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Abstract. Our purpose is to investigate properties for processes with stationary and independent increments under G-expectation.
As applications, we prove the martingale characterization of G-Brownian motion and present a pathwise decomposition theorem
for generalized G-Brownian motion.

Résumé. Notre but est d’étudier des propriétés de processus à accroissements stationnaires et indépendants sous une G-espérance.
Comme application, nous démontrons la caractérisation de la martingale de G-mouvement Brownien et fournissons un théorème
de décomposition trajectorielle pour le G-mouvement Brownien généralisé.
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1. Introduction

Recently, motivated by the modelling of dynamic risk measures, Shige Peng ([3–5]) introduced the notion of a G-
expectation space. It is a generalization of probability spaces (with their associated linear expectation) to spaces
endowed with a nonlinear expectation. As the counterpart of Wiener space in the linear case, the notion of G-Brownian
motion was introduced under the nonlinear G-expectation.

Recall that if {At } is a continuous process over a probability space (Ω, F ,P ) with stationary, independent in-
crements and finite variation, then there exists some constant c such that At = ct . However, it is not the case in the
G-expectation space (ΩT ,L1

G(ΩT ), Ê). A counterexample is {〈B〉t }, the quadratic variation process for the coor-
dinate process {Bt }, which is a G-Brownian motion. We know that {〈B〉t } is a continuous, increasing process with
stationary and independent increments, but it is not deterministic.

The process {〈B〉t } is very important in the theory of G-expectation, which shows, in many aspects, the difference
between probability spaces and G-expectation spaces. For example, we know that for a probability space continuous
local martingales with finite variation are trivial processes. However, [4] proved that in a G-expectation space all pro-
cesses in form of

∫ t

0 ηs d〈B〉s − ∫ t

0 2G(ηs)ds, η ∈ M1
G(0, T ) (see Section 2 for the definitions of the function G(·) and

the space M1
G(0, T )), are nontrivial G-martingales with finite variation (in fact, they are even nonincreasing) and con-

tinuous paths. [4] also conjectured that any G-martingale with finite variation should have such representation. Up to
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now, some properties of the process {〈B〉t } remain unknown. For example, we know that, if G(x) = 1
2 supσ≤σ≤σ σ 2x

generates the G-expectation, we have σ 2(t − s) ≤ 〈B〉t − 〈B〉s ≤ σ(t − s) for all s < t , but we do not know whether
{ d

ds
〈B〉s} belongs to M1

G(0, T ). This is a very important property since { d
ds

〈B〉s} ∈ M1
G(0, T ) would imply that the

representation mentioned above of G-martingales with finite variation is not unique.
For the case of a probability space, a continuous local martingale {Mt } is a standard Brownian motion if and only

if the quadratic variation process 〈M〉t = t . However, it’s not the case for G-Brownian motion since its quadratic
variation process is only an increasing process with stationary and independent increments. How can we give a char-
acterization for G-Brownian motion?

In this article, we shall prove that if At = ∫ t

0 hs ds (respectively At = ∫ t

0 hs d〈B〉s ) is a process with stationary,

independent increments and h ∈ M1
G(0, T ) (respectively h ∈ M

β,+
G (0, T ), for some β > 1), then there exists some

constant c such that h ≡ c. As applications, we prove the following conclusions (Question 1 and 3 are put forward by
Prof. Shige Peng in private communications):

1. { d
ds

〈B〉s} /∈ M1
G(0, T ).

2. (Martingale characterization)
A symmetric G-martingale {Mt } is a G-Brownian motion if and only if its quadratic variation process {〈M〉t }

has stationary and independent increments;
A symmetric G-martingale {Mt } is a G-Brownian motion if and only if its quadratic variation process 〈M〉t =

c〈B〉t for some c ≥ 0.

The sufficiency of the second assertion is trivial, but not the necessity.

3. Let {Xt } be a generalized G-Brownian motion with zero mean, then we have the following decomposition:

Xt = Mt + Lt ,

where {Mt } is a (symmetric) G-Brownian motion, and {Lt } is a nonpositive, nonincreasing G-martingale with
stationary and independent increments.

This article is organized as follows: In Section 2 we recall some basic notions and results of G-expectation and the
related space of random variables. In Section 3 we characterize processes with stationary and independent increments.
In Section 4, as application, we prove the martingale characterization of G-Brownian motion and present a decompo-
sition theorem for generalized G-Brownian motion. In Section 5 we present some properties for G-martingales with
finite variation.

2. Preliminary

We recall some basic notions and results of G-expectation and the related space of random variables. More details of
this section can be found in [3–8].

Definition 2.1. Let Ω be a given set and let H be a vector lattice of real valued functions defined on Ω with c ∈ H for
all constants c. H is considered as the space of “random variables.” A sublinear expectation Ê on H is a functional
Ê : H → R satisfying the following properties: For all X,Y ∈ H, we have

(a) Monotonicity: If X ≥ Y then Ê(X) ≥ Ê(Y ).
(b) Constant preserving: Ê(c) = c.
(c) Sub-additivity: Ê(X) − Ê(Y ) ≤ Ê(X − Y).
(d) Positive homogeneity: Ê(λX) = λÊ(X), λ ≥ 0.

(Ω, H, Ê) is called a sublinear expectation space.

Definition 2.2. Let X1 and X2 be two n-dimensional random vectors defined respectively in sublinear expectation
spaces (Ω1, H1, Ê1) and (Ω2, H2, Ê2). They are called identically distributed, denoted by X1 ∼ X2, if Ê1[ϕ(X1)] =
Ê2[ϕ(X2)], for all ϕ ∈ Cl,Lip(R

n), where Cl,Lip(R
n) is the space of real continuous functions defined on Rn such that∣∣ϕ(x) − ϕ(y)

∣∣ ≤ C
(
1 + |x|k + |y|k)|x − y|, for all x, y ∈ Rn,
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where k and C depend only on ϕ.

Definition 2.3. In a sublinear expectation space (Ω, H, Ê) a random vector Y = (Y1, . . . , Yn), Yi ∈ H, is said to be
independent of another random vector X = (X1, . . . ,Xm), Xi ∈ H, under Ê(·), denoted by Y ⊥ X, if for every test
function ϕ ∈ Cb,Lip(R

m × Rn) we have Ê[ϕ(X,Y )] = Ê[Ê[ϕ(x,Y )]x=X].

Definition 2.4 (G-normal distribution). A d-dimensional random vector X = (X1, . . . ,Xd) in a sublinear expecta-
tion space (Ω, H, Ê) is called G-normal distributed if for every a, b ∈ R+ we have

aX + bX̂ ∼
√

a2 + b2X,

where X̂ is an independent copy of X. Here the letter G denotes the function

G(A) := 1

2
Ê

[
(AX,X)

]
:Sd → R,

where Sd denotes the collection of d × d symmetric matrices.

