω, τ)

if dλ(ω, τ) ≤ εt , where c, ε > 0 are some given constants which are independent of t,ω and τ . The off-diagonal lower
estimate is a little tricky. In general, it holds on certain proportion of the whole space. To be exact, there exist a set
U ⊆ Σ+ × Σ+ and γ > 0 which satisfy

μ
({

τ |(ω, τ ) ∈ U
} ∩ A(ω, r1, r2)

) ≥ γμ
(
A(ω, r1, r2)

)
for any ω and any r2 > r1 > 0, where A(ω, r1, r2) is an annulus defined as B(ω, r2)\B(ω, r1) and

c
t

μ(B(ω,dλ(ω, τ)))dλ(ω, τ)
≤ p(t,ω, τ) (1.3)

for any (ω, τ ) ∈ U if dλ(ω, τ) > εt , where c is a constant depending only on ε > 0. Moreover, this estimate is best
possible in the sense that there exists an example in Section 8 where (1.3) cannot hold on the complement of U for
any ε > 0. This kind of peculiar behavior of the transition density in the off-diagonal part has never been observed
before. It is interesting to know how common such a phenomena is in general.
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Apart from transition densities, we also study different kind of problem on the processes induced by the random
walks on the tree defining the noncompact Cantor set. Recall that originally we have a process on the Cantor set
and make it a process on the noncompact Cantor set by ignoring one point which is removed from the Cantor set.
Intuitively, if the original random walk on the tree hits the removed point with positive probability, we may not just
“ignore” this point. There must be some difference. This intuition is rationalized in Theorem 10.8, where the resulting
process on the noncompact Cantor set is shown to be conservative, i.e. λI = 0 if and only if the hitting probability of
the removed point is 0.

The organization of this paper is as follows. In Section 2, we give the basic notions regarding trees, ordered trees
and the associated noncompact Cantor sets. In Section 3, we construct a closed form (Q, D), where Q is a form and
D is its domain, on a noncompact Cantor set from a pair (λ,μ) and show that (Q, D) is a regular Dirichlet form
under additional assumptions. At the same time, we give an explicit expression for the jump kernel J (·, ·) appearing
in (1.1). We also prove that the Dirichlet forms introduced by Albeverio and Karwowski belong to the collection of
Dirichlet forms (Q, D) given by (λ,μ). Section 4 is devoted to transition densities. As we mentioned above, we obtain
an exact expression of transition densities under a mild assumption. An intrinsic metric for asymptotic estimates of
a transition density is given in Section 5. Using the intrinsic metric, we present asymptotic estimates of a transition
density explained above in Section 6. Section 7 is devoted to proving the asymptotic estimates given in Section 6. In
Section 8, we give various examples in the case of 2-adic numbers Q2. From Section 9, we study the class of Dirichlet
forms induced by random walks on the defining tree. In Section 9, we review the fundamental results on random
walks on trees including the energy, transience, resistances, harmonic functions and the Martin boundary. Then we
show relations between resistances and hitting distributions in Section 10. In Section 11, these relations help us to
show that Dirichlet forms on a noncompact Cantor set induced by random walks on its defining tree are of the form
of (Q, D) given in Section 3. Finally in Section 12, we consider the inverse problem: when is a Dirichlet form (Q, D)

on noncompact Cantor set given in Section 3 derived from a random walk on its defining tree.
In this paper we use the following convention: Let f and g be real valued functions defined on a set A. We write

f (x) � g(x) on A if and only if there exist positive constants c1, c2 such that c1f (x) ≤ g(x) ≤ c2f (x) for any x ∈ A.
Moreover, Bd(x, r) = {y|d(x, y) < r} if (X,d) is a metric space.

2. Ordered trees and noncompact Cantor sets

In this section, we introduce the fundamental notions on an infinite (ordered) tree and associated noncompact Cantor
set, which corresponds to the p-adic numbers as a special case. First we review the basics on an infinite tree and its
boundary which consists of the ends of the tree. The boundary is (homeomorphic to) the Cantor set in general. Later,
to obtain a noncompact Cantor set, we are going to choose an arbitrary point in the boundary and introduce an order
on the tree associated with the chosen point.

Definition 2.1. Let T be a countably infinite set and let A :T × T → {0,1} which satisfies A(x, y) = A(y, x) and
A(x, x) = 0 for any x, y ∈ T . We call the pair (T , A) a (non-directed) graph with the vertices T and the adjacent
matrix A.

(1) Define V (x) = {y|A(x, y) = 1} and call it the neighborhood of x. (T , A) is said to be locally finite if V (x) is
a finite set for any x ∈ T .

(2) For x0, . . . , xn ∈ T , (x0, x1, . . . , xn) is called a path between x0 and xn if A(xi, xi+1) = 1 for any i =
0,1, . . . n − 1. A path (x0, x1, . . . , xn) is called simple if and only if xi 	= xj for any i, j with 0 ≤ i < j ≤ n and
(i, j) 	= (0, n).

(3) (T , A) is called a (non-directed) tree if and only if there exists a unique simple path between x and y for any
x, y ∈ T with x 	= y.

In this paper, (T , A) is always a locally finite tree and the number of neighbors of any vertex is no less than 3.
Namely, we assume the followings troughout this paper.

Assumption 2.2. (T , A) is a tree. 3 ≤ #(V (x)) < +∞ for any x ∈ T , where #(·) is the number of elements of a set.
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Even without the above assumption, most of the results in this paper essentially remain true. However the exact
statements may become more complicated than those given in the present paper.

Next we define structures of a tree with a vertex x as the root. See Fig. 1.

Definition 2.3. Let (T , A) be a tree.

(1) The unique simple path between two vertices x and y is called the geodesic between x and y and denoted by
xy. We write z ∈ xy if xy = (x0, x1, . . . , xn) and z ∈ xi for some i.

(2) For x, y ∈ T , define T x
y = {z|z ∈ T ,y ∈ xz}. We regard T x

y as a tree with an adjacent matrix A|T x
y ×T x

y
.

(3) For any x ∈ T , define πx :T → T by

πx(y) =
{

xn−1 if x 	= y and xy = (x0, x1, . . . , xn−1, xn),
x if x = y.

Also set Sx(y) = V (y)\{πx(y)}.
(4) (x0, x1, . . .) is called an infinite geodesic ray originated from x0 if and only if (x0, . . . , xn) = x0xn for any

n ≥ 0. Two infinite geodesic rays (x0, x1, . . .) and (y0, y1, . . .) are equivalent if and only if there exists k ∈ Z such that
xn+k = yn for sufficiently large n. An equivalent class of infinite geodesic rays is called an end of T . We use Σ to
denote the collection of ends of T . Furthermore, we define T̂ = T ∪ Σ .

(5) Define Σx as the collection of infinite geodesic rays originated from x ∈ T . For any y ∈ T , Σx
y is defined as

the collection of elements of Σx passing through y, namely

Σx
y = {

(x, x1, . . .)|(x, x1, . . .) ∈ Σx,xn = y for some n ≥ 1
}
.

Two infinite geodesic rays (x, x1, . . .), (x, y1, . . .) ∈ Σx are equivalent if and only if (x, x1, . . .) = (x, y1, . . .). Thus,
Σ is naturally identified with Σx .

Next we give a topology of T̂ .

Proposition 2.4. Define Ô = {{x}|x ∈ T } ∪ {T x
y ∪ Σx

y |x, y ∈ T } and O = {⋃O∈U O|U ⊆ Ô}. Then O satisfies the

axiom of open sets and (T̂ , O) is a compact metrizable space. Moreover T is dense in T̂ .

See [22], Setion 9.B, or [21], Section 6.B, for the proof of the above proposition.
In light of the above proposition, T̂ is called the end compactification of T . Σ = T̂ \T is the topological boundary

of T in T̂ . Under Assumption 2.2, Σ is a Cantor set with respect to the relative topology, i.e. it is compact, perfect
and totally disconnected under the topology OΣ = {U ∩ Σ |U ∈ O}.

Next we fix φ∗ ∈ Σ and introduce a partial order ≤ associated with φ∗. In other words, we are going to determine a
natural direction of every (x, y) with A(x, y) = 1 towards φ∗. Note that there exists a unique (x, x(1), x(2), . . .) ∈ Σx

which is identified with φ∗ for any x ∈ T . See Fig. 2 for the special case where (T , A) is the homogeneous tree with
degree 3.

Definition 2.5. Fix φ∗ ∈ Σ .

(1) Define πφ∗ :T → T by πφ∗(x) = x(1), where φ∗ = (x, x(1), . . .) ∈ Σx . We use x−
n to denote (πφ∗)

n(x) for x ∈ T

and n ≥ 0, where (πφ∗)
n is the nth iteration of πφ∗ . For x, y ∈ T , we write y ≤ x if and only if y = x−

n for some n ≥ 0.
The triple (T , A, φ∗) is called an ordered tree.

(2) An infinite geodesic ray (x0, x1, x2, . . .) originated from x0 is called an ascending ray if and only if xi ≤ xi+1
for any i = 0,1, . . . . The collection of the equivalence class of ascending rays is denoted by Σ+, which is called the
noncompact Cantor set associated with an ordered tree (T , A, φ∗). Conversely (T , A, φ∗) is called the defining tree
of the noncompact Cantor set Σ+. Define Σ+

x as the collection of ascending rays originated from x.
(3) Define T +

x = {y|y ≥ x} and S+(x) = T +
x ∩ V (x).

As a figure of speech, an ordered tree (T , A, φ∗) represents a family tree of a species reproducing unisexually. If
each vertex x represents an individual, then S+(x) is the direct descendants, T +

x is the collection of all decendants
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Fig. 2. T (2) , homogeneous tree with degree 3 associated with Q2.

of x, πφ∗(x) is the parent and (x, x−
1 , x−

2 , . . .) is the bloodline, i.e. the list of ancestors with x itself. The order x < y

means that x is an ancestor of y and that y is a descendant of x. The minus sign in x−
m stands for “ancestors” and the

plus sign in Σ+, T +
x and S+(x) stands for “decendants.” Assumption 2.2 means that every individual has a least 2

direct descendants.
Note that a noncompact Cantor set Σ+ depends on a choice of φ∗ ∈ Σ . In [2], (T , A) and Σ+ are called a

multibranching tree and its leaves, respectively. The next proposition is immediate from the definitions. In particular,
we identify noncompact Cantor set Σ+ with Σ\{φ∗}.

Proposition 2.6.

(1) The unique infinite geodesic ray identified with φ∗ originated from x is (x, x−
1 , x−

2 , . . .).

(2) S+(x) = {y|y ∈ V (x), y ≥ x} = V (x)\{πφ∗(x)}. T +
x = T

πφ∗ (x)
x .

(3) Σ+ = Σ\{φ∗}.

Choosing a reference point φ ∈ T , we may introduce an (absolute) degree of a vertex x ∈ T . Fix φ ∈ T . For any
x ∈ T , since both (φ,φ−

1 , . . .) and (x, x−
1 , . . .) represent φ∗, we see that x−

n ∈ {φ−
m |m ≥ 0} for sufficiently large n.

Note that if x−
n = φ−

m , then the value n − m only depends on x.

Definition 2.7. Define the degree |x| of a vertex x ∈ T by |x| = n − m if x−
n = φ−

m . Let Tm = {x|x ∈ T , |x| = m} for
any m ∈ Z.

Note that |x| takes value in Z. For example |φ−
m | = −m for m ≥ 0.

By the analogy using family tree, φ introduces an absolute scale of generations. More precisely, |x| is the generation
of a individual x and Tn is the collection of individuals in the nth generation.

For any ω ∈ Σ+, we may correspond two-sided infinite geodesic ray representing ω and φ∗ in positive and nega-
tive directions respectively. Such a two-sided infinite geodesic ray is unique. More precisely, we have the following
proposition.

Proposition 2.8.

(1) For any ω ∈ Σ+, there exists a unique (xi)i∈Z such that xi ∈ Ti and πφ∗(xi) = xi−1 for any i and (x0, x1, . . .)

is the infinite geodesic ray corresponding to ω. We use [ω]m to denote xm for any m ∈ Z.
(2) For any ω 	= τ ∈ Σ+, there exists unique n ∈ Z such that [ω]m = [τ ]m for any m ≤ n and [ω]n+1 	= [τ ]n+1.

Define ω ∧φ∗ τ = [ω]n and call it the confluent of ω and τ .
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If no confusion may occur, we always use ω ∧ τ in place of ω ∧φ∗ τ throughout this paper.

Example 2.9 (p-adic numbers). Fix an integer p ≥ 2. For m ∈ Z, define

T
(p)
m = {

(ai)i≤m|ai ∈ {0,1, . . . , p − 1}, there exists N ∈ Z such that ai = 0 for any i < N
}

and let T (p) = ⋃
m∈Z

T
(p)
m . Define π :T (p)

m → T
(p)

m−1 by π((ai)i≤m) = (ai)i≤m−1 for (ai)i≤m ∈ T
(p)
m . We may naturally

regard π as a map from T (p) to itself. Define A :T (p) × T (p) → {0,1} by

A(x, y) =
{

1 if π(x) = y or π(y) = x,
0 otherwise.

Then (T (p), A) is a tree and V (x) = {π(x)} ∪ π−1(x) for any x ∈ T (p). Note that #(V (x)) = p + 1 for any x ∈ T (p).
(T (p), A) is called the homogeneous tree with degree p + 1. (In other terminology, (T (p), A) is also called Bethe
lattice with coordination number p + 1.) Now let φm = (αi)i≤m ∈ T

(p)
m , where αi = 0 for all i ≤ m and let φ∗ =

(φ0, φ−1, φ−2, . . .). Consider the ordered tree (T , A, φ∗). We fix φ = φ0 as the reference point. Then φ−
n = φ−n and

the collection of equivalence classes of ascending rays, Σ+, is represented as

{
(αi)i∈Z|αi ∈ {0,1, . . . , p − 1}, there exists N ∈ Z such that αi = 0 for any i < N

}
.

If p is a prime number, then Σ+ is naturally identified with the p-adic numbers Qp which is defined as

Qp =
{∑

i≥N

αip
i
∣∣∣N ∈ Z, αi ∈ {0,1, . . . , p − 1}

}
.

Let x = (αi)i≤m ∈ T (p). Then πφ∗(x) = π(x) and S+(x) = π−1(x), |x| = m and x−
n = (αi)i≤m−n for any n ≥ 0.

Moreover, if ω = (αi)i∈Z ∈ Σ+, then [ω]m = (αi)i≤m. Let np(·) be the p-adic norm defined by np((α)i∈Z) = p−I ,
where I = min{i|i ∈ Z, αi 	= 0}. Then np(ω− τ) = p−|ω∧τ |−1 for any ω 	= τ ∈ Σ+. In particular np(ω) = p−|ω∧0|−1,
where 0 = (. . . ,0,0,0, . . .). The topology of Qp induced by np coincides with the relative topology OΣ+ = {O ∩
Σ+|O ∈ O}.

3. Dirichlet forms on noncompact Cantor set

In this section, we are going to construct a family of Dirichlet forms on Σ+ from a map λ :T → [0,∞) and a Radon
measure μ on Σ+. This class of Dirichlet forms includes those on p-adic numbers (or, more generally, leaves of
multibranching trees) studied in the series of papers, [1] and [2] for example, by Albeverio and Karwowski. See
Definition 3.12 and Proposition 3.13.

Throughout this section, we fix a locally finite non-directed tree (T , A), φ∗ ∈ Σ and φ ∈ T which satisfies As-
sumption 2.2. Let T = (T , A, φ∗). We use π to denote πφ∗ .

Notation.

(1) Let M(Σ+) be the collection of Radon measures on Σ+ which satisfies μ(Σ+
x ) > 0 for any x ∈ T and let

�+(T ) = {λ|λ :T → [0,∞)}.
(2) Let μ be a Borel regular measure on Σ+. We use μ(x) to denote μ(Σ+

x ) for x ∈ T .

