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Abstract. We consider the linear Schrödinger equation under periodic boundary conditions, driven by a random force and damped
by a quasilinear damping:

d

dt
u + i

(−� + V (x)
)
u = ν

(
�u − γR |u|2pu − iγI |u|2qu

) + √
νη(t, x). (∗)

The force η is white in time and smooth in x; the potential V (x) is typical. We are concerned with the limiting, as ν → 0, behaviour
of solutions on long time-intervals 0 ≤ t ≤ ν−1T , and with behaviour of these solutions under the double limit t → ∞ and ν → 0.
We show that these two limiting behaviours may be described in terms of solutions for the system of effective equations for (∗)
which is a well posed semilinear stochastic heat equation with a non-local nonlinearity and a smooth additive noise, written in
Fourier coefficients. The effective equations do not depend on the Hamiltonian part of the perturbation −iγI |u|2qu (but depend on
the dissipative part −γR |u|2pu). If p is an integer, they may be written explicitly.

Résumé. Nous considérons l’équation de Schrödinger linéaire avec les conditions aux limites périodiques, perturbée par une force
aléatoire et amortie par un terme quasi linéaire:

d

dt
u + i

(−� + V (x)
)
u = ν

(
�u − γR |u|2pu − iγI |u|2qu

) + √
νη(t, x). (∗)

La force η est un processus aléatoire blanc en temps t et lisse en x; le potentiel V (x) est typique. Nous étudions le comportement
asymptotique des solutions sur de longs intervalles de temps 0 ≤ t ≤ ν−1T , quand ν → 0, et le comportement des solutions quand
t → ∞ et ν → 0. Nous démontrons qu’on peut décrire ces deux comportements asymptotiques en termes des solutions du système
d’équations effectives pour (∗). Ce dernier est une équation de la chaleur avec un terme quasi linéaire non local et une force
aléatoire lisse additive, qui est écrite dans l’espace de Fourier. Les équations ne dépendent pas de la partie hamiltonienne de la
perturbation −iγI |u|2qu (mais elles dépendent de la partie dissipative −γR |u|2pu). Si p est un entier, on peut écrire ces équations
explicitement.

MSC: 35Q56; 60H15
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0. Introduction

In [9,10] we considered the KdV equation on a circle, perturbed by a random force and a viscous damping. There
we suggested auxiliary effective equations which are well posed and describe long-time behaviour of solutions for the
perturbed KdV through a kind of averaging.
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In this work we apply the method of [9,10] to a weakly nonlinear situation when the unperturbed equation is not an
integrable nonlinear PDE (e.g. KdV), but a linear Hamiltonian PDE with a generic spectrum. Since analytic properties
of the latter are easier and better understood then those of the former, in the weakly nonlinear situation we understand
better properties of the effective system and its relation with the original equation. Accordingly we can go further in
analysis of long time behaviour of solutions.

More precisely, we are concerned with ν-small dissipative stochastic perturbations of the space-periodic linear
Schrödinger equation

d

dt
u + i

(−�u + V (x)
)
u = 0, x ∈ T

d , (0.1)

i.e. with equations

d

dt
u + iAu = ν

(
�u − γRfp

(|u|2)u − iγI fq

(|u|2)u) + √
νη(t, x), x ∈ T

d , (0.2)

where η(t, x) = d
dt

∑∞
j=1 bjβj (t)ej (x). Here Au = AV u = −�u + V (x)u and the potential V (x) ≥ 1 is sufficiently

smooth; the real numbers p,q are nonnegative, the functions fp(r) and fq(r) are the monomials |r|p and |r|q ,
smoothed out near zero, and the constants γR,γI satisfy

γR,γI ≥ 0, γR + γI = 1. (0.3)

If γR = 0, then due to the usual difficulty with the zero-mode of a solution u, the term �u in the r.h.s. should be
modified to � − u. The functions {ej (x), j ≥ 1} in the definition of the random force form the real trigonometric
base of L2(T

d), the real numbers bj decay sufficiently fast to zero when j grows, and {βj (t), j ≥ 1}, are the standard
complex Wiener processes. So the noise η is white in time and sufficiently smooth in x. It is convenient to pass to the
slow time τ = νt and write the equation as

u̇ + ν−1iAu = �u − γRfp

(|u|2)u − iγI fq

(|u|2)u + η(τ, x), (0.4)

where u̇ = du/dτ . The equation is supplemented with the initial condition

u(0, x) = u0(x). (0.5)

It is known that under certain restrictions on p,q and d the problem (0.4), (0.5) has a unique solution uν(τ, x), τ ≥ 0,
and Eq. (0.4) has a unique stationary measure μν . We review these results in Section 1 (there attention is given to the
1d case, while higher-dimensional equations are only briefly discussed).

Let {ϕk, k ≥ 1}, and {λk, k ≥ 1}, be the eigenfunctions and eigenvalues of AV , 1 ≤ λ1 ≤ λ2 ≤ · · · . We say that a
potential V is nonresonant if

∑∞
j=1 λj sj 	= 0 for every finite nonzero integer vector (s1, s2, . . .). In Sections 1.4, 1.5

we show that nonresonant potentials are typical both in the sense of Baire and in the sense of measure. Assuming that
V is nonresonant we are interested in two questions:

Q1. What is the limiting behaviour as ν → 0 of solutions uν(τ, x) on long time-intervals 0 ≤ τ ≤ T ?
Q2. What is the limiting behaviour of the stationary measure μν as ν → 0?