The function G(·) :Sd → R is a monotonic, sublinear mapping on Sd and G(A) = 1
2 Ê[(AX,X)] ≤ 1

2 |A|Ê[|X|2] =:
1
2 |A|σ̄ 2 implies that there exists a bounded, convex and closed subset Γ ⊂ S+

d such that

G(A) = 1

2
sup
γ∈Γ

Tr(γA). (2.1)

If there exists some β > 0 such that G(A) − G(B) ≥ β Tr(A − B) for any A ≥ B , we call the G-normal distribution
nondegenerate. This is the case we consider throughout this article.

Definition 2.5. (i) Let ΩT = C0([0, T ];Rd) be endowed with the supremum norm and {Bt } be the coordinate process.
Set H0

T := {ϕ(Bt1, . . . ,Btn)|n ≥ 1, t1, . . . , tn ∈ [0, T ], ϕ ∈ Cl,Lip(R
d×n)}. G-expectation is a sublinear expectation

defined by

Ê[X] = Ẽ
[
ϕ(

√
t1 − t0ξ1, . . . ,

√
tm − tm−1ξm)

]
,

for all X = ϕ(Bt1 − Bt0 ,Bt2 − Bt1 , . . . ,Btm − Btm−1), where ξ1, . . . , ξn are identically distributed d-dimensional G-
normally distributed random vectors in a sublinear expectation space (Ω̃, H̃, Ẽ) such that ξi+1 is independent of
(ξ1, . . . , ξi) for every i = 1, . . . ,m − 1. (ΩT , H0

T , Ê) is called a G-expectation space.
(ii) Let us define the conditional G-expectation Êt of ξ ∈ H0

T knowing H0
t , for t ∈ [0, T ]. Without loss of generality

we can assume that ξ has the representation ξ = ϕ(Bt1 − Bt0 ,Bt2 − Bt1 , . . . ,Btm − Btm−1) with t = ti , for some
1 ≤ i ≤ m, and we put

Êti

[
ϕ(Bt1 − Bt0 ,Bt2 − Bt1, . . . ,Btm − Btm−1)

]
= ϕ̃(Bt1 − Bt0,Bt2 − Bt1 , . . . ,Bti − Bti−1),

where

ϕ̃(x1, . . . , xi) = Ê
[
ϕ(x1, . . . , xi,Bti+1 − Bti , . . . ,Btm − Btm−1)

]
.

Define ‖ξ‖p,G = [Ê(|ξ |p)]1/p for ξ ∈ H0
T and p ≥ 1. Then for all t ∈ [0, T ], Êt (·) is a continuous mapping on H0

T

with respect to the norm ‖ · ‖1,G and therefore can be extended continuously to the completion L1
G(ΩT ) of H0

T under
the norm ‖ · ‖1,G.

Let Lip(ΩT ) := {ϕ(Bt1, . . . ,Btn)|n ≥ 1, t1, . . . , tn ∈ [0, T ], ϕ ∈ Cb,Lip(R
d×n)}, where Cb,Lip(R

d×n) denotes the
set of bounded Lipschitz functions on Rd×n. [1] proved that the completions of Cb(ΩT ), H0

T and Lip(ΩT ) under
‖ · ‖p,G are the same; we denote them by L

p
G(ΩT ).



Processes with stationary and independent increments under G-expectation 255

Definition 2.6. (i) We say that {Xt } on (ΩT ,L1
G(ΩT ), Ê) is a process with independent increments if for any 0 < t <

T and s0 ≤ · · · ≤ sm ≤ t ≤ t0 ≤ · · · ≤ tn ≤ T ,

(Xt1 − Xt0, . . . ,Xtn − Xtn−1) ⊥ (Xs1 − Xs0, . . . ,Xsm − Xsm−1).

(ii) We say that {Xt } on (ΩT ,L1
G(ΩT ), Ê) with Xt ∈ L1

G(Ωt) for every t ∈ [0, T ] is a process with independent
increments w.r.t. the filtration if for any 0 < s < T and s0 ≤ · · · ≤ sm ≤ s ≤ t0 ≤ · · · ≤ tn ≤ T ,

(Xt1 − Xt0, . . . ,Xtn − Xtn−1) ⊥ (Bs1 − Bs0, . . . ,Bsm − Bsm−1).

Remark 2.7. (i) Let ξ ∈ L1
G(ΩT ). If there exists s ∈ [0, T ] such that for any s0 ≤ · · · ≤ sm ≤ s, ξ ⊥ (Bs1 −

Bs0 , . . . ,Bsm − Bsm−1), then we have Ês(ξ) = Ê(ξ). In fact, there is no loss of generality, we assume Ê(ξ) = 1
and C ≥ ξ ≥ ε for some C,ε > 0. Set η = Ês(ξ). For any n ∈ N , we have

Ê
(
ηn+1) = Ê

(
ηnξ

)
.

Since ξ ⊥ ηn, we have

Ê
(
ηn+1) = Ê

(
ηn

) = · · · = Ê(η) = 1.

By this, we have

η ≤ 1, q.s.

On the other hand, we have

Ê
[
(η − 1)2] = Ê

[
η(η − 2)

] + 1 = Ê
[
η(ξ − 2)

] + 1.

Since ξ − 2 ⊥ η, we have

Ê
[
(1 − η)2] = Ê(1 − η).

By Theorem 2.12 below, there exists P ∈ P such that

EP

[
(1 − η)2] = Ê

[
(1 − η)2].

Noting that

EP (1 − η) ≤ Ê(1 − η) = Ê
[
(1 − η)2] = EP

[
(1 − η)2] ≤ EP (1 − η),

we have

EP

[
(1 − η)2] = EP (1 − η).

By this, we have

η2 = η, P -a.s.

Since η ≥ ε, we have η = 1, P -a.s. So we have

Ê
[
(1 − η)2] = EP

[
(1 − η)2] = 0.

(ii) Let {Xt } on (ΩT ,L1
G(ΩT ), Ê) be a process with stationary and independent increments and let c = Ê(XT )/T .

If Ê(Xt ) → 0 as t ↓ 0, then for any 0 ≤ s < t ≤ T , we have Ê(Xt − Xs) = c(t − s).
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Definition 2.8. Let {Xt } be a d-dimensional process defined on (ΩT ,L1
G(ΩT ), Ê) such that:

(i) X0 = 0;
(ii) {Xt } is a process with stationary and independent increments w.r.t. the filtration;

(iii) limt→0 Ê[|Xt |3]t−1 = 0.

