Characterizations of processes with stationary and independent increments under G-expectation ${ }^{1}$

Yongsheng Song
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China. E-mail: yssong@amss.ac.cn

Received 26 October 2010; revised 8 April 2012; accepted 17 April 2012

Abstract

Our purpose is to investigate properties for processes with stationary and independent increments under G-expectation. As applications, we prove the martingale characterization of G-Brownian motion and present a pathwise decomposition theorem for generalized G-Brownian motion.

Résumé. Notre but est d'étudier des propriétés de processus à accroissements stationnaires et indépendants sous une G-espérance. Comme application, nous démontrons la caractérisation de la martingale de G-mouvement Brownien et fournissons un théorème de décomposition trajectorielle pour le G-mouvement Brownien généralisé.

MSC: 60G10; 60G17; 60G48; 60G51
Keywords: Stationary increments; Independent increments; Martingale characterization; Decomposition theorem; G-Brownian motion; G-expectation

1. Introduction

Recently, motivated by the modelling of dynamic risk measures, Shige Peng ([3-5]) introduced the notion of a G expectation space. It is a generalization of probability spaces (with their associated linear expectation) to spaces endowed with a nonlinear expectation. As the counterpart of Wiener space in the linear case, the notion of G-Brownian motion was introduced under the nonlinear G-expectation.

Recall that if $\left\{A_{t}\right\}$ is a continuous process over a probability space (Ω, \mathcal{F}, P) with stationary, independent increments and finite variation, then there exists some constant c such that $A_{t}=c t$. However, it is not the case in the G-expectation space $\left(\Omega_{T}, L_{G}^{1}\left(\Omega_{T}\right), \hat{E}\right)$. A counterexample is $\left\{\langle B\rangle_{t}\right\}$, the quadratic variation process for the coordinate process $\left\{B_{t}\right\}$, which is a G-Brownian motion. We know that $\left\{\langle B\rangle_{t}\right\}$ is a continuous, increasing process with stationary and independent increments, but it is not deterministic.

The process $\left\{\langle B\rangle_{t}\right\}$ is very important in the theory of G-expectation, which shows, in many aspects, the difference between probability spaces and G-expectation spaces. For example, we know that for a probability space continuous local martingales with finite variation are trivial processes. However, [4] proved that in a G-expectation space all processes in form of $\int_{0}^{t} \eta_{s} \mathrm{~d}\langle B\rangle_{s}-\int_{0}^{t} 2 G\left(\eta_{s}\right) \mathrm{d} s, \eta \in M_{G}^{1}(0, T)$ (see Section 2 for the definitions of the function $G(\cdot)$ and the space $M_{G}^{1}(0, T)$), are nontrivial G-martingales with finite variation (in fact, they are even nonincreasing) and continuous paths. [4] also conjectured that any G-martingale with finite variation should have such representation. Up to

[^0]now, some properties of the process $\left\{\langle B\rangle_{t}\right\}$ remain unknown. For example, we know that, if $G(x)=\frac{1}{2} \sup _{\underline{\sigma} \leq \sigma \leq \bar{\sigma}} \sigma^{2} x$ generates the G-expectation, we have $\underline{\sigma}^{2}(t-s) \leq\langle B\rangle_{t}-\langle B\rangle_{s} \leq \bar{\sigma}(t-s)$ for all $s<t$, but we do not know whether $\left\{\frac{\mathrm{d}}{\mathrm{d} s}\langle B\rangle_{s}\right\}$ belongs to $M_{G}^{1}(0, T)$. This is a very important property since $\left\{\frac{\mathrm{d}}{\mathrm{d} s}\langle B\rangle_{s}\right\} \in M_{G}^{1}(0, T)$ would imply that the representation mentioned above of G-martingales with finite variation is not unique.

For the case of a probability space, a continuous local martingale $\left\{M_{t}\right\}$ is a standard Brownian motion if and only if the quadratic variation process $\langle M\rangle_{t}=t$. However, it's not the case for G-Brownian motion since its quadratic variation process is only an increasing process with stationary and independent increments. How can we give a characterization for G-Brownian motion?

In this article, we shall prove that if $A_{t}=\int_{0}^{t} h_{s} \mathrm{~d} s$ (respectively $A_{t}=\int_{0}^{t} h_{s} \mathrm{~d}\langle B\rangle_{s}$) is a process with stationary, independent increments and $h \in M_{G}^{1}(0, T)$ (respectively $h \in M_{G}^{\beta,+}(0, T)$, for some $\beta>1$), then there exists some constant c such that $h \equiv c$. As applications, we prove the following conclusions (Question 1 and 3 are put forward by Prof. Shige Peng in private communications):

1. $\left\{\frac{\mathrm{d}}{\mathrm{d} s}\langle B\rangle_{s}\right\} \notin M_{G}^{1}(0, T)$.
2. (Martingale characterization)

A symmetric G-martingale $\left\{M_{t}\right\}$ is a G-Brownian motion if and only if its quadratic variation process $\left\{\langle M\rangle_{t}\right\}$ has stationary and independent increments;

A symmetric G-martingale $\left\{M_{t}\right\}$ is a G-Brownian motion if and only if its quadratic variation process $\langle M\rangle_{t}=$ $c\langle B\rangle_{t}$ for some $c \geq 0$.

The sufficiency of the second assertion is trivial, but not the necessity.
3. Let $\left\{X_{t}\right\}$ be a generalized G-Brownian motion with zero mean, then we have the following decomposition:

$$
X_{t}=M_{t}+L_{t}
$$

where $\left\{M_{t}\right\}$ is a (symmetric) G-Brownian motion, and $\left\{L_{t}\right\}$ is a nonpositive, nonincreasing G-martingale with stationary and independent increments.

This article is organized as follows: In Section 2 we recall some basic notions and results of G-expectation and the related space of random variables. In Section 3 we characterize processes with stationary and independent increments. In Section 4, as application, we prove the martingale characterization of G-Brownian motion and present a decomposition theorem for generalized G-Brownian motion. In Section 5 we present some properties for G-martingales with finite variation.

2. Preliminary

We recall some basic notions and results of G-expectation and the related space of random variables. More details of this section can be found in [3-8].

Definition 2.1. Let Ω be a given set and let \mathcal{H} be a vector lattice of real valued functions defined on Ω with $c \in \mathcal{H}$ for all constants $c . \mathcal{H}$ is considered as the space of "random variables." A sublinear expectation \hat{E} on \mathcal{H} is a functional $\hat{E}: \mathcal{H} \rightarrow R$ satisfying the following properties: For all $X, Y \in \mathcal{H}$, we have
(a) Monotonicity: If $X \geq Y$ then $\hat{E}(X) \geq \hat{E}(Y)$.
(b) Constant preserving: $\hat{E}(c)=c$.
(c) Sub-additivity: $\hat{E}(X)-\hat{E}(Y) \leq \hat{E}(X-Y)$.
(d) Positive homogeneity: $\hat{E}(\lambda X)=\lambda \hat{E}(X), \lambda \geq 0$.
$(\Omega, \mathcal{H}, \hat{E})$ is called a sublinear expectation space.
Definition 2.2. Let X_{1} and X_{2} be two n-dimensional random vectors defined respectively in sublinear expectation spaces $\left(\Omega_{1}, \mathcal{H}_{1}, \hat{E}_{1}\right)$ and $\left(\Omega_{2}, \mathcal{H}_{2}, \hat{E}_{2}\right)$. They are called identically distributed, denoted by $X_{1} \sim X_{2}$, if $\hat{E}_{1}\left[\varphi\left(X_{1}\right)\right]=$ $\hat{E}_{2}\left[\varphi\left(X_{2}\right)\right]$, for all $\varphi \in C_{l, \mathrm{Lip}}\left(R^{n}\right)$, where $C_{l, \mathrm{Lip}}\left(R^{n}\right)$ is the space of real continuous functions defined on R^{n} such that

$$
|\varphi(x)-\varphi(y)| \leq C\left(1+|x|^{k}+|y|^{k}\right)|x-y|, \quad \text { for all } x, y \in R^{n}
$$

where k and C depend only on φ.
Definition 2.3. In a sublinear expectation space $(\Omega, \mathcal{H}, \hat{E})$ a random vector $Y=\left(Y_{1}, \ldots, Y_{n}\right), Y_{i} \in \mathcal{H}$, is said to be independent of another random vector $X=\left(X_{1}, \ldots, X_{m}\right), X_{i} \in \mathcal{H}$, under $\hat{E}(\cdot)$, denoted by $Y \perp X$, if for every test function $\varphi \in C_{b, \operatorname{Lip}}\left(R^{m} \times R^{n}\right)$ we have $\hat{E}[\varphi(X, Y)]=\hat{E}\left[\hat{E}[\varphi(x, Y)]_{x=X}\right]$.

Definition 2.4 (G-normal distribution). A d-dimensional random vector $X=\left(X_{1}, \ldots, X_{d}\right)$ in a sublinear expectation space $(\Omega, \mathcal{H}, \hat{E})$ is called G-normal distributed if for every $a, b \in R_{+}$we have

$$
a X+b \hat{X} \sim \sqrt{a^{2}+b^{2}} X
$$

where \hat{X} is an independent copy of X. Here the letter G denotes the function

$$
G(A):=\frac{1}{2} \hat{E}[(A X, X)]: S_{d} \rightarrow R,
$$

where S_{d} denotes the collection of $d \times d$ symmetric matrices.
The function $G(\cdot): S_{d} \rightarrow R$ is a monotonic, sublinear mapping on S_{d} and $G(A)=\frac{1}{2} \hat{E}[(A X, X)] \leq \frac{1}{2}|A| \hat{E}\left[|X|^{2}\right]=$: $\frac{1}{2}|A| \bar{\sigma}^{2}$ implies that there exists a bounded, convex and closed subset $\Gamma \subset S_{d}^{+}$such that

$$
\begin{equation*}
G(A)=\frac{1}{2} \sup _{\gamma \in \Gamma} \operatorname{Tr}(\gamma A) . \tag{2.1}
\end{equation*}
$$

If there exists some $\beta>0$ such that $G(A)-G(B) \geq \beta \operatorname{Tr}(A-B)$ for any $A \geq B$, we call the G-normal distribution nondegenerate. This is the case we consider throughout this article.