For any complex function u(x), x ∈ T
d , denote by Ψ (u) = v = (v1, v2, . . .) the complex vector of its Fourier

coefficients with respect to the basis {ϕk}, i.e. u(x) = ∑
vjϕj . Denote

Ij = 1

2
|vj |2, ϕj = Argvj , j ≥ 1. (0.6)

Then (I, ϕ) ∈ R
∞+ × T

∞ are the action-angles for the linear Eq. (0.1). The v- and (I, ϕ)-variables are convenient to
study the two questions above. Writing (0.4) in the (I, ϕ)-variables we arrive at the following system:

d

dτ
Ij = · · · , d

dτ
ϕj = ν−1λj + · · · , (0.7)
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where the dots stand for terms of order one (stochastic and deterministic). We have got slow/fast stochastic equations
to which the principle of averaging is formally applicable (e.g., see [2,14] for the classical deterministic averaging and
[4,8] for the stochastic averaging). Denoting I ν

j (τ ) = Ij (u
ν(τ )) and averaging in ϕ the I -equations in (0.7), using the

rules of the stochastic calculus [4,8] and following the arguments in [10], we show in Section 2 that along sequences
νj → 0 we have the convergences

D
(
I νj (·)) ⇀ D

(
I 0(·)), (0.8)

where the limiting process I 0(τ ), 0 ≤ τ ≤ T , is a weak solution of the averaged I -equations. As in the KdV-case the
averaged equations are singular and we do not know if their solution is unique. So we do not know if the convergence
(0.8) holds as ν → 0. To continue the analysis we write Eq. (0.4) in the v-variables

v̇k + iν−1λkvk = Pk(v) +
∑
j≥1

Bkj β̇j (τ ), (0.9)

where the drift Pk and the dispersion Bkj are constructed in terms of the r.h.s. of Eq. (0.4) and the transformation Ψ .
It turns out that the Hamiltonian term −iγIfq(|u|2)u contributes to P(v) a term which disappears in the averaged I -
equations. We remove it from P(v) and denote the rest P̃ (v). For any vector θ = (θ1, θ2, . . .) ∈ T

∞ denote by Φθ the
linear transformation of the space of complex vectors v which multiplies each component vj by eiθj . Following [9] we
average the vector field P̃ by actions of the transformations Φθ and get the effective drift R(v) = ∫

T∞ Φ−θ P̃ (Φθv)dθ.

In Section 3.1 we show that

Rk(v) = −λkvk + R0
k (v), (0.10)

where R0(v) is a smooth locally Lipschitz nonlinearity.
Since the noise in (0.9) is additive (i.e., the matrix B is v-independent), then the construction of the effective

dispersion, given in [9] for a non-additive noise, simplifies significantly and defines the effective noise for Eq. (0.9)
whose kth component equals (

∑
l b

2
l Ψ

2
kl)

1/2 dβk(τ ). Accordingly the effective equations for (0.4) become

v̇k = Rk(v)dτ +
(∑

l

b2
l Ψ

2
kl

)1/2

dβk(τ ), k ≥ 1. (0.11)

By construction this system is invariant under rotations: if v(τ) is its weak solution, then Φθv(τ) also is a weak
solution. Due to (0.10) this is the heat equation u̇ = −Au for a complex function u(τ, x), perturbed by a non-local
smooth nonlinearity and a nondegenerate smooth noise, written in terms of the complex Fourier coefficients vj . It
turns out to be a monotone equation, so its solution is unique (see Section 3.2).

In particular, if in (0.4) p = 1, then the system of effective equations takes the form

v̇k = −vk

(
(λk − Mk) + γR

∑
|vl |2Lkl

)
dτ +

(∑
l

b2
l Ψ

2
kl

)1/2

dβk(τ ), k ≥ 1, (0.12)

where Mk = ∫
V (x)ϕ2

k (x)dx and Lkl = (2 − δkl)
∫

ϕ2
k (x)ϕ2

l (x)dx. See Example 3.1 (the calculations, made there for
d = 1, remain the same for d ≥ 2).

It follows directly from the construction of effective equations that actions {I (vk(τ )) = 1
2 |vk(τ )|2, k ≥ 1} of any

solution v(τ) of (0.11) is a solution of the system of averaged I -equations. On the contrary, every solution I 0(τ ) of
the averaged I -equations, obtained as a limit (0.8), can be lifted to a weak solution of (0.11). Using the uniqueness
we get

Theorem 0.1. Let I ν(τ ) = I (uν(τ )), where uν(τ ), 0 ≤ τ ≤ T , is a solution of (0.4), (0.5). Then limν→0 D(I ν(·)) =
D(I 0(·)), where I 0(τ ), 0 ≤ τ ≤ T , is a weak solution of the averaged I -equations. Moreover, there exists a unique
solution v(τ) of (0.11) such that v(0) = v0 = Ψ (u0) and D(I (v(·)) = D(I 0(·)), where I (v(τ ))j = 1

2 |vj (τ )|2.
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The solutions I 0(τ ) and v(τ) satisfy some apriori estimates, see Theorem 3.5. Concerning distribution of the angles
ϕ(uν(τ )) and their joint distribution with the actions see Section 2.4.

Now let μν be the unique stationary measure for Eq. (0.4) and u′ν be a corresponding stationary solution,
D(u′ν(τ )) ≡ μν . As above, along sequences νj → 0 the actions I ′νj (τ ) = I (u′νj (τ )) converge in distribution to a
stationary solution I ′(τ ) of the averaged I -equations. This solution can be lifted to a stationary weak solutions v′(τ )

of effective Eqs (0.11). Since that system is monotone, then its stationary measure m is unique. So the limit above
holds as ν → 0. As the effective system is rotation invariant, then in the (I, ϕ)-variables its unique stationary measure
has the form dm = mI (dI ) × dϕ, where dϕ = dϕ1 dϕ2 · · · is the Haar measure on T∞. It turns out that the measure
limν→0 μν also has the rotation-invariant form and we arrive at the following result (see Theorem 4.3, 4.4 for a precise
statement):

Theorem 0.2. When ν → 0 we have the convergences D(I (u′ν(·)) ⇀ DI (v′(·)) and Ψ ◦ μν ⇀ m, where dm =
mI (dI ) × dϕ.

Accordingly every solution uν(τ ) of (0.2) obeys the following double limit

lim
ν→0

lim
t→∞ D

(
uν(t)

) = Ψ −1 ◦ m. (0.13)

By Theorems 0.1 and 0.2, the actions I (uν(τ )) of a solution uν of (0.4), (0.5) converge in distribution to those of a
solution v(τ) of the effective system (0.11) with v(0) = Ψ (u0), both for 0 ≤ τ ≤ T and when τ → ∞. We conjecture
that this convergence hold for each τ ≥ 0, uniformly in τ (the space of measures is equipped with the Wasserstein
distance).