Then {Xt } is called a generalized G-Brownian motion.
If in addition Ê(Xt ) = Ê(−Xt) = 0 for all t ∈ [0, T ], {Xt } is called a (symmetric) G-Brownian motion.

Remark 2.9. (i) Clearly, the coordinate process {Bt } is a (symmetric) G-Brownian motion and its quadratic variation
process {〈B〉t } is a process with stationary and independent increments (w.r.t. the filtration).

(ii) [4] gave a characterization for the generalized G-Brownian motion: Let {Xt } be a generalized G-Brownian
motion. Then

Xt+s − Xt ∼ √
sξ + sη for t, s ≥ 0, (2.2)

where (ξ, η) is G-distributed (see, e.g., [6] for the definition of G-distributed random vectors). In fact, this character-
ization presented a decomposition of generalized G-Brownian motion in the sense of distribution. In this article, we
shall give a pathwise decomposition for the generalized G-Brownian motion.

Let H 0
G(0, T ) be the collection of processes of the following form: for a given partition {t0, . . . , tN } = πT of [0, T ],

N ≥ 1,

ηt (ω) =
N−1∑
j=0

ξj (ω)1]tj ,tj+1](t),

where ξi ∈ Lip(Ωti ), i = 0,1,2, . . . ,N − 1. For every η ∈ H 0
G(0, T ), let ‖η‖H

p
G

= {Ê(
∫ T

0 |ηs |2 ds)p/2}1/p , ‖η‖M
p
G

=
{Ê(

∫ T

0 |ηs |p ds)}1/p and denote by H
p
G(0, T ), Mp

G(0, T ) the completions of H 0
G(0, T ) under the norms ‖·‖H

p
G

, ‖·‖M
p
G

respectively.

Definition 2.10. For every η ∈ H 0
G(0, T ) with the form

ηt (ω) =
N−1∑
j=0

ξj (ω)1]tj ,tj+1](t),

we define

I (η) =
∫ T

0
η(s)dBs :=

N−1∑
j=0

ξj (Btj+1 − Btj ).

By B–D–G inequality (see Proposition 4.3 in [10] for this inequality under G-expectation), the mapping
I :H 0

G(0, T ) → L
p
G(ΩT ) is continuous under ‖ · ‖H

p
G

and thus can be continuously extended to H
p
G(0, T ).

Definition 2.11. (i) A process {Mt } with values in L1
G(ΩT ) is called a G-martingale if Ês(Mt ) = Ms for any s ≤ t .

If {Mt } and {−Mt } are both G-martingales, we call {Mt } a symmetric G-martingale.
(ii) A random variable ξ ∈ L1

G(ΩT ) is called symmetric if Ê(ξ) + Ê(−ξ) = 0.

A G-martingale {Mt } is symmetric if and only if MT is symmetric.
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Theorem 2.12 ([1,2]). There exists a tight subset P ⊂ M1(ΩT ) such that

Ê(ξ) = max
P∈P

EP (ξ) for all ξ ∈ H0
T .

P is called a set that represents Ê.

Remark 2.13. (i) Let (Ω0, F 0,P 0) be a probability space and {Wt } be a d-dimensional Brownian motion under P 0.
Let F 0 = {F 0

t } be the augmented filtration generated by W . [1] proved that

PM :=
{
Ph|Ph = P 0 ◦ X−1,Xt =

∫ t

0
hs dWs,h ∈ L2

F 0

([0, T ];Γ 1/2)}

is a set that represents Ê, where Γ 1/2 := {γ 1/2|γ ∈ Γ } and Γ is the set in the representation of G(·) in the for-
mula (2.1).

(ii) For the 1-dimensional case, i.e., ΩT = C0([0, T ],R),

L2
F 0 := L2

F 0

([0, T ];Γ 1/2) = {
h|h is adapted w.r.t. F 0 and σ ≤ hs ≤ σ

}
,

where σ 2 = Ê(B2
1 ) and σ 2 = −Ê(−B2

1 ).

G(a) = 1/2Ê
[
aB2

1

] = 1/2
[
σ 2a+ − σ 2a−]

for a ∈ R.

(iii) Set c(A) = supP∈PM
P (A), for A ∈ B(ΩT ). We say A ∈ B(ΩT ) is a polar set if c(A) = 0. If an event happens

except on a polar set, we say the event happens q.s.

3. Characterization of processes with stationary and independent increments

In what follows, we only consider the G-expectation space (ΩT ,L1
G(ΩT ), Ê) with ΩT = C0([0, T ],R) and σ 2 =

Ê(B2
1 ) > −Ê(−B2

1 ) = σ 2 > 0.

Lemma 3.1. For ζ ∈ M1
G(0, T ) and ε > 0, let

ζ ε
t = 1

ε

∫ t

(t−ε)+
ζs ds

and

ζ
ε,0
t =

kε−1∑
k=1

1

ε

∫ kε

(k−1)ε

ζs ds1]kε,(k+1)ε](t),

where t ∈ [0, T ], kεε ≤ T < (kε + 1)ε. Then as ε → 0∥∥ζ ε − ζ
∥∥

M1
G(0,T )

→ 0 and
∥∥ζ ε,0 − ζ

∥∥
M1

G(0,T )
→ 0.

Proof. The proofs of the two cases are similar. Here we only prove the second case. Our proof starts with the obser-
vation that for any ζ, ζ ′ ∈ M1

G(0, T )∥∥ζ ε,0 − ζ ′ε,0∥∥
M1

G(0,T )
≤ ∥∥ζ − ζ ′∥∥

M1
G(0,T )

. (3.1)

By the definition of the space M1
G(0, T ), we know that for every ζ ∈ M1

G(0, T ), there exists a sequence of processes
{ζ n} with

ζ n
t =

mn−1∑
k=0

ξn
tnk

1]tnk ,tnk+1](t)
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and ξn
tnk

∈ Lip(Ωtnk
) such that

∥∥ζ − ζ n
∥∥

M1
G(0,T )

→ 0 as n → ∞. (3.2)

It is easily seen that for every n∥∥ζ n;ε,0 − ζ n
∥∥

M1
G(0,T )

→ 0 as ε → 0. (3.3)

Thus we get∥∥ζ ε,0 − ζ
∥∥

M1
G(0,T )

≤ ∥∥ζ ε,0 − ζ n;ε,0∥∥
M1

G(0,T )
+ ∥∥ζ n − ζ n;ε,0∥∥

M1
G(0,T )

+ ∥∥ζ n − ζ
∥∥

M1
G(0,T )

≤ 2
∥∥ζ n − ζ

∥∥
M1

G(0,T )
+ ∥∥ζ n − ζ n;ε,0∥∥

M1
G(0,T )

.