Definition 2.5. (i) Let $\Omega_{T}=C_{0}\left([0, T] ; R^{d}\right)$ be endowed with the supremum norm and $\left\{B_{t}\right\}$ be the coordinate process. Set $\mathcal{H}_{T}^{0}:=\left\{\varphi\left(B_{t_{1}}, \ldots, B_{t_{n}}\right) \mid n \geq 1, t_{1}, \ldots, t_{n} \in[0, T], \varphi \in C_{l, \text { Lip }}\left(R^{d \times n}\right)\right\}$. G-expectation is a sublinear expectation defined by

$$
\hat{E}[X]=\tilde{E}\left[\varphi\left(\sqrt{t_{1}-t_{0}} \xi_{1}, \ldots, \sqrt{t_{m}-t_{m-1}} \xi_{m}\right)\right]
$$

for all $X=\varphi\left(B_{t_{1}}-B_{t_{0}}, B_{t_{2}}-B_{t_{1}}, \ldots, B_{t_{m}}-B_{t_{m-1}}\right)$, where ξ_{1}, \ldots, ξ_{n} are identically distributed d-dimensional G normally distributed random vectors in a sublinear expectation space ($\tilde{\Omega}, \tilde{\mathcal{H}}, \tilde{E})$ such that ξ_{i+1} is independent of $\left(\xi_{1}, \ldots, \xi_{i}\right)$ for every $i=1, \ldots, m-1 .\left(\Omega_{T}, \mathcal{H}_{T}^{0}, \hat{E}\right)$ is called a G-expectation space.
(ii) Let us define the conditional G-expectation \hat{E}_{t} of $\xi \in \mathcal{H}_{T}^{0}$ knowing \mathcal{H}_{t}^{0}, for $t \in[0, T]$. Without loss of generality we can assume that ξ has the representation $\xi=\varphi\left(B_{t_{1}}-B_{t_{0}}, B_{t_{2}}-B_{t_{1}}, \ldots, B_{t_{m}}-B_{t_{m-1}}\right)$ with $t=t_{i}$, for some $1 \leq i \leq m$, and we put

$$
\begin{aligned}
& \hat{E}_{t_{i}}\left[\varphi\left(B_{t_{1}}-B_{t_{0}}, B_{t_{2}}-B_{t_{1}}, \ldots, B_{t_{m}}-B_{t_{m-1}}\right)\right] \\
& \quad=\tilde{\varphi}\left(B_{t_{1}}-B_{t_{0}}, B_{t_{2}}-B_{t_{1}}, \ldots, B_{t_{i}}-B_{t_{i-1}}\right),
\end{aligned}
$$

where

$$
\tilde{\varphi}\left(x_{1}, \ldots, x_{i}\right)=\hat{E}\left[\varphi\left(x_{1}, \ldots, x_{i}, B_{t_{i+1}}-B_{t_{i}}, \ldots, B_{t_{m}}-B_{t_{m-1}}\right)\right] .
$$

Define $\|\xi\|_{p, G}=\left[\hat{E}\left(|\xi|^{p}\right)\right]^{1 / p}$ for $\xi \in \mathcal{H}_{T}^{0}$ and $p \geq 1$. Then for all $t \in[0, T], \hat{E}_{t}(\cdot)$ is a continuous mapping on \mathcal{H}_{T}^{0} with respect to the norm $\|\cdot\|_{1, G}$ and therefore can be extended continuously to the completion $L_{G}^{1}\left(\Omega_{T}\right)$ of \mathcal{H}_{T}^{0} under the norm $\|\cdot\|_{1, G}$.

Let $L_{i p}\left(\Omega_{T}\right):=\left\{\varphi\left(B_{t_{1}}, \ldots, B_{t_{n}}\right) \mid n \geq 1, t_{1}, \ldots, t_{n} \in[0, T], \varphi \in C_{b, \operatorname{Lip}}\left(R^{d \times n}\right)\right\}$, where $C_{b, \mathrm{Lip}}\left(R^{d \times n}\right)$ denotes the set of bounded Lipschitz functions on $R^{d \times n}$. [1] proved that the completions of $C_{b}\left(\Omega_{T}\right), \mathcal{H}_{T}^{0}$ and $L_{i p}\left(\Omega_{T}\right)$ under $\|\cdot\|_{p, G}$ are the same; we denote them by $L_{G}^{p}\left(\Omega_{T}\right)$.

Definition 2.6. (i) We say that $\left\{X_{t}\right\}$ on $\left(\Omega_{T}, L_{G}^{1}\left(\Omega_{T}\right), \hat{E}\right)$ is a process with independent increments iffor any $0<t<$ T and $s_{0} \leq \cdots \leq s_{m} \leq t \leq t_{0} \leq \cdots \leq t_{n} \leq T$,

$$
\left(X_{t_{1}}-X_{t_{0}}, \ldots, X_{t_{n}}-X_{t_{n-1}}\right) \perp\left(X_{s_{1}}-X_{s_{0}}, \ldots, X_{s_{m}}-X_{s_{m-1}}\right) .
$$

(ii) We say that $\left\{X_{t}\right\}$ on $\left(\Omega_{T}, L_{G}^{1}\left(\Omega_{T}\right), \hat{E}\right)$ with $X_{t} \in L_{G}^{1}\left(\Omega_{t}\right)$ for every $t \in[0, T]$ is a process with independent increments w.r.t. the filtration if for any $0<s<T$ and $s_{0} \leq \cdots \leq s_{m} \leq s \leq t_{0} \leq \cdots \leq t_{n} \leq T$,

$$
\left(X_{t_{1}}-X_{t_{0}}, \ldots, X_{t_{n}}-X_{t_{n-1}}\right) \perp\left(B_{s_{1}}-B_{s_{0}}, \ldots, B_{s_{m}}-B_{s_{m-1}}\right) .
$$

Remark 2.7. (i) Let $\xi \in L_{G}^{1}\left(\Omega_{T}\right)$. If there exists $s \in[0, T]$ such that for any $s_{0} \leq \cdots \leq s_{m} \leq s, \xi \perp\left(B_{s_{1}}-\right.$ $\left.B_{s_{0}}, \ldots, B_{s_{m}}-B_{s_{m-1}}\right)$, then we have $\hat{E}_{s}(\xi)=\hat{E}(\xi)$. In fact, there is no loss of generality, we assume $\hat{E}(\xi)=1$ and $C \geq \xi \geq \varepsilon$ for some $C, \varepsilon>0$. Set $\eta=\hat{E}_{s}(\xi)$. For any $n \in N$, we have

$$
\hat{E}\left(\eta^{n+1}\right)=\hat{E}\left(\eta^{n} \xi\right)
$$

Since $\xi \perp \eta^{n}$, we have

$$
\hat{E}\left(\eta^{n+1}\right)=\hat{E}\left(\eta^{n}\right)=\cdots=\hat{E}(\eta)=1
$$

By this, we have

$$
\eta \leq 1, \quad q . s
$$

On the other hand, we have

$$
\hat{E}\left[(\eta-1)^{2}\right]=\hat{E}[\eta(\eta-2)]+1=\hat{E}[\eta(\xi-2)]+1
$$

Since $\xi-2 \perp \eta$, we have

$$
\hat{E}\left[(1-\eta)^{2}\right]=\hat{E}(1-\eta)
$$

By Theorem 2.12 below, there exists $P \in \mathcal{P}$ such that

$$
E_{P}\left[(1-\eta)^{2}\right]=\hat{E}\left[(1-\eta)^{2}\right] .
$$

Noting that

$$
E_{P}(1-\eta) \leq \hat{E}(1-\eta)=\hat{E}\left[(1-\eta)^{2}\right]=E_{P}\left[(1-\eta)^{2}\right] \leq E_{P}(1-\eta),
$$

we have

$$
E_{P}\left[(1-\eta)^{2}\right]=E_{P}(1-\eta)
$$

By this, we have

$$
\eta^{2}=\eta, \quad P-a . s .
$$

Since $\eta \geq \varepsilon$, we have $\eta=1, P$-a.s. So we have

$$
\hat{E}\left[(1-\eta)^{2}\right]=E_{P}\left[(1-\eta)^{2}\right]=0
$$

(ii) Let $\left\{X_{t}\right\}$ on $\left(\Omega_{T}, L_{G}^{1}\left(\Omega_{T}\right), \hat{E}\right)$ be a process with stationary and independent increments and let $c=\hat{E}\left(X_{T}\right) / T$. If $\hat{E}\left(X_{t}\right) \rightarrow 0$ as $t \downarrow 0$, then for any $0 \leq s<t \leq T$, we have $\hat{E}\left(X_{t}-X_{s}\right)=c(t-s)$.

Definition 2.8. Let $\left\{X_{t}\right\}$ be a d-dimensional process defined on $\left(\Omega_{T}, L_{G}^{1}\left(\Omega_{T}\right), \hat{E}\right)$ such that:
(i) $X_{0}=0$;
(ii) $\left\{X_{t}\right\}$ is a process with stationary and independent increments w.r.t. the filtration;
(iii) $\lim _{t \rightarrow 0} \hat{E}\left[\left|X_{t}\right|^{3}\right] t^{-1}=0$.

Then $\left\{X_{t}\right\}$ is called a generalized G-Brownian motion.
If in addition $\hat{E}\left(X_{t}\right)=\hat{E}\left(-X_{t}\right)=0$ for all $t \in[0, T],\left\{X_{t}\right\}$ is called a (symmetric) G-Brownian motion.
Remark 2.9. (i) Clearly, the coordinate process $\left\{B_{t}\right\}$ is a (symmetric) G-Brownian motion and its quadratic variation process $\left\{\langle B\rangle_{t}\right\}$ is a process with stationary and independent increments (w.r.t. the filtration).
(ii) [4] gave a characterization for the generalized G-Brownian motion: Let $\left\{X_{t}\right\}$ be a generalized G-Brownian motion. Then

$$
\begin{equation*}
X_{t+s}-X_{t} \sim \sqrt{s} \xi+s \eta \quad \text { for } t, s \geq 0 \tag{2.2}
\end{equation*}
$$

where (ξ, η) is G-distributed (see, e.g., [6] for the definition of G-distributed random vectors). In fact, this characterization presented a decomposition of generalized G-Brownian motion in the sense of distribution. In this article, we shall give a pathwise decomposition for the generalized G-Brownian motion.

Let $H_{G}^{0}(0, T)$ be the collection of processes of the following form: for a given partition $\left\{t_{0}, \ldots, t_{N}\right\}=\pi_{T}$ of $[0, T]$, $N \geq 1$,

$$
\eta_{t}(\omega)=\sum_{j=0}^{N-1} \xi_{j}(\omega) 1_{]_{j}, t_{j+1}\right]}(t),
$$

where $\xi_{i} \in L_{i p}\left(\Omega_{t_{i}}\right), i=0,1,2, \ldots, N-1$. For every $\eta \in H_{G}^{0}(0, T)$, let $\|\eta\|_{H_{G}^{p}}=\left\{\hat{E}\left(\int_{0}^{T}\left|\eta_{s}\right|^{2} \mathrm{~d} s\right)^{p / 2}\right\}^{1 / p},\|\eta\|_{M_{G}^{p}}=$ $\left\{\hat{E}\left(\int_{0}^{T}\left|\eta_{s}\right|^{p} \mathrm{~d} s\right)\right\}^{1 / p}$ and denote by $H_{G}^{p}(0, T), M_{G}^{p}(0, T)$ the completions of $H_{G}^{0}(0, T)$ under the norms $\|\cdot\|_{H_{G}^{p}},\|\cdot\|_{M_{G}^{p}}$ respectively.

Definition 2.10. For every $\eta \in H_{G}^{0}(0, T)$ with the form

$$
\eta_{t}(\omega)=\sum_{j=0}^{N-1} \xi_{j}(\omega) 1_{l_{\left.t_{j}, t_{j+1}\right]}(t),},
$$

we define

$$
I(\eta)=\int_{0}^{T} \eta(s) \mathrm{d} B_{s}:=\sum_{j=0}^{N-1} \xi_{j}\left(B_{t_{j+1}}-B_{t_{j}}\right) .
$$

By $B-D-G$ inequality (see Proposition 4.3 in [10] for this inequality under G-expectation), the mapping $I: H_{G}^{0}(0, T) \rightarrow L_{G}^{p}\left(\Omega_{T}\right)$ is continuous under $\|\cdot\|_{H_{G}^{p}}$ and thus can be continuously extended to $H_{G}^{p}(0, T)$.