In Example 4.6 we discuss Theorem 0.2 for equations with p = 1, when the effective equations become (0.12). In
particular, we show that Theorem 0.2 implies that in Eqs (0.2) with small ν there is no direct or inverse cascade of
energy.

In Example 4.5 we discuss Theorem 0.2 for the case γR = 0 (when the nonlinear part of the perturbation is Hamil-
tonian) and its relation to the theory of weak turbulence.

We note that the effective Eqs (0.11) depend on the potential V (x) in a regular way and are well defined without
assuming that V (x) is nonresonant (cf. Eqs (0.12)). In particular, if V M(x) → 1 as M → ∞, where each V M(x) ≥ 1
is a nonresonant potential, then in (0.13) mM ⇀ m(1), where m(1) is a unique stationary measure for Eq. (0.12) with
V (x) ≡ 1. In this equation Ψkl = δk,l , Mk ≡ 1 and the constants Lkl can be written down explicitly.

In Section 5 we show that Theorems 0.1, 0.2 remain true for 1d equations with non-viscous damping (when �u in
the l.h.s. of (0.2) is removed, but γR > 0).

Inviscid limit

A stationary measure μν for Eq. (0.4) also is stationary for the fast-time Eq. (0.2). Let Uν(t) be a corresponding
stationary solution, DUν(t) ≡ μν . It is not hard to see that the system of solutions Uν(t) is tight on any finite time-
interval [0, T̃ ]. Let {Uνj , νj → 0}, be a converging subsequence, i.e.

D(Uνj ) ⇀ Q∗, μνj ⇀ μ∗.

Then μ∗ is an invariant measure for the linear Eq. (0.1) and Q∗ = D(U∗(·)), where U∗(t),0 ≤ t ≤ T̃ , is a stationary
process such that D(U∗(t)) ≡ μ∗ and every trajectory of U∗ is a solution of (0.1). The limit D(Uνj ) ⇀ D(U∗) is the
inviscid limit for Eq. (0.2). Equation (0.1) has plenty of invariant measures: if we write it in the action-angle variables
(0.6), then every measure of the form m(dI ) × dϕ is invariant (see [12] for the more complicated inviscid limit for
nonlinear Schrödinger equation). Theorem 0.2 explains which one is chosen by Eq. (0.2) for the limit limν→0 μν .

The inviscid limit for the damped/driven KdV equation, studied in [9,10] is similar: the limit of the stationary
measures for the perturbed equations is a stationary measure of the corresponding effective equations. Due to a com-
plicated structure of the nonlinear Fourier transform which integrates KdV, uniqueness of their invariant measure is
not proved yet. So the final results concerning the damped/driven KdV are less complete than those for the weakly
perturbed CGL equation in Theorem 0.2.
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Finally consider the damped/driven 2d Navier–Stokes equations with a small viscosity ν and a random force,
similar to the forces above and proportional to

√
ν:

v′
t − ν�v + (v · ∇)v + ∇p = √

νη(t, x); divv = 0, v ∈ R
2, x ∈ T

2. (0.14)

It is known that (0.14) has a unique stationary measure μν , the family of measures {μν,0 < ν ≤ 1} is tight, and every
limiting measure limνj →0 μνj is a non-trivial invariant measure for the 2d Euler Eq. (0.14)ν=0, see Section 5.2 of [13].
Hovewer it is nonclear if the limiting measure is unique and how to single it out among all invariant measures of the
Euler equation. The research [9,10] was motivated by the belief that the damped/driven KdV is a model for (0.14).
Unfortunately, we still do not know up to what extend the description of the inviscid limit for the damped/driven
KdV and for weakly nonlinear CGL in terms of the effective equations is relevant for the inviscid limit of the 2d
hydrodynamics.

Agreements
Analyticity of maps B1 → B2 between Banach spaces B1 and B2, which are the real parts of complex spaces Bc

1
and Bc

2 , is understood in the sense of Fréchet. All analytic maps which we consider possess the following additional
property: for any R a map analytically extends to a complex (δR > 0)-neighbourhood of the ball {|u|B1 < R} in Bc

1 .

Notations
χA stands for the indicator function of a set A (equal 1 in A and equal 0 outside A). By κ(t) we denote various
functions of t such that κ(t) → 0 when t → ∞, and by κ∞(t) denote functions κ(t) such that κ(t) = o(t−N) for
each N . We write κ(t) = κ(t;R) to indicate that κ(t) depends on a parameter R.

1. Preliminaries

1.1. Apriori estimates

We consider the 1d CGL equation on a segment [0,π] with a conservative linear part of order one and a small
nonlinearity. The equation is supplemented with Dirichlet boundary conditions which we interpret as odd 2π-periodic
boundary conditions. Introducing the slow time τ = νt (cf. the Introduction) we write the equation as follows:

u̇ + iν−1(−uxx + V (x)u
) = κuxx − γR|u|2pu − iγI |u|2qu + d

dτ

∞∑
i=1

bjβj (τ )ej (x),

(1.1)
u(x) ≡ u(x + 2π) ≡ −u(−x).

Here u̇ = d
dτ

u, p,q ∈ Z+ := N ∪ {0} (only for simplicity, see next section), κ > 0, constants γR and γI satisfy (0.3)
and R � V (x) ≥ 0 is a sufficiently smooth even 2π-periodic function, {ej , j ≥ 1} is the sine-basis,

ej (x) = 1√
π

sin jx,

and βj , j ≥ 1, are standard independent complex Wiener processes. That is, βj (τ ) = βj (τ )+ iβ−j (τ ), where β±j (τ )

are standard independent real Wiener processes. Finally, the real numbers bj all are nonzero and decay when j grows
in such a way that B1 < ∞, where

Br := 2
∞∑

j=1

j2rb2
j ≤ ∞ for r ≥ 0.