The second inequality follows from (3.1). Combining (3.2) and (3.3), first letting ε → 0, then letting n → ∞, we have∥∥ζ ε,0 − ζ
∥∥

M1
G(0,T )

→ 0 as ε → 0. �

Theorem 3.2. Let At = ∫ t

0 hs ds with h ∈ M1
G(0, T ) be a process with stationary and independent increments (w.r.t.

the filtration). Then we have h ≡ c for some constant c.

Proof. Let c := Ê(AT )/T ≥ −Ê(−AT )/T =: c. For n ∈ N , set ε = T/(2n), and define hT/(2n),0 as in Lemma 3.1.
Then we have∥∥h − hT/(2n),0

∥∥
M1

G(0,T )

= Ê

[
2n−1∑
k=0

∫ (k+1)T /(2n)

kT /(2n)

∣∣hs − h
T/(2n),0
s

∣∣ds

]

≥ Ê

[
n−1∑
k=1

∫ (2k+1)T /(2n)

2kT /(2n)

(
hs − h

T/(2n),0
s

)
ds

]

= Ê

[
n−1∑
k=1

(∫ (2k+1)T /(2n)

2kT /(2n)

hs ds −
∫ 2kT /(2n)

(2k−1)T /(2n)

hs ds

)]

= Ê

n−1∑
k=1

[
(A(2k+1)T /2n − A2kT /2n) − (A2kT /2n − A(2k−1)T /2n)

]
.

Consequently, from the condition of independence of the increments and their stationarity, we have∥∥h − hT/(2n),0
∥∥

M1
G(0,T )

≥
n−1∑
k=1

Ê
[
(A(2k+1)T /2n − A2kT /2n) − (A2kT /2n − A(2k−1)T /2n)

]

=
n−1∑
k=1

(c − c)T /(2n)

= (c − c)(n − 1)T /(2n).
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So by Lemma 3.1, letting n → ∞, we have c = c. Furthermore, we note that Mt := At − ct is a G-martingale. In fact,
for t > s, we see

Ês(Mt)

= Ês(Mt − Ms) + Ms

= Ê(Mt − Ms) + Ms

= Ms.

The second equality is due to the independence of increments of M w.r.t. the filtration.
So {Mt } is a symmetric G-martingale with finite variation, from which we conclude that Mt ≡ 0, hence that

At = ct . �

Corollary 3.3. Assume σ > σ > 0. Then we have that { d
ds

〈B〉s} /∈ M1
G(0, T ).

Proof. The proof is straightforward from Theorem 3.2. �

Corollary 3.4. There is no symmetric G-martingale {Mt } which is a standard Brownian motion under G-expectation
(i.e. 〈M〉t = t ).

Proof. Let {Mt } be a symmetric G-martingale. If {Mt } is also a standard Brownian motion, by Theorem 4.8 in [10]
or Corollary 5.2 in [11], there exists {hs} ∈ M2

G(0, T ) such that

Mt =
∫ t

0
hs dBs

and ∫ t

0
h2

s d〈B〉s = t.

Thus we have d
ds

〈B〉s = h−2
s ∈ M1

G(0, T ), which contradicts the conclusion of Corollary 3.3. �

Proposition 3.5. Let At = ∫ t

0 hs ds with h ∈ M1
G(0, T ) be a process with independent increments. Then At is sym-

metric for every t ∈ [0, T ].

Proof. By arguments similar to those in the proof of Theorem 3.2, we have∥∥h − hT/(2n),0
∥∥

M1
G(0,T )

≥ Ê

n−1∑
k=0

[
(A(2k+1)T /2n − A2kT /2n) − (A2kT /2n − A(2k−1)+T/2n)

]

=
n−1∑
k=0

{
Ê(A(2k+1)T /2n − A2kT /2n) + Ê

[−(A2kT /2n − A(2k−1)+T/2n)
]}

.

The right side of the first inequality is only the sum of the odd terms. Summing up the even terms only, we have∥∥h − hT/(2n),0
∥∥

M1
G(0,T )

≥
n−1∑
k=0

{
Ê(A(2k+2)T /2n − A(2k+1)T /2n) + Ê

[−(A(2k+1)T /2n − A2kT /2n)
]}

.
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Combining the above inequalities, we have

2
∥∥h − hT/(2n),0

∥∥
M1

G(0,T )

≥
2n−1∑
k=0

{
Ê

[
A(k+1)T /2n − AkT/2n

] + Ê
[−(A(k+1)T /2n − AkT/2n)

]}

≥ Ê

2n−1∑
k=0

[
A(k+1)T /2n − AkT/2n

] + Ê

2n−1∑
k=0

[−(A(k+1)T /2n − AkT/2n)
]

= Ê(AT ) + Ê(−AT ).

Thus by Lemma 3.1, letting n → ∞, we have Ê(AT ) + Ê(−AT ) = 0, which means that AT is symmetric. �

For n ∈ N , define δn(s) in the following way:

δn(s) =
n−1∑
i=0

(−1)i1] iT
n

,
(i+1)T

n
](s) for all s ∈ [0, T ].

In [12] we proved that limn→∞ Ê(
∫ T

0 δn(s)hs ds) = 0 for h ∈ M1
G(0, T ).

Let Ft = σ {Bs |s ≤ t} and F = {Ft }t∈[0,T ].
In the following, we shall use some notations introduced in Remark 2.13.
For every P ∈ PM and t ∈ [0, T ], set At,P := {Q ∈ PM |Q|Ft

= P|Ft
}. Proposition 3.4 in [9] gave the fol-

lowing result: For t ∈ [0, T ], assume ξ ∈ L1
G(ΩT ) and η ∈ L1

G(Ωt). Then η = Êt (ξ) if and only if for every
P ∈ PM

η = ess sup
Q∈At,P

P EQ(ξ |Ft ), P -a.s.,

where ess supP denotes the essential supremum under P .

Theorem 3.6. Let At = ∫ t

0 hs d〈B〉s be a process with stationary, independent increments (w.r.t. the filtration) and

h ∈ M
1,+
G (0, T ). If AT ∈ L

β
G(ΩT ) for some β > 1, we have At = c〈B〉t for some constant c ≥ 0.

Proof. For the readability, we divide the proof into several steps:
Step 1. Set Kt := ∫ t

0 hs ds. We claim that KT is symmetric.

Step 1.1. Let μ = Ê(AT )/T and μ = −Ê(−AT )/T . First, we shall prove that μ

σ 2 = μ

σ 2 .