Definition 2.11. (i) A process $\left\{M_{t}\right\}$ with values in $L_{G}^{1}\left(\Omega_{T}\right)$ is called a G-martingale if $\hat{E}_{s}\left(M_{t}\right)=M_{s}$ for any $s \leq t$. If $\left\{M_{t}\right\}$ and $\left\{-M_{t}\right\}$ are both G-martingales, we call $\left\{M_{t}\right\}$ a symmetric G-martingale.
(ii) A random variable $\xi \in L_{G}^{1}\left(\Omega_{T}\right)$ is called symmetric if $\hat{E}(\xi)+\hat{E}(-\xi)=0$.

A G-martingale $\left\{M_{t}\right\}$ is symmetric if and only if M_{T} is symmetric.

Theorem $2.12([1,2])$. There exists a tight subset $\mathcal{P} \subset \mathcal{M}_{1}\left(\Omega_{T}\right)$ such that

$$
\hat{E}(\xi)=\max _{P \in \mathcal{P}} E_{P}(\xi) \quad \text { for all } \xi \in \mathcal{H}_{T}^{0}
$$

\mathcal{P} is called a set that represents \hat{E}.
Remark 2.13. (i) Let $\left(\Omega^{0}, \mathcal{F}^{0}, P^{0}\right)$ be a probability space and $\left\{W_{t}\right\}$ be a d-dimensional Brownian motion under P^{0}. Let $F^{0}=\left\{\mathcal{F}_{t}^{0}\right\}$ be the augmented filtration generated by W. [1] proved that

$$
\mathcal{P}_{M}:=\left\{P_{h} \mid P_{h}=P^{0} \circ X^{-1}, X_{t}=\int_{0}^{t} h_{s} \mathrm{~d} W_{s}, h \in L_{F^{0}}^{2}\left([0, T] ; \Gamma^{1 / 2}\right)\right\}
$$

is a set that represents \hat{E}, where $\Gamma^{1 / 2}:=\left\{\gamma^{1 / 2} \mid \gamma \in \Gamma\right\}$ and Γ is the set in the representation of $G(\cdot)$ in the formula (2.1).
(ii) For the 1-dimensional case, i.e., $\Omega_{T}=C_{0}([0, T], R)$,

$$
L_{F^{0}}^{2}:=L_{F^{0}}^{2}\left([0, T] ; \Gamma^{1 / 2}\right)=\left\{h \mid h \text { is adapted w.r.t. } F^{0} \text { and } \underline{\sigma} \leq h_{s} \leq \bar{\sigma}\right\},
$$

where $\bar{\sigma}^{2}=\hat{E}\left(B_{1}^{2}\right)$ and $\underline{\sigma}^{2}=-\hat{E}\left(-B_{1}^{2}\right)$.

$$
G(a)=1 / 2 \hat{E}\left[a B_{1}^{2}\right]=1 / 2\left[\bar{\sigma}^{2} a^{+}-\underline{\sigma}^{2} a^{-}\right] \text {for } a \in R
$$

(iii) Set $c(A)=\sup _{P \in \mathcal{P}_{M}} P(A)$, for $A \in \mathcal{B}\left(\Omega_{T}\right)$. We say $A \in \mathcal{B}\left(\Omega_{T}\right)$ is a polar set if $c(A)=0$. If an event happens except on a polar set, we say the event happens q.s.

3. Characterization of processes with stationary and independent increments

In what follows, we only consider the G-expectation space $\left(\Omega_{T}, L_{G}^{1}\left(\Omega_{T}\right), \hat{E}\right)$ with $\Omega_{T}=C_{0}([0, T], R)$ and $\bar{\sigma}^{2}=$ $\hat{E}\left(B_{1}^{2}\right)>-\hat{E}\left(-B_{1}^{2}\right)=\underline{\sigma}^{2}>0$.

Lemma 3.1. For $\zeta \in M_{G}^{1}(0, T)$ and $\varepsilon>0$, let

$$
\zeta_{t}^{\varepsilon}=\frac{1}{\varepsilon} \int_{(t-\varepsilon)^{+}}^{t} \zeta_{s} \mathrm{~d} s
$$

and

$$
\zeta_{t}^{\varepsilon, 0}=\sum_{k=1}^{k_{\varepsilon}-1} \frac{1}{\varepsilon} \int_{(k-1) \varepsilon}^{k \varepsilon} \zeta_{s} \mathrm{~d} s 1_{] k \varepsilon,(k+1) \varepsilon]}(t),
$$

where $t \in[0, T], k_{\varepsilon} \varepsilon \leq T<\left(k_{\varepsilon}+1\right) \varepsilon$. Then as $\varepsilon \rightarrow 0$

$$
\left\|\zeta^{\varepsilon}-\zeta\right\|_{M_{G}^{1}(0, T)} \rightarrow 0 \quad \text { and } \quad\left\|\zeta^{\varepsilon, 0}-\zeta\right\|_{M_{G}^{1}(0, T)} \rightarrow 0
$$

Proof. The proofs of the two cases are similar. Here we only prove the second case. Our proof starts with the observation that for any $\zeta, \zeta^{\prime} \in M_{G}^{1}(0, T)$

$$
\begin{equation*}
\left\|\zeta^{\varepsilon, 0}-\zeta^{\prime \varepsilon, 0}\right\|_{M_{G}^{1}(0, T)} \leq\left\|\zeta-\zeta^{\prime}\right\|_{M_{G}^{1}(0, T)} \tag{3.1}
\end{equation*}
$$

By the definition of the space $M_{G}^{1}(0, T)$, we know that for every $\zeta \in M_{G}^{1}(0, T)$, there exists a sequence of processes $\left\{\zeta^{n}\right\}$ with

$$
\zeta_{t}^{n}=\sum_{k=0}^{m_{n}-1} \xi_{t_{k}^{n}}^{n} 1_{\left.l_{k}^{n}, t_{k+1}^{n}\right]}(t)
$$

and $\xi_{t_{k}^{n}}^{n} \in L_{i p}\left(\Omega_{t_{k}^{n}}\right)$ such that

$$
\begin{equation*}
\left\|\zeta-\zeta^{n}\right\|_{M_{G}^{1}(0, T)} \rightarrow 0 \quad \text { as } n \rightarrow \infty . \tag{3.2}
\end{equation*}
$$

It is easily seen that for every n

$$
\begin{equation*}
\left\|\zeta^{n ; \varepsilon, 0}-\zeta^{n}\right\|_{M_{G}^{1}(0, T)} \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0 . \tag{3.3}
\end{equation*}
$$

Thus we get

$$
\begin{aligned}
& \left\|\zeta^{\varepsilon, 0}-\zeta\right\|_{M_{G}^{1}(0, T)} \\
& \quad \leq\left\|\zeta^{\varepsilon, 0}-\zeta^{n ; \varepsilon, 0}\right\|_{M_{G}^{1}(0, T)}+\left\|\zeta^{n}-\zeta^{n ; \varepsilon, 0}\right\|_{M_{G}^{1}(0, T)}+\left\|\zeta^{n}-\zeta\right\|_{M_{G}^{1}(0, T)} \\
& \quad \leq 2\left\|\zeta^{n}-\zeta\right\|_{M_{G}^{1}(0, T)}+\left\|\zeta^{n}-\zeta^{n ; \varepsilon, 0}\right\|_{M_{G}^{1}(0, T)} .
\end{aligned}
$$

The second inequality follows from (3.1). Combining (3.2) and (3.3), first letting $\varepsilon \rightarrow 0$, then letting $n \rightarrow \infty$, we have

$$
\left\|\zeta^{\varepsilon, 0}-\zeta\right\|_{M_{G}^{1}(0, T)} \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0
$$

Theorem 3.2. Let $A_{t}=\int_{0}^{t} h_{s} \mathrm{~d}$ with $h \in M_{G}^{1}(0, T)$ be a process with stationary and independent increments (w.r.t. the filtration). Then we have $h \equiv c$ for some constant c.

Proof. Let $\bar{c}:=\hat{E}\left(A_{T}\right) / T \geq-\hat{E}\left(-A_{T}\right) / T=: \underline{c}$. For $n \in N$, set $\varepsilon=T /(2 n)$, and define $h^{T /(2 n), 0}$ as in Lemma 3.1. Then we have

$$
\begin{aligned}
\| & -h^{T /(2 n), 0} \|_{M_{G}^{1}(0, T)} \\
& =\hat{E}\left[\sum_{k=0}^{2 n-1} \int_{k T /(2 n)}^{(k+1) T /(2 n)}\left|h_{s}-h_{s}^{T /(2 n), 0}\right| \mathrm{d} s\right] \\
& \geq \hat{E}\left[\sum_{k=1}^{n-1} \int_{2 k T /(2 n)}^{(2 k+1) T /(2 n)}\left(h_{s}-h_{s}^{T /(2 n), 0}\right) \mathrm{d} s\right] \\
& =\hat{E}\left[\sum_{k=1}^{n-1}\left(\int_{2 k T /(2 n)}^{(2 k+1) T /(2 n)} h_{s} \mathrm{~d} s-\int_{(2 k-1) T /(2 n)}^{2 k T /(2 n)} h_{s} \mathrm{~d} s\right)\right] \\
& =\hat{E} \sum_{k=1}^{n-1}\left[\left(A_{(2 k+1) T / 2 n}-A_{2 k T / 2 n)}-\left(A_{2 k T / 2 n}-A_{(2 k-1) T / 2 n)}\right)\right.\right.
\end{aligned}
$$

Consequently, from the condition of independence of the increments and their stationarity, we have

$$
\begin{aligned}
& \| h \\
&-h^{T /(2 n), 0} \|_{M_{G}^{1}(0, T)} \\
& \geq \sum_{k=1}^{n-1} \hat{E}\left[\left(A_{(2 k+1) T / 2 n}-A_{2 k T / 2 n}\right)-\left(A_{2 k T / 2 n}-A_{(2 k-1) T / 2 n}\right)\right] \\
&=\sum_{k=1}^{n-1}(\bar{c}-\underline{c}) T /(2 n) \\
&=(\bar{c}-\underline{c})(n-1) T /(2 n) .
\end{aligned}
$$

So by Lemma 3.1, letting $n \rightarrow \infty$, we have $\bar{c}=\underline{c}$. Furthermore, we note that $M_{t}:=A_{t}-\bar{c} t$ is a G-martingale. In fact, for $t>s$, we see

$$
\begin{aligned}
& \hat{E}_{s}\left(M_{t}\right) \\
& \quad=\hat{E}_{s}\left(M_{t}-M_{s}\right)+M_{s} \\
& \quad=\hat{E}\left(M_{t}-M_{s}\right)+M_{s} \\
& \quad=M_{s} .
\end{aligned}
$$

The second equality is due to the independence of increments of M w.r.t. the filtration.
So $\left\{M_{t}\right\}$ is a symmetric G-martingale with finite variation, from which we conclude that $M_{t} \equiv 0$, hence that $A_{t}=\bar{c} t$.