First we define a symmetric quadratic form on L2(Σ+,μ) from (λ,μ) ∈ �+(T ) × M(Σ+).
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Definition 3.1. For Γ = (λ,μ) ∈ �+(T ) × M(Σ+), define

DΓ =
{
u

∣∣∣u ∈ L2(Σ+,μ
)
,
∑
x∈T

λ(x)

2μ(x)

∑
y,z∈S+(x)

μ(y)μ(z)
(
(u)y,μ − (u)z,μ

)2
< +∞

}

and

QΓ (u, v) =
∑
x∈T

λ(x) − λI

2μ(x)

∑
y,z∈S+(x)

μ(y)μ(z)
(
(u)y,μ − (u)z,μ

)(
(v)y,μ − (v)z,μ

) + λI (u, v)μ

for any u,v ∈ DΓ , where (u)x,μ = μ(x)−1
∫
Σ+

x
udμ for any x ∈ T , λI = infx∈T λ(x) and (u, v)μ is the inner product

of L2(Σ+,μ).

The symmetric quadratic form (QΓ , DΓ ) is shown to be a closed form in Theorem 3.4. In fact, we may describe
associated eigenfunctions as follows.

Definition 3.2. Let μ ∈ M(Σ+). Set N(x) = #(S+(x)) = #(V (x)) − 1 for any x ∈ T . Define

Ex,μ =
{
f

∣∣∣f =
∑

y∈S+(x)

ayχΣ+
y

where ay ∈ R for any y,

∫
Σ+

x

f dμ = 0

}
,

where χA is the characteristic function of a set A. Let (ϕ
μ
x,1, . . . , ϕ

μ

x,N(x)−1) be a complete orthonormal basis of Ex,μ

with respect to (·, ·)μ. Moreover, we use P
μ
x to denote the orthogonal projection from L2(Σ+,μ) to Ex,μ.

Since (T , A) is locally finite, N(x) is finite. Moreover, N(x) ≥ 2 for any x ∈ T by Assumption 2.2. One can easily
prove the following proposition.

Proposition 3.3. Let μ ∈ M(Σ+). If μ(Σ+) = +∞, then (ϕ
μ
x,k|x ∈ T ,1 ≤ k ≤ N(x) − 1) is a complete orthonor-

mal system of L2(Σ+,μ). If μ(Σ+) < +∞, then, (χΣ+/
√

μ(Σ),ϕ
μ
x,k|x ∈ T ,1 ≤ k ≤ N(x) − 1)) is a complete

orthonormal system of L2(Σ+,μ).

The basis (ϕ
μ
x,k|x ∈ T ,1 ≤ k ≤ N(x)−1) is a counterpart of the Haar’s wavelet on R. Now we show that (QΓ , DΓ )

is closed.

Theorem 3.4. Let Γ = (λ,μ) ∈ �+(T ) × M(Σ+). Then (QΓ , DΓ ) is a closed form on L2(Σ+,μ). Moreover,

DΓ =
{
u

∣∣∣u ∈ L2(Σ+,μ
)
,
∑
x∈T

λ(x)
(
P μ

x u,P μ
x u

)
μ

< +∞
}

and

QΓ (u, v) =
∑
x∈T

(
λ(x) − λI

)(
P μ

x u,P μ
x v

)
μ

+ λI (u, v)μ

for any u,v ∈ D. In particular, if LΓ is the non-negative self-adjoint operator associated with the closed form
(QΓ , DΓ ), then LΓ u = λ(x)u for any u ∈ Ex,μ and any x ∈ T .

If no confusion may occur, we sometimes omit Γ in the notations and use Q and D instead of QΓ and DΓ

respectively.
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Proof. For x ∈ T , define

Qx(u, v) = 1

2μ(x)

∑
y,z∈S+(x)

μ(y)μ(z)
(
(u)y,μ − (u)z,μ

)(
(v)y,μ − (v)z,μ

)
for u,v ∈ L2(Σ+,μ). Then we see that Qx(u, v) = (P

μ
x u,P

μ
x v)μ. This fact immediately imply the desired state-

ments. �

The next question is when (QΓ , DΓ ) is a regular Dirichlet form. This problem is solved by finding a integral kernel
of the closed form (QΓ , DΓ ). To obtain an integral kernel, we assume the following condition (λ1) on λ ∈ �+(T ) in
the rest of this section:

(λ1)
∑∞

m=0 |λ(φ−
m) − λ(φ−

m+1)| < +∞.

Remark. Under the assumption (λ1), λ(φ−
m) converges as m → ∞.

Proposition 3.5. Let (λ,μ) ∈ �+(T ) × M(Σ+). Under (λ1),

1

2

∞∑
m=0

λ(x−
m) − λ(x−

m+1)

μ(x−
m)

≤ 1

μ(x)

∞∑
m=0

∣∣λ(
x−
m

) − λ
(
x−
m+1

)∣∣. (3.1)

More precisely, the infinite sums in the both sides of (3.1) are absolutely convergent and the inequality (3.1) holds.

Proof. Fix x ∈ T . Then∣∣∣∣λ(x−
m) − λ(x−

m+1)

μ(x−
m)

∣∣∣∣ ≤ |λ(x−
m) − λ(x−

m+1)|
μ(x)

for any m ≥ 0. Since there exists M ≥ |x| such that x−
m = φ−

|x|−m for any m ≥ M , (λ1) implies (3.1). �

The left-hand side of (3.1) is actually the integral kernel of (QΓ , DΓ ). We will show that (QΓ , DΓ ) is a regular
Dirichlet form if the integral kernel is non-negative in Theorem 3.7.

Definition 3.6.

(1) Let Γ = (λ,μ) ∈ �+(T ) × M(Σ+) which satisfies (λ1). We use JΓ (x) to denote the value of the infinite sum
in the left-hand side of (3.1). Furthermore, abusing a notation, we define JΓ (ω, τ) = JΓ (ω ∧ τ) for any ω 	= τ ∈ Σ+.

(2) Define Θ+(T ) by

Θ+(T ) = {
Γ |Γ = (λ,μ) ∈ �+(T ) × M

(
Σ+)

, λ satisfies (λ1) and JΓ (x) ≥ 0 for any x ∈ T
}
.

By definition, JΓ (ω, τ) = JΓ (τ,ω). As is the case of D and Q, we use J in place of JΓ if no confusion may occur.

Theorem 3.7. Let Γ = (λ,μ) ∈ Θ+(T ). Then (QΓ , DΓ ) is a regular Dirichlet form on L2(Σ+,μ),

DΓ =
{
u

∣∣∣u ∈ L2(Σ+,μ
)
,

∫
Σ+×Σ+

JΓ (ω, τ)
(
u(ω) − u(τ)

)2
μ(dω)μ(dτ) < +∞

}
and

QΓ (u, v) = Qc
Γ (u, v) + λI (u, v)μ
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for any u,v ∈ DΓ , where we define

Qc
Γ (u, v) =

∫
Σ+×Σ+

JΓ (ω, τ)
(
u(ω) − u(τ)

)(
v(ω) − v(τ)

)
μ(dω)μ(dτ).

Furthermore, (Qc
Γ , DΓ ) is a conservative regular Dirichlet form on L2(Σ+,μ).

Remark. For any (λ,μ) ∈ Θ+(T ), it follows from Lemma 3.16 that

λI = inf
x∈T

λ(x) = lim
m→∞λ

(
φ−

m

)
. (3.2)

We call Qc
Γ the conservative part of QΓ . The following proposition is immediate.

Proposition 3.8. Let Γ = (λ,μ) ∈ Θ+(T ). Define λc by λc(x) = λ(x) − λI for any x ∈ T and Γ c = (λc,μ). Then
Γ c ∈ Θ+(T ), DΓ = DΓ c , JΓ = JΓ c and Qc

Γ = QΓ c .

We will give a proof of Theorem 3.7 at the end of this section. For the moment, we present two classes of (λ,μ)

included in Θ+(T ). The first one is called the monotone class. The Dirichlet forms on Σ+ induced by random walks
on T are shown to belong to this class in Section 11.

Definition 3.9 (Monotone class). λ ∈ �+(T ) is said to be monotone if and only if λ(π(x)) ≤ λ(x) for any x ∈ T ,
where π = πφ∗ . Define �+

M(T ) = {λ|λ ∈ �+(T ), λ is monotone} and Θ+
M(T ) = �+

M(T ) × M(Σ+).

Proposition 3.10. Θ+
M(T ) ⊆ Θ+(T ).

Proof. Let (λ,μ) ∈ Θ+
M(T ). Then λ(φ−

m) ≥ λ(φ−
m+1) for any m ≥ 0. Hence {λ(φ−

m)}m≥0 converges as m → ∞. This
shows

∞∑
m=0

∣∣λ(
φ−

m

) − λ
(
φ−

m+1

)∣∣ =
∞∑

m=0

(
λ
(
φ−

m

) − λ
(
φ−

m+1

)) = λ(φ) − lim
m→∞λ

(
φ−

m

)
.

Therefore we have (λ1). Obviously J (x) ≥ 0 for any x ∈ T . Thus (λ,μ) ∈ Θ+(T ). �

The second class is the Albeverio–Karwowski class, AK class for short. Albeverio and Karwowski have constructed
and studied the correspondent class of jump processes on p-adic numbers in [1] and on general noncompact Cantor
set Σ+ in [2]. We start from the construction of a Radon measure μT .

Proposition 3.11. There exists a unique Radon measure μT on Σ+ which satisfies μT (Σ+
φ ) = 1 and μT (Σ+

π(x)) =
N(π(x))μT (Σ+

x ) for any x ∈ T .

Note that μT (Σ+) = +∞ since N(x) ≥ 2 for any x ∈ T by Assumption 2.2.

Definition 3.12 (AK class). For any η : Z → [0,∞), we define λη :T → R by

λη(x) = N(x)η(|x|) − η(|x| − 1)

N(x) − 1
.

Moreover, define

�AK(T ) = {
λη|η : Z → [0,∞), η(n) ≤ η(n + 1) for any n ∈ Z

}
and Θ+

AK(T ) = �AK(T ) × {μT }.
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In [2], η(·) is denoted by a(·). More precisely, a(n) = η(−n) for n ∈ Z.
By the definition of λη, we see that �AK(T ) ⊆ �+(T ).

Proposition 3.13. Θ+
AK(T ) ⊆ Θ+(T ). Moreover, λI = limm→−∞ η(m) for any (λη,μT ) ∈ Θ+

AK(T ).

Proof. In this proof, we write ηm = η(m) for ease of notation. Let Γ = (λη,μT ) ∈ Θ+
AK(T ). Set λ = λη. Then

λ
(
x−
m

) − λ
(
x−
m+1

) = N(x−
m)

N(x−
m) − 1

(η|x|−m − η|x|−m−1) − 1

N(x−
m+1) − 1

(η|x|−m−1 − η|x|−m−2)

for any x ∈ T and any m ≥ 0. Since N(x) − 1 ≥ 1 and N(x)/(N(x) − 1) ≤ 2 for any x ∈ T , we have

∞∑
m=0

∣∣λ(
φ−

m

) − λ
(
φ−

m+1

)∣∣ ≤
∑
n≤0

(
2(ηn − ηn−1) + (ηn−1 − ηn−2)

)
= 2η0 + η−1 − 3 lim

m→−∞ηm.

Hence (λ1) is satisfied. Now by a routine calculation, we obtain

JΓ (x) = N(x)

(N(x) − 1)μT (Σ+
x )

(η|x| − η|x|−1) ≥ 0. (3.3)

Thus (λη,μT ) ∈ Θ+(T ). The equality λI = limm→∞ λ(φ−
m) = limm→−∞ ηm is immediate. �

There are examples of (λ,μ) ∈ Θ+
M(T )\Θ+

AK(T ) in Example 8.3 and (λ,μ) ∈ Θ+
AK(T )\Θ+

M(T ) in Example 8.4.
The rest of this section is devoted to proving Theorem 3.7. In the followings, Γ = (λ,μ) ∈ Θ+(T ). We use the

following notations. Define

Ju,v(ω, τ ) = J (ω, τ)
(
u(ω) − u(τ)

)(
v(ω) − v(τ)

)
,

D̃ =
{
u

∣∣∣u ∈ L2(Σ+,μ
)
,

∫
Σ+×Σ+

Ju,u(ω, τ)μ(dω)μ(dτ) < +∞
}

and, for any u,v ∈ D̃,

Q̃(u, v) =
∫

Σ+×Σ+
Ju,v(ω, τ )μ(dω)μ(dτ).

Definition 3.14. Define

C =
{∑

x∈Y

α(x)χΣ+
x

∣∣∣Y is a finite subset of T and α :Y → R

}
.

Lemma 3.15. Define λ∗ = limm→∞ λ(φ−
m). If x ∈ T and ω ∈ Σ+

x , then

∫
Σ+\Σ+

x

J (ω, τ)μ(dτ) =
∞∑

m=1

J
(
x−
m

)(
μ

(
x−
m

) − μ
(
x−
m−1

))
= 1

2

(
λ
(
π(x)

) − λ∗
) − J

(
π(x)

)
μ(x).
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Proof.

n∑
m=1

J
(
x−
m

)(
μ

(
x−
m

) − μ
(
x−
m−1

))

= −J
(
π(x)

)
μ(x) +

n−1∑
m=1

μ
(
x−
m

)(
J
(
x−
m

) − J
(
x−
m+1

)) + J
(
x−
n

)
μ

(
x−
n

)

= −J
(
π(x)

)
μ(x) + 1

2

n−1∑
m=1

(
λ
(
x−
m

) − λ
(
x−
m+1

)) + J
(
x−
n

)
μ

(
x−
n

)
= −J

(
π(x)

)
μ(x) + 1

2

(
λ
(
π(x)

) − λ
(
x−
n

)) + J
(
x−
n

)
μ

(
x−
n

)
. (3.4)

Since x−
n = φ−

|x|−n for sufficiently large n, we have limn→∞ λ(x−
n ) = λ∗. By (3.1),

J
(
x−
n

)
μ

(
x−
n

) ≤
∞∑

m=n

∣∣λ(
x−
m

) − λ
(
x−
m+1

)∣∣. (3.5)

This shows that J (x−
n )μ(x−

n ) → 0 as n → ∞. Hence (3.4) yields the desired equality. �

Lemma 3.16.

(1) For any ϕ ∈ C and any u ∈ L1(Σ+,μ) ∪ L∞(Σ+,μ), Jϕ,u is μ × μ-integrable on Σ+ × Σ+. In particular,
C ⊆ D̃. Moreover, if ϕ = χΣ+

x
, then

∫
Σ+×Σ+

Jϕ,u(ω, τ)μ(dω)μ(dτ)

= (
λ
(
π(x)

) − λ∗ − 2J
(
π(x)

)
μ(x)

)∫
Σ+

x

udμ − 2μ(x)

∞∑
m=1

J
(
x−
m

)∫
Σ+

x
−
m

\Σ+
x
−
m−1

udμ. (3.6)

(2) Q̃(ϕ,u) = (λ(x) − λ∗)(ϕ,u)μ for any x ∈ T , ϕ ∈ Ex,μ and u ∈ D̃. In particular, λ∗ = λI .

Proof.
(1) To prove the integrability, it is enough to choose ϕ = χΣ+

x
for x ∈ T . Unless (ω, τ ) ∈ (Σ+

x × (Σ+\Σ+
x )) ∪

((Σ+\Σ+
x )×Σ+

x ), Jϕ,u(ω, τ) = 0. Let Σm = Σ+
x−
m
\Σ+

x−
m−1

for m ≥ 1. Write Jm = J (x−
m) and λm = λ(x−

m). If (ω, τ ) ∈
Σx × Σm, then Jϕ,u(ω, τ) = Jm(u(ω) − u(τ)). Hence

∫
Σ+

x ×Σm

∣∣Jϕ,u(ω, τ)
∣∣μ(dω)μ(dτ) ≤ Jm

(
μ

(
x−
m

) − μ
(
x−
m−1

))∫
Σ+

x

|u|dμ + μ(x)Jm

∫
Σm

|u|dμ.

Since Σ+\Σ+
x = ⋃∞

m=1 Σm, we obtain

∫
Σ+

x ×(Σ+\Σ+
x )

∣∣Jϕ,u(ω, τ)
∣∣μ(dω)μ(dτ) ≤

∞∑
m=1

Jm

(
μ

(
x−
m

) − μ
(
x−
m−1

))∫
Σ+

x

|u|dμ + μ(x)

∞∑
m=1

Jm

∫
Σm

|u|dμ.
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The first infinite sum of the right-hand side of above inequality is finite by Lemma 3.15. Note that μ(x)Jm ≤
μ(x−

m)J (x−
m) → 0 as m → ∞ by (3.5). Hence if u ∈ L1(Σ+,μ), then

μ(x)

∞∑
m=1

Jm

∫
Σm

|u|dμ ≤ μ(x) sup
m≥1

Jm

∫
Σ+\Σ+

x

|u|dμ < +∞.