By Hr , r ∈ R we denote the Sobolev space of order r of complex odd periodic functions and provide it with the
homogeneous norm ‖ · ‖r ,

‖u‖2
r =

∞∑
l=1

|ul |2l2r for u(x) =
∞∑
l=1

ulel(x), ‖u‖0 = ‖u‖
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(if r ∈ N, then ‖u‖r = | ∂ru
∂xr |L2 ).

Let u(t, x) be a solution of (1.1) such that u(0, x) = u0. Applying Ito’s formula to 1
2‖u‖2 we get that

d

(
1

2
‖u‖2

)
=

(
−γR|u|2p+2

2p+2 − κ‖u‖2
1 + 1

2
B0

)
dτ + dM(τ), (1.2)

where M(τ) is the martingale
∫ τ

0

∑
bjuj · dβj (τ ). Here |u|r stands for the Lr -norm, 1 ≤ r ≤ ∞, and for complex

numbers z1, z2 we denote by z1 · z2 their real scalar product,

z1 · z2 = Re z1z2.

So (uj + iu−j ) · (dβj + i dβ−j ) = uj dβj + u−j dβ−j . From (1.2) we get in the usual way (e.g., see Section 2.2.3 in
[13]) that

Eeρκ‖u(τ)‖2 ≤ C
(
κ,B0,‖u0‖

) ∀τ ≥ 0 (1.3)

for a suitable ρκ > 0, uniformly in ν > 0.
Denoting

E (τ ) = 1

2

∥∥u(τ)
∥∥2 + γR

∫ τ

0
|u|2p+2

2p+2 ds + κ

2

∫ τ

0
‖u‖2

1 ds

and noting that the characteristic of the martingale M is 〈M〉(τ ) = ∑
b2
j |uj |2τ ≤ b2

M‖u‖2τ , where bM = max |bj |,
we get from (1.2) that

E (τ ) ≤ 1

2
‖u0‖2 + 1

2
B0τ + M(τ) − κ

2

∫ τ

0
‖u‖2

1 ds

≤ 1

2
‖u0‖2 + 1

2
B0τ + κ

−1b2
M

[(
κb−2

M M(τ)
) − 1

2

〈
κb−2

M M
〉
(τ )

]
.

Applying in a standard way the exponential supermartingale estimate to the term in the square bracket in the r.h.s.
(e.g., see [13], Section 2.2.3 ), we get that

P
{

sup
τ≥0

(
E (τ ) − 1

2
B0τ

)
≥ 1

2
‖u0‖2 + ρ

}
≤ e−2κρb−2

M (1.4)

for any ρ > 0.
Now let us re-write Eq. (1.1) as follows:

u̇ + iν−1(−uxx + V (x)u + νγI |u|2qu
) = κuxx − γR|u|2pu + d

dτ

∑
bjβj (τ )ej . (1.5)

The l.h.s. is a Hamiltonian system with the hamiltonian −ν−1H(u),

H(u) = 1

2
〈Au,u〉 + γI

ν

2q + 2

∫
|u|2q+2 dx, A = − ∂2

∂x2
+ V (x).

For any j ∈ N we denote

‖u‖′
r

2 = 〈
Aru,u

〉
.

Then dH(u)(v) = 〈Au,v〉 + γI ν〈|u|2qu, v〉 and

1

2
· 2

∞∑
j=1

b2
j d2H(u)(ej , ej ) = 1

2
B ′

1 + γI νX(τ),
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where

B ′
r = 2

∑
b2
j‖ej‖′2

r
= 2

∑
b2
j λ

r
j ∀r,

and

X(τ) = 2q Re
∫ (

|u|2q−2u2
∑
j

b2
j ej (x)2

)
dx +

∫
|u|2q

∑
j

b2
j ej (x)2 dx

≤ CB0
∣∣u(τ)

∣∣2q

2q
.

Therefore applying Ito’s formula we get that

dH
(
u(τ)

) =
(

−γR

〈
Au, |u|2pu

〉 + κ〈Au,uxx〉 − γI νγR

∫
|u|2p+2q+2 dx

+ κγI ν
〈|u|2qu,uxx

〉 + B ′
1 + γI νX(τ)

)
dτ + dM(τ), (1.6)

where dM(τ) = ∑
bj 〈Au + γI ν|u|2qu, ej 〉 · dβj (τ ).

Denoting Uq(x) = 1
q+1uq+1 and Up(x) = 1

p+1up+1, we have

〈|u|2qu,uxx

〉 ≤ −
∫

|ux |2|u|2q dx = −
∥∥∥∥ ∂

∂x
Uq

∥∥∥∥2

,

and a similar relation holds for q replaced by p. Accordingly,

dH
(
u(τ)

) ≤ −1

2

(
κ‖u‖2

2 + γR

∥∥∥∥ ∂

∂x
Up

∥∥∥∥2

+ κγI ν

∥∥∥∥ ∂

∂x
Uq

∥∥∥∥2

+ νγI γR

∫
|u|2p+2q+2 dx − Cκ‖u‖2 − 2B ′

1

)
dτ + dM(τ), (1.7)

where Cκ may be chosen independent from κ if γR > 0. Considering relations on H(u)m, m ≥ 1, which follow from
(1.7) and (1.6), using (1.4) and arguing by induction we get that

E
(

sup
0≤t≤T

H
(
u(t)

)m + κ

2

∫ T

0
Hm−1(u)‖u‖2

2 ds

)

≤ H(u0)
m + Cm(κ, T ,B1)

(
1 + ‖u0‖cm

)
, (1.8)

EH
(
u(t)

)m ≤ Cm(κ,B1)
(
1 + H(u0)

m + ‖u0‖cm
) ∀t > 0, (1.9)

for any m. Estimates (1.8) in a traditional way (cf. [5,12,16,18]) imply that Eq. (1.1) is regular in space H1 in the
sense that for any u0 ∈ H1 it has a unique strong solution, satisfying (1.4), (1.8).