Corollary 3.3. Assume $\bar{\sigma}>\underline{\sigma}>0$. Then we have that $\left\{\frac{\mathrm{d}}{\mathrm{d} s}\langle B\rangle_{s}\right\} \notin M_{G}^{1}(0, T)$.
Proof. The proof is straightforward from Theorem 3.2.
Corollary 3.4. There is no symmetric G-martingale $\left\{M_{t}\right\}$ which is a standard Brownian motion under G-expectation (i.e. $\langle M\rangle_{t}=t$).

Proof. Let $\left\{M_{t}\right\}$ be a symmetric G-martingale. If $\left\{M_{t}\right\}$ is also a standard Brownian motion, by Theorem 4.8 in [10] or Corollary 5.2 in [11], there exists $\left\{h_{s}\right\} \in M_{G}^{2}(0, T)$ such that

$$
M_{t}=\int_{0}^{t} h_{s} \mathrm{~d} B_{s}
$$

and

$$
\int_{0}^{t} h_{s}^{2} \mathrm{~d}\langle B\rangle_{s}=t
$$

Thus we have $\frac{\mathrm{d}}{\mathrm{d} s}\langle B\rangle_{s}=h_{s}^{-2} \in M_{G}^{1}(0, T)$, which contradicts the conclusion of Corollary 3.3.
Proposition 3.5. Let $A_{t}=\int_{0}^{t} h_{s} \mathrm{~d} s$ with $h \in M_{G}^{1}(0, T)$ be a process with independent increments. Then A_{t} is symmetric for every $t \in[0, T]$.

Proof. By arguments similar to those in the proof of Theorem 3.2, we have

$$
\begin{aligned}
\| & h h^{T /(2 n), 0} \|_{M_{G}^{1}(0, T)} \\
& \geq \hat{E} \sum_{k=0}^{n-1}\left[\left(A_{(2 k+1) T / 2 n}-A_{2 k T / 2 n}\right)-\left(A_{2 k T / 2 n}-A_{(2 k-1)^{+} T / 2 n}\right)\right] \\
& =\sum_{k=0}^{n-1}\left\{\hat{E}\left(A_{(2 k+1) T / 2 n}-A_{2 k T / 2 n}\right)+\hat{E}\left[-\left(A_{2 k T / 2 n}-A_{(2 k-1)^{+}+T / 2 n}\right)\right]\right\} .
\end{aligned}
$$

The right side of the first inequality is only the sum of the odd terms. Summing up the even terms only, we have

$$
\begin{aligned}
\| & -h^{T /(2 n), 0} \|_{M_{G}^{1}(0, T)} \\
& \geq \sum_{k=0}^{n-1}\left\{\hat{E}\left(A_{(2 k+2) T / 2 n}-A_{(2 k+1) T / 2 n}\right)+\hat{E}\left[-\left(A_{(2 k+1) T / 2 n}-A_{2 k T / 2 n}\right)\right]\right\} .
\end{aligned}
$$

Combining the above inequalities, we have

$$
\begin{aligned}
2 \| & \left\|-h^{T /(2 n), 0}\right\|_{M_{G}^{1}(0, T)} \\
& \geq \sum_{k=0}^{2 n-1}\left\{\hat{E}\left[A_{(k+1) T / 2 n}-A_{k T / 2 n}\right]+\hat{E}\left[-\left(A_{(k+1) T / 2 n}-A_{k T / 2 n}\right)\right]\right\} \\
& \geq \hat{E} \sum_{k=0}^{2 n-1}\left[A_{(k+1) T / 2 n}-A_{k T / 2 n}\right]+\hat{E} \sum_{k=0}^{2 n-1}\left[-\left(A_{(k+1) T / 2 n}-A_{k T / 2 n}\right)\right] \\
& =\hat{E}\left(A_{T}\right)+\hat{E}\left(-A_{T}\right) .
\end{aligned}
$$

Thus by Lemma 3.1, letting $n \rightarrow \infty$, we have $\hat{E}\left(A_{T}\right)+\hat{E}\left(-A_{T}\right)=0$, which means that A_{T} is symmetric.
For $n \in N$, define $\delta_{n}(s)$ in the following way:

$$
\delta_{n}(s)=\sum_{i=0}^{n-1}(-1)^{i} 1_{\left.1 \frac{i T}{n}, \frac{(i+1) T}{n}\right]}(s) \quad \text { for all } s \in[0, T]
$$

In [12] we proved that $\lim _{n \rightarrow \infty} \hat{E}\left(\int_{0}^{T} \delta_{n}(s) h_{s} \mathrm{~d} s\right)=0$ for $h \in M_{G}^{1}(0, T)$.
Let $\mathcal{F}_{t}=\sigma\left\{B_{s} \mid s \leq t\right\}$ and $\mathbb{F}=\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]}$.
In the following, we shall use some notations introduced in Remark 2.13.
For every $P \in \mathcal{P}_{M}$ and $t \in[0, T]$, set $\mathcal{A}_{t, P}:=\left\{Q \in \mathcal{P}_{M} \mid Q_{\mid \mathcal{F}_{t}}=P_{\mid \mathcal{F}_{t}}\right\}$. Proposition 3.4 in [9] gave the following result: For $t \in[0, T]$, assume $\xi \in L_{G}^{1}\left(\Omega_{T}\right)$ and $\eta \in L_{G}^{1}\left(\Omega_{t}\right)$. Then $\eta=\hat{E}_{t}(\xi)$ if and only if for every $P \in \mathcal{P}_{M}$

$$
\eta=\underset{Q \in \mathcal{A}_{t, P}}{\operatorname{ess} \sup ^{P}} E_{Q}\left(\xi \mid \mathcal{F}_{t}\right), \quad P \text {-a.s. }
$$

where ess sup ${ }^{P}$ denotes the essential supremum under P.
Theorem 3.6. Let $A_{t}=\int_{0}^{t} h_{s} \mathrm{~d}\langle B\rangle_{s}$ be a process with stationary, independent increments (w.r.t. the filtration) and $h \in M_{G}^{1,+}(0, T)$. If $A_{T} \in L_{G}^{\beta}\left(\Omega_{T}\right)$ for some $\beta>1$, we have $A_{t}=c\langle B\rangle_{t}$ for some constant $c \geq 0$.

Proof. For the readability, we divide the proof into several steps:
Step 1. Set $K_{t}:=\int_{0}^{t} h_{s} \mathrm{~d} s$. We claim that K_{T} is symmetric.
Step 1.1. Let $\bar{\mu}=\hat{E}\left(A_{T}\right) / T$ and $\underline{\mu}=-\hat{E}\left(-A_{T}\right) / T$. First, we shall prove that $\frac{\bar{\mu}}{\bar{\sigma}^{2}}=\frac{\underline{\mu}}{\underline{\sigma}^{2}}$.
Actually, for any $0 \leq s<t \leq T$, we have

$$
\hat{E}_{s}\left(\int_{s}^{t} h_{r} \mathrm{~d} r\right)=\hat{E}_{s}\left(\int_{s}^{t} \theta_{r}^{-1} \mathrm{~d} A_{r}\right) \geq \frac{1}{\bar{\sigma}^{2}} \hat{E}_{s}\left(\int_{s}^{t} \mathrm{~d} A_{r}\right)=\frac{\bar{\mu}}{\bar{\sigma}^{2}}(t-s) \quad \text { q.s., }
$$

where the inequality holds due to $\theta_{s}:=\frac{\mathrm{d}\langle B\rangle_{s}}{\mathrm{~d} s} \leq \bar{\sigma}^{2}$, q.s. Noting that $\underline{\mu} t-A_{t}$ is nonincreasing by Lemma 4.3 in Section 4 since it is a G-martingale with finite variation, we have, for every $\eta \in L_{F^{0}}^{2}, P_{\eta}$-a.s.,

$$
\begin{aligned}
& \hat{E}_{S}\left(\int_{s}^{t} h_{r} \mathrm{~d} r\right) \\
& \quad=\underset{Q \in \mathcal{A}_{t, P_{\eta}}}{\operatorname{ess} \sup } P_{\eta} E_{Q}\left(\int_{s}^{t} h_{r} \mathrm{~d} r \mid \mathcal{F}_{s}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\underset{Q \in \mathcal{A}_{t, P_{\eta}}}{\operatorname{ess} \sup ^{P_{\eta}}} E_{Q}\left(\int_{s}^{t} \theta_{r}^{-1} \mathrm{~d} A_{r} \mid \mathcal{F}_{s}\right) \\
& \geq \underline{\mu}_{Q \in \mathcal{A}_{t, P_{\eta}}}^{\operatorname{eess} \sup ^{P_{\eta}}} E_{Q}\left(\int_{s}^{t} \theta_{r}^{-1} \mathrm{~d} r \mid \mathcal{F}_{s}\right) \\
& =\frac{\mu}{\underline{\sigma}^{2}}(t-s) .
\end{aligned}
$$

So $\hat{E}_{s}\left(\int_{s}^{t} h_{r} \mathrm{~d} r\right) \geq \max \left\{\frac{\bar{\mu}}{\bar{\sigma}^{2}}, \frac{\mu}{\underline{\sigma}^{2}}\right\}(t-s)=: \bar{\lambda}(t-s)$, q.s.
On the other hand,

$$
\hat{E}_{s}\left(-\int_{s}^{t} h_{r} \mathrm{~d} r\right)=\hat{E}_{s}\left(\int_{s}^{t}-\theta_{r}^{-1} \mathrm{~d} A_{r}\right) \geq \frac{1}{\underline{\sigma}^{2}} \hat{E}_{s}\left(-\int_{s}^{t} \mathrm{~d} A_{r}\right)=-\frac{\mu}{\underline{\sigma}^{2}}(t-s), \quad \text { q.s. }
$$

and for every $\eta \in L_{F^{0}}^{2}, P_{\eta}$-a.s.,

$$
\begin{aligned}
\hat{E}_{s} & \left(-\int_{s}^{t} h_{r} \mathrm{~d} r\right) \\
& =\underset{Q \in \mathcal{A}_{t, P_{\eta}}}{\operatorname{ess} \sup ^{P_{\eta}}} E_{Q}\left(-\int_{s}^{t} h_{r} \mathrm{~d} r \mid \mathcal{F}_{s}\right) \\
& =\underset{Q \in \mathcal{A}_{t, P_{\eta}}}{\operatorname{ess} \sup ^{P_{\eta}}} E_{Q}\left(-\int_{s}^{t} \theta_{r}^{-1} \mathrm{~d} A_{r} \mid \mathcal{F}_{s}\right) \\
& \geq \bar{\mu} \underset{Q \in \mathcal{A}_{t, P_{\eta}}}{\operatorname{ess} \sup ^{P_{\eta}}} E_{Q}\left(-\int_{s}^{t} \theta_{r}^{-1} \mathrm{~d} r \mid \mathcal{F}_{s}\right) \\
& =-\frac{\bar{\mu}}{\bar{\sigma}^{2}}(t-s)
\end{aligned}
$$

since $A_{t}-\bar{\mu} t$ is nonincreasing. So

$$
\hat{E}_{s}\left(-\int_{s}^{t} h_{r} \mathrm{~d} r\right) \geq-\min \left\{\frac{\bar{\mu}}{\bar{\sigma}^{2}}, \frac{\mu}{\underline{\sigma}^{2}}\right\}(t-s)=:-\underline{\lambda}(t-s), \quad \text { q.s. }
$$