If u ∈ L∞(Σ+,μ), then again using Lemma 3.15, we see

μ(x)

∞∑
m=1

Jm

∫
Σm

|u|dμ ≤ μ(x)‖u‖∞
∞∑

m=1

Jm

(
μ

(
x−
m

) − μ
(
x−
m−1

))
< +∞.

Therefore, Jϕ,u is integrable. (3.6) follows by the similar arguments.
(2) Assume that ϕ = ∑

y∈S+(x) αyχΣ+
y

∈ Ex,μ. (3.6) along with the fact that
∫
Σ+ ϕ dμ = 0 yields∫

Σ+×Σ+
Jϕ,v(ω, τ )μ(dω)μ(dτ) = (

λ(x) − λ∗
)∫

Σ+
ϕv dμ

for any v ∈ L∞(Σ+,μ). Let u ∈ D̃ and define un for n ≥ 1 by

un(ω) =
{

n if u(ω) ≥ n,
u(ω) if u(ω) ∈ (−n,n),
−n if u(ω) ≤ −n.

Then |un(ω) − un(τ)| ≤ |u(ω) − u(τ)| and |(u(ω) − un(ω)) − (u(τ) − un(τ))| ≤ |u(ω) − u(τ)| for any ω,τ ∈ Σ+.
Hence Lebesgue’s dominant convergence theorem implies that un ∈ D̃, Q̃(un,un) → Q̃(u,u) as n → ∞ and Q̃(u −
un,u) → 0 as n → ∞. Combining these, we have Q̃(u − un,u − un) → 0 as n → ∞. Now, as un ∈ L∞(Σ+,μ),
it follows that Q̃(un,ϕ) = (λ(x) − λ∗)(un,ϕ)μ. Letting n → ∞, we see that Q̃(u,ϕ) = (λ(x) − λ∗)(u,ϕ)μ. Since
(ϕ,ϕ)μ > 0 for some ϕ ∈ Ex,μ, we have λ(x) − λ∗ ≥ 0 for any x ∈ T . Hence λ∗ = infx∈T λ(x) = λI . �

Proof of Theorem 3.7. First we show that (Q̃, D̃) is a regular Dirichlet form on L2(Σ+,μ). We will verify the
conditions (j.1) and (j.2) in Example 1.2.4 of [14]. Define ρ(ω, τ) = 2−|ω∧τ | for ω 	= τ ∈ Σ+. We let ρ(ω,ω) = 0.
Then ρ is a metric on Σ+. If 2−m < r ≤ 2−m+1, then Bρ(ω, r) = Σ+

[ω]m . Hence, if jm(ω) = ∫
Σ+\Σ+

[ω]m
J (ω, τ)μ(dτ),

then the condition (j.1) is equivalent to that jm(ω) is locally integrable. By Lemma 3.15,

jm(ω) = 1

2

(
λ
([ω]m−1

) − λI

) − J
([ω]m−1

)
μ

([ω]m
)
.

This implies that jm = ∑
x∈Tm

((λ(π(x)) − λI )/2 − J (π(x))μ(x))χΣx . Hence jm is locally integrable. The condition
(j.2) is immediate from the fact that J (ω, τ) = J (τ,ω). Moreover, since C ⊆ D̃ by Lemma 3.16, D̃ is dense in
L2(Σ+,μ) and the argument in Example 1.2.4 of [14] shows that (Q̃, D̃) is a Dirichlet form on L2(Σ+,μ). Moreover,
Lemma 3.16 implies that ϕ ∈ Ex,μ is an eigenfunction with eigenvalue λ(x) − λI of the non-negative self-adjoint
operator on L2(Σ+,μ) associated with (Q̃, D̃). Hence by Theorem 3.4, we see that (Q, D) = (Q̃, D̃). Let Q1(u, v) =
Q(u, v) + (u, v)μ. Since Ex,μ ⊆ C , it follows that C is Q1-dense in D. Moreover C is dense in C0(Σ

+) is the sense
of supremum norm. Hence C is a core of the Dirichlet form (Q, D). Thus (Q, D) is a regular Dirichlet form on
L2(Σ+,μ).

About (Qc
Γ , DΓ ), Proposition 3.8 shows that (Qc

Γ , DΓ ) is a regular Dirichlet form on L2(Σ+,μ). The rest is to
verify that (Qc

Γ , DΓ ) is conservative. We may assume that λI = 0 and hence Qc
Γ = QΓ without loss of generality.

Set (Q, D) = (QΓ , DΓ ) as above. Let v ∈ L1(Σ+,μ) ∩ DΓ and let un = χΣ+
φ
−
n

. Since un ∈ C , Lemma 3.16 implies

that un ∈ D. By (3.6),

Q(un, v) = (
λ
(
φ−

n+1

) − 2J
(
φ−

n+1

)
μ

(
φ−

n

))∫
Σ+

φ
−
n

v dμ − 2μ
(
φ−

n

) ∞∑
m=n+1

J
(
φ−

m

)∫
Σ+

φ
−
m

\Σ+
φ
−
m−1

v dμ.
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Using (3.5), (λ1) and the fact that v ∈ L1(Σ+,μ), we see that

μ
(
φ−

n

) ∞∑
m=n+1

J
(
φ−

m

)∫
Σ+

φ
−
m

\Σ+
φ
−
m−1

|v|dμ ≤ ‖v‖1 sup
m≥n+1

J
(
φ−

m

)
μ

(
φ−

m

)

≤ ‖v‖1

∞∑
k=n

∣∣λ(
φ−

k

) − λ
(
φ−

k+1

)∣∣ → 0 (3.7)

as n → ∞. Moreover, since λ(φ−
n+1) − 2J (φ−

n+1)μ(φ−
n ) ≥ 0 by Lemma 3.15,∣∣∣∣(λ(

φ−
n+1

) − 2J
(
φ−

n+1

)
μ

(
φ−

n

))∫
Σ+

φ
−
n

v dμ

∣∣∣∣ ≤ λ
(
φ−

n+1

)‖v‖1 → 0 (3.8)

as n → ∞. Thus it follows that Q(un, v) → 0 as n → ∞. Therefore, we have verified the condition (ii) of Theo-
rem 1.6.6 of [14], and hence (Q, D) is conservative. �

4. Transition density

In this section, we establish the existence of the transition density pΓ (t,ω, τ ) associated with the regular Dirichlet
form (QΓ , DΓ ). See (4.8) for the exact definition of “transition density.” As in the last section, (T , A) is a locally
finite tree satisfying Assumption 2.2, φ∗ ∈ Σ and φ ∈ T . We let T = (T , A, φ∗) and use π to denote πφ∗ .

Notation. Let (λ,μ) ∈ �+(T ) × M(Σ+). We use λm(ω) = λ([ω]m) and μm(ω) = μ(Σ+
[ω]m) for ω ∈ Σ+ and m ∈ Z.

By Theorem 3.4, we have all the eigenfunctions and eigenvalues of the self-adjoint operator LΓ associated with the
Dirichlet form (QΓ , DΓ ). Formally we may obtain a fundamental solution of the equation ∂u/∂t = −LΓ u from those
data. In this case, the formal expression of transition density turns out to be (4.1), which is shown to be convergent by
the next proposition.

Proposition 4.1. Let Γ = (λ,μ) ∈ �+(T ) × M(Σ+). Assume that (λ1) holds. Define

pΓ (z,ω, τ) =
∞∑

n=−∞

e−λn−1(ω)z − e−λn(ω)z

μn(ω)
χΣ+

[ω]n
(τ ) (4.1)

for ω 	= τ ∈ Σ+ and z ∈ C. Then for any z ∈ C and any ω 	= τ ∈ Σ+, the infinite sum in (4.1) is convergent,
pΓ (z,ω, τ) = pΓ (z, τ,ω), pΓ (z,ω, τ) is continuous on {(z,ω, τ)|z ∈ C,ω 	= τ ∈ Σ+} and is an entire function
of z for each ω 	= τ . Moreover, if Γ ∈ Θ+(T ), then pΓ (t,ω, τ ) ≥ 0 for any t ∈ [0,∞) and any ω 	= τ ∈ Σ+.

For AK class on p-adic numbers, the expansion (4.1) has been given in [3]. Note that μn(ω) = p−n and λn(ω)

does not depend on ω in such a case.
If no confusion may occur, we write p(t,ω, τ) in place of pΓ (t,ω, τ ). To prove the above proposition, we need

the next lemma.

Lemma 4.2. Let {αn}n≥1 and {βn}n≥1 be sequences of real numbers which satisfy that 0 < αn ≤ αn+1 for any n ≥ 1,
that supn≥1 |βn| < +∞, and that

∑
n≥1 |βn − βn+1|/αn < +∞. Define F(z) = ∑

n≥1(e
−βn+1z − e−βnz)/αn for any

z ∈ Z. Then F(z) is an entire function. Moreover, let κ = ∑
n≥1(βn − βn+1)/αn. If κ ≥ 0, then, for any t > 0,

κte−β1t ≤ F(t) ≤ β1tF (t) + tF ′(t). (4.2)
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Proof. Let γn = βn − β1 and define G(z) = ∑
n≥1(e

−γn+1z − e−γnz)/αn. Set M = supn≥1 |γn|. If Rez ≤ T , then

|e−γn+1z − e−γnz|
αn

≤ |γn − γn+1|
αn

eMT .

Therefore, the infinite sum in the definition of G(z) is uniformly convergent on any compact subset of C. Therefore
F(z) = eβ1zG(z) is an entire function. Assume κ ≥ 0. It is easy to see that G(0) = 0 and G′(0) = κ ≥ 0. Now let
Gm(z) = ∑m

n=1(e
−γn+1z − e−γnz)/αn. Then for any t ∈ [0,∞),

(Gm)′′(t) =
m∑

n=2

(
1

αn−1
− 1

αn

)
(γn)

2e−γnt + (γm+1)
2

αm

e−γm+1t ≥ 0.

As m → ∞, it follows that G′′(t) ≥ 0 for any t ∈ [0,∞). Hence G(t) ≥ 0 and G′(t) ≥ 0 for any t ∈ [0,∞). By the
mean value theorem, we have G′(0)t ≤ G(t) ≤ G′(t)t . This suffices for (4.2). �

Proof of Proposition 4.1. Let x 	= y ∈ T with |x| = |y| = M . It is enough to show the claims of the proposition in
the case when (ω, τ ) ∈ Σ+

x × Σ+
y . Then

p(z,ω, τ) =
|ω∧τ |∑
n=−∞

e−λn−1(ω)z − e−λn(ω)z

μn(ω)
. (4.3)

Now applying Lemma 4.2, we have the desired statements. �

To verify that pΓ (t,ω, τ ) is really the transition density, we need to assume that λm(ω) → +∞ as m → ∞ for any
ω ∈ Σ+.

Definition 4.3.

(1) Define

�+∞(T ) =
{
λ|λ :T → [0,∞), lim

m→∞λm(ω) = +∞ for any ω ∈ Σ+
}

and Θ+∞(T ) = {(λ,μ)|(λ,μ) ∈ Θ+(T ), λ ∈ �+∞(T )}.
(2) For λ ∈ �+(T ), define

Φλ(t,ω) =
∑
m∈Z

∣∣e−λm−1(ω)t − e−λm(ω)t
∣∣.

Proposition 4.4. Let Γ = (λ,μ) ∈ �+∞(T ) × M(Σ+). Define

(ptu)(ω) =
∫

Σ+
p(t,ω, τ )u(τ)μ(dτ)

for a measurable function u :Σ+ → R whenever the integral makes sense. Assume (λ1) and the following condition
(λ2)

(λ2) For any t > 0, Φλ(t,ω) is continuos on Σ+ and supω∈Σ+ Φλ(t,ω) < +∞.

Then

(1) Define pt,ω(τ ) = p(t,ω, τ). For any ω ∈ Σ+ and any t ∈ (0,∞), pt,ω is μ-integrable on Σ+ and

(pt1)(ω) = e−λI t . (4.4)
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(2) For any x ∈ T , any ω ∈ Σ+ and any t ∈ (0,∞)

(ptχΣ+
x
)(ω) = μ(x)p(t,ω, τ ) + e−λ(x)tχΣ+

x
(ω), (4.5)

where τ is chosen so that τ ∈ Σ+
x and |ω ∧ τ | ≤ |x|.

(3) For any x ∈ T and for any ϕ ∈ Ex,μ,

(ptϕ)(ω) = e−λ(x)tϕ(ω). (4.6)

(4) For any ω 	= ξ ∈ Σ+ and for any s, t ∈ (0,∞),∫
Σ+

p(t,ω, τ)p(s, τ, ξ)μ(dτ) = p(t + s,ω, ξ). (4.7)

For the monotone class, the condition (λ2) always holds if λ ∈ �+∞(T ) by Proposition 4.6.

Theorem 4.5. Let Γ = (λ,μ) ∈ Θ+∞(T ). Assume that (λ2) holds. Then there exists a Hunt process ({Xt }t>0,

{Pω}ω∈Σ+) on Σ+ which is associated with the Dirichlet form (Q, D) on L2(Σ+,μ) and whose transition func-
tion is pΓ (t,ω, τ ), i.e.

Eω

(
f (Xt )

) = (ptf )(ω) (4.8)

for any ω ∈ Σ+ and any Borel measurable bounded function f :Σ+ → R.

Remark. Assume that Γ = (λ,μ) ∈ Θ+∞(T ) and λ satisfies (λ2). Then it is easy to see that Γ c ∈ Θ+∞(T ) and λc

satisfies (λ2). Hence by the above theorem, there exists a Hunt process associated with the Dirichlet form (QΓ c , DΓ )

on L2(Σ+,μ) whose transition density is pΓ c(t,ω, τ ). Note that pΓ (t,ω, τ ) = e−λI tpΓ c (t,ω, τ ).

We will give a proof of the above theorem at the end of this section.
For the monotone class, λ ∈ �+∞(T ) is enough for the condition (λ2). More precisely we have the following propo-

sition.

Proposition 4.6. Define �+
M,∞(T ) = �+

M(T ) ∩ �+∞(T ) and

Θ+
M,∞(T ) = {

(λ,μ)|(λ,μ) ∈ Θ+
M(T ), λ ∈ �+

M,∞(T )
}
.

Then (λ2) holds for any (λ,μ) ∈ Θ+
M,∞(T ).

Proof. If (λ,μ) ∈ Θ+
M,∞(T ), then Φ(t,ω) = e−λI t for any t ≥ 0 and any ω ∈ Σ+. Thus we have (λ2). �

For the Albeverio–Karwowski class, we have the next results.

Proposition 4.7.

(1) For λη ∈ �+
AK(T ), λη ∈ �+∞(T ) if and only if η(m) → +∞ as m → ∞.

(2) Let λη ∈ �+
AK(T ) ∩ �+∞(T ). If

∑
m≥0 e−η(m)t < +∞ for any t > 0, then the condition (λ2) is satisfied.

Proof. (1) is immediate by the definition. To verify (2), fix t > 0 and let

Φ−(ω, t) =
∑
m≤0

∣∣e−λm−1(ω)t − e−λm(ω)t
∣∣.

Then Φ−(ω, t) ≤ t
∑

m≤0 |λm−1(ω) − λm(ω)|. By the similar discussion as the proof of Proposition 3.13, we see
that Φ−(ω, t) is bounded and continuous on Σ+. Since λm(ω) = (N([ω]m)η(m) − η(m − 1))/(N([ω]m) − 1) ≥
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η(m − 1), it follows that e−λm(ω) ≤ e−η(m−1)t . Hence |e−λm−1(ω)t − e−λm(ω)t | ≤ e−η(m−2)t + e−η(m−1)t . Therefore if∑
m≥0 e−η(m)t < +∞ for any t > 0, the infinite sum

Φ+(ω, t) =
∑
m≥1

∣∣e−λm−1(ω)t − e−λm(ω)t
∣∣,

is uniformly convergent on Σ+. This immediately implies our claim. �

The rest of this section is devoted to proving Theorem 4.5. Note that {pt }t>0 is a Markovian transition function
in the sense of [14] by Propositions 4.1 and 4.4. By Theorem A.2.2 of [14], the above theorem follows if {pt }t>0 is
a Feller transition function. Namely it is enough to show that pt(C∞(Σ+)) ⊆ C∞(Σ+) and that (ptf )(ω) → f (ω)

as t ↓ 0 for any ω ∈ Σ+ and any f ∈ C∞(Σ+), where C∞(Σ+) is the continuous function which vanishes at the
infinity. Since Σ+ = Σ\{φ∗}, C∞(Σ+) is identified with {u|u ∈ C(Σ),u(φ∗) = 0}.