1.2. Stationary measures

The a-priori estimates on solutions of (1.1) and the Bogolyubov–Krylov argument (e.g., see in [13]) imply that
Eq. (1.1) has a stationary measure μν , supported by space H2. Now assume that

bj 	= 0 ∀j. (1.10)

Then the approaches, developed in the last decade to study the 2d stochastic Navier–Stokes equations, apply to (1.1)
and allow to prove that under certain restrictions on the equation the stationary measure μν is unique. In particular
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this is true if γI = 0 (the easiest case), or if p ≥ q and γR 	= 0 (see [16]), or if γR = 0 and p = 1 (see [18]). In this
case any solution u(t) of (1.1) with u(0) = u0 ∈ H1 satisfies

Du(t) ⇀ μν as t → ∞. (1.11)

This convergence and (1.3), (1.9) imply that∫
eρκ‖u‖2

μν(du) ≤ C(κ,B), (1.12)

∫
‖u‖2m

1 μν(du) ≤ Cm(κ,B1) ∀m. (1.13)

1.3. Multidimensional case

In this section we briefly discuss a multidimensional analogy of Eq. (1.1):

u̇ + iν−1Au = �u − γRfp

(|u|2)u − iγIfq

(|u|2)u
+ d

dτ

∞∑
j=1

bjβj (τ )ej (x), u = u(τ, x), x ∈ T
d . (1.14)

Here Au = −�u + V (x)u, V ∈ CN(Td ,R) and V (x) ≥ 1. The numbers γI , γR satisfy (0.3). Functions fp ≥ 0 and
fq ≥ 0 are real-valued smooth and

fp(t) = tp for t ≥ 1, fq(t) = tq for t ≥ 1,

where p,q ≥ 0. If γR = 0, then the term �u in the r.h.s. should be modified to � − u. By {ek, k ≥ 1}, we denote the
usual trigonometric basis of the space L2(T

d) (formed by all functions π−d/2fs1(x1) · · ·fsd (xd), where each fs(x) is
sin sx or cos sx), parameterised by natural numbers. These are eigen-functions of the Laplacian, −�er = λrer . We
assume that

B ′
N1

= 2
∑

k

λ
N1
k b2

k < ∞, (1.15)

where N1 = N1(d) is sufficiently large. In this section we denote by (Hr ,‖ · ‖r ) the Sobolev space Hr = Hr(Td ,C),

regarded as a real Hilbert space, and 〈·, ·〉 stands for the real L2-scalar product.
Noting that (fp(|u|2)u − |u|2pu) and (fq(|u|2)u − |u|2qu) are bounded Lipschitz functions with compact support

we immediately see that the a-priori estimates from Section 1.1 remain true for solutions of (1.14). Accordingly, for
any u0 ∈ H1 ∩ L2q+2 Eq. (1.1) has a solution u(t, x) such that u(0, x) = u0, satisfying (1.3), (1.8), (1.9).

Now assume that

p,q < ∞ if d = 1,2, p, q <
2

d − 2
if d ≥ 3. (1.16)

Applying Ito’s formula to the processes 〈Amu(τ),u(τ)〉n, m,n ≥ 1, using (1.3), (1.8), (1.9) and arguing by induction
(first in n and next in m) we get that

E
(

sup
0≤τ≤T

∥∥u(τ)
∥∥′2n

2m
+

∫ T

0

∥∥u(s)
∥∥′2

2m+1

∥∥u(s)
∥∥′2n−2

2m
ds

)

≤ ‖u0‖′2n
2m + C(m,n,T )

(
1 + ‖u0‖cm,n

)
, (1.17)

E
∥∥u(τ)

∥∥′2n

2m
≤ C(m,n) ∀τ ≥ 0, (1.18)
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for each m and n, where C(m,n,T ) and C(m,n) also depends on |V |CN and BN1 (see (1.15)), and N = N(m),
N1 = N1(m).

Relations (1.17) with m = m0 ≥ 1 in the usual way (cf. [5,12,16,18]) imply that Eq. (1.14) is regular in the space
Hm0 ∩ L2q+2 in the sense that for any u0 ∈ Hm0 ∩ L2q+2 it has a unique strong solution u(t, x), equal u0 at t = 0,
and satisfying estimates (1.3), (1.17) with m = m0 for any n. By the Bogolyubov–Krylov argument this equation
has a stationary measure μν , supported by the space Hm0 ∩ L2q+2, and a corresponding stationary solution uν(τ ),
Duν(τ ) ≡ μν , also satisfies (1.3) and (1.18) with m = m0.

If (1.10) holds and (1.16) is replaced by a stronger assumption, then a stationary measure is unique. If γI = 0, the
uniqueness readily follows, for example, from the abstract theorem in [13]. In [18] this assertion is proved if

γR = 0 and q ≤ 1 if d = 1, q < 1 if d = 2, q ≤ 2/d if d = 3. (1.19)

In [16] it is established if

p = q, γR, γI > 0 if d = 1,2, and p = q <
2

d − 2
, γR, γI > 0 if d ≥ 3; (1.20)

the argument of that work also applies if p > q .
Note that when γR = 0 or when p < q (i.e., when the nonlinear damping is weaker than the conservative term),

the assumptions (1.19), (1.20), needed for the uniqueness of the stationary measure, are much stronger than the
assumptions (1.16), needed for the regularity. This gap does not exist (at least it shrinks a lot) if the random force in
Eq. (1.14) is not white in time, but is a kick-force. See in [11] the abstract theorem and its application to the CGL
equations.

1.4. Spectral properties of AV : One-dimensional case

As in Section 1.1 we denote AV = A = −∂2/∂x2 + V (x), where the potential V (x) ≥ 0 belongs to the space CN
e

of CN -smooth even and 2π-periodic functions, N ≥ 1. Let φ1, φ2, . . . be the L2-normalised complete system of real
eigenfunctions of AV with the eigenvalues 1 ≤ λ1 < λ2 < · · · . Consider the linear mapping

Ψ : H � u(x) �→ v = (v1, v2, . . .) ∈ C
∞,

defined by the relation u(x) = ∑
vkφk(x). In the space of complex sequences v we introduce the norms

|v|2hm =
∑
k≥1

|vk|2λm
k , m ∈ R,

and denote hm = {v | |v|hm < ∞}. Due to the Parseval identity, Ψ : H → h0 is a unitary isomorphism. By {Ψkm, k,

m ≥ 1} we denote the matrix of Ψ with respect to the basis {ej } in H and the standard basis in h0. Since Ψ maps real
vectors to real, its matrix has real entries.