Noting that

$$
\begin{aligned}
& \hat{E}\left(\int_{0}^{T} \delta_{2 n}(s) h_{s} \mathrm{~d} s\right) \\
& \quad=\hat{E}\left[\int_{0}^{(2 n-1) T /(2 n)} \delta_{2 n}(s) h_{s} \mathrm{~d} s+\hat{E}_{(2 n-1) T /(2 n)}\left(-\int_{(2 n-1) T /(2 n)}^{T} h_{s} \mathrm{~d} s\right)\right] \\
& \quad \geq(-\underline{\lambda}) \frac{T}{2 n}+\hat{E}\left[\int_{0}^{(2 n-2) T /(2 n)} \delta_{2 n}(s) h_{s} \mathrm{~d} s+\hat{E}_{(2 n-2) T /(2 n)}\left(\int_{(2 n-2) T /(2 n)}^{(2 n-1) T /(2 n)} h_{s} \mathrm{~d} s\right)\right] \\
& \quad \geq \frac{\bar{\lambda}-\underline{\lambda}}{2 n} T+\hat{E}\left[\int_{0}^{(2 n-2) T /(2 n)} \delta_{2 n}(s) h_{s} \mathrm{~d} s\right],
\end{aligned}
$$

we have

$$
\hat{E}\left(\int_{0}^{T} \delta_{2 n}(s) h_{s} \mathrm{~d} s\right) \geq \frac{\bar{\lambda}-\underline{\lambda}}{2} T
$$

So

$$
0=\lim _{n \rightarrow \infty} \hat{E}\left(\int_{0}^{T} \delta_{2 n}(s) h_{s} \mathrm{~d} s\right) \geq \frac{\bar{\lambda}-\underline{\lambda}}{2} T
$$

and $\frac{\bar{\mu}}{\bar{\sigma}^{2}}=\frac{\mu}{\sigma^{2}}=: \lambda$.
Step 1.2. For every $\eta \in L_{F^{0}}^{2}, E_{P_{\eta}}\left(K_{T}\right)=\lambda T$, which implies that K_{T} is symmetric.
Step 1.2.1. We now introduce some notations: For $0 \leq s<t \leq T$ and $\eta \in L_{F^{0}}^{2}$, set $\bar{\eta}=\bar{\sigma}, \underline{\eta}=\underline{\sigma}, \eta^{*}=\sqrt{\frac{\sigma^{2}+\underline{\sigma}^{2}}{2}}$ on $] s, t]$ and $\bar{\eta}=\underline{\eta}=\eta^{*}=\eta$ on $\left.] s, t\right]^{c}$. For $n \in N$, set $\eta_{r}^{n}=\sum_{i=0}^{n-1}\left(\underline{\sigma} 1_{\left.l_{2 i}, t_{2 i+1}\right]}(r)+\bar{\sigma} 1_{\left.] t_{2 i+1}, t_{2 i+2}\right]}(r)\right)$ on $\left.] s, t\right]$ and $\eta^{n}=\eta$ on] $s, t]^{c}$, where $t_{j}=s+\frac{j}{2 n}(t-s), j=0, \ldots, 2 n$.

Actually, we have, P_{η}-a.s.,

$$
\bar{\mu}(t-s)=\hat{E}_{s}\left(\int_{s}^{t} h_{r} \mathrm{~d}\langle B\rangle_{r}\right) \geq E_{P_{\bar{\eta}}}\left(\int_{s}^{t} h_{r} \mathrm{~d}\langle B\rangle_{r} \mid \mathcal{F}_{s}\right)=\bar{\sigma}^{2} E_{P_{\bar{\eta}}}\left(\int_{s}^{t} h_{r} \mathrm{~d} r \mid \mathcal{F}_{s}\right) .
$$

So

$$
\begin{equation*}
E_{P_{\bar{\eta}}}\left(\int_{s}^{t} h_{r} \mathrm{~d} r \mid \mathcal{F}_{s}\right) \leq \lambda(t-s), \quad P_{\eta} \text {-a.s. } \tag{3.4}
\end{equation*}
$$

By similar arguments we have that

$$
\begin{equation*}
E_{P_{\underline{\eta}}}\left(\int_{s}^{t} h_{r} \mathrm{~d} r \mid \mathcal{F}_{s}\right) \geq \lambda(t-s), \quad P_{\eta} \text {-a.s. } \tag{3.5}
\end{equation*}
$$

Let's compute the following conditional expectations:

$$
\begin{aligned}
& E_{P_{\eta^{n}}}\left(\int_{s}^{t}\left(h_{r}-\lambda\right) \delta_{2 n}(r) \mathrm{d} r \mid \mathcal{F}_{s}\right) \\
& \quad=E_{P_{\eta^{n}}}^{\mathcal{F}_{s}}\left[\sum_{i=0}^{n-1}\left\{E_{P_{\eta^{n}}}^{\mathcal{F}_{t_{2 i}}} \int_{t_{2 i}}^{t_{2 i+1}}\left(h_{r}-\lambda\right) \mathrm{d} r+E_{P_{\eta^{n}}}^{\mathcal{F}_{t{ }_{2}}} \int_{t_{2 i+1}}^{t_{2 i+2}}\left(\lambda-h_{r}\right) \mathrm{d} r\right\}\right] \\
& \quad=: E_{P_{\eta^{n}}}^{\mathcal{F}_{\mathcal{S}}}\left[\sum_{i=0}^{n-1}\left(A_{i}+B_{i}\right)\right]
\end{aligned}
$$

where $\delta_{2 n}(r)=\sum_{i=0}^{n-1}\left(1_{\left.1 t_{i} i, t_{2 i+1}\right]}(r)-1_{l_{t t_{i+1},}, t_{2 i+2]}}(r)\right), t_{j}=s+\frac{j}{2 n}(t-s), j=0, \ldots, 2 n$;

$$
E_{P_{\eta^{n}}}\left(\int_{s}^{t}\left(h_{r}-\lambda\right) \mathrm{d} r \mid \mathcal{F}_{s}\right)=E_{P_{\eta^{n}}}^{\mathcal{F}_{s}}\left[\sum_{i=0}^{n-1}\left(A_{i}-B_{i}\right)\right] .
$$

By (3.4) and (3.5) (noting that η and s, t are all arbitrary), we conclude that $A_{i}, B_{i} \geq 0, P_{\eta_{n}}$-a.s. So

$$
\left|E_{P_{\eta^{n}}}\left(\int_{s}^{t}\left(h_{r}-\lambda\right) \mathrm{d} r \mid \mathcal{F}_{s}\right)\right| \leq E_{P_{\eta^{n}}}\left(\int_{s}^{t}\left(h_{r}-\lambda\right) \delta_{2 n}(r) \mathrm{d} r \mid \mathcal{F}_{s}\right), \quad P_{\eta^{-} \text {-a.s. }}
$$

Noting that

$$
E_{P_{\eta^{n}}}\left(\int_{s}^{t}\left(h_{r}-\lambda\right) \delta_{2 n}(r) \mathrm{d} r \mid \mathcal{F}_{s}\right) \leq \hat{E}_{s}\left[\int_{s}^{t}\left(h_{r}-\lambda\right) \delta_{2 n}(r) \mathrm{d} r\right], \quad P_{\eta^{-a . s .}}
$$

and

$$
\hat{E}_{s}\left[\int_{s}^{t}\left(h_{r}-\lambda\right) \delta_{2 n}(r) \mathrm{d} r\right] \rightarrow 0 \quad \text { q.s., as } n \rightarrow \infty
$$

we have $E_{P_{\eta^{n}}}\left(\int_{s}^{t}\left(h_{r}-\lambda\right) \mathrm{d} r \mid \mathcal{F}_{s}\right) \rightarrow 0, P_{\eta^{-}}$-a.s., as $n \rightarrow \infty$.
Step 1.2.3. For any $\xi \in L_{G}^{1}\left(\Omega_{t}\right), E_{P_{\eta^{n}}}\left(\xi \mid \mathcal{F}_{s}\right) \rightarrow E_{P_{\eta^{*}}}\left(\xi \mid \mathcal{F}_{s}\right), P_{\eta^{-}}$-a.s., as $n \rightarrow \infty$.
In fact, for $\xi=\varphi\left(B_{s_{1}}-B_{s_{0}}, \ldots, B_{s_{m}}-B_{s_{m-1}}\right) \in L_{i p}\left(\Omega_{t}\right)$, the conclusion is obvious. For general $\xi \in L_{G}^{1}\left(\Omega_{t}\right)$, there exists a sequence $\left\{\xi^{m}\right\} \subset L_{i p}\left(\Omega_{t}\right)$ such that $\hat{E}\left[\left|\xi^{m}-\xi\right|\right]=\hat{E}\left[\hat{E}_{s}\left(\left|\xi^{m}-\xi\right|\right)\right] \rightarrow 0$. So we can assume $\hat{E}_{s}\left(\left|\xi^{m}-\xi\right|\right) \rightarrow 0$ q.s.

Then, P_{η}-a.s., we have

$$
\begin{aligned}
& \left|E_{P_{\eta^{n}}}\left(\xi \mid \mathcal{F}_{s}\right)-E_{P_{\eta^{*}}}\left(\xi \mid \mathcal{F}_{s}\right)\right| \\
& \quad \leq\left|E_{P_{\eta^{n}}}\left(\xi \mid \mathcal{F}_{s}\right)-E_{P_{\eta^{n}}}\left(\xi^{m} \mid \mathcal{F}_{s}\right)\right|+\left|E_{P_{\eta^{n}}}\left(\xi^{m} \mid \mathcal{F}_{s}\right)-E_{P_{\eta^{*}}}\left(\xi^{m} \mid \mathcal{F}_{s}\right)\right| \\
& \quad+\left|E_{P_{\eta^{*}}}\left(\xi^{m} \mid \mathcal{F}_{s}\right)-E_{P_{\eta^{*}}}\left(\xi \mid \mathcal{F}_{s}\right)\right| \\
& \quad \leq 2 \hat{E}_{s}\left(\left|\xi^{m}-\xi\right|\right)+\left|E_{P_{\eta^{n}}}\left(\xi^{m} \mid \mathcal{F}_{s}\right)-E_{P_{\eta^{*}}}\left(\xi^{m} \mid \mathcal{F}_{s}\right)\right| .
\end{aligned}
$$

First letting $n \rightarrow \infty$, then letting $m \rightarrow \infty$, we have $E_{P_{\eta^{n}}}\left(\xi \mid \mathcal{F}_{s}\right) \rightarrow E_{P_{\eta^{*}}}\left(\xi \mid \mathcal{F}_{s}\right), P_{\eta^{-}}$-a.s. So combining Step 1.2.2 and Step 1.2.3, we have

$$
\begin{equation*}
E_{P_{\eta^{*}}}\left(\int_{s}^{t} h_{r} \mathrm{~d} r \mid \mathcal{F}_{s}\right)=\lambda(t-s), \quad P_{\eta^{-} \text {-a.s. }} \tag{3.6}
\end{equation*}
$$

Step 1.2.4. For $0 \leq s<t \leq T, \eta \in L_{F^{0}}^{2}, \sigma \in[\underline{\sigma}, \bar{\sigma}]$, set $\eta^{\sigma}=\sigma$ on $\left.] s, t\right]$ and $\eta^{\sigma}=\eta$ on $\left.] s, t\right]^{c}$. We have

$$
E_{P_{\eta^{\sigma}}}\left(\int_{s}^{t} h_{r} \mathrm{~d} r \mid \mathcal{F}_{s}\right)=\lambda(t-s), \quad P_{\eta^{-} \text {-a.s. }}
$$

In fact, Step 1.2.2-Step 1.2.3 proved the following fact: If (3.4), (3.5) hold for some $\sigma, \sigma^{\prime} \in[\underline{\sigma}, \bar{\sigma}]$, then (3.6) holds for $\sqrt{\frac{\sigma^{2}+\sigma^{\prime 2}}{2}}$. So by repeating the Step 1.2.2-Step 1.2.3, we get the desired result.