We assume that Γ = (λ,μ) ∈ Θ+∞(T ) and λ satisfies (λ2) in the following lemmas. Moreover, we write

Ψm(t,ω) =
∑

n≥m+1

∣∣e−λn−1(ω)t − e−λn(ω)t
∣∣.

Lemma 4.8. For any x ∈ T and any t > 0,

lim
m→∞ sup

ω∈Σ+
x

Ψm(t,ω) = 0.

Proof. Fix x ∈ T and t > 0. Then there exists N ∈ Z such that [ω]m = φ−
|m| for any m ≤ N and any ω ∈ Σ+

x . Since

|e−λn−1(ω)t − e−λn(ω)t | ≤ t |λn−1(ω) − λn(ω)|, (λ1) shows that∑
n≤m

∣∣e−λn−1(ω)t − e−λn(ω)t
∣∣

is continuous on Σ+
x . By (λ2), Ψm(t,ω) is continuous on Σ+

x . Moreover, Ψm(t,ω) ≥ Ψm+1(t,ω) ≥ 0 and Ψm(t,ω) →
0 as m → ∞ for any ω ∈ Σ+

x . Hence by Dini’s theorem, Ψm(t,ω) converges to 0 as m → ∞ uniformly on Σ+
x . �

Lemma 4.9. ptf ∈ C(Σ+) for any f ∈ L∞(Σ+,μ).

Proof. For ω 	= τ ,∣∣(ptf )(ω) − (ptf )(τ )
∣∣ ≤

∫
Σ+

∣∣p(t,ω, ξ) − p(t, τ, ξ)
∣∣|f |μ(dξ) ≤ (

Ψ|ω∧τ |(t,ω) + Ψ|ω∧τ |(t, τ )
)‖f ‖∞. (4.9)

Fix ω ∈ Σ+. If τn → ω as n → ∞, then there exists x ∈ T such that ω ∈ Σ+
x and τn ∈ Σ+

x for any n ≥ 1. Since
|ω ∧ τn| → +∞ as n → ∞, Lemma 4.8 and (4.9) yield limn→∞ |(ptf )(ω) − (ptf )(τn)| → 0 as n → ∞. �

Lemma 4.10. ptf ∈ C∞(Σ+) for any f ∈ C∞(Σ+).

Proof. Define I (ω) = max{m|m ≤ 0, [ω]m = φ−
|m|} for any ω ∈ Σ+. Then f ∈ C∞(Σ+) if and only if f ∈ C(Σ+)

and, for any ε > 0, there exists Nε > 0 such that I (ω) ≤ −Nε implies |f (ω)| < ε. Now if I (ω) ≤ −Nε , then

∣∣(ptf )(ω)
∣∣ ≤

∞∑
n=−∞

∣∣e−λn−1(ω)t − e−λn(ω)t
∣∣∣∣(f )[ω]n,μ

∣∣
=

∑
n≤I (ω)

∣∣e−λn−1(ω)t − e−λn(ω)t
∣∣∣∣(f )[ω]n,μ

∣∣ +
∑

n>I (ω)

∣∣e−λn−1(ω)t − e−λn(ω)t
∣∣∣∣(f )[ω]n,μ

∣∣
≤

∑
n≤I (ω)

∣∣λ(
φ−

|n−1|
) − λ

(
φ−

|n|
)∣∣‖f ‖∞ + εΦλ(t,ω).
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Using (λ1) and (λ2), we see that |(ptf )(ω)| ≤ 2ε supτ∈Σ+ Φλ(t, τ ) for sufficiently small I (ω). Hence ptf ∈
C∞(Σ+). �

Lemma 4.11. (ptf )(ω) → f (ω) as t ↓ 0 for any f ∈ C∞(Σ+).

Proof. Note that p(0,ω, τ ) = 0 for any ω 	= τ ∈ Σ+. By (4.5), it follows that (ptχΣ+
x
)(ω) → χΣ+

x
(ω) as t ↓ 0 for

any x ∈ T . This implies that (ptu)(ω) → u(ω) as t ↓ 0 for any u ∈ C , where C is defined in Definition 3.14. Let
f ∈ C∞(Σ+). Then, for any ε > 0, there exists u ∈ C such that ‖f − u‖∞ < ε. Note that ‖pt,ω‖1 = 1 by (4.4) and
Proposition 4.1. Hence we have ‖ptf − ptu‖∞ ≤ ‖f − u‖∞. Therefore,∣∣(ptf )(ω) − f (ω)

∣∣ ≤ 2‖f − u‖∞ + ∣∣(ptu)(ω) − u(ω)
∣∣.

This yields |(ptf )(ω) − f (ω)| < 3ε for sufficiently small t > 0. �

Proof of Theorem 4.5. The above lemmas shows that {ptu}t>0 is a Feller transition function. Then by Theorem A.2.2
of [14] (see also Theorem I.9.4 of [8]), there exists a Hunt process ((Xt )t>0, (Pω)ω∈Σ+) on Σ+ such that (4.8) holds
for any ω, any t > 0 and any Borel measurable bounded function f :Σ+ → R. Using (4.6), we verify that (Q, D) is
the regular Dirichlet form associated with the Hunt process ((Xt )t>0, (Pω)ω∈Σ+). �

5. Intrinsic metric and volume doubling property

In this section, we are going to introduce a metric on Σ+ which is suitable for describing asymptotic behaviors of the
transition density pΓ (t,ω, τ ). We continue to assume that (T , A, φ∗) is a locally finite ordered tree and φ ∈ T . Recall
that N(x) = #(S+(x)) ≥ 2 for any x ∈ T by Assumption 2.2 and that π = πφ∗ .

Definition 5.1. Let λ ∈ �+(T ). Define Dλ(x) = infm≥0 λ(x−
m)−1. For any ω,τ ∈ Σ+, define

dλ(ω, τ) =
{

Dλ(ω ∧ τ) if ω 	= τ ,
0 if ω = τ .

Note that Dλ(π(x)) ≥ Dλ(x) for any x ∈ T by definition.

Proposition 5.2. Let λ ∈ �+(T ). Then dλ(ω, τ) is an (ultra-)metric on Σ+, i.e.

dλ(ω, τ) ≤ max
{
dλ(ω, ξ), dλ(ξ, τ )

}
for any ω,τ, ξ ∈ Σ+. Moreover, if λ ∈ �+∞(T ), then the topology induced by dλ(·, ·) coincides with the original
topology of Σ+.

Recall that the fundamental system of neighborhoods of ω ∈ Σ+ is given by {Σ+
[ω]m}m≥0 in the original topology

of Σ+ = Σ\{φ∗}.

Proof. Set D(x) = Dλ(x) for ease of notation. Let ω,τ, ξ ∈ Σ+. If |ω ∧ τ | ≥ |ω ∧ ξ |, then the definition of Dλ

implies that dλ(ω, τ) = D([ω]|ω∧τ |) ≤ D([ω]|ω∧ξ |) = dλ(ω, ξ). Otherwise, we have ω∧ τ = ξ ∧ τ . Hence dλ(ω, τ) =
dλ(ξ, τ ). Thus, dλ is an ultra-metric.

Note that τ ∈ Σ+
[ω]n whenever dλ(ω, τ) < D([ω]n). Hence if dλ(ωm,ω) → 0 as m → ∞, then ωm → ω as m →

∞ in the original topology. Conversely assume that ωm → ω as m → ∞ in the original topology. For any n, we
have dλ(ωm,ω) ≤ D([ω]n) for sufficiently large m. Since λ ∈ �+∞(T ), we have D([ω]n) → 0 as n → ∞. Therefore
dλ(ωm,ω) → 0 as m → ∞. �

Next we introduce the volume doubling property of a measure. It is known that the volume doubling property is an
indispensable part of the set of conditions which implies “good behaviors” of transition densities on the Riemannian
manifolds, fractals and metric measure spaces. See [6,7,15,16,20] for example.
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Definition 5.3. Let (X,d) be a metric space. A Borel regular measure on ν on X is said to have the volume doubling
property with respect to the metric d if and only if there exists c > 0 such that ν(Bd(x,2r)) ≤ cν(Bd(x, r)) < +∞ for
any r > 0 and any x ∈ X.

Now we have an equivalent condition for μ being volume doubling with respect to dλ. Recall the notation that
μ(x) = μ(Σ+

x ).

Theorem 5.4. Let (λ,μ) ∈ �+∞(T ) × M(Σ+). Then μ has the volume doubling property with respect to dλ if and
only if the following two conditions are satisfied:

(EL) There exists γ ∈ (0,1) such that γμ(π(x)) ≤ μ(x) for any x ∈ T .
(λ3) There exist m ≥ 1 and α ∈ (0,1) such that Dλ([ω]n+m) ≤ αDλ([ω]n) for any n ∈ Z and any ω ∈ Σ+.

The condition (EL) implies several good property of μ as follows, which are used to show the above theorem.

Proposition 5.5. Let μ ∈ M(Σ+). Assume (EL). Then supx∈T N(x) < +∞. Furthermore, μ(x) ≤ (1 − γ )μ(x−
1 ) for

any x ∈ T . In particular, μ(Σ+) = +∞ and μ({ω}) = 0 for any ω ∈ T .

Proof. γμ(x) ≤ μ(y) for any x ∈ T and any y ∈ S+(x). Summing this for all y ∈ S+(x), we have γ #(S+(x))μ(x) ≤
μ(x). Hence N(x) = #(S+(x)) ≤ γ −1 for any x ∈ T . Let y ∈ S+(x). Since N(x) ≥ 3, there exists z ∈ S+(x) such
that z 	= y. μ(y) ≤ μ(x) − μ(z) ≤ (1 − γ )μ(x). The rest is immediate. �

Proof of Theorem 5.4. Set D(x) = Dλ(x) for ease of notation. Write B(ω, r) = Bdλ(ω, r) for ω ∈ Σ+ and r > 0.
First assume that μ has the volume doubling property with respect to dλ, i.e. βμ(B(ω, r)) ≥ μ(B(ω,2r)) for any ω ∈
Σ+ and r > 0, where β > 1 is independent of ω and r . Let R = D([ω]n) and let k = min{i|D([ω]n+i ) < D([ω]n)}.
Then B(ω,R) = Σ+

[ω]n+k
and B(ω,R + ε) = Σ+

[ω]n for sufficiently small ε > 0. Hence

μ
([ω]n

) = μ
(
B(ω,R + ε)

) ≤ βμ

(
B

(
ω,

R + ε

2

))
≤ βμ

(
B(ω,R)

) ≤ βμ
([ω]n+1

)
.

Hence (EL) follows with γ = 1/β . Using Proposition 5.5, we have

βμ

(
B

(
ω,

2D([ω]n)
3

))
≥ μ

(
B

(
ω,

4D([ω]n)
3

))
≥ μ

([ω]n
)

≥ (1 − γ )−mμ
([ω]n+m

) ≥ (1 − γ )−mμ
(
B

(
ω,D

([ω]n+m

)))
for any m ≥ 0. Choose m so that β(1 − γ )m < 1. Then the above inequality yields 2D([ω]n)/3 > D([ω]n+m). Thus
we have shown (λ3).

Conversely, assume (EL) and (λ3). For any r > 0, we may choose n which satisfies D([ω]n) < r ≤ D([ω]n−1). By
(λ3), D([ω]n+m) < αr and hence B(ω,αr) ⊇ Σ+

[ω]n+m
. Hence by (EL),

μ
(
B(ω,αr)

) ≥ μ
([ω]n+m

) ≥ γ mμ
([ω]n

) = γ mμ
(
B(ω, r)

)
.

This implies the volume doubling property. �

Even if μ has the volume doubling property with respect to dλ, (Σ+, dλ) may not be uniformly perfect. See
Example 8.5.

Definition 5.6. Let (X,d) be a metric space. Define an annulus Ad(x, r1, r2) for x ∈ X, r1, r2 > 0 by Ad(x, r1, r2) =
Bd(x, r2)\Bd(x, r1). (X,d) is called uniformly perfect if and only if there exists α ∈ (0,1) such that A(x,αr, r) 	= ∅

whenever X 	= Bd(x, r).
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In the rest of this section, we consider equivalent conditions for the uniformly perfectness of (Σ+, dλ) in terms of
Γ = (λ,μ).

Lemma 5.7. Assume that λ ∈ �+∞(T ). Let Dλ = limm→∞ Dλ(φ
−
m). Define

Fλ(s,ω) = min
{
Dλ

([ω]m
)|m ∈ Z, s ≤ Dλ

([ω]m
)}

for any s ∈ (0,Dλ) and any ω ∈ Σ+. Then s ≤ Fλ(s,ω) for any s ∈ (0,Dλ). Moreover, Fλ(Dλ([ω]m),ω) = Dλ([ω]m)

for any m ∈ Z and any ω ∈ Σ+.

Theorem 5.8. Let λ ∈ �+∞(T ). Then the following three conditions (UP1), (UP2) and (UP3) are equivalent:

(UP1) (Σ+, dλ) is uniformly perfect.
(UP2) There exists a1 > 1 such that Fλ(s,ω) ≤ a1s for any s ∈ (0,Dλ) and any ω ∈ Σ+.
(UP3) There exists a2 > 1 such that a2Dλ(x) ≥ Dλ(π(x)) for any x ∈ T .

We use A(ω, r1, r2) to denote Adλ(ω, r1, r2) in the following proof. Also we set D(x) = Dλ(x) for ease of nota-
tion.

Proof.
(UP3) ⇒ (UP2): By (UP3), it follows that a2s ≤ D([ω]m) ≤ s for some m ∈ Z if s ∈ (0,Dλ). Therefore Fλ(s,ω) ≤

a2s for any s ∈ (0,Dλ).
(UP2) ⇒ (UP1): If B(ω, r) 	= X, then r ≤ Dλ. By (UP2), there exists D([ω]m) such that r/(2a1) ≤ D([ω]m) ≤ r/2.

Therefore, A(ω, r/(2a1), r) 	= ∅.
(UP1) ⇒ (UP3): Choose ω and m so that x = [ω]m+1 and π(x) = [ω]m. Since A(ω,αD([ω]m),D([ω]m)) 	= ∅,

we have αD([ω]m) ≤ D([ω]m+1). Hence a2D(x) ≥ D(π(x)), where a2 = 1/α. �

6. Asymptotic behaviors of transition density

In this section, we study asymptotic behaviors of pΓ (t,ω, τ ). Let (T , A, φ∗) be a locally finite ordered tree satisfying
Assumption 2.2 and let φ ∈ T . We keep using π = πφ∗ .

First we present estimates of pΓ (t,ω, τ ) and J (ω, τ) which hold whenever pΓ (t,ω, τ ) makes sense.

Proposition 6.1. Let Γ ∈ (λ,μ) ∈ Θ+∞(T ) and assume that (λ2) holds. Then, for ω 	= τ ∈ Σ+ and any t > 0,

J (ω, τ)te−λ(ω∧τ)t ≤ pΓ (t,ω, τ ) ≤ λ(ω ∧ τ)t

μ(ω ∧ τ)
(6.1)

and

J (ω, τ) ≤ λ(ω ∧ τ)

μ(ω ∧ τ)
. (6.2)

Proof. Let

F(z) =
∑
n≥0

e−λM−n−1(ω)z − e−λM−n(ω)z

μM−n(ω)
,

where M = |ω ∧ τ |. Note that pΓ (t,ω, τ ) = F(t) and F ′(0) = J (ω, τ). Applying (4.2), we have

J (ω, τ)te−λM(ω)t ≤ F(t), (6.3)
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which is the lower part of (6.1). For the upper estimate, we have

∂

∂t
pΓ (t,ω, τ ) = F ′(t) = λM(ω)e−λM(ω)t

μM(ω)
−

∑
m≤M−1

(
1

μm+1(ω)
− 1

μm(ω)

)
e−λm(ω)t − λI e−λI t

μ(Σ+)
. (6.4)

This shows F ′(t) ≤ λM(ω)/μM(ω) and hence we obtain (6.1). Thus it follows that J (ω, τ) ≤ λM(ω)eλM(ω)t /μM(ω).
Letting t ↓ 0, we have (6.2). �

With further assumptions, we have more detailed asymptotic estimate of pΓ (t,ω, τ ). In the case of the monotone
class, the assumptions of the following theorem essentially mean that μ has the volume doubling property with
respect to dλ. See Remark(2) after the theorem. For the rest of this paper, we use B(ω, r) to denote Bdλ(ω, r) for
Γ = (λ,μ) ∈ Θ+∞(T ) if no coufusion may occur.