For any m ∈ N we have |v|2hm = 〈Amu(x),u(x)〉. So the norms |v|hm and ‖u‖m are equivalent for m = 0, . . . ,N .
Since Ψ ∗ = Ψ −1, then the norms are equivalent for integer |m| ≤ N . By interpolation they are equivalent for all real
|m| ≤ N . So

the maps Ψ : Hm → hm, |m| ≤ N, are isomorphisms. (1.21)

Denote G = Ψ −1 :hm → Hm. Then

Ψ ◦ A ◦ G = diag{λk, k ≥ 1} =: Â.

Consider the operator

L := Ψ ◦ (−�) ◦ G = Ψ ◦ (A − V ) ◦ G = Â − Ψ ◦ V ◦ G =: Â − L0. (1.22)
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By (1.21) L0 = Ψ ◦ V ◦ G defines bounded linear maps

L0 :hm → hm ∀|m| ≤ N, (1.23)

and in the space h0 it is selfadjoint.
For any finite M consider the mapping

ΛM :CN
e → R

M, V (x) �→ (λ1, . . . , λM).

Since the eigenvalues λj are different, this mapping is analytic. As ∇λj (V ) = φj (x)2 and the functions φ2
1 , φ2

2 , . . .

are linearly independent by the classical result of G. Borg (1946), then for any V ∈ CN
e the linear mapping

dΛM(V ) :CN
e → R

M is surjective (1.24)

(all this result may be found in [17]; e.g. see there p. 46 for Borg’s theorem). In the space CN
e consider a Gaussian

measure μK with a nondegenerate correlation operator K (so for the quadratic function f (V ) = 〈V, ξ 〉L2〈V,η〉L2 we
have

∫
f (V )μK(dV ) = 〈Kξ,η〉). Relation (1.24) easily implies

Lemma 1.1. For any M ≥ 1 the measure ΛM ◦μK is absolutely continuous with respect to the Lebesgue measure on
RM .

We will call a vector Λ ∈ R∞ nonresonant if for any nonzero integer vector s of finite length we have

Λ · s 	= 0. (1.25)

A potential V (x) is called nonresonant if its spectrum Λ(V ) = (λ1, λ2, . . .) is nonresonant. The nonresonant potentials
are defined in CN

e by a countable family of open dense relations (1.25). So

the nonresonant potentials form a subset of CN
e of the second Baire category. (1.26)

Applying Lemma 1.1 we also get

the nonresonant potentials form a subset of CN
e of full μK measure (1.27)

for any Gaussian measure μK as above.
The nonresonant vectors Λ are important because of the following version of the Kronecker–Weyl theorem:

Lemma 1.2. Let f ∈ Cn+1(Tn) for some n ∈ N. Then for any nonresonant vector Λ we have

lim
T →∞

1

T

∫ T

0
f

(
q0 + tΛn

)
dt = (2π)−n

∫
f dx, Λn = (Λ1, . . . ,Λn),

uniformly in q0 ∈ T
n. The rate of convergence depends on n, Λ and |f |Cn+1 .

Proof. Let us write f (q) as the Fourier series f (q) = ∑
fseis·q . Then for each nonzero s we have |fs | ≤

Cn+1|f |Cn+1 |s|−n−1. So for any ε > 0 we may find R = Rε such that |∑|s|>R fseis·q | ≤ ε
2 for each q . Now it suffices

to show that∣∣∣∣ 1

T

∫ T

0
fR

(
q0 + tΛn

)
dt − f0

∣∣∣∣ ≤ ε

2
∀T ≥ Tε (1.28)

for a suitable Tε , where fR(q) = ∑
|s|≤R fseis·q . But

∣∣∣∣ 1

T

∫ T

0
eis·(q0+tΛn) dt

∣∣∣∣ ≤ 2

T |s · Λn|
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for each nonzero s. Therefor the l.h.s. of (1.28) is

≤ 2

T

(
inf|s|≤R

∣∣s · Λn
∣∣)−1 ∑

|fs | ≤ T −1|f |C0C(R,Λ).

Now the assertion follows. �

1.5. Spectral properties of AV : Multi-dimensional case

Now let, as in Section 1.3, A = AV be the operator A = −� + V (x), x ∈ T
d , where 1 ≤ V (x) ∈ CN(Td). Let

{φk(x), k ≥ 1} be its L2-normalised eigenfunctions and {λk, k ≥ 1}, be the corresponding eigenvalues, 1 ≤ λ1 ≤
λ2 ≤ · · · . For any M ≥ 1 denote by FM ⊂ CN(Td) the open domain

FM = {V | λ1 < λ2 < · · · < λM}.
Its complement Fc

M is a real analytic variety in CN(Td) of codimension ≥ 2, so FM is connected (see [6] and refer-
ences therein). The functions λ1, . . . , λM are analytic in FM . Let us fix any nonzero vector s ∈ Z

∞ such that sl = 0
for l > M . The set

Qs = {
V ∈ FM | Λ(V ) · s = 0

}
clearly is closed in FM . Since the function Λ(V ) · s is analytic in FM , then either Qs = FM , or Qs is nowhere dense
in FM . Theorem 1 from [6] immediately implies that Qs 	= FM , so (1.26) also holds true in the case we consider now.

Let μK be a Gaussian measure with a nondegenerate correlation operator, supported by the space CN(Td). As
Λ(V ) · s is a non-trivial analytic function on FM and Fc

M is an analytic variety of positive codimension, then
μK(Qs) = 0 (e.g., see Theorem 1.6 in [1]). Since this is true for any M and any s as above, then the assertion
(1.27) also is true.

2. Averaging theorem

The approach and the results of this section apply both to Eqs (1.1) and (1.14). We present it for Eq. (1.1) and at
Section 2.5 discuss small changes, needed to treat (1.14). Everywhere below T is an arbitrary fixed positive number.