Actually, for any 0 ≤ s < t ≤ T , we have

Ês

(∫ t

s

hr dr

)
= Ês

(∫ t

s

θ−1
r dAr

)
≥ 1

σ 2
Ês

(∫ t

s

dAr

)
= μ

σ 2
(t − s) q.s.,

where the inequality holds due to θs := d〈B〉s
ds

≤ σ 2, q.s. Noting that μt − At is nonincreasing by Lemma 4.3 in

Section 4 since it is a G-martingale with finite variation, we have, for every η ∈ L2
F 0 , Pη-a.s.,

Ês

(∫ t

s

hr dr

)

= ess sup
Q∈At,Pη

PηEQ

(∫ t

s

hr dr

∣∣∣Fs

)
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= ess sup
Q∈At,Pη

PηEQ

(∫ t

s

θ−1
r dAr

∣∣∣Fs

)

≥ μ ess sup
Q∈At,Pη

PηEQ

(∫ t

s

θ−1
r dr

∣∣∣Fs

)

= μ

σ 2
(t − s).

So Ês(
∫ t

s
hr dr) ≥ max{ μ

σ 2 ,
μ

σ 2 }(t − s) =: λ(t − s), q.s.

On the other hand,

Ês

(
−

∫ t

s

hr dr

)
= Ês

(∫ t

s

−θ−1
r dAr

)
≥ 1

σ 2
Ês

(
−

∫ t

s

dAr

)
= − μ

σ 2
(t − s), q.s.

and for every η ∈ L2
F 0 , Pη-a.s.,

Ês

(
−

∫ t

s

hr dr

)

= ess sup
Q∈At,Pη

PηEQ

(
−

∫ t

s

hr dr

∣∣∣Fs

)

= ess sup
Q∈At,Pη

PηEQ

(
−

∫ t

s

θ−1
r dAr

∣∣∣Fs

)

≥ μ ess sup
Q∈At,Pη

PηEQ

(
−

∫ t

s

θ−1
r dr

∣∣∣Fs

)

= − μ

σ 2
(t − s)

since At − μt is nonincreasing. So

Ês

(
−

∫ t

s

hr dr

)
≥ −min

{
μ

σ 2
,

μ

σ 2

}
(t − s) =: −λ(t − s), q.s.

Noting that

Ê

(∫ T

0
δ2n(s)hs ds

)

= Ê

[∫ (2n−1)T /(2n)

0
δ2n(s)hs ds + Ê(2n−1)T /(2n)

(
−

∫ T

(2n−1)T /(2n)

hs ds

)]

≥ (−λ)
T

2n
+ Ê

[∫ (2n−2)T /(2n)

0
δ2n(s)hs ds + Ê(2n−2)T /(2n)

(∫ (2n−1)T /(2n)

(2n−2)T /(2n)

hs ds

)]

≥ λ − λ

2n
T + Ê

[∫ (2n−2)T /(2n)

0
δ2n(s)hs ds

]
,

we have

Ê

(∫ T

0
δ2n(s)hs ds

)
≥ λ − λ

2
T .
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So

0 = lim
n→∞ Ê

(∫ T

0
δ2n(s)hs ds

)
≥ λ − λ

2
T

and μ

σ 2 = μ

σ 2 =: λ.

Step 1.2. For every η ∈ L2
F 0 , EPη(KT ) = λT , which implies that KT is symmetric.

Step 1.2.1. We now introduce some notations: For 0 ≤ s < t ≤ T and η ∈ L2
F 0 , set η = σ , η = σ , η∗ =

√
σ 2+σ 2

2 on

]s, t] and η = η = η∗ = η on ]s, t]c . For n ∈ N , set ηn
r = ∑n−1

i=0 (σ1]t2i ,t2i+1](r) + σ1]t2i+1,t2i+2](r)) on ]s, t] and ηn = η

on ]s, t]c , where tj = s + j
2n

(t − s), j = 0, . . . ,2n.

Step 1.2.2. EPηn (
∫ t

s
(hr − λ)dr|Fs) → 0, Pη-a.s., as n → ∞.

Actually, we have, Pη-a.s.,

μ(t − s) = Ês

(∫ t

s

hr d〈B〉r
)

≥ EPη

(∫ t

s

hr d〈B〉r
∣∣∣Fs

)
= σ 2EPη

(∫ t

s

hr dr

∣∣∣Fs

)
.

So

EPη

(∫ t

s

hr dr

∣∣∣Fs

)
≤ λ(t − s), Pη-a.s. (3.4)

By similar arguments we have that

EPη

(∫ t

s

hr dr

∣∣∣Fs

)
≥ λ(t − s), Pη-a.s. (3.5)

Let’s compute the following conditional expectations:

EPηn

(∫ t

s

(hr − λ)δ2n(r)dr

∣∣∣Fs

)

= E
Fs

Pηn

[
n−1∑
i=0

{
E

Ft2i

Pηn

∫ t2i+1

t2i

(hr − λ)dr + E
Ft2i+1
Pηn

∫ t2i+2

t2i+1

(λ − hr)dr

}]

=: EFs

Pηn

[
n−1∑
i=0

(Ai + Bi)

]
,

where δ2n(r) = ∑n−1
i=0 (1]t2i ,t2i+1](r) − 1]t2i+1,t2i+2](r)), tj = s + j

2n
(t − s), j = 0, . . . ,2n;

EPηn

(∫ t

s

(hr − λ)dr

∣∣∣Fs

)
= E

Fs

Pηn

[
n−1∑
i=0

(Ai − Bi)

]
.

By (3.4) and (3.5) (noting that η and s, t are all arbitrary), we conclude that Ai,Bi ≥ 0, Pηn -a.s. So∣∣∣∣EPηn

(∫ t

s

(hr − λ)dr

∣∣∣Fs

)∣∣∣∣ ≤ EPηn

(∫ t

s

(hr − λ)δ2n(r)dr

∣∣∣Fs

)
, Pη-a.s.

Noting that

EPηn

(∫ t

s

(hr − λ)δ2n(r)dr

∣∣∣Fs

)
≤ Ês

[∫ t

s

(hr − λ)δ2n(r)dr

]
, Pη-a.s.
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and

Ês

[∫ t

s

(hr − λ)δ2n(r)dr

]
→ 0 q.s., as n → ∞,

we have EPηn (
∫ t

s
(hr − λ)dr|Fs) → 0, Pη-a.s., as n → ∞.

Step 1.2.3. For any ξ ∈ L1
G(Ωt), EPηn (ξ |Fs) → EPη∗ (ξ |Fs), Pη-a.s., as n → ∞.

In fact, for ξ = ϕ(Bs1 −Bs0, . . . ,Bsm −Bsm−1) ∈ Lip(Ωt), the conclusion is obvious. For general ξ ∈ L1
G(Ωt), there

exists a sequence {ξm} ⊂ Lip(Ωt ) such that Ê[|ξm −ξ |] = Ê[Ês(|ξm −ξ |)] → 0. So we can assume Ês(|ξm −ξ |) → 0
q.s.