Theorem 6.2. Let Γ = (λ,μ) ∈ Θ+(T ). Assume that μ satisfies (EL) and that λ satisfies (λ2) and the following
condition (λ4):

(λ4) There exist α ∈ (0,1) and m ≥ 1 such that λ([ω]n−m) ≤ αλ([ω]n) for any ω ∈ Σ+ and any n ∈ Z.

(1) Γ ∈ Θ+∞(T ), μ has the volume doubling property with respect to dλ and pΓ (t,ω, τ ) is continuous on (0,∞)×
Σ+ × Σ+.

(2) Upper estimate: There exists c1 > 0 such that

pΓ (t,ω, τ ) ≤ min

{
t

μ(ω ∧ τ)dλ(ω, τ)
,

c1

μ(B(ω, t))

}
(6.5)

for any t > 0 and any ω,τ ∈ Σ+.
(3) Near diagonal lower estimate: There exist ε > 0 and c2 > 0 such that

c2

μ((B(ω, t))
≤ pΓ (t,ω, τ ) (6.6)

whenever dλ(ω, τ) ≤ εt .
(4) Off diagonal lower estimate: Define

Uλ = {
(ω, τ )|ω,τ ∈ Σ+,ω 	= τ,λ(ω ∧ τ) ≥ λ

([ω]m
)

for any m ≤ |ω ∧ τ |}.
Then

μ
(
Uλ,ω ∩ A(ω, r1, r2)

) ≥ γμ
(
A(ω, r1, r2)

)
(6.7)

for any r1, r2 > 0 and any ω ∈ Σ+, where γ ∈ (0,1) is the constant in the definition of (EL) and Uλ,ω = {τ |(ω, τ ) ∈
Uλ} is the ω-section of Uλ, and there exists c3 > 0 such that

c3
1

μ(ω ∧ τ)dλ(ω, τ)
≤ J (ω, τ) (6.8)

for any (ω, τ ) ∈ Uλ. Furthermore, for any ε > 0, there exists c4 > 0 such that

c4
t

μ(ω ∧ τ)dλ(ω, τ)
≤ pΓ (t,ω, τ ) (6.9)

if (ω, τ ) ∈ Uλ and dλ(ω, τ) ≥ εt .
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(5) Moments of displacement: For any θ ≥ 1, Eω(dλ(ω,Xt )
θ ) = +∞ for any ω ∈ Σ+ and any t > 0. For any

θ ∈ (0,1), there exist c5, c6 > 0 such that

c5tFλ(εt,ω)θ−1 ≤ Eω

(
dλ(ω,Xt )

θ
) ≤ c6Fλ(εt,ω)θ

for any t > 0 and any ω ∈ Σ+, where ε > 0 is the constant given in the above statement (3). In particular, if (Σ+, dλ)

is uniformly perfect, then, for any θ ∈ (0,1),

c7t
θ ≤ Eω

(
dλ(ω,Xt )

θ
) ≤ c8t

θ

for any t > 0 and any ω ∈ Σ+, where c7 and c8 is a positive real number which are independent of t and ω.

The asymptotic behaviors (6.5), (6.6) and (6.9) of the transition density are similar to those obtained for certain
class of jump processes on a metric measure space with the volume doubling property. See [11] for details. Also,
in [18], we have the same estimate for the transition density of the Dirichlet form on the Cantor set derived from a
random walk on the associated tree.

We will prove this theorem in the next section.

Remark 1. If (λ1) and (λ4) hold, then λI = 0 and λm(ω) → +∞ as m → +∞ for any ω ∈ Σ+.

Remark 2. If λ ∈ �+
M(T ), then Dλ(x) = λ(x)−1. Hence (λ3) holds if and only if (λ4) holds. In this case, the assump-

tion of the above theorem, which is that μ satisfies (EL) and that λ satisfies (λ2) and (λ4), is equivalent to the fact
that μ has the volume doubling property with respect to dλ by Theorem 5.4.

Remark 3. (6.7) shows that Uλ is a relatively large subset of Σ+ × Σ+. In particular, every annulus A(ω, r1, r2)

contains τ ∈ Uλ,ω unless it is empty. Moreover, (6.7) yields

μ
(
Uλ,ω ∩ B(ω, r)

) ≥ γμ
(
B(ω, r)

)
for any ω ∈ Σ+ and any r > 0.

Remark 4. If λ ∈ �+
M(T ), then Uλ = {(ω, τ )|ω 	= τ ∈ Σ+}. Hence the lower estimates (6.8) and (6.9) of the jump

kernel J and the transition density pΓ (t,ω, τ ) hold for all ω 	= τ ∈ Σ+. On the contrary, if λ is not monotone,
then (6.8) and (6.9) may fail in general on the complement of Uλ. In Example 8.4, we will present an example of
Γ = (λ,μ) ∈ Θ+

AK(T ) ∩ Θ+∞(T ) where J (ω, τ) = ∂
∂t

pΓ (0,ω, τ ) = 0 for infinitely many pairs (ω, τ ) ∈ (Σ+)2. Note

that if there exists δ > 0 such that (6.9) holds on t ∈ (0, δ) for given pair (ω, τ ) with ω 	= τ , then ∂
∂t

pΓ (0,ω, τ ) > 0.

Remark 5. Assume that Γ = (λ,μ) ∈ Θ+∞(T ) and that (λ2) and (EL) are satisfied. If λI > 0, then (λ4) does not hold
as we mentioned in the above remark. Even in such a case, however, we may have an asymptotic estimate of pΓ c in
place of pΓ if the conservative part Γ c satisfies (λ4). Recall that pΓ (t,ω, τ ) = e−λI pΓ c(t,ω, τ ) as in the remark
after Theorem 4.5.

If λ belongs to the monotone class or the AK class with additional regularity, then J (ω, τ) and pΓ (t,ω, τ ) have
simpler asymptotic behaviors.

Corollary 6.3. Let Γ = (λ,μ) ∈ Θ+(T ). Assume that μ satisfies (EL) and that λ satisfies (λ2) and (λ4). Further-
more, assume either of the following two conditions (M) or (AK+) is satisfied:

(M) λ belongs to the monotone class, i.e. λ ∈ �+
M(T ),

(AK+) λ belongs to the AK class, i.e. λ ∈ �+
AK(T ) and there exists ξ ∈ (0,1) such that η(m + 1) ≤ ξη(m) for any

m ∈ Z.
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Then

J (ω, τ) � 1

μ(ω ∧ τ)dλ(ω, τ)
(6.10)

on (Σ+ × Σ+)\{(ω,ω)|ω ∈ Σ+} and

pΓ (t,ω, τ ) � qΓ (t,ω, τ ) (6.11)

on (0,∞) × Σ+ × Σ+, where

qΓ (t,ω, τ ) =
{

t
μ(ω∧τ)dλ(ω,τ)

if t < dλ(ω, τ),
1

μ(B(ω,t))
if t ≥ dλ(ω, τ).

One can find a proof of this corollary in the next section.

7. Proof of the results in Section 6

This section is devoted to proving the results in Section 6. As in the previous sections, (T , A, φ∗) is a locally finite
ordered tree and φ ∈ T . Throughout this section, we assume that Γ = (λ,μ) ∈ Θ+(T ), that μ satisfies (EL) and
that λ satisfies (λ2) and (λ4). By (EL), γμm(ω) ≤ μm+1(ω) for any ω ∈ Σ+ and any m ∈ Z, where γ ∈ (0,1) is
independent of ω and m. Hereafter in this section, we omit ω from the notation and write μm and λm in place of
μm(ω) and λm(ω) respectively if no confusion may occur. Also we write Dm in place of Dλ([ω]m) for ease of the
notation. By Proposition 5.5, we have

γ nμm ≤ μm+n ≤ (1 − γ )nμm (7.1)

for any m ∈ Z and any n ≥ 0. Other useful estimates are

γ

1 − γ
≤ 1

μm+1
− 1

μm

≤ 1 − γ

γ

1

μm

,

(7.2)
γ

μm+1
≤ 1

m + 1
− 1

μm

≤ 1 − γ

μm+1
.

Lemma 7.1. There exist δ ≥ 1 and β ∈ (0,1) such that

λn−k ≤ δβk−1λn (7.3)

for any ω ∈ Σ+, any n ∈ Z and any k ∈ N. Moreover, (λ3) holds and μ has the volume doubling property with respect
to dλ.

Proof. Obviously, λ ∈ �+∞(T ) under (λ4). Since (λ,μ) ∈ Θ+(T ), (6.4) implies that

∑
m≤M

λm − λm−1

μm

= λM

μM

−
∑

m≤M−1

(
1

μm+1
− 1

μm

)
λm ≥ 0

for any M ∈ Z. By (7.2),

λM

μM

≥
(

1

μM

− 1

μM−1

)
λM−1 ≥ γ

λM−1

μM

.

Hence λM ≥ γ λM−1 for any M ∈ Z and any ω ∈ Σ+. Combining this with (λ4), we see that there exists δ ≥ 1 and β ∈
(0,1) such that (7.3) holds for any ω ∈ Σ+, any n ∈ Z and any k ∈ N. The rest of the statement is straightforward. �
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Lemma 7.2.

δ−1λ−1
m ≤ Dm ≤ λ−1

m

for any ω ∈ Σ+ and any m ∈ Z. In particular,

δ−1λ(ω ∧ τ)−1 ≤ dλ(ω, τ) ≤ λ(ω ∧ τ)−1

for any (ω, τ ) ∈ Σ+, where we let λ(ω ∧ ω) = +∞.

Proof. Obviously Dm ≤ λ−1
m by definition. Lemma 7.1 implies that λm ≤ δλn for any m ≤ n and any ω ∈ Σ+. Hence

δ−1λ−1
m ≤ Dm. �

Lemma 7.3. pΓ (t,ω, τ ) is continuous on (0,+∞) × Σ+ × Σ+. Moreover,

pΓ (t,ω, τ ) = −e−λMt

μM

+
∑

m≤M−1

(
1

μm+1
− 1

μm

)
e−λmt , (7.4)

where M = |ω ∧ τ | and

pΓ (t,ω,ω) =
∑
m∈Z

(
1

μm+1
− 1

μm

)
e−λmt . (7.5)

In particular, pΓ (t,ω, τ ) ≤ pΓ (t,ω,ω).

Combining Lemmas 7.1 and 7.3, we immediately obtain Theorem 6.2(1).

Proof. We show that the infinite sum in the right-hand side of (4.1) is uniformly and absolutely convergent on
[T ,∞) × Σ+

x × Σ+
x for any x ∈ T and any T > 0. Fix x ∈ T . Set |x| = M and let ω ∈ Σ+

x . Since |e−λm−1t −
e−λmt |/μm ≤ |λm − λm−1|/μM , (λ1) shows that∑

n≤M

e−λm−1t − e−λmt

μm

is uniformly and absolutely convergent.
By (EL), we have μ−1

M+m ≤ γ −m(μM)−1. Also Lemma 7.1 implies λM+m ≥ δ−1β−m+1λM . Therefore∣∣∣∣e−λm+M−1t − e−λm+Mt

μm+M

∣∣∣∣ ≤ 2γ −me−c−1β−m+2λMt

μM

.

Since β > 1, the infinite sum∑
m>M

e−λm−1t − e−λmt

μm

is uniformly and absolutely convergent on [T ,∞) × Σ+
x × Σ+

x . Hence pΓ (t,ω, τ ) is continuous on (0,∞) × Σ+ ×
Σ+. The rest is straightforward by the definition of pΓ (t,ω, τ ). �

Using (7.1), (7.2) and (7.3), we have the following estimate.

Lemma 7.4. Define

w(s) = 1 − γ

γ

(
e−s +

∑
n≥1

1

γ n
e−s/(δβn−1)

)
.
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Then ∑
m≥M

(
1

μm+1
− 1

μm

)
e−λmt ≤ w(λMt)

μM

. (7.6)

Note that w(s) is monotonically decreasing and sxαw(s) → 0 as s → +∞ for any α ≥ 0.

Proof of Theorem 6.2(2). By Lemma 7.2, λ(ω ∧ τ) ≤ dλ(ω, τ)−1. Proposition 6.1 implies that p(t,ω, τ) ≤
t/(μ(ω ∧ τ)dλ(ω, τ)) for any t > 0, ω 	= τ ∈ Σ+.

Next assume dλ(ω, τ) ≤ t . Define k = max{i|tλi < δ−1}. Then tλk < δ−1 ≤ tλk+1. Using Lemma 7.2, we have
t < (δλk)

−1 ≤ D([ω]k). This shows that B(ω, t) ⊆ Σ+
[ω]k . Hence

μ
(
B(ω, t)

) ≤ μk. (7.7)

Now ∑
m≤k−1

(
1

μm+1
− 1

μm

)
e−λmt ≤

∑
m≤k−1

(
1

μm+1
− 1

μm

)
≤ 1

μk

. (7.8)

By Lemma 7.4,∑
m≥k

(
1

μm+1
− 1

μm

)
e−λmt ≤ w(λkt)

μk

≤ w(1/δ)

μk

. (7.9)

Combining (7.7), (7.8) and (7.9) with Lemma 7.3, we obtain

p(t,ω, τ) ≤ p(t,ω,ω) ≤ c

μk

≤ c

μ(B(ω, t))
,

where c = w(1/δ) + 1. �

Lemma 7.5. If λm−1 ≤ r−1 < λm, then(
1

μm

− 1

μm−1

)
e−λm−1t ≥ γ

μm

e−t/r ≥ γ

μ(B(ω, r))
e−t/r .

Proof. The first part of the inequality is immediate from (7.2) and the fact that λm−1t ≤ t/r . If τ ∈ Σ+
[ω]m , then

dλ(ω, τ) ≤ Dm ≤ 1/λm < r . Hence Σ+
[ω]m ⊆ B(ω, r). This implies the second part of the inequality. �

Proof of Theorem 6.2(3). Let M = |ω∧τ | and let s = λMt . Assume that s > δ. Define m0 = min{n|n ≥ 0, λM−n−1 ≤
1/t}. Since λM+k ≥ λM/δ > 1/t for any k ≥ 0, it follows that λM−m0−1 ≤ 1

t
< λM−m0 . By Lemma 7.5 and (7.5),

pΓ (t,ω,ω) ≥ γ

μM−m0

e−1 ≥ γ

μ(B(ω, t))
e−1. (7.10)

Since λM−n−1 ≤ δβnλM for any n ≥ 1, we have m0 ≤ − log sδ
logβ

+ 1. This implies

γ

μM−m0

e−1 ≥ γ
γ m0

μM

e−1 ≥ c
s−α

μM

,

where c = γ 2−log δ/ logβ/e and α = logγ / logβ . Note that there exists s0 > 0 such that sα(w(s) + e−s) ≤ c/2 for any
s ≥ s0. Combining the above inequalities with (7.4), (7.5) and (7.6), we see that

pΓ (t,ω,ω) − pΓ (t,ω, τ ) ≤ w(s) + e−s

μM

≤ c

2

s−α

μM

≤ γ

2μM−m0

e−1 ≤ 1

2
pΓ (t,ω,ω)
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for any s ≥ s0. Hence by (7.10), if λMt ≥ s0, then

pΓ (t,ω, τ ) ≥ γ

2e

1

μ(B(ω, t))
.

Let ε = 1/(δs0). Then Lemma 7.2 shows that λMt ≥ s0 if dλ(ω, τ) ≤ εt . �

The following lemma can be shown by an inductive argument.

Lemma 7.6. Let α1, . . . , αm > 0 and let β1, β2, . . . , βm+1 ∈ R. Assume that αn ≤ αn+1 for any n = 1, . . . ,m − 1. If
β1 ≥ βn for any n = 1, . . . ,m, then

m∑
n=1

βn − βn+1

αn

≥ β1 − βm+1

αm

.