2.1. Preliminaries

In Eq. (1.1) with u ∈ H1 we pass to the v-variables, v = Ψ (u) ∈ h1:

v̇k + iν−1λkvk = Pk(v)dτ +
∑
j≥1

Bkj dβj (τ ), k ≥ 1. (2.1)

Here Bkj = Ψkjbj (a matrix with real entries, operating on complex vectors), and

Pk = P 1
k + P 2

k + P 3
k , (2.2)

where P 1,P 2 and P 3 are, correspondingly, the linear, dissipative and Hamiltonian parts of the perturbation:

P 1(v) = κΨ ◦ ∂2

∂x2
u, P 2(v) = −γRΨ

(|u|2pu
)
, P 3(v) = −iγIΨ

(|u|2qu
)
,

where u = G(v). We will refer to Eqs (2.1) as to the v-equations.
For k ≥ 1 let us denote Ik = I (vk) = 1

2 |vk|2 and ϕk = ϕ(vk) = Argvk ∈ S1, where ϕ(0) = 0 ∈ S1. Consider the
mappings

ΠI :hr � v �→ I = (I1, I2, . . .) ∈ hr
I+, Πϕ :hr � v �→ ϕ = (ϕ1, ϕ2, . . .) ∈ T

∞.
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Here hr
I+ is the positive octant in the space

hr
I =

{
I

∣∣∣ |I |hr
I
= 2

∑
j

j2r |Ij | < ∞
}
.

We will write

ΠI

(
Ψ (u)

) = I (u), Πϕ

(
Ψ (u)

) = ϕ(u), (ΠI × Πϕ)
(
Ψ (u)

) = (I × ϕ)(u).

The mapping I : Hr → hr
I is 2-homogeneous continuous, while the mappings ϕ : Hr → T∞ and (I × ϕ) : Hr →

hr
I × T

∞ are Borel-measurable and discontinuous (the torus T
∞ is given the Tikhonov topology and a corresponding

distance).
Now let us pass in Eq. (2.1) from the complex variables vk to the real variables Ik ≥ 0, ϕk ∈ S1:

dIk(τ ) = (vk · Pk)(v)dτ + Y 2
k dτ +

∑
l

Ψklbl(vk · dβ l), Yk =
√∑

b2
l Ψ

2
kl, (2.3)

and

dϕk(τ ) =
(

ν−1λk + |vk|−2(ivk) · Pk − |vk|−2
∑

l

bl(Ψkl · vk)(Ψkl · ivk)

)
dτ

+
∑

l

|vk|−2blΨkl(ivk · dβ l)

=: (
ν−1λk + Gk(v)

)
dτ +

∑
l

gkl(v)

(
ivk

|vk| · dβ l (τ )

)
. (2.4)

Due to (1.22), (1.23)

P(v) = κÂv + P 0(v), P 0 :hr → hr ∀1

2
< r ≤ N,

where the map P 0 is real analytic. The mapping P 0(v) and its differential dP 0(v) both have a polynomial growth
in |v|hr . For any vector v = (v1, v2, . . .) ∈ h0 we denote vm = (v1, . . . , vm) ∈ C

m and identify vm with the vector
(v1, . . . , vm,0, . . .). Then∣∣v − vm

∣∣
hr−1/3 ≤ Cm−1/3|v|hr

since λl ∼ |l|2l . Therefore∣∣P(v) − P
(
vm

)∣∣
hr−2−1/3 ≤ m−1/3Q

(|v|hr

)
,

where Q is a polynomial.
The functions Gk and gkl are singular as vk = 0 and satisfy the following estimates:∣∣Gk(v)χ{|vk |>δ}

∣∣ ≤ δ−1Qk

(|v|hr

)
, (2.5)∣∣gkl(v)χ{|vk |>δ}

∣∣ ≤ Cδ−1bl, (2.6)

where Qk is a polynomial.
For any vector θ = (θ1, θ2, . . .) ∈ T

∞ we denote by Φθ the unitary rotation

Φθ :hr → hr, v �→ vθ , where vθj = eiθj vj ∀j.
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By 〈F 〉 etc. we denote the averaged functions, 〈F 〉(v) = ∫
T∞ F(Φθv)dθ. They are ϕ-independent, so 〈F 〉 =

〈F 〉(ΠI (v)). The functions 〈P 〉, 〈F 〉, . . . also satisfy the estimates above. So∣∣〈(vk · Pk)
〉(

Im
) − 〈

(vk · Pk)
〉
(I )

∣∣ ≤ m−1/3CkQ
(|I |h1

I

)
,

where Q is a polynomial.
Since the dispersion matrix {Bkj } is nondegenerate, then repeating for Eqs (2.1) and (2.3) the arguments from

Section 7 in [10] (also see Section 6.2 in [9]), we get

Lemma 2.1. Let vν(τ ) be a solution of (2.1) and I ν(τ ) = I (vν(τ )). Then for any k ≥ 1 the following convergence
hold uniformly in ν > 0:

∫ T

0
P
{
I ν
k (τ ) ≤ δ

}
dτ → 0 as δ → 0. (2.7)

(Certainly the rate of the convergence depends on k.)

2.2. The theorem

Let us abbreviate

h1 = h, h1
I = hI , C

([0, T ], hI+
) = HI ,

where hI+ is the positive octant {I ∈ hI | Ij ≥ 0 ∀j}. Fix any u0 ∈ h. Due to estimates (1.8), (1.9) and Eqs (2.3), the
set of laws {D(I ν(·))}, 0 < ν ≤ 1, is tight in HI . Denote by Q0 any limiting measure as ν = νj → 0, i.e.

D
(
I νj (·)) ⇀ Q0 as νj → 0.

Let us consider the averaged drift (〈(vk · Pk)〉(I ) + Y 2
k )dτ for Eq. (2.3). We have

〈
(vk · Pk)

〉
(v) =

∫
T∞

(
eiθk vk

) · Pk(Φθv)dθ = vk · R′
k(v), (2.8)

where R′
k = ∫

T∞(e−iθkPk(Φθv))dθ (note that 〈(vk · Pk)〉 depends only on I = ΠI (v), while R′
k(v) depends on v).