Then, Pη-a.s., we have∣∣EPηn (ξ |Fs) − EPη∗ (ξ |Fs)
∣∣

≤ ∣∣EPηn (ξ |Fs) − EPηn

(
ξm|Fs

)∣∣ + ∣∣EPηn

(
ξm|Fs

) − EPη∗
(
ξm|Fs

)∣∣
+ ∣∣EPη∗

(
ξm|Fs

) − EPη∗ (ξ |Fs)
∣∣

≤ 2Ês

(∣∣ξm − ξ
∣∣) + ∣∣EPηn

(
ξm|Fs

) − EPη∗
(
ξm|Fs

)∣∣.
First letting n → ∞, then letting m → ∞, we have EPηn (ξ |Fs) → EPη∗ (ξ |Fs), Pη-a.s. So combining Step 1.2.2 and
Step 1.2.3, we have

EPη∗

(∫ t

s

hr dr

∣∣∣Fs

)
= λ(t − s), Pη-a.s. (3.6)

Step 1.2.4. For 0 ≤ s < t ≤ T , η ∈ L2
F 0 , σ ∈ [σ,σ ], set ησ = σ on ]s, t] and ησ = η on ]s, t]c . We have

EPησ

(∫ t

s

hr dr

∣∣∣Fs

)
= λ(t − s), Pη-a.s.

In fact, Step 1.2.2–Step 1.2.3 proved the following fact: If (3.4), (3.5) hold for some σ,σ ′ ∈ [σ ,σ ], then (3.6) holds

for
√

σ 2+σ ′2
2 . So by repeating the Step 1.2.2–Step 1.2.3, we get the desired result.

Step 1.2.5. For any simple process η ∈ L2
F 0 , EPη(KT ) = λT .

Let ηr = ∑m−1
i=0 ηti 1]ti ,ti+1](r) ∈ L2

F 0 with ηti = ∑ni

j=1 ai
j 1Ai

j
an F 0

ti
measurable simple function, where {t0, . . . , tm}

is a given partition of [0, T ]. Set Xt = ∫ t

0 ηr dWr . Let FX = {F X
t } be the filtration generated by X.

Fix 0 ≤ i < m. Set η
j,ε
s = ηs1[0,ti+ε](s) + ai

j 1]ti+ε,T ](s) and X
j,ε
t = ∫ t

0 η
j,ε
s dWs for ε > 0 small enough. Let

FXj,ε = {F Xj,ε

t } be the filtration generated by Xj,ε . Then

EPη

(∫ ti+1

ti+ε

hr dr

)
= EP 0

(∫ ti+1

ti+ε

hr ◦ X dr

)
= EP 0

[
EP 0

(∫ ti+1

ti+ε

hr ◦ X dr

∣∣∣F X
ti+ε

)]
.

Since Ai
j ∈ F X

ti+ε = F Xj,ε

ti+ε and Xt = ∑ni

j=0 X
j,ε
t 1Ai

j
on [0, ti+1], we have

EP 0

(∫ ti+1

ti+ε

hr ◦ X dr

∣∣∣F X
ti+ε

)

=
ni∑

j=1

EP 0

(
1Ai

j

∫ ti+1

ti

hr ◦ Xj,ε dr

∣∣∣F X
ti+ε

)

=
ni∑

j=1

1Ai
j
EP 0

(∫ ti+1

ti

hr ◦ Xj,ε dr

∣∣∣F Xj,ε

ti+ε

)
.
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Noting that

EP 0

(∫ ti+1

ti+ε

hr ◦ Xj,ε dr

∣∣∣F Xj,ε

ti+ε

)
= EP

ηj,ε

(∫ ti+1

ti+ε

hr dr

∣∣∣Fti+ε

)
◦ Xj,ε = λ(ti+1 − ti − ε) P 0-a.s.,

by Step 1.2.4, we have EPη(
∫ ti+1
ti

hr dr) = λ(ti+1 − ti ) and EPη(KT ) = λT .
Step 2. h ≡ λ.
Let Mt = ∫ t

0 hr d〈B〉s − ∫ t

0 2G(hs)ds and Nt = ∫ t

0 hs d〈B〉s − μt . As is mentioned in the Introduction, [4] proved
that {Mt } is a G-martingale. Since {∫ t

0 hs d〈B〉s} is a process with stationary and independent increments w.r.t. the fil-

tration, we know that {Nt } is also a G-martingale. Let Lt = Êt (μT −σ 2KT ). Then {Lt } is a symmetric G-martingale
since KT is symmetric. By the symmetry of {Lt } we have

Mt = Êt (MT ) = Êt (LT + NT ) = Lt + Nt .

By the uniqueness of the G-martingale decomposition, we get L ≡ 0 and h ≡ λ. �

Remark 3.7. Clearly, h ∈ M
β
G(0, T ) for some β > 1 implies AT = ∫ T

0 hs d〈B〉 ∈ L
β
G(ΩT ).

4. Characterization of the G-Brownian motion

A version of the martingale characterization for the G-Brownian motion was given in [13], where only symmetric
G-martingales with Markovian property were considered. Here we shall present a martingale characterization in a
quite different form, which is a natural but nontrivial generalization of the classical case in a probability space.

Theorem 4.1 (Martingale characterization of the G-Brownian motion).
Let {Mt } be a symmetric G-martingale with MT ∈ Lα

G(ΩT ) for some α > 2 and {〈M〉t } a process with stationary
and independent increments (w.r.t. the filtration). Then {Mt } is a G-Brownian motion:

Let {Mt } be a G-Brownian motion on (ΩT ,L1
G(ΩT ), Ê). Then there exists a positive constant c such that 〈M〉t =

c〈B〉t .

Proof. By Corollary 5.2 in [11], there exists h ∈ M2
G(0, T ) such that Mt = ∫ t

0 hs dBs . So 〈M〉t = ∫ t

0 h2
s d〈B〉s . By

the assumption, we know that 〈M〉T ∈ L
β
G(ΩT ) for some β > 1. By Theorem 3.6, there exists some constant c ≥ 0

such that h2 ≡ c. Thus by Theorem 2.12 and Remark 2.13, {Mt } is a G-Brownian motion with Mt distributed as
N(0, [cσ 2t, cσ 2t]).

On the other hand, if {Mt } is a G-Brownian motion on (ΩT ,L1
G(ΩT )), then {Mt } is a symmetric G-martingale.