Lemma 7.7. If Dm−1 < Dm, then Σ+
[ω]m\Σ+

[ω]m+1
⊆ Uλ,ω .

Proof. If Dm−1 ≤ Dm, then λm > λn for any n < m. Let τ ∈ Σ+
[ω]m\Σ+

[ω]m+1
. Then ω ∧ τ = [ω]m. Hence (ω, τ ) ∈

Uλ. �

Proof of Theorem 6.2(4). First we prove (6.7). If A(ω, r1, r2) = ∅, then (6.7) is trivial. Assume that A(ω, r1,

r2) 	= ∅. In particular we have r2 > r1. Let M1 = min{m|r1 ≤ Dm < r2}. Then A(ω, r1, r2) ⊆ Σ+
[ω]M1

. Hence

μ(A(ω, r1, r2)) ≤ μM1 . On the other hand, since DM1 < DM1−1, Lemma 7.7 implies Σ+
[ω]M1

\Σ+
[ω]M1+1

⊆ Uλ,ω ∩
A(ω, r1, r2). By (7.1),

μ
(
Uλ,ω ∩ A(ω, r1, r2)

) ≥ γμM1 ≥ γμ
(
A(ω, r1, r2)

)
.

Next we show (6.8). Let (ω, τ ) ∈ Uλ. Choose N ≥ 1 so that δβN−1 < 1. Then by (λ2), Lemmas 7.6 and 7.2,

J (ω, τ) =
∑
m≤M

λm − λm−1

μm

=
N−1∑
n=1

λM−n − λM−n−1

μM−n

+ J
([ω]M−n

)
≥ λM − λM−n

μM−n+1
≥ γ N−1(1 − δβN−1) λM

μM

≥ γ N−1(1 − δβN−1)

δμMdλ(ω, τ)
.

Finally (6.8) along with (6.1) implies (6.9). �

Proof of Theorem 6.2(5). Note that

Eω

(
dλ(ω,Xt )

θ
) =

∫
Σ+

pΓ (t,ω, τ )dλ(ω, τ)θμ(dτ).

First we consider the lower estimate. Define m0 = min{m|Fλ(εt,ω) = Dm}. Since Dm0−1 < Dm0 , Lemma 7.7 shows
that Σ+

[ω]m0
\Σ+

[ω]m0+1
⊆ Uλ,ω . By (6.7), there exists {mi}i≥1 such that mi−1 > mi and Σ+

[ω]mi
\Σ+

[ω]mi+1
⊆ Uλ,ω for any

i ≥ 1. Hence by (6.9),∫
Σ+

[ω]mi
\Σ+

[ω]mi+1

pΓ (t,ω, τ )dλ(ω, τ)θμ(dτ) ≥ c4
(μmi

− μmi+1)t (Dmi
)θ−1

μmi

≥ c4γ t (Dmi
)θ−1.

If θ > 1, then Dmi
≥ Dm0 and hence

∑
i≥0(Dmi

)θ−1 = +∞. Hence we have Eω(dλ(ω,Xt )
θ ) = +∞. If θ ∈ (0,1),

then we obtain

Eω

(
dλ(ω,Xt )

θ
) ≥ c4γ t (Dm0)

θ−1 = c4γ tFλ(εt,ω)θ−1.



1116 J. Kigami

For the upper estimate, we divide Σ+ into two parts Σ+
1 = {τ |dλ(ω, τ) ≥ εt} and Σ+

2 = {τ |dλ(ω, τ) < εt}. Define
m∗ = max{m|Dm = Fλ(εt,ω)}. Using (7.3), we see that δβn−1Dm∗−n ≥ Dm∗ for any n ≥ 0. Hence by (6.5),∫

Σ+
1

pΓ (t,ω, τ )dλ(ω, τ)θμ(dτ) ≤ t
∑
n≥0

(μm∗−n − μm∗−n+1)(Dm∗−n)
θ−1

μm∗

≤ t
∑
n≥0

δ1−θβ(1−θ)(n−1)(Dm∗)
θ−1 ≤ ctFλ(εt,ω)θ−1,

where c is independent of ω and t . On the other hand by (6.5),∫
Σ+

2

pΓ (t,ω, τ )dλ(ω, τ)θμ(dτ) ≤ c1

μ(B(ω, t))

∑
n≥1

(Dm∗+n)
θ (μm∗+n − μm∗+n+1)

≤ c1μm∗(Dm∗)
θ

μ(B(ω, t))

∑
n≥0

δθβθ(n−1)(1 − γ )n = cFλ(εt,ω)θ
μm∗

μ(B(ω, t))
.

Now it follows that μ(ω, εt) = μ(ω,Dm∗(1 − h)) for sufficiently small h. Choose h so that 2(1 − h) > 1. Then by
the volume doubling property, c′μ(B(ω, t)) ≥ c′′μ(B(ω, εt)) = c′′μ(B(ω,Dm∗(1 −h))) ≥ μ(B(ω,2Dm∗(1 −h))) ≥
μm∗ . This and the above inequality yields∫

Σ+
2

pΓ (t,ω, τ )dλ(ω, τ)θμ(dτ) ≤ c′′′Fλ(εt,ω)θ .

Thus we have the upper estimate. If (Σ+, dλ) is uniformly perfect, then Theorem 5.8 shows that Fλ(εt,ω) ≤ a1εt ,
where a1 > 1 is independent of ω and t . This completes the proof. �

Proof of Corollary 6.3. First assume that (M) holds, i.e. λ ∈ �+
M(T ). Then Uλ(ω, τ) = (Σ+×Σ+)\{(ω,ω)|ω ∈ Σ+}.

(6.10) is immediate from (6.2) and (6.8). We easily have (6.11) from Theorem 6.2 except the near diagonal estimate
for εt ≤ dλ(ω, τ) ≤ t if ε given in Theorem 6.2(3) is less than 1. Even so, we still have (6.9) for εt ≤ dλ(ω, τ) ≤ t .
Since B(ω,dλ(ω, τ)) ⊆ μ(ω ∧ τ) ⊆ B(ω,2dλ(ω, τ)), the volume doubling property shows that there exists c′ > 0
such that

t

μ(ω ∧ τ)dλ(ω, τ)
≥ c′

μ(B(ω, t))

for any (t,ω, τ ) with εt ≤ dλ(ω, τ) ≤ t . Thus we have the near diagonal lower estimate.
Next we assume that (AK+) holds. Upper estimates in (6.10) and (6.11) are obvious by (6.2) and (6.5). Since

η(|x|) ≤ λη(x) ≤ 2η(|x|), we have

J (ω ∧ τ) = B(ω ∧ τ)(η(m) − η(m − 1))

(B(ω ∧ τ) − 1)μ(ω ∧ τ)
≥ (1 − ξ)λη(ω ∧ τ)

2μ(ω ∧ τ)
≥ 1 − ξ

2δμ(ω ∧ τ)dλ(ω, τ)

for any ω 	= τ ∈ Σ+, where m = |ω ∧ τ |. Hence we have the lower estimate in (6.10) and the off diagonal lower
estimate in (6.11). The near diagonal lower estimate is verified by the same argument as in the monotone case. �

8. Examples

In this section, we present examples. For simplicity, we set T = T (2) and adopt the settings of Example 2.9. Con-
sequently, Σ+ is identified with the 2-adic numbers Q2. In this case, N(x) = 2 for any x ∈ T . Hence μT (Σ+

x ) =
μT (Σ+

π(x))/2 for any x ∈ T and μT (Σ+
φ ) = 1. We use μ∗ to denote μT . Next we define a class of self-similar

measures on Σ+ including μ∗ as a special case.
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Proposition 8.1. Let ν0, ν1 ∈ (0,1) with ν0 + ν1 = 1. Then there exists a unique Borel regular measure on Σ+ which
satisfies ν(Σ+

φ ) = 1 and ν(Σ+
x ) = ναmν(Σ+

π(x)) for any x = (αi)i≤m ∈ T . This measure ν belongs to M(Σ+) and
satisfies (EL).

Note that if x = (αi)i≤m, then π(x) = (αi)i≤m−1.

Definition 8.2. For ν0, ν1 ∈ (0,1) with ν0 + ν1 = 1, the unique Borel regular measure ν given in Proposition 8.1 is
called the self-similar measure on Σ+ with weight (ν0, ν1).

μ∗ is the self-similar measure on Σ+ with weight (1/2,1/2).

Example 8.3. Let s = (s0, s1) ∈ (1,∞)2. Define λs ∈ �+(T ) inductively by λs(φ) = 1 and λs(x) = sαmλs(π(x)) for
any x = (αi)i≤m ∈ Σ+. More directly,

λs(x) = (s0)
KsαK+1 · · · sαm

for any (αi)i≤m ∈ T , where K = max{j |j ≤ m,αi = 0 for any i ≤ j }. Note that λs /∈ �+
AK(T ) if s0 	= s1. The basic

properties of λs are:

(1) λs ∈ �+
M,∞(T ).

(2) limm→∞ λs(φ−
m) = 0.

(3) λs satisfies (λ4).
(4) (Σ+, dλs) is uniformly perfect.

The last property (4) can be verified by Theorem 5.8. Thus if ν is a self-similar measure with weight (ν0, ν1), then
(λs, ν) satisfies all the assumptions of Theorems 4.5, 6.2 and (M) of Corollary 6.3. Hence we have the asymptotic
properties of the transition density given in those theorems and corollary.

Let h be the unique positive number which satisfies

(s0)
−h + (s1)

−h = 1.

Then, h is the Hausdorff dimension of (Σ+, dλs). Let μs be the self-similar measure with weight ((s0)
−h, (s1)

−h). One
can directly show that μs coincides with the h-dimensional Hausdorff measure on (Σ+, dλs). Moreover, it follows that

μs(Bdλs (ω, r)
) � rh

on Σ+ × (0,∞). Hence by Corollary 6.3, if Γs = (λs,μs), then

pΓs(t,ω, τ ) �
{ t

dλs (ω,τ)h+1 if dλs(ω, τ ) ≥ t ,

t−h if dλs(ω, τ ) < t

on (0,∞) × Σ+ × Σ+. In particular, if s = s0 = s1 then h = log 2/ log s and dλs(ω, τ ) = n2(ω − τ)log s/ log 2, where
n2(·) is the 2-adic norm. In this case, μs = μ∗ and (λs,μs) ∈ Θ+

AK(T ) with λs = ληs , where ηs(m) = sm+1/(2s − 1).

Example 8.4. For ε ∈ [0,1], define ηε :T → (0,∞) by

ηε(2n) = 2n and ηε(2n + 1) = (1 + ε)2n

for any n ∈ Z. Then ληε ∈ �+
AK(T ) and (ληε ,μ∗) ∈ Θ+

AK(T ) ∩ Θ+∞(T ). It follows that

ληε (x) =
{

(3 − ε)2n−1 if |x| = 2n,
(1 + 2ε)2n if |x| = 2n + 1.
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Thus we may easily verify (λ2) and (λ4) and apply Theorem 6.2. Theorem 5.8 shows that (Σ+, dλε ) is uniformly
perfect. Note that ληε ∈ �+

M(T ) if and only if ε ∈ [1/5,2/3]. Moreover, we have

Uληε
=

{{
(ω, τ )||ω ∧ τ | is even

}
if ε ∈ [

0,1/5),{
(ω, τ )||ω ∧ τ | is odd

}
if ε ∈ (2/3,1

]
.

However, if ε ∈ (0,1), then the condition (AK+) in Corollary 6.3 holds and hence we have asymptotic estimates
(6.10) and (6.11) on (0,∞) × Σ+ × Σ+. On the contrary, if ε ∈ {0,1}, then lower parts of these estimates fail on the
complement of Uλε . As a matter of fact, (3.3) implies that J (ω, τ) = 0 for any (ω, τ ) /∈ Uληε

in case ε ∈ {0,1}.

Example 8.5. Define

λ(x) =
{

(|x| + 1)! if |x| ≥ 0,
1

(−|x|+1)! if |x| < 0.

Then (λ,μ∗) ∈ Θ+
M,∞(T ) and (λ4) is satisfied. Also μ∗ satisfies (EL). Hence we have (6.10) and (6.11). In this case,

however, (Σ+, dλ) is not uniformly perfect. In fact, we have

lim sup
s↓0

Fλ(s,ω)

s
= lim sup

s→∞
Fλ(s,ω)

s
= +∞.

Therefore, for any θ ∈ (0,1) and any ω ∈ Σ+,

lim sup
s↓0

Eω(dλ(ω,Xt )
θ )

tθ
= lim sup

s→∞
Eω(dλ(ω,Xt )

θ )

tθ
= +∞.

9. Random walks on trees

In the rest of this paper, we study Dirichlet forms on noncompact Cantor sets induced by transient random walks on
trees. We will review fundamental notions and results on random walks on trees and their Martin boundaries in this
section. As a reference, one can see [22] for the details on random walks.

In this and the following sections, T = (T , A, φ∗) is a locally finite ordered tree where Assumption 2.2 holds and
φ ∈ T is a fixed reference point. We use π to denote πφ∗ .

First we define random walks on trees. In the following definition, (T , A) can be general non-directed graph.

Definition 9.1. C :T × T → [0,∞) is called a weight on the tree (T , A) if C(x, y) = C(y, x) and C(x, y) > 0 if
and only if A(x, y) > 0. For a weight C, define C(x) = ∑

y∈T C(x, y), q(x, y) = C(x, y)/C(x). Moreover, we define

q(n)(x, y) inductively by q(0)(x, y) = δxy , q(n+1)(x, y) = ∑
z∈T q(x, y)q(n)(x, y). Also G(x,y) = ∑

n≥0 q(n)(x, y).
G(x,y) is called the Green function of (T ,C).

The quantity q(n)(x, y) is the transition probability from x to y at time n. There exists a reversible Markov chain
({Zn}n≥0, {Qx}x∈T ) on T such that q(n)(x, y) = Qx(Zn = y) for any x, y ∈ T . We call (T ,C) a random walk on T .

Definition 9.2. A random walk (T ,C) is called transient if and only if G(x,y) < +∞ for any x, y ∈ T .

It is well-known that (T ,C) is transient if G(x,y) < +∞ for some x, y ∈ T .
Next we introduce a quadratic form associated with a random walk (T ,C).

Definition 9.3. Define

F(T ,C) =
{
u|u :T → R,

∑
x,y∈T

C(x, y)
(
u(x) − u(y)

)2
< +∞

}
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and, for any u,v ∈ F(T ,C),

E(T ,C)(u, v) = 1

2

∑
x,y∈T

C(x, y)
(
u(x) − u(y)

)(
v(x) − v(y)

)
.

For x ∈ T , define E(T ,C),x(u, v) = E(T ,C)(u, v) + u(x)v(x) for any u,v ∈ F(T ,C).

It is easy to see that (F(T ,C), E(T ,C),x) is a Hilbert space.

Definition 9.4. Let F0 be the closure of C0(T ) with respect to E(T ,C),x , where C0(T ) = {u| supp(u) is finite}.

Note that F0 is independent of the choice of x. If no confusion may occur, we use F , E and Ex in place of
F(T ,C), E(T ,C) and E(T ,C),x respectively. In terms of (E , F ), we have the following equivalent condition for transience
by [23,24]. See 4.51 of [22] for details.

Proposition 9.5. (T ,C) is transient if and only if supu∈C0(T ),u 	=0
u(x)2

E (u,u)
< +∞ for any x ∈ T .

Definition 9.6. For x ∈ T , define

Rx(T ,C) = sup

{
u(x)2

E(T ,C)(u,u)

∣∣∣u ∈ C0(T ), E(T ,C)(u,u) 	= 0

}
.

By Proposition 9.5, (T ,C) is transient if and only if Rx(T ,C) < +∞ for any x ∈ T . Rx(T ,C) is regarded as the
resistance between x and the infinity.

For x, y ∈ T , if Cx
y = C|T x

y ×T x
y

, then (T x
y ,Cx

y ) is a random walk on T x
y . Hereafter we assume the followings.

Assumption 9.7. (T x
y ,Cx

y ) is transient for any x, y ∈ T .

By the celebrated work of Cartier [10], we may identify the Martin boundary of the random walk (T ,C) with Σ ,
which is the collection of ends. Consequently we obtain Proposition 9.8 and Theorem 9.11 below. See [22], Chapter 7,
for details.