Step 1.2.5. For any simple process $\eta \in L_{F^{0}}^{2}, E_{P_{\eta}}\left(K_{T}\right)=\lambda T$.
Let $\eta_{r}=\sum_{i=0}^{m-1} \eta_{t_{i}} 1_{{ }_{\left.t_{i}, t_{i+1}\right]}}(r) \in L_{F^{0}}^{2}$ with $\eta_{t_{i}}=\sum_{j=1}^{n_{i}} a_{j}^{i} 1_{A_{j}^{i}}$ an $\mathcal{F}_{t_{i}}^{0}$ measurable simple function, where $\left\{t_{0}, \ldots, t_{m}\right\}$ is a given partition of $[0, T]$. Set $X_{t}=\int_{0}^{t} \eta_{r} \mathrm{~d} W_{r}$. Let $F^{X}=\left\{\mathcal{F}_{t}^{X}\right\}$ be the filtration generated by X.

Fix $0 \leq i<m$. Set $\eta_{s}^{j, \varepsilon}=\eta_{s} 1_{\left[0, t_{i}+\varepsilon\right]}(s)+a_{j}^{i} 1_{\left.]_{t}+\varepsilon, T\right]}(s)$ and $X_{t}^{j, \varepsilon}=\int_{0}^{t} \eta_{s}^{j, \varepsilon} \mathrm{~d} W_{s}$ for $\varepsilon>0$ small enough. Let $F^{X^{j, \varepsilon}}=\left\{\mathcal{F}_{t}^{X^{j, \varepsilon}}\right\}$ be the filtration generated by $X^{j, \varepsilon}$. Then

$$
E_{P_{\eta}}\left(\int_{t_{i}+\varepsilon}^{t_{i+1}} h_{r} \mathrm{~d} r\right)=E_{P^{0}}\left(\int_{t_{i}+\varepsilon}^{t_{i+1}} h_{r} \circ X \mathrm{~d} r\right)=E_{P^{0}}\left[E_{P^{0}}\left(\int_{t_{i}+\varepsilon}^{t_{i+1}} h_{r} \circ X \mathrm{~d} r \mid \mathcal{F}_{t_{i}+\varepsilon}^{X}\right)\right] .
$$

Since $A_{j}^{i} \in \mathcal{F}_{t_{i}+\varepsilon}^{X}=\mathcal{F}_{t_{i}+\varepsilon}^{X^{j, \varepsilon}}$ and $X_{t}=\sum_{j=0}^{n_{i}} X_{t}^{j, \varepsilon} 1_{A_{j}^{i}}$ on $\left[0, t_{i+1}\right]$, we have

$$
\begin{aligned}
& E_{P^{0}}\left(\int_{t_{i}+\varepsilon}^{t_{i+1}} h_{r} \circ X \mathrm{~d} r \mid \mathcal{F}_{t_{i}+\varepsilon}^{X}\right) \\
& =\sum_{j=1}^{n_{i}} E_{P^{0}}\left(1_{A_{j}^{i}} \int_{t_{i}}^{t_{i+1}} h_{r} \circ X^{j, \varepsilon} \mathrm{~d} r \mid \mathcal{F}_{t_{i}+\varepsilon}^{X}\right) \\
& =\sum_{j=1}^{n_{i}} 1_{A_{j}^{i}} E_{P^{0}}\left(\int_{t_{i}}^{t_{i+1}} h_{r} \circ X^{j, \varepsilon} \mathrm{~d} r \mid \mathcal{F}_{t_{i}+\varepsilon}^{X^{j, \varepsilon}}\right) .
\end{aligned}
$$

Noting that

$$
E_{P^{0}}\left(\int_{t_{i}+\varepsilon}^{t_{i+1}} h_{r} \circ X^{j, \varepsilon} \mathrm{~d} r \mid \mathcal{F}_{t_{i}+\varepsilon}^{X^{j, \varepsilon}}\right)=E_{P_{\eta^{j}, \varepsilon}}\left(\int_{t_{i}+\varepsilon}^{t_{i+1}} h_{r} \mathrm{~d} r \mid \mathcal{F}_{t_{i}+\varepsilon}\right) \circ X^{j, \varepsilon}=\lambda\left(t_{i+1}-t_{i}-\varepsilon\right) \quad P^{0} \text {-a.s., }
$$

by Step 1.2.4, we have $E_{P_{\eta}}\left(\int_{t_{i}}^{t_{i+1}} h_{r} \mathrm{~d} r\right)=\lambda\left(t_{i+1}-t_{i}\right)$ and $E_{P_{\eta}}\left(K_{T}\right)=\lambda T$.
Step $2 . h \equiv \lambda$.
Let $M_{t}=\int_{0}^{t} h_{r} \mathrm{~d}\langle B\rangle_{s}-\int_{0}^{t} 2 G\left(h_{s}\right) \mathrm{d} s$ and $N_{t}=\int_{0}^{t} h_{s} \mathrm{~d}\langle B\rangle_{s}-\bar{\mu} t$. As is mentioned in the Introduction, [4] proved that $\left\{M_{t}\right\}$ is a G-martingale. Since $\left\{\int_{0}^{t} h_{s} \mathrm{~d}\langle B\rangle_{s}\right\}$ is a process with stationary and independent increments w.r.t. the filtration, we know that $\left\{N_{t}\right\}$ is also a G-martingale. Let $L_{t}=\hat{E}_{t}\left(\bar{\mu} T-\bar{\sigma}^{2} K_{T}\right)$. Then $\left\{L_{t}\right\}$ is a symmetric G-martingale since K_{T} is symmetric. By the symmetry of $\left\{L_{t}\right\}$ we have

$$
M_{t}=\hat{E}_{t}\left(M_{T}\right)=\hat{E}_{t}\left(L_{T}+N_{T}\right)=L_{t}+N_{t} .
$$

By the uniqueness of the G-martingale decomposition, we get $L \equiv 0$ and $h \equiv \lambda$.
Remark 3.7. Clearly, $h \in M_{G}^{\beta}(0, T)$ for some $\beta>1$ implies $A_{T}=\int_{0}^{T} h_{s} \mathrm{~d}\langle B\rangle \in L_{G}^{\beta}\left(\Omega_{T}\right)$.

4. Characterization of the \boldsymbol{G}-Brownian motion

A version of the martingale characterization for the G-Brownian motion was given in [13], where only symmetric G-martingales with Markovian property were considered. Here we shall present a martingale characterization in a quite different form, which is a natural but nontrivial generalization of the classical case in a probability space.

Theorem 4.1 (Martingale characterization of the G-Brownian motion).

Let $\left\{M_{t}\right\}$ be a symmetric G-martingale with $M_{T} \in L_{G}^{\alpha}\left(\Omega_{T}\right)$ for some $\alpha>2$ and $\left\{\langle M\rangle_{t}\right\}$ a process with stationary and independent increments (w.r.t. the filtration). Then $\left\{M_{t}\right\}$ is a G-Brownian motion:

Let $\left\{M_{t}\right\}$ be a G-Brownian motion on $\left(\Omega_{T}, L_{G}^{1}\left(\Omega_{T}\right), \hat{E}\right)$. Then there exists a positive constant c such that $\langle M\rangle_{t}=$ $c\langle B\rangle_{t}$.

Proof. By Corollary 5.2 in [11], there exists $h \in M_{G}^{2}(0, T)$ such that $M_{t}=\int_{0}^{t} h_{s} \mathrm{~d} B_{s}$. So $\langle M\rangle_{t}=\int_{0}^{t} h_{s}^{2} \mathrm{~d}\langle B\rangle_{s}$. By the assumption, we know that $\langle M\rangle_{T} \in L_{G}^{\beta}\left(\Omega_{T}\right)$ for some $\beta>1$. By Theorem 3.6, there exists some constant $c \geq 0$ such that $h^{2} \equiv c$. Thus by Theorem 2.12 and Remark 2.13, $\left\{M_{t}\right\}$ is a G-Brownian motion with M_{t} distributed as $N\left(0,\left[\underline{\sigma}^{2} t, c \bar{\sigma}^{2} t\right]\right)$.

On the other hand, if $\left\{M_{t}\right\}$ is a G-Brownian motion on $\left(\Omega_{T}, L_{G}^{1}\left(\Omega_{T}\right)\right)$, then $\left\{M_{t}\right\}$ is a symmetric G-martingale. By the above arguments, we have $\langle M\rangle_{t}=c\langle B\rangle_{t}$ for some positive constant c.

Let

$$
\mathcal{H}=\left\{a \mid a(t)=\sum_{k=0}^{n-1} a_{t_{k}} 1_{\left.l_{t}, t_{k+1}\right]}(t), n \in N, 0=t_{0}<t_{1}<\cdots<t_{n}=T\right\}
$$

and $H=\{a \in \mathcal{H} \mid \lambda[a=0]=0\}$, where λ is the Lebesgue measure.
Lemma 4.2. Let $\left\{L_{t}\right\}$ be a process with absolutely continuous paths. Assume that there exist real numbers $\underline{c} \leq \bar{c}$ such that $\underline{c}(t-s) \leq L_{t}-L_{s} \leq \bar{c}(t-s)$ for any $s<t$. Let $C(a)=\bar{c} a^{+}-\underline{c} a^{-}$for any $a \in R$. If

$$
\hat{E}\left(\int_{0}^{T} a(s) \mathrm{d} L_{s}\right)=\int_{0}^{T} C(a(s)) \mathrm{d} s \quad \text { for all } a \in \mathcal{H}
$$

we have that $\left\{L_{t}\right\}$ is a process with stationary and independent increments such that $\underline{c t} t=-\hat{E}\left(-L_{t}\right) \leq \hat{E}\left(L_{t}\right)=\bar{c}$ t, i.e., its distribution is determined by \underline{c}, \bar{c}.