By the above arguments, we have 〈M〉t = c〈B〉t for some positive constant c. �

Let

H =
{

a

∣∣∣a(t) =
n−1∑
k=0

atk 1]tk,tk+1](t), n ∈ N,0 = t0 < t1 < · · · < tn = T

}

and H = {a ∈ H|λ[a = 0] = 0}, where λ is the Lebesgue measure.

Lemma 4.2. Let {Lt } be a process with absolutely continuous paths. Assume that there exist real numbers c ≤ c such
that c(t − s) ≤ Lt − Ls ≤ c(t − s) for any s < t . Let C(a) = ca+ − ca− for any a ∈ R. If

Ê

(∫ T

0
a(s)dLs

)
=

∫ T

0
C

(
a(s)

)
ds for all a ∈ H,

we have that {Lt } is a process with stationary and independent increments such that ct = −Ê(−Lt) ≤ Ê(Lt ) = ct ,
i.e., its distribution is determined by c, c.
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Proof. It suffices to prove the lemma for the case c < c. For any a ∈ H , let

θa
s = c1[a(s)≥0] + c1[a(s)<0].

By assumption,

Ê

(∫ T

0
a(s)dLs

)
=

∫ T

0
a(s)θa

s ds.

On the other hand, by Theorem 2.12, there exists some weakly compact subset P ⊂ M1(ΩT ) such that

Ê(ξ) = max
P∈P

EP (ξ) for all ξ ∈ L1
G(ΩT ),

which means that there exists Pa ∈ P such that

EPa

(∫ T

0
a(s)dLs

)
=

∫ T

0
a(s)θa

s ds.

By the assumption for {Lt }, we have Pa{Lt = ∫ t

0 θa
s ds, for all t ∈ [0, T ]} = 1. From this we have

Ê
[
ϕ(Lt1 − Lt0, . . . ,Ltn − Ltn−1)

] ≥ ϕ

(∫ t1

t0

θa
s ds, . . . ,

∫ tn

tn−1

θa
s ds

)

for any ϕ ∈ Cb(R
n) and n ∈ N . Consequently,

Ê
[
ϕ(Lt1 − Lt0, . . . ,Ltn − Ltn−1)

]
≥ sup

a∈H

ϕ

(∫ t1

t0

θa
s ds, . . . ,

∫ tn

tn−1

θa
s ds

)

= sup
c1,...,cn∈[c,c]

ϕ
(
c1(t1 − t0), . . . , cn(tn − tn−1)

)
.

The converse inequality is obvious. Thus {Lt } is a process with stationary and independent increments such that
ct = −Ê(−Lt) ≤ Ê(Lt ) = ct . �

Lemma 4.3. Let {Lt } be a G-martingale with finite variation and LT ∈ L
β
G(ΩT ) for some β > 1. Then {Lt } is

nonincreasing. Particularly, Lt ≤ L0 = Ê(LT ).

Proof. By Theorem 4.5 in [10], we know {Lt } has the following decomposition

Lt = Ê(LT ) + Mt + Kt,

where {Mt } is a symmetric G-martingale and {Kt } is a nonpositive, nonincreasing G-martingale. Since both {Lt } and
{Kt } are processes with finite variation, we get Mt ≡ 0. Therefore, we have Lt = Ê(LT ) + Kt ≤ Ê(LT ) = L0. �

Theorem 4.4. Let {Xt } be a generalized G-Brownian motion with zero mean. Then we have the following decompo-
sition:

Xt = Mt + Lt ,

where {Mt } is a symmetric G-Brownian motion, and {Lt } is a nonpositive, nonincreasing G-martingale with station-
ary and independent increments.
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Proof. Clearly {Xt } is a G-martingale. By Theorem 4.5 in [10], we have the following decomposition

Xt = Mt + Lt ,

where {Mt } is a symmetric G-martingale, and {Lt } is a nonpositive, nonincreasing G-martingale. Noting that Xt ∈
L3

G(ΩT ) from the definition of generalized G-Brownian motion, we know that Mt,Lt ∈ L
β
G(ΩT ) for any 1 ≤ β < 3

by Theorem 4.5 in [10].
In the sequel, we first prove that {Lt } is a process with stationary and independent increments. Noting that

Ê(−Lt) = Ê(−Xt) = ct for some positive constant c since {Xt } is a process with stationary and independent
increments, we claim that −Lt − ct is a G-martingale. To prove this, it suffices to show that for any t > s,
Ês[−(Lt − Ls)] = c(t − s). In fact, since {Mt } is a symmetric G-martingale, we have

Ês

[−(Lt − Ls)
] = Ês

[−(Xt − Mt − Xs + Ms)
] = Ês

[−(Xt − Xs)
]
.

Noting that {Xt } is a process with independent increments (w.r.t. the filtration),

Ês

[−(Xt − Xs)
] = Ê

[−(Xt − Xs)
] = c(t − s).

Combining this with Lemma 4.3, we have −(Lt − Ls) − c(t − s) ≤ 0 for any s < t . On the other hand, for any
a ∈ H, noting that {Mt } is a symmetric G-martingale, we have

Ê

[∫ T

0
a(s)dLs

]
= Ê

[∫ T

0
a(s)dXs

]
= Ê

[
n−1∑
k=0

atk (Xtk+1 − Xtk )

]
.

Since {Xt } is a process with stationary, independent increments, we have

Ê

[∫ T

0
a(s)dLs

]

=
n−1∑
k=0

Ê
[
atk (Xtk+1 − Xtk )

]

=
n−1∑
k=0

ca−
tk

(tk+1 − tk)

=
∫ T

0
ca−(s)ds =

∫ T

0
C

(
a(s)

)
ds,

where C(a(s)) is defined as in Lemma 4.2 with c = 0, c = −c. By Lemma 4.2, {Lt } is a process with stationary and
independent increments.

Now we are in a position to show that {Mt } is a (symmetric) G-Brownian motion. To this end, by Theorem 4.1, it
suffices to prove that {〈M〉t } is a process with stationary and independent increments (w.r.t. the filtration). For n ∈ N ,
let

Xn
t =

2n−1∑
k=0

XkT /2n1]kT /2n,(k+1)T /2n](t)

and

Ωn
t (X) =

2n−1∑
k=0

(X(k+1)t/2n − Xkt/2n)2.
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Observing that Ωn
t (X) = X2

t − 2
∫ t

0 Xn
s dXs , we have

∣∣Ωn
t (X) − Ωm+n

t (X)
∣∣

≤ 2

(∣∣∣∣
∫ t

0

(
Xn

s − Xm+n
s

)
dMs

∣∣∣∣ +
∣∣∣∣
∫ t

0

(
Xn

s − Xm+n
s

)
dLs

∣∣∣∣
)

= 2
(|I | + |II|)

for any n,m ∈ N. It’s easy to check that

Ê
(|II|) ≤ c

∫ t

0
Ê

(∣∣Xn
s − Xm+n

s

∣∣)ds → 0 as m,n → ∞.