Proposition 9.8. There exists a Σ -valued random variable Z∞ such that

Qx

(
lim

n→∞Zn = Z∞
)

= 1

for any x ∈ T .

Definition 9.9. Let x ∈ T . For any Borel set A ⊆ Σ , define νx(A) = Qx(Z∞ ∈ A). νx is called the hitting distribution
of Σ starting from x.

νx is naturally extended to a Borel regular complete probability measure on A. We use νx to denote the extended
measure as well. Assumption 9.7 is equivalent to the condition that the support of νx is Σ .

Since νx = ∑
y∈V (x) q(x, y)νy , all νx ’s for x ∈ T are mutually absolutely continuous and the Radon–Nikodym

derivative dνy/dνx is bounded. Hence Lp(Σ,νx) = Lp(Σ,νy) for any x, y ∈ T and p ≥ 1. We use Lp(Σ) to denote
Lp(Σ,νx).

Definition 9.10. f :T → R is said to be harmonic on T if and only if
∑

y∈T q(x, y)f (y) = f (x) for any x ∈ T . The
collection of all harmonic functions is denoted by H.
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Theorem 9.11. For z ∈ T , let Kz(x, y) = G(x,y)/G(z, y) for any x, y ∈ T . Then Kz(x, y) is extended to a continu-
ous function on T × T̂ . Moreover, define H :L1(Σ) → �(T ) by

(Hf )(x) =
∫

Σ

Kz(x, y)f (y)νz(dy)

for any x ∈ T , where �(T ) = {u|u :T → R}. Then Hf is harmonic on T and independent of z.

The kernel Kz(x, y) is called the Martin kernel.

10. Resistances and hitting distributions

A random walk (T ,C) can be regarded as a electrical network consisting of resistors with resistances r(x, y) =
C(x, y)−1 between x and y belonging to T . In this respect we consider Ry(T

x
y ,Cx

y ) as the effective resistance between
y and the infinity with respect to the electrical network (T x

y ,Cx
y ). In this section, we study relations between such

resistances and hitting distributions.
As in the last section, T = (T , A, φ∗) is a locally finite ordered tree which satisfies Assumption 2.2, π = πφ∗ ,

φ ∈ T is a fixed referee point and (T ,C) is a weight on (T , A) which satisfies Assumption 9.7 throughout this section.

Definition 10.1. Define Rx
y = Ry(T

x
y ,Cx

y ). We write R+
x = R

π(x)
x for any x ∈ T , where π = πφ∗ .

By Assumption 9.7 along with Proposition 9.5, it follows that Rx
y < +∞ for any x, y ∈ T .

Recall that Σx
z = ⋃

y∈Sx(z) Σ
x
y , where the union is the disjoint union and Sx(z) = V (x)\πx(z). Furthermore note

that ∑
y∈Sx(z)

Rx
z

rx
y + Rx

y

= 1 (10.1)

since the effective resistance Rx
z between z and the infinity is a parallel combination of rx

y + Rx
y for y ∈ Sx(z).

See Fig. 3 for the case where Sx(z) = {y, y′}. In conjunction with these facts, the following relation on the hitting
distribution has been shown in [18], Theorem 3.8.

Theorem 10.2. For any x, y and z ∈ T with πx(y) = z,

νx

(
Σx

y

) = Rx
z

rx
y + Rx

y

νx

(
Σx

z

)
, (10.2)

where rx
y = C(y, z)−1.

Next we introduce a Borel regular measure ν∗ on Σ+ associated with the random walk (T ,C). Intuitively, ν∗ is a
kind of “hitting distribution from φ∗” although ν∗(Σ+) can be +∞.

Fig. 3. Calculation of Rx
z if Sx(z) = {y, y′}.
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Fig. 4. Rn , R̃n, rn and ρn .

Proposition 10.3. There exists a unique Borel regular complete measure ν∗ on Σ+ which satisfies ν∗(Σ+
φ ) = 1 and

ν∗
(
Σ+

y

) = R+
z

rz
y + R+

y

ν∗
(
Σ+

z

)
(10.3)

for any z ∈ T and any y ∈ S+(z).

Let x = π(z). Then S+(z) = Sx(z), Σ+
y = Σx

y , Σ+
z = Σx

z , R+
z = Rx

z , rz
y = rx

y and R+
y = Rx

y . These relations shows
that (10.3) is obtained by replacing νx by ν∗ in (10.2).

Using (10.3) inductively, we obtain ν∗(Σ+
x ) for every x ∈ T . It is straight forward to show the above proposition.

For example, (10.1) yields the consistency of ν∗.
Comparing (10.2) with (10.3), we immediately obtain the next lemma. In the followings, we regard ν∗ as a Borel

regular measure on Σ by letting ν∗({φ∗}) = 0.

Lemma 10.4. Let x ∈ T . If y /∈ {x−
n |n ≥ 0}, then T x

y = T +
y ,Rx

y = R+
y ,Σx

y = Σ+
y and νx(A∩Σ+

y )/νx(Σ
+
y ) = ν∗(A∩

Σ+
y )/ν∗(Σ+

y ) for any Borel set A ⊆ Σ .

Using the above lemma, we see that νx is absolutely continuous with respect to ν∗.

Lemma 10.5. For any x ∈ T , there exists c > 0 such that ν∗(A) ≥ cνx(A) for any Borel set A ⊆ Σ+.

Proof. Without loss of generality, we may assume that x = φ. Write rm = C(φ−
m,φ−

m−1)
−1 for m ≥ 1 and Rm = R

φ

φ−
m

and R̃m = R+
φ−

m
for m ≥ 0. (See Fig. 4.) Let y ∈ S+(φ−

n ) ∩ Sφ(φ−
n ). Set ry = C(φ−

n , y)−1. Then by Theorem 10.2,

νφ

(
Σφ

y

) = Rn

ry + R
φ
y

Rn−1

rn + Rn

· · · R0

r1 + R1
νφ(Σ). (10.4)

By the definition of ν∗, we also have

ν∗
(
Σ+

φ

) = R̃n

rn + R̃n−1

R̃n−1

rn−1 + R̃n−2
· · · R̃1

r1 + R̃0
ν∗

(
Σ+

φ−
n

)
(10.5)

and

ν∗
(
Σ+

y

) = R̃n

ry + R+
y

ν∗
(
Σ+

φ−
n

)
. (10.6)

By Lemma 10.4, (10.4), (10.5) and (10.6) implies

ν∗(Σ+
y )

νφ(Σ+
y )

=
(

rn + R̃n−1

R̃n−1
· · · r2 + R̃1

R̃1

)(
rn + Rn

Rn

· · · r1 + R1

R1

)
r1 + R̃0

R0
. (10.7)
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Using Lemma 10.4 again, we obtain

ν∗(A) ≥ r1 + R̃0

R0
νφ(A)

for any Borel set A ⊆ Σ+. �

Definition 10.6. For any x ∈ T , we define D+
x = ν∗(Σ+

x )R+
x and λ+

x = 1/D+
x .

In the next section, {λ+
x }x∈T is shown to be the collection eigenvalues of the self-adjoint operator associate with

the Dirichlet form on Σ+ induced by the random walk (T ,C).
By (10.3), we have the next proposition.

Proposition 10.7. For any x ∈ T and any y ∈ S+(x),

D+
x − D+

y = rx
y ν∗

(
Σ+

y

)
and

D+
y

D+
x

= R+
y

rx
y + R+

y

.

In particular, D+
x > D+

y and λ+
x < λ+

y .

By the above proposition, D+
[ω]n and λ+

[ω]n converges as n → ∞ and as n → −∞ for any ω ∈ Σ+, if we allow ∞
as a value of a limit. Note that [ω]−m = φ−

m for sufficiently large m. So the limits as n → −∞ do not depend on ω.

Theorem 10.8. Define λ+ = limm→∞ λ+
φ−

m
. Then λ+ > 0 if and only if νφ({φ∗}) > 0.

By letting λ(x) = λ+
x , the constant λ+ turns out to correspond to λI in Section 11. The above theorem says that the

Dirichlet form on Σ+ associated with (T ,C) is conservative if and only if the hitting probability of the single point
φ∗ by the original random walk (T ,C) is 0.

To prove Theorem 10.8, we need series of lemmas.

Lemma 10.9. Define T̂n = T +
φ−

n
∩ T

φ

φ−
n

and ρn = Rφ−
n
(T̂n,C|T̂n×T̂n

). Let Rn, rn and R̃n be the same as in the proof of

Lemma 10.5. Then

(1) νφ({φ∗}) > 0 ⇔ ∑
n≥0

Rn

ρn
< +∞,

(2) λ+ > 0 ⇔ ∑
n≥1

rn

R̃n−1
< +∞.

Proof. As is indicated in Fig. 4, the definitions of ρn,Rn and R̃n imply

1

Rn

= 1

rn+1 + Rn+1
+ 1

ρn

(10.8)

and

1

R̃n

= 1

rn + R̃n−1
+ 1

ρn

. (10.9)

(1) By (10.8), it follows that

νφ

(
Σ

φ

φ−
n+1

) =
(

1 − Rn

ρn

)
νφ

(
Σ

φ

φ−
n

)
. (10.10)

Since νφ({φ∗}) = limn→∞ νφ(Σ
φ

φ−
n
), we obtain the desired statement.
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(2) By (10.5), we have

λ+
φ−

n
= R̃n−1

rn + R̃n−1

R̃n−2

rn−1 + R̃n−2
· · · R̃1

r2 + R̃1
× 1

r1 + R̃0
.

This implies the desired equivalence. �

Let an = R̃n/ρn and let bn = rn/R̃n−1. Then by (10.9), we have R̃n = (1 − an)(1 + bn)R̃n−1. Hence,

R̃n = AnBn, (10.11)

where A0 = 1, An = (1 − a1)(1 − a2) · · · (1 − an) for n ≥ 1 and Bn = (1 + b1)(1 + b2) · · · (1 + bn)R̃0 for n ≥ 1.
Moreover,

1

ρn

= an/(AnBn) =
(

1

An

− 1

An−1

)
1

Bn

, (10.12)

rn = bnAn−1Bn−1 = An−1(Bn − Bn−1). (10.13)

Note that An < An−1 and Bn > Bn−1. From Lemma 10.9, we have the following statements.

Lemma 10.10. λ+ > 0 ⇔ ∑
n≥1 bn < +∞ ⇔ supn≥1 Bn < +∞.

The following lemma is the essential part of our proof of Theorem 10.8.

Lemma 10.11. λ+ > 0 ⇔
∑
n≥2

(
n−1∑
i=1

1

ρi

)
rn < +∞. (10.14)

If (10.14) holds then
∑

n≥1 rn < +∞. Note that

∑
n≥2

(
n−1∑
i=1

1

ρi

)
rn =

∑
n≥1

( ∞∑
j=n+1

rj

)
1

ρn

. (10.15)

Proof. ⇒: (10.12) shows that

n−1∑
i=1

1

ρi

≤
n−1∑
i=1

(
1

Ai

− 1

Ai−1

)
1

B1
≤ 1

An−1

1

B1
.

Hence by (10.13) and Lemma 10.10(2),

∑
n≥2

(
n−1∑
i=1

1

ρi

)
rn ≤

∑
n≥2

Bn − Bn−1

B1
= 1

B1

(
lim

n→∞Bn − B1

)
< +∞.

⇐: Using (10.12), we have

n−1∑
i=1

1

ρi

= 1

An−1Bn−1
− 1

B1
+

n−2∑
j=1

1

Aj

(
1

Bj

− 1

Bj+1

)
≥ 1

An−1Bn−1
− 1

B1
.
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Therefore by (10.13),

∑
n≥2

(
n−1∑
i=1

1

ρi

)
rn + 1

B1

∑
n≥2

rn ≥
∑
n≥2

bn.

Since (10.14) implies
∑

n≥1 rn < +∞, λ+ > 0 follows from the above inequality. �

Next, let xn = Rn/ρn, where ρ0 = R̃0, and let yn = rn/Rn. Then by (10.8), it follows that Rn+1 = Rn/(1 −xn)(1 +
yn+1). Hence

Rn = 1

XnYn

, (10.16)

where Xn = (1 − xn−1)(1 − xn−2) · · · (1 − x0) and Yn = (1 + yn)(1 + yn−1) · · · (1 + y1)/R0. Furthermore,

1

ρn

= xnXnYn = (Xn − Xn+1)Yn, (10.17)

rn = ynRn = 1

Xn

(
1

Yn−1
− 1

Yn

)
. (10.18)

By Lemma 10.9, we have the following fact.

Lemma 10.12. νφ({φ∗}) > 0 ⇔ ∑
n≥1 xn < +∞ ⇔ infn≥1 Xn > 0.

Finally we conclude our proof of Theorem 10.8.

Proof of Theorem 10.8. By Lemma 10.11, it is enough to show that νφ({φ∗}) > 0 ⇔ (10.14).
⇐: Since Rn ≤ ∑

i≥n+1 rn, (10.14) suffices to show νφ({φ∗}) > 0.
⇒: By Lemma 10.12, there exists C > 0 such that 1/Xn ≤ C for any n ≥ 1. Hence (10.18) shows that

∑
i≥n+1 ri ≤

C
Yn

. Combining this with (10.17)

∑
n≥1

( ∑
i≥n+1

ri

)
1

ρn

≤ C
∑
n≥1

(Xn − Xn+1) ≤ CX1.

By (10.15), we have (10.14). �

At the end of this section, we present another fundamental relation between resistances, which will play an essential
role in the proof of Theorem 11.3.

Theorem 10.13. For any m ≥ 0,

m∑
k=0

(Xm+1)
2

ρkXkXk+1
= 1

Rm+1 + rm+1 + R̃m

, (10.19)

where we let X0 = 1 and R̃0 = ρ0.

Proof. We use an induction on m. If m = 0, then (10.19) is

1

ρ0

(
1 − R0

ρ0

)
= 1

R1 + r1 + ρ0
. (10.20)

Since 1/R0 = 1/ρ0 + 1/(R1 + r1), a routine calculation implies (10.20).
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Assume that (10.19) holds for m = M . To establish (10.19) for m = M + 1, it is enough to show(
XM+2

XM+1

)2 1

RM+1 + rM+1 + R̃M

+ (XM+2)
2

ρM+1XM+1XM+2
= 1

RM+2 + rM+2 + R̃M+1
. (10.21)

Since XM+2/XM+1 = 1 − xM+1 = 1 − Rm+1/ρm+1, (10.21) becomes

(ρM+1 − RM+1)
2

(ρM+1)2(RM+1 + rM+1 + R̃M)
+ ρM+1 − RM+1

(ρM+1)2
= 1

R + R̃M+1
, (10.22)

where R = RM+2 + rM+2. Using the relations 1/R̃M+1 = 1/ρM+1 +1/(rM+1 + R̃M) and 1/RM+1 = 1/ρM+1 +1/R,
we may eliminate R̃M+1 and RM+1 and show (10.22). Thus (10.19) for m = M + 1 holds. �

11. Dirichlet forms induced by random walks

In this section, we will show that the Dirichlet form on Σ+ induced by a random walk (T ,C) belongs to the class of
Dirichlet forms studied in the earlier sections of this paper.

As in the last section, T = (T , A, φ∗) is an ordered tree which satisfies Assumption 2.2, π = πφ∗ , φ ∈ T is a fixed
referee point and (T ,C) is a weight on (T , A) which satisfies Assumption 9.7 throughout this section.

By Lemma 10.5, we may immediately verify the following statement.

Lemma 11.1. For any ν∗-measurable function f :Σ+ → R, we define f̃ :Σ → R by f̃ (φ∗) = 0 and f̃ (ω) = f (ω)

for any ω ∈ Σ+. Then f̃ is a νφ-measurable function. In particular, if f ∈ L2(Σ+, ν∗), then f̃ ∈ L2(Σ,νφ) and

c‖f̃ ‖2
2,νφ

≤ ‖f ‖2
2,ν∗ , (11.1)

where c > 0 is independent of f .

In light of the above lemma, we naturally regard L2(Σ+, ν∗) as a subset of L2(Σ,νφ). In this manner, we identify
f̃ with f .

Now we present how we can induce a Dirichlet form on Σ+ from a random walk on a tree. The basic idea is to
extend a function on Σ+ to a harmonic function on T by using the Martin kernel as in Theorem 9.11 and then consider
the energy of the harmonic function.