Proof. It suffices to prove the lemma for the case $\underline{c}<\bar{c}$. For any $a \in H$, let

$$
\theta_{s}^{a}=\bar{c} 1_{[a(s) \geq 0]}+\underline{c} 1_{[a(s)<0]} .
$$

By assumption,

$$
\hat{E}\left(\int_{0}^{T} a(s) \mathrm{d} L_{s}\right)=\int_{0}^{T} a(s) \theta_{s}^{a} \mathrm{~d} s
$$

On the other hand, by Theorem 2.12, there exists some weakly compact subset $\mathcal{P} \subset \mathcal{M}_{1}\left(\Omega_{T}\right)$ such that

$$
\hat{E}(\xi)=\max _{P \in \mathcal{P}} E_{P}(\xi) \quad \text { for all } \xi \in L_{G}^{1}\left(\Omega_{T}\right)
$$

which means that there exists $P_{a} \in \mathcal{P}$ such that

$$
E_{P_{a}}\left(\int_{0}^{T} a(s) \mathrm{d} L_{s}\right)=\int_{0}^{T} a(s) \theta_{s}^{a} \mathrm{~d} s
$$

By the assumption for $\left\{L_{t}\right\}$, we have $P_{a}\left\{L_{t}=\int_{0}^{t} \theta_{s}^{a} \mathrm{~d} s\right.$, for all $\left.t \in[0, T]\right\}=1$. From this we have

$$
\hat{E}\left[\varphi\left(L_{t_{1}}-L_{t_{0}}, \ldots, L_{t_{n}}-L_{t_{n-1}}\right)\right] \geq \varphi\left(\int_{t_{0}}^{t_{1}} \theta_{s}^{a} \mathrm{~d} s, \ldots, \int_{t_{n-1}}^{t_{n}} \theta_{s}^{a} \mathrm{~d} s\right)
$$

for any $\varphi \in C_{b}\left(R^{n}\right)$ and $n \in N$. Consequently,

$$
\begin{aligned}
\hat{E} & {\left[\varphi\left(L_{t_{1}}-L_{t_{0}}, \ldots, L_{t_{n}}-L_{t_{n-1}}\right)\right] } \\
& \geq \sup _{a \in H} \varphi\left(\int_{t_{0}}^{t_{1}} \theta_{s}^{a} \mathrm{~d} s, \ldots, \int_{t_{n-1}}^{t_{n}} \theta_{s}^{a} \mathrm{~d} s\right) \\
& =\sup _{c_{1}, \ldots, c_{n} \in[c, c]} \varphi\left(c_{1}\left(t_{1}-t_{0}\right), \ldots, c_{n}\left(t_{n}-t_{n-1}\right)\right) .
\end{aligned}
$$

The converse inequality is obvious. Thus $\left\{L_{t}\right\}$ is a process with stationary and independent increments such that $\underline{c} t=-\hat{E}\left(-L_{t}\right) \leq \hat{E}\left(L_{t}\right)=\bar{c} t$.

Lemma 4.3. Let $\left\{L_{t}\right\}$ be a G-martingale with finite variation and $L_{T} \in L_{G}^{\beta}\left(\Omega_{T}\right)$ for some $\beta>1$. Then $\left\{L_{t}\right\}$ is nonincreasing. Particularly, $L_{t} \leq L_{0}=\hat{E}\left(L_{T}\right)$.

Proof. By Theorem 4.5 in [10], we know $\left\{L_{t}\right\}$ has the following decomposition

$$
L_{t}=\hat{E}\left(L_{T}\right)+M_{t}+K_{t}
$$

where $\left\{M_{t}\right\}$ is a symmetric G-martingale and $\left\{K_{t}\right\}$ is a nonpositive, nonincreasing G-martingale. Since both $\left\{L_{t}\right\}$ and $\left\{K_{t}\right\}$ are processes with finite variation, we get $M_{t} \equiv 0$. Therefore, we have $L_{t}=\hat{E}\left(L_{T}\right)+K_{t} \leq \hat{E}\left(L_{T}\right)=L_{0}$.

Theorem 4.4. Let $\left\{X_{t}\right\}$ be a generalized G-Brownian motion with zero mean. Then we have the following decomposition:

$$
X_{t}=M_{t}+L_{t},
$$

where $\left\{M_{t}\right\}$ is a symmetric G-Brownian motion, and $\left\{L_{t}\right\}$ is a nonpositive, nonincreasing G-martingale with stationary and independent increments.

Proof. Clearly $\left\{X_{t}\right\}$ is a G-martingale. By Theorem 4.5 in [10], we have the following decomposition

$$
X_{t}=M_{t}+L_{t},
$$

where $\left\{M_{t}\right\}$ is a symmetric G-martingale, and $\left\{L_{t}\right\}$ is a nonpositive, nonincreasing G-martingale. Noting that $X_{t} \in$ $L_{G}^{3}\left(\Omega_{T}\right)$ from the definition of generalized G-Brownian motion, we know that $M_{t}, L_{t} \in L_{G}^{\beta}\left(\Omega_{T}\right)$ for any $1 \leq \beta<3$ by Theorem 4.5 in [10].

In the sequel, we first prove that $\left\{L_{t}\right\}$ is a process with stationary and independent increments. Noting that $\hat{E}\left(-L_{t}\right)=\hat{E}\left(-X_{t}\right)=c t$ for some positive constant c since $\left\{X_{t}\right\}$ is a process with stationary and independent increments, we claim that $-L_{t}-c t$ is a G-martingale. To prove this, it suffices to show that for any $t>s$, $\hat{E}_{s}\left[-\left(L_{t}-L_{s}\right)\right]=c(t-s)$. In fact, since $\left\{M_{t}\right\}$ is a symmetric G-martingale, we have

$$
\hat{E}_{s}\left[-\left(L_{t}-L_{s}\right)\right]=\hat{E}_{s}\left[-\left(X_{t}-M_{t}-X_{s}+M_{s}\right)\right]=\hat{E}_{s}\left[-\left(X_{t}-X_{s}\right)\right] .
$$

Noting that $\left\{X_{t}\right\}$ is a process with independent increments (w.r.t. the filtration),

$$
\hat{E}_{s}\left[-\left(X_{t}-X_{s}\right)\right]=\hat{E}\left[-\left(X_{t}-X_{s}\right)\right]=c(t-s) .
$$

Combining this with Lemma 4.3, we have $-\left(L_{t}-L_{s}\right)-c(t-s) \leq 0$ for any $s<t$. On the other hand, for any $a \in \mathcal{H}$, noting that $\left\{M_{t}\right\}$ is a symmetric G-martingale, we have

$$
\hat{E}\left[\int_{0}^{T} a(s) \mathrm{d} L_{s}\right]=\hat{E}\left[\int_{0}^{T} a(s) \mathrm{d} X_{s}\right]=\hat{E}\left[\sum_{k=0}^{n-1} a_{t_{k}}\left(X_{t_{k+1}}-X_{t_{k}}\right)\right] .
$$

Since $\left\{X_{t}\right\}$ is a process with stationary, independent increments, we have

$$
\begin{aligned}
& \hat{E}\left[\int_{0}^{T} a(s) \mathrm{d} L_{s}\right] \\
& \quad=\sum_{k=0}^{n-1} \hat{E}\left[a_{t_{k}}\left(X_{t_{k+1}}-X_{t_{k}}\right)\right] \\
& \quad=\sum_{k=0}^{n-1} c a_{t_{k}}^{-}\left(t_{k+1}-t_{k}\right) \\
& \quad=\int_{0}^{T} c a^{-}(s) \mathrm{d} s=\int_{0}^{T} C(a(s)) \mathrm{d} s
\end{aligned}
$$

where $C(a(s))$ is defined as in Lemma 4.2 with $\bar{c}=0, \underline{c}=-c$. By Lemma 4.2, $\left\{L_{t}\right\}$ is a process with stationary and independent increments.

Now we are in a position to show that $\left\{M_{t}\right\}$ is a (symmetric) G-Brownian motion. To this end, by Theorem 4.1, it suffices to prove that $\left\{\langle M\rangle_{t}\right\}$ is a process with stationary and independent increments (w.r.t. the filtration). For $n \in N$, let

$$
X_{t}^{n}=\sum_{k=0}^{2^{n}-1} X_{k T / 2^{n}} 1_{\left.1 k T / 2^{n},(k+1) T / 2^{n}\right]}(t)
$$

and

$$
\Omega_{t}^{n}(X)=\sum_{k=0}^{2^{n}-1}\left(X_{(k+1) t / 2^{n}}-X_{k t / 2^{n}}\right)^{2}
$$

Observing that $\Omega_{t}^{n}(X)=X_{t}^{2}-2 \int_{0}^{t} X_{s}^{n} \mathrm{~d} X_{s}$, we have

$$
\begin{aligned}
& \left|\Omega_{t}^{n}(X)-\Omega_{t}^{m+n}(X)\right| \\
& \quad \leq 2\left(\left|\int_{0}^{t}\left(X_{s}^{n}-X_{s}^{m+n}\right) \mathrm{d} M_{s}\right|+\left|\int_{0}^{t}\left(X_{s}^{n}-X_{s}^{m+n}\right) \mathrm{d} L_{s}\right|\right) \\
& \quad=2(|I|+|I I|)
\end{aligned}
$$

for any $n, m \in N$. It's easy to check that

$$
\hat{E}(|I I|) \leq c \int_{0}^{t} \hat{E}\left(\left|X_{s}^{n}-X_{s}^{m+n}\right|\right) \mathrm{d} s \rightarrow 0 \quad \text { as } m, n \rightarrow \infty
$$

Noting that

$$
\begin{aligned}
I & =\sum_{i=0}^{2^{n}-1} \sum_{j=0}^{2^{m}-1}\left(X_{i t / 2^{n}+j t / 2^{n+m}}-X_{i t / 2^{n}}\right)\left(M_{i t / 2^{n}+(j+1) t / 2^{n+m}}-M_{i t / 2^{n}+j t / 2^{n+m}}\right) \\
& =\sum_{i=0}^{2^{n}-1} \sum_{j=0}^{2^{m}-1} I_{i}^{j}
\end{aligned}
$$

we get

$$
\hat{E}\left(I^{2}\right) \leq \sum_{i=0}^{2^{n}-1} \sum_{j=0}^{2^{m}-1} \hat{E}\left[\left(I_{i}^{j}\right)^{2}\right]
$$

Let's estimate the expectation $\hat{E}\left[\left(I_{i}^{j}\right)^{2}\right]$:

$$
\begin{aligned}
\hat{E} & {\left[\left(I_{i}^{j}\right)^{2}\right] } \\
\quad & \hat{E}\left[\left(X_{i t / 2^{n}+j t / 2^{n+m}}-X_{i t / 2^{n}}\right)^{2}\left(M_{i t / 2^{n}+(j+1) t / 2^{n+m}}-M_{i t / 2^{n}+j t / 2^{n+m}}\right)^{2}\right] \\
\leq & 2 \hat{E}\left[(X _ { i t / 2 ^ { n } + j t / 2 ^ { n + m } } - X _ { i t / 2 ^ { n } }) ^ { 2 } \left\{\left(X_{i t / 2^{n}+(j+1) t / 2^{n+m}}-X_{i t / 2^{n}+j t / 2^{n+m}}\right)^{2}\right.\right. \\
& \left.\left.+\left(L_{i t / 2^{n}+(j+1) t / 2^{n+m}}-L_{i t / 2^{n}+j t / 2^{n+m}}\right)^{2}\right\}\right] .
\end{aligned}
$$

Noting that $-c(t-s) \leq L_{t}-L_{s} \leq 0$, we have

$$
\hat{E}\left[\left(I_{i}^{j}\right)^{2}\right] \leq \hat{E}\left[(X _ { i t / 2 ^ { n } + j t / 2 ^ { n + m } } - X _ { i t / 2 ^ { n } }) ^ { 2 } \left\{\left(X_{i t / 2^{n}+(j+1) t / 2^{n+m}}-X_{\left.\left.\left.i t / 2^{n}+j t / 2^{n+m}\right)^{2}+c^{2} \frac{t^{2}}{2^{2(n+m)}}\right\}\right] . . . ~}\right\}\right.\right.
$$

By (2.2), $\hat{E}\left[\left(X_{t}-X_{s}\right)^{2}\right] \leq C_{1}|t-s|$ for some constant C_{1}. From the condition of independent increments of X, we have $\hat{E}\left[\left(I_{i}^{j}\right)^{2}\right] \leq C \frac{j}{2^{2(n+m)}}$ for some constant C, hence that $\hat{E}\left(I^{2}\right) \rightarrow 0$, and finally that $\hat{E}\left(\left|\Omega_{t}^{n}(X)-\Omega_{t}^{m+n}(X)\right|\right) \rightarrow 0$ as $m, n \rightarrow \infty$. Then

$$
\langle X\rangle_{t}:=\lim _{L_{G}^{1}\left(\Omega_{T}\right), n \rightarrow \infty} \Omega_{t}^{n}
$$

is a process with stationary and independent increments (w.r.t. the filtration). Noting that $\langle M\rangle_{t}=\langle X\rangle_{t},\langle M\rangle_{t}$ is also a process with stationary and independent increments (w.r.t. the filtration).