Noting that

I =
2n−1∑
i=0

2m−1∑
j=0

(Xit/2n+j t/2n+m − Xit/2n)(Mit/2n+(j+1)t/2n+m − Mit/2n+j t/2n+m)

=
2n−1∑
i=0

2m−1∑
j=0

I
j
i ,

we get

Ê
(
I 2) ≤

2n−1∑
i=0

2m−1∑
j=0

Ê
[(

I
j
i

)2]
.

Let’s estimate the expectation Ê[(I j
i )2]:

Ê
[(

I
j
i

)2]
= Ê

[
(Xit/2n+j t/2n+m − Xit/2n)2(Mit/2n+(j+1)t/2n+m − Mit/2n+j t/2n+m)2]

≤ 2Ê
[
(Xit/2n+j t/2n+m − Xit/2n)2{(Xit/2n+(j+1)t/2n+m − Xit/2n+j t/2n+m)2

+ (Lit/2n+(j+1)t/2n+m − Lit/2n+j t/2n+m)2}].
Noting that −c(t − s) ≤ Lt − Ls ≤ 0, we have

Ê
[(

I
j
i

)2] ≤ Ê

[
(Xit/2n+j t/2n+m − Xit/2n)2

{
(Xit/2n+(j+1)t/2n+m − Xit/2n+j t/2n+m)2 + c2 t2

22(n+m)

}]
.

By (2.2), Ê[(Xt −Xs)
2] ≤ C1|t − s| for some constant C1. From the condition of independent increments of X, we

have Ê[(I j
i )2] ≤ C

j

22(n+m) for some constant C, hence that Ê(I 2) → 0, and finally that Ê(|Ωn
t (X)−Ωm+n

t (X)|) → 0
as m,n → ∞. Then

〈X〉t := lim
L1

G(ΩT ),n→∞
Ωn

t

is a process with stationary and independent increments (w.r.t. the filtration). Noting that 〈M〉t = 〈X〉t , 〈M〉t is also a
process with stationary and independent increments (w.r.t. the filtration). �
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5. G-martingales with finite variation

Proposition 5.1. Let η ∈ M1
G(0, T ) with |η| ≡ c for some constant c. Then

Kt :=
∫ t

0
ηs d〈B〉s −

∫ t

0
2G(ηs)ds (5.1)

is a process with stationary and independent increments. Moreover, for fixed c, all processes in the above form have
the same distribution.

Proof. Since −c(σ 2 − σ 2)(t − s) ≤ Kt − Ks ≤ 0 for any s < t , by Lemma 4.2, it suffices to prove that for any a ∈ H

Ê

(∫ T

0
as dKs

)
=

∫ T

0
C(as)ds,

where C(as) is defined as in Lemma 4.2 with c = 0, c = −c(σ 2 − σ 2). In fact, noting that

∫ T

0
as dKs ≤

∫ T

0
2G(asηs)ds −

∫ T

0
2asG(ηs)ds =

∫ T

0
C(as)ds,

we have

Ê

(∫ T

0
as dKs

)
≤

∫ T

0
C(as)ds.

On the other hand, we have

Ê

(∫ T

0
as dKs

)
≥ −Ê

{
−

[∫ T

0
2G(asηs)ds −

∫ T

0
2asG(ηs)ds

]}
=

∫ T

0
C(as)ds.

So {Kt } is a process with stationary and independent increments and its distribution is determined by c. �

Just like the conjecture by Shige Peng for the representation of G-martingales with finite variation, we guess that
any G-martingale with stationary, independent increments and finite variation should have the form of (5.1). At the
end we present a characterization for G-martingales with finite variation.

Proposition 5.2. Let {Mt } be a G-martingale with MT ∈ L
β
G(ΩT ) for some β > 1. Then {Mt } is a G-martingale with

finite variation if and only if {f (Mt)} is a G-martingale for any nondecreasing f ∈ Cb,Lip(R).

Proof. Necessity. Assume {Mt } is a G-martingale with finite variation. By Lemma 4.3, we know that {Mt } is nonin-
creasing. By Theorem 5.4 in [11], there exists a sequence {ηn

t } ⊂ H 0
G(0, T ) such that

Ê
[

sup
t∈[0,T ]

∣∣Mt − Lt

(
ηn

)∣∣β]
→ 0

as n goes to infinity, where Lt(η
n) = ∫ t

0 ηn
s d〈B〉s − ∫ t

0 2G(ηn
s )ds. It suffices to prove that for any η ∈ H 0

G(0, T ) and
nondecreasing f ∈ C2

b(R), f (Lt (η)) is a G-martingale. In fact,

f
(
Lt(η)

) = f (L0) +
∫ t

0
f ′(Ls(η)

)
dLs(η)

= f (L0) +
∫ t

0
f ′(Ls(η)

)
ηs d〈B〉s −

∫ t

0
2f ′(Ls(η)

)
G(ηs)ds.
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Since f ′(Ls(η)) ≥ 0 and f ′(Ls(η))ηs ∈ M1
G(0, T ), we conclude that

f
(
Lt(η)

) = f (L0) + Lt

(
f ′(L(η)

)
η
)

is a G-martingale.
Sufficiency. Assume {f (Mt)} is a G-martingale for any nondecreasing f ∈ Cb,Lip(R). Let Xt := arctanMt . Then

{Xt } is a bounded G-martingale and {f (Xt )} is a G-martingale for any nondecreasing f ∈ Cb,Lip(R). By Theorem 4.5
in [10], we know {Xt } has the following decomposition

Xt = Ê(XT ) + Nt + Kt,

where {Nt } is a symmetric G-martingale and {Kt } is a nonpositive, nonincreasing G-martingale. Then by Itô’s formula

eαXt = eαX0 + α

∫ t

0
eαXs dXs + α2

2

∫ t

0
eαXs d〈N〉s .

For any α > 0, by assumption, eαXt is a G-martingale. So Lt := ∫ t

0 eαXs dKs + α
2

∫ t

0 eαXs d〈N〉s is a G-martingale
with finite variation. By Lemma 4.3, Lt is nonincreasing, by which we conclude that Kt + α

2 〈N〉t is nonincreasing.
So

α

2
Ê

(〈N〉T
) ≤ Ê(−KT ) for all α > 0.

By this, we conclude that Ê(〈N〉T ) = 0 and Nt ≡ 0. Then Xt = Ê(XT ) + Kt is nonincreasing, and consequently, Mt

is nonincreasing. �

Particularly, Proposition 5.2 provides a method to convert G-martingales with finite variation into bounded G-
martingales with finite variation.
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