Definition 11.2. Define

FΣ+ = {
f |f ∈ L2(Σ+, ν∗

)
,Hf ∈ F

}
and EΣ+(u, v) = E (Hu,Hv)

for any u,v ∈ FΣ+ , where H is defined in Theorem 9.11.

Theorem 11.3. Define λ :T → [0,∞) by λ(x) = λ+
x for any x ∈ T . Then (λ, ν∗) ∈ Θ+

M(T ), λI = λ+ and
(EΣ+ , FΣ+) = (QΓ , DΓ ), where Γ = (λ, ν∗). In particular, (EΣ+ , FΣ+) is a regular Dirichlet form on L2(Σ+, ν∗).

Since Γ = (λ, ν∗) is determined by the ordered tree T = (T , A, φ∗) and weight C on (T , A), we write Γ =
Γ (T ,C).

We use the following result obtained in Section 5 of [18] to prove Theorem 11.3.

Theorem 11.4. Let λx
y = (νx(Σ

x
y )Rx

y )−1. Define FΣ = {f |f ∈ L2(Σ),Hf ∈ F } and EΣ(u, v) = E (Hu,Hv) for any

u,v ∈ FΣ . Then for any x ∈ T , (EΣ, FΣ) is a regular Dirichlet form on L2(Σ,νx),

FΣ =
{
u

∣∣∣u ∈ L2(Σ,νx),
∑
y∈T

λx
y

2νx(Σx
y )

∑
z,w∈Sx(y)

νx

(
Σx

z

)
νx

(
Σx

w

)(
(u)z,νx − (u)w,νx

)2
< +∞

}
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and

EΣ(u, v) =
∑
y∈T

λx
y

2νx(Σx
y )

∑
z,w∈Sx(y)

νx

(
Σx

z

)
νx

(
Σx

w

)(
(u)z,νx − (u)w,νx

)(
(v)z,νx − (v)w,νx

)

for any u,v ∈ FΣ . Moreover, if Ex
y = {ϕ|ϕ = ∑

z∈S+(y) azχΣx
z
,
∫
Σ

ϕ dνx = 0}, then E (ϕ,u) = λx
y(ϕ,u)νx for any

y ∈ T , any ϕ ∈ Ex
y , and any u ∈ FΣ .

Proof of Theorem 11.3. First we show that (EΣ+ , FΣ+) is closed. Note that FΣ+ ⊆ FΣ and EΣ+ = EΣ |FΣ+×FΣ+
by Lemma 11.1. Let E 1

Σ+(u, v) = EΣ+(u, v) + (u, v)ν∗ and E 1
Σ(u, v) = EΣ(u, v) + (u, v)νφ . Let {un}n≥1 be an E 1

Σ+ -
Cauchy sequence. By (11.1), {un}n≥1 is an E 1

Σ -Cauchy sequence and at the same time an L2(Σ+, ν∗)-Cauchy se-
quence. Hence there exists u ∈ FΣ+ such that E 1

Σ+(u − un,u − un) → 0 as n → ∞. Hence (EΣ+ , FΣ+) is closed.
It is immediate to see that Γ ∈ Θ+

M(T ). Theorem 3.7 and Proposition 3.10 imply that (QΓ , DΓ ) is a regular
Dirichlet form on L2(Σ+, ν∗). In particular, both (EΣ+ , FΣ+) and (QΓ , DΓ ) are closed. Let L1 and L2 be the self-
adjoint operators associated with closed forms (EΣ+ , FΣ+) and (QΓ , DΓ ) respectively. To identify (EΣ+ ,FΣ+) with
(QΓ , DΓ ), it is enough to show that L1 = L2.

Now let y ∈ T and set x = π(y). By Lemma 10.4, S+(y) = Sx(y), Rx
y = R+

y , Σ+
y = Σx

y and there exists c > 0 such
that νx |Σ+

y
= cν∗|Σ+

y
. This implies Ey,νx = Ey,ν∗ . Theorem 11.4 shows that EΣ(ϕ,u) = λx

y(ϕ,u)νx for any ϕ ∈ Ey,νx

and any u ∈ FΣ . Since λx
y = λ+

y /c and (ϕ,u)νx = c(ϕ,u)ν∗ , we have EΣ+(ϕ,u) = λ+
y (ϕ,u)ν∗ . Hence ϕ ∈ Ey,ν∗ is

an eigenfunction with eigenvalue λ+
y of the self-adjoint operator on L2(Σ+, ν∗) associated with the closed form

(EΣ+ , FΣ+).
Suppose ν∗(Σ+) = +∞. Using Proposition 3.3, we see that

⊕
y∈T Ey,ν∗ is dense in L2(Σ+, ν∗). Hence by the

above discussion, we have all the eigenvalues and eigenfunctions of L1. Theorem 3.4 shows that those eigenvalues
and eigenfunctions are exactly the same as those of L2. Thus we have (EΣ+ , FΣ+) = (QΓ , DΓ ).

Next suppose ν∗(Σ+) < +∞. The orthogonal complement of
⊕

y∈T Ey,ν∗ in L2(Σ+, ν∗) is {aχΣ+|a ∈ R}. As-
sume νφ({φ∗}) = 0. Then χΣ+(ω) = χΣ(ω) for νφ-a.e. ω ∈ Σ . Hence we have EΣ+(χΣ+ , χΣ+) = EΣ(χΣ,χΣ) = 0.
Therefore, χΣ+ is an eigenfunction with eigenvalue 0 of L1. On the other hand, by Theorem 10.8-(1), it follows
that λI = 0 and hence χΣ+ is an eigenfunction with eigenvalue λI = 0. Using Theorem 3.4, we see that χΣ+ is an
eigenfunction with eigenvalue 0 of L2. Thus all the eigenvalues and eigenfunctions of L1 and L2 coincide and hence
L1 = L2.

Finally suppose that ν∗(Σ+) < +∞ and νφ({φ∗}) > 0. Since EΣ(χΣ,χΣ) = E(T ,C)(1,1) = 0, we see that

EΣ+(χΣ+ , χΣ+) = EΣ(ϕ∗, ϕ∗), where ϕ∗ = χ{φ∗} = χΣ − χΣ+ . Now write λm = λ
φ

φ−
m

, Sm = Sφ(φ−
m) and νm =

νφ(Σ
φ

φ−
m
) for m ≥ 0. Also let νy = νφ(Σ

φ
y ). Then

EΣ(ϕ∗, ϕ∗) =
∑
m≥0

λm

2νm

∑
y,z∈Sm

νyνz

(
(ϕ∗)y,νφ − (ϕ∗)z,νφ

)2

=
∑
m≥0

λm

νm

∑
z∈Sm\{φ−

m+1}
νm+1νz

νφ({φ∗})2

(νm+1)2
= νφ

({φ∗}
)2 ∑

m≥0

λm

νm − νm+1

νmνm+1
.

By (10.10), we have Xm = νm. Also (10.16) shows that λm = (νmRm)−1 = Ym. Therefore, using (10.17) and Theo-
rem 10.13, we obtain

EΣ+(χΣ+ , χΣ+) =
(

lim
m→∞Xm

)2 ∑
m≥0

1

ρmXmXm+1
= lim

m→∞
1

Rm+1 + rm+1 + R̃m

.
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By Lemma 10.11, we have (10.14). In particular,
∑

m≥0 rm < +∞. Since Rm ≤ ∑
n≥m+1 rn, it follows that

limm→∞ rm = limm→∞Rm = 0. Therefore,

EΣ+(χΣ+ , χΣ+) = lim
m→∞

1

R̃m

= lim
m→∞

ν∗(Σ+
φ−

m
)

D+
φ−

m

= ν∗
(
Σ+)

λ+.

This yields that χΣ+ is an eigenfunction of L1 with eigenvalue λ+ = λI . On the other hand, χΣ+ is an eigenfunction
of L2 with eigenvalue λI . Thus we have shown L1 = L2. �

Now that (EΣ+ , FΣ+) is identified with (QΓ , DΓ ) for Γ = Γ (T ,C), we may apply the results from Section 3
to Section 6 to (EΣ+ , FΣ+). Note that Γ is in the monotone class, i.e. Γ (T ,C) ∈ Θ+

M(T ) and hence the conditions
(λ1) and (λ2) are satisfied. For example, we have expressions of (EΣ+ , FΣ+) by Theorems 3.4 and 3.7. Furthermore,
if λ+

[ω]m → +∞ as m → ∞ for any ω ∈ Σ+, then there exists the transition density pΓ (t,ω, τ ) by Theorem 4.5.
Moreover, assume that ν∗ satisfies (EL) and that λ satisfies (λ4), i.e. ν∗ has the volume doubling property with respect
to dλ. Then we have the asymptotic behaviors of the transition density pΓ (t,ω, τ ) and the jump kernel J∗(·, ·) by
Corollary 6.3.

Example 11.5 (Self-similar weight on 2-adic numbers). Let T = T (2) and let (T , A, φ∗) be that given in Example 2.9.
Naturally, Σ+ is the set of 2-adic numbers Q2. We consider a self-similar weight Cγ on T . For x = (αi)i≤m ∈ T

(2)
m ,

define K(x) = max{j |j ≤ m,αi = 0 for any i ≤ j }. Let γ = (γ0, γ1) ∈ (0,∞)2. We define Cγ by Cγ (π(x), x)−1 =
(γ0)

K(x)γαK(x)+1γαK(x)+1 · · ·γαm for x = (αi)i≤m ∈ T
(2)
m . Then, Assumption 9.7 holds if and only if γ0γ1/(γ0 + γ1) < 1.

Under this condition, we see that R+
x = rxR, where rx = Cγ (π(x), x)−1 and R = (γ0 + γ1)/(γ0γ1) − 1. Letting ν0 =

γ1/(γ0 +γ1) and ν1 = γ0/(γ0 +γ1) and using Proposition 10.3, we see that ν∗ is the self-similar measure on Σ+ with
weight (ν0, ν1). These facts yield D+

x = ν∗(Σ+
x )R+

x = (γ0γ1/(γ0 + γ1))
|x|R. Hence λ = λ(T ,Cγ ) essentially belongs

to the family discussed in Example 8.3. More precisely, λ = λs/R with s = (s0, s1), where s0 = s1 = (γ0)
−1 + (γ1)

−1.
Note that even if γ0 	= γ1, λ is homogeneous, i.e. it only depends on |x| and dλ(ω, τ) = n2(ω − τ)log s/ log 2R, where
s = s0 = s1 and n2(·) is the 2-adic norm. As is discussed in Example 8.3, Γ = Γ (T ,Cγ ) satisfies (EL) and (λ4)
and hence we may apply Corollary 6.3 to obtain estimates of the transition density pΓ (t,ω, τ ) and the jump kernel
J∗(ω, τ ). Moreover, we have

Eω

(
dλ(ω,Xt )

θ
) �

{+∞ if θ ≥ 1,
tθ if 0 < θ < 1.

on (t,ω) ∈ (0,∞) × Σ+.

Example 11.6 (Homogeneous weight on 2-adic numbers). Let (T , A, φ∗) be the same as in Example 11.5. Let r(n) >

0 for any n ∈ Z. Define C(π(x), x) = r(|x|)−1. Then (T ,C) is transient if and only if
∑

n≥0 r(n)/2n < +∞. Assuming
the transience, we have R+

x = 2|x| ∑
n≥|x|+1 r(n)/2n and ν∗(Σ+

x ) = 2−|x| for any x ∈ T . In particular, ν∗ = μT .
Hence D+

x = ∑
n≥|x|+1 r(n)/2n. Now let {λ(n)}n∈Z satisfy 0 < λ(n) < λ(n + 1) for any n ∈ Z and limn→∞ λ(n) =

+∞. Then there exists {r(n)}n∈Z such that the associated (T ,C) satisfies Assumption 9.7 and λ+
x = (D+

x )−1 = λ(|x|)
for any x ∈ T . Then by (4.1), we have the corresponding transition density p(t,ω, τ) and the jump kernel J∗(ω, τ ) as
follows:

p(t,ω, τ) =
|ω∧τ |∑
n=−∞

2n
(
e−λ(n−1)t − e−λ(n)t

)
(11.2)

and

J∗(ω, τ ) =
|ω∧τ |∑
n=−∞

2n
(
λ(n) − λ(n − 1)

)
.
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Hence choosing {λ(n)}n∈Z, one may build an example of (T ,C) where p(t,ω, τ) and J∗(ω, τ ) have desired asymp-
totic behaviors. Note that (11.2) has been obtained in [3] as a formal expansion of a transition density in the case of
2-adic numbers.

12. Inverse problem

In Section 11, we have observed that the regular Dirichlet form (EΣ+ , FΣ+) on L2(Σ+, ν∗) associated with a transient
random walk on T belongs to the class of Dirichlet forms defined in Section 3. To be precise, let λ(x) = λ+

x for any
x ∈ T and let Γ = (λ, ν∗). Then (EΣ+ , FΣ+) = (QΓ , DΓ ).

In this section, we consider the inverse problem. Namely, we first give λ :T → [0,∞) and a Borel regular measure
μ on Σ with (λ,μ) ∈ Θ+(T ). Then we are going to ask whether or not there exists a transient random walk (T ,C)

such that the associated Dirichlet form (EΣ+ , FΣ+) on L2(Σ+, ν∗) coincides with (QΓ , DΓ ) on L2(Σ+,μ). By
Theorem 11.3, it is enough to show that Γ (T ,C) = (λ,μ) to identify (EΣ+ , FΣ+) with (QΓ , DΓ ). Proposition 10.7
implies that a necessary condition for the existence of a random walk is λ(π(x)) < λ(x) for any x ∈ T . Under this
condition, the assumption (λ1) holds as we have remarked.

As in the previous sections, (T , A, φ∗) is a locally finite ordered tree which satisfies Assumption 2.2 and φ ∈ T in
this section. We use π to denote πφ∗ .

Theorem 12.1. Let (λ,μ) ∈ Θ+
M,∞(T ) with μ(φ) = 1. If λ(π(x)) < λ(x) for any x ∈ X, then there exists a transient

random walk (T ,C) with Assumption 9.7 such that μ = ν∗ and λ(x) = λ+
x for any x ∈ T .

The condition μ(φ) = 1 is merely a normalization. Recall that ν∗(Σ+
φ ) = 1 by definition.

Proof. First fix x ∈ T . Define a probability measure μ̃x by μ̃x(A) = μ(A)/μ(x) for any Borel set A ⊆ Σ+
x . Then by

Theorem 11.1 of [18], we have a transient random walk (T +
x , C̃x) on T +

x where μ̃x is the hitting distribution starting
from x and λ is the eigenvalue map. Moreover, let r̃x

y = C̃x(π(y), y)−1 for any y ∈ T +
x \{x}. Then using (11.3) of

[18], we have

r̃x
y = 1

μ̃x(Σ
+
y )

(
1

λ(π(y))
− 1

λ(y)

)
. (12.1)

Also by Theorem 10.2,

μ̃x

(
Σ+

y

) = R̃x
π(y)

r̃x
y + R̃x

y

μ̃x

(
Σ+

π(y)

)
, (12.2)

where R̃x
y = Ry(T

+
y , C̃x |T +

y ×T +
y

). Now define

rz = 1

μ(z)

(
1

λ(π(z))
− 1

λ(z)

)
for any z ∈ T . If z ∈ T +

x , then

rz = r̃x
z /μ(x). (12.3)

Let C(π(z), z) = (rz)
−1. We are going to show that (T ,C) is the desired random walk. Let ν∗ be the measure on Σ

defined in Proposition 10.3 associated with (T ,C). First, if y ∈ T +
x , then (12.3) implies

Ry

(
T +

y ,C|T +
y ×T +

y

) = R̃x
y /μ(x). (12.4)

Let R+
y = Ry(T

+
y ,C|T +

y ×T +
y

). Then (12.4) along with (12.3) yields

μ(y) = R+
π(y)

ry + R+
y

μ
(
π(y)

)
.
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Note that ν∗(Σ+
φ ) = μ(φ) = 1. Hence, by Proposition 10.3, the above equality shows that ν∗ = μ. Since λ is the

eigenvalue map of (T +
x , C̃x), if y ∈ T +

x , we have

1

λ(y)
= μ̃x

(
Σ+

y

)
R̃x

y = μ(y)
R̃x

y

μ(x)
= μ(y)R+

y = 1

λ+
y

. (12.5)

Thus we have shown that (T ,C) is the desired random walk. �
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