5. G-martingales with finite variation

Proposition 5.1. Let $\eta \in M_{G}^{1}(0, T)$ with $|\eta| \equiv c$ for some constant c. Then

$$
\begin{equation*}
K_{t}:=\int_{0}^{t} \eta_{s} \mathrm{~d}\langle B\rangle_{s}-\int_{0}^{t} 2 G\left(\eta_{s}\right) \mathrm{d} s \tag{5.1}
\end{equation*}
$$

is a process with stationary and independent increments. Moreover, for fixed c, all processes in the above form have the same distribution.

Proof. Since $-c\left(\bar{\sigma}^{2}-\underline{\sigma}^{2}\right)(t-s) \leq K_{t}-K_{s} \leq 0$ for any $s<t$, by Lemma 4.2, it suffices to prove that for any $a \in \mathcal{H}$

$$
\hat{E}\left(\int_{0}^{T} a_{s} \mathrm{~d} K_{s}\right)=\int_{0}^{T} C\left(a_{s}\right) \mathrm{d} s,
$$

where $C\left(a_{s}\right)$ is defined as in Lemma 4.2 with $\bar{c}=0, \underline{c}=-c\left(\bar{\sigma}^{2}-\underline{\sigma}^{2}\right)$. In fact, noting that

$$
\int_{0}^{T} a_{s} \mathrm{~d} K_{s} \leq \int_{0}^{T} 2 G\left(a_{s} \eta_{s}\right) \mathrm{d} s-\int_{0}^{T} 2 a_{s} G\left(\eta_{s}\right) \mathrm{d} s=\int_{0}^{T} C\left(a_{s}\right) \mathrm{d} s,
$$

we have

$$
\hat{E}\left(\int_{0}^{T} a_{s} \mathrm{~d} K_{s}\right) \leq \int_{0}^{T} C\left(a_{s}\right) \mathrm{d} s .
$$

On the other hand, we have

$$
\hat{E}\left(\int_{0}^{T} a_{s} \mathrm{~d} K_{s}\right) \geq-\hat{E}\left\{-\left[\int_{0}^{T} 2 G\left(a_{s} \eta_{s}\right) \mathrm{d} s-\int_{0}^{T} 2 a_{s} G\left(\eta_{s}\right) \mathrm{d} s\right]\right\}=\int_{0}^{T} C\left(a_{s}\right) \mathrm{d} s
$$

So $\left\{K_{t}\right\}$ is a process with stationary and independent increments and its distribution is determined by c.
Just like the conjecture by Shige Peng for the representation of G-martingales with finite variation, we guess that any G-martingale with stationary, independent increments and finite variation should have the form of (5.1). At the end we present a characterization for G-martingales with finite variation.

Proposition 5.2. Let $\left\{M_{t}\right\}$ be a G-martingale with $M_{T} \in L_{G}^{\beta}\left(\Omega_{T}\right)$ for some $\beta>1$. Then $\left\{M_{t}\right\}$ is a G-martingale with finite variation if and only if $\left\{f\left(M_{t}\right)\right\}$ is a G-martingale for any nondecreasing $f \in C_{b, \text { Lip }}(R)$.

Proof. Necessity. Assume $\left\{M_{t}\right\}$ is a G-martingale with finite variation. By Lemma 4.3, we know that $\left\{M_{t}\right\}$ is nonincreasing. By Theorem 5.4 in [11], there exists a sequence $\left\{\eta_{t}^{n}\right\} \subset H_{G}^{0}(0, T)$ such that

$$
\hat{E}\left[\sup _{t \in[0, T]}\left|M_{t}-L_{t}\left(\eta^{n}\right)\right|^{\beta}\right] \rightarrow 0
$$

as n goes to infinity, where $L_{t}\left(\eta^{n}\right)=\int_{0}^{t} \eta_{s}^{n} \mathrm{~d}\langle B\rangle_{s}-\int_{0}^{t} 2 G\left(\eta_{s}^{n}\right) \mathrm{d} s$. It suffices to prove that for any $\eta \in H_{G}^{0}(0, T)$ and nondecreasing $f \in C_{b}^{2}(R), f\left(L_{t}(\eta)\right)$ is a G-martingale. In fact,

$$
\begin{aligned}
f\left(L_{t}(\eta)\right) & =f\left(L_{0}\right)+\int_{0}^{t} f^{\prime}\left(L_{s}(\eta)\right) \mathrm{d} L_{s}(\eta) \\
& =f\left(L_{0}\right)+\int_{0}^{t} f^{\prime}\left(L_{s}(\eta)\right) \eta_{s} \mathrm{~d}\langle B\rangle_{s}-\int_{0}^{t} 2 f^{\prime}\left(L_{s}(\eta)\right) G\left(\eta_{s}\right) \mathrm{d} s .
\end{aligned}
$$

Since $f^{\prime}\left(L_{s}(\eta)\right) \geq 0$ and $f^{\prime}\left(L_{s}(\eta)\right) \eta_{s} \in M_{G}^{1}(0, T)$, we conclude that

$$
f\left(L_{t}(\eta)\right)=f\left(L_{0}\right)+L_{t}\left(f^{\prime}(L(\eta)) \eta\right)
$$

is a G-martingale.
Sufficiency. Assume $\left\{f\left(M_{t}\right)\right\}$ is a G-martingale for any nondecreasing $f \in C_{b, \operatorname{Lip}}(R)$. Let $X_{t}:=\arctan M_{t}$. Then $\left\{X_{t}\right\}$ is a bounded G-martingale and $\left\{f\left(X_{t}\right)\right\}$ is a G-martingale for any nondecreasing $f \in C_{b, \text { Lip }}(R)$. By Theorem 4.5 in [10], we know $\left\{X_{t}\right\}$ has the following decomposition

$$
X_{t}=\hat{E}\left(X_{T}\right)+N_{t}+K_{t}
$$

where $\left\{N_{t}\right\}$ is a symmetric G-martingale and $\left\{K_{t}\right\}$ is a nonpositive, nonincreasing G-martingale. Then by Itô's formula

$$
\mathrm{e}^{\alpha X_{t}}=\mathrm{e}^{\alpha X_{0}}+\alpha \int_{0}^{t} \mathrm{e}^{\alpha X_{s}} \mathrm{~d} X_{s}+\frac{\alpha^{2}}{2} \int_{0}^{t} \mathrm{e}^{\alpha X_{s}} \mathrm{~d}\langle N\rangle_{s} .
$$

For any $\alpha>0$, by assumption, $\mathrm{e}^{\alpha X_{t}}$ is a G-martingale. So $L_{t}:=\int_{0}^{t} \mathrm{e}^{\alpha X_{s}} \mathrm{~d} K_{s}+\frac{\alpha}{2} \int_{0}^{t} \mathrm{e}^{\alpha X_{s}} \mathrm{~d}\langle N\rangle_{s}$ is a G-martingale with finite variation. By Lemma 4.3, L_{t} is nonincreasing, by which we conclude that $K_{t}+\frac{\alpha}{2}\langle N\rangle_{t}$ is nonincreasing. So

$$
\frac{\alpha}{2} \hat{E}\left(\langle N\rangle_{T}\right) \leq \hat{E}\left(-K_{T}\right) \quad \text { for all } \alpha>0
$$

By this, we conclude that $\hat{E}\left(\langle N\rangle_{T}\right)=0$ and $N_{t} \equiv 0$. Then $X_{t}=\hat{E}\left(X_{T}\right)+K_{t}$ is nonincreasing, and consequently, M_{t} is nonincreasing.

Particularly, Proposition 5.2 provides a method to convert G-martingales with finite variation into bounded G martingales with finite variation.

Acknowledgment

I am very grateful to the conscientious anonymous referee for his very serious and very valuable comments.

References

[1] L. Denis, M. Hu and S. Peng. Function spaces and capacity related to a sublinear expectation: Application to G-Brownian motion pathes. Potential Anal. 34 (2011) 139-161. MR2754968
[2] M. Hu and S. Peng. On representation theorem of G-expectations and paths of G-Brownian motion. Acta Math. Appl. Sin. Engl. Ser. 25 (2009) 539-546. MR2506990
[3] S. Peng. G-expectation, G-Brownian motion and related stochastic calculus of Itô type. In Stochastic Analysis and Applications 541-567. Abel Symp. 2. Springer, Berlin, 2007. MR2397805
[4] S. Peng. G-Brownian motion and dynamic risk measure under volatility uncertainty. Available at arXiv:0711.2834v1 [math.PR], 2007.
[5] S. Peng. Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stochastic Process. Appl. 118 (2008) 2223-2253. MR2474349
[6] S. Peng. A new central limit theorem under sublinear expectations. Available at arXiv:0803.2656v1 [math.PR], 2008.
[7] S. Peng. Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations. Sci. China Ser. A 52 (2009) 1391-1411. MR2520583
[8] S. Peng. Nonlinear expectations and stochastic calculus under uncertainty. Available at arXiv:1002.4546v1 [math.PR], 2010.
[9] M. Soner, N. Touzi and J. Zhang. Martingale representation theorem under G-expectation. Stochastic Process. Appl. 121 (2011) $265-287$. MR2746175
[10] Y. Song. Some properties on G-evaluation and its applications to G-martingale decomposition. Sci. China Math. 54 (2011) $287-300$. MR2771205
[11] Y. Song. Properties of hitting times for G-martingales and their applications. Stochastic Process. Appl. 121 (2011) 1770-1784. MR2811023
[12] Y. Song. Uniqueness of the representation for G-martingales with finite variation. Electron. J. Probab. 17 (2012) 1-15.
[13] J. Xu and B. Zhang. Martingale characterization of G-Brownian motion. Stochastic Process. Appl. 119 (2009) 232-248. MR2485026

[^0]: ${ }^{1}$ Supported by NCMIS; Youth Grant of National Science Foundation (No. 11101406/A011002); the National Basic Research Program of China (973 Program) (No. 2007CB814902); Key Lab of Random Complex Structures and Data Science, Chinese Academy of Sciences (Grant No. 2008DP173182).