The diffusion matrix for (2.3) is {Akr, k, r ≥ 1}, where

Akr(v) =
∑

l

(Ψkrblvk) · (Ψrlblvr ) =
∑

l

b2
l (vk · vr)ΨklΨrl.

Its average is

〈Akr 〉(v) =
∑

l

b2
l

∫
T∞

Re
(
e−i(θk−θr )vkv̄r

)
ΨklΨrl dθ

= δkr |vk|2Y 2
k , Yk =

(∑
l

b2
l |Ψkl |2

)1/2

. (2.9)

Due to (1.21),∑
k

Y 2
k k2m ≤ CmBm ∀m ≤ N. (2.10)

Our first goal is to prove the following averaging theorem:
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Theorem 2.2. The measure Q0 is a solution of the martingale problem in the space hI = h1
I with the drift (〈vk ·

Pk〉(I ) + Y 2
k )dτ and the diffusion matrix 〈Akr 〉(I ). That is, Q0 = D(I 0(·)), where the process I 0(τ ) is a weak (in the

sense of stochastic analysis) solution of the system of averaged equations

dIk = (〈
(vk · Pk)

〉
(I ) + Y 2

k

)
dτ +

∑
r

(√〈A〉)
kr

(I )dβr(τ ), k ≥ 1; (2.11)

I (0) = I0 = ΠI (v0). Moreover,

E sup
0≤τ≤T

∣∣I 0(τ )
∣∣n
hI

≤ Cn

(‖u0‖2n
1 + 1

) ∀n, (2.12)

E
∫ T

0

∣∣I 0(τ )
∣∣
h2

I
dτ ≤ C

(‖u0‖2
1 + 1

)
. (2.13)

Proof. The crucial step of the proof is to establish the following lemma:

Lemma 2.3. Let F̃ (v) be an analytic function on the space h = h1 which extends to an analytic function on h2/3 of a
polynomial growth. Then

Aν := E max
0≤τ≤T

∣∣∣∣
∫ τ

0

(
F̃

(
I ν(s), ϕν(s)

) − 〈F̃ 〉(I ν(s)
))

ds

∣∣∣∣ → 0 as ν → 0. (2.14)

The lemma is proved below in Section 2.3, following the argument in [10]. Now we derive from it the theorem. Let
us equip the space HI with the Borel sigma-algebra F , the natural filtration of sigma-algebras {Fτ ,0 ≤ τ ≤ T } and
the probability Q0.

Let us denote Fk(v) = (vk · Pk)(v) + Y 2
k . The fact that the processes I ν

k (τ ) − ∫ τ

0 Fk(v
ν(s))ds are martingales (see

(2.3)), the convergence D(I νj (·)) ⇀ Q0 and Lemma 2.3 with F̃ = Fk imply that the processes

Zk(τ) = Ik(τ ) −
∫ τ

0

(〈(vk · Pk)〉
(
I (s) + Y 2

k

))
ds, k ≥ 1,

are Q0-martingales, cf. Section 6 of [10].
Similar to (2.14) we find that

E max
0≤τ≤T

∣∣∣∣
∫ τ

0

(
F̃

(
I ν(s), ϕν(s)

) − 〈F̃ 〉(I ν(s)
))

ds

∣∣∣∣4

→ 0 as ν → 0.

Then using the same arguments as before, we see that the processes Zk(τ)Zj (τ ) − ∫ τ

0 〈Akj 〉(I (s))ds also are Q0-
martingales. That is, Q0 is a solution of the martingale problem with the drift 〈Fk〉+Y 2

k and the diffusion 〈A〉. Hence,
Q0 is a law of a weak solution of Eq. (2.11). See [19].

Estimates (2.12), (2.13) follow from (1.8) and the basic properties of the weak convergence since ‖u‖2
m ∼ |v|2hm =

|ΠI (v)|hm
I

. �

2.3. Proof of Lemma 2.3

Fix any m ≥ 1 and denote by I ν,m,ϕν,m etc. the vectors, formed by the first m components of the infinite vectors
I ν, ϕν , etc. Below R stands for a suitable function of ν such that R(ν) → ∞ as ν → 0, but

νRn → 0 as ν → 0,∀n. (2.15)

Denote by ΩR = Ων
R the event

ΩR =
{

sup
0≤τ≤T

∣∣vν(τ )
∣∣
h1

≤ R
}
.
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Then, by (1.9), P(Ωc
R) ≤ κ∞(R) uniformly in ν (see the Notations). We denote

PΩR
(Q) = P(ΩR ∩ Q), EΩR

(f ) = E(f χΩR
).

Since for |v|h1 ≤ R we have |v − vm|h2/3 ≤ C(R)m−1/3 and since F̃ is Lipschitz on h2/3 uniformly on bounded sets,
then

Aν ≤ κ∞(R) + Ck(R)m−2/3 + EΩR
max

0≤τ≤T

∣∣∣∣
∫ τ

0

(
F̃

(
I ν,m,ϕν,m

) − 〈F̃ 〉m(
I ν,m

))
ds

∣∣∣∣.
Here 〈F̃ 〉m stands for averaging of the function T

m � Im �→ F̃ (Im,0, . . .). So it remains to estimate for any m and R

an analogy Aν
m,R of the quantity Aν for the finite-dimensional process I ν,m(τ ) on the event ΩR (where its norm is

≤ R),

Aν
m,R = EΩR

max
0≤τ≤T

∣∣∣∣
∫ τ

0

(
F̃

(
I ν,m,ϕν,m

) − 〈F̃ 〉m(
I ν,m

))
ds

∣∣∣∣.
Consider a partition of [0, T ] by the points

τj = τ0 + jL, 0 ≤ j ≤ K,

where τK is the last point τj in [0, T ). The diameter L of the partition is

L = √
ν,

and the non-random phase τ0 ∈ [0,L) will be chosen later. Denoting

ηl =
∫ τl+1

τl

(
F̃

(
I ν,m,ϕν,m

) − 〈F̃ 〉m(
I ν,m

))
ds, 0 ≤ l ≤ K − 1, (2.16)

we see that

Aν
m,R ≤ LC(R) + EΩR

K−1∑
l=0

|ηl |, (2.17)

so it remains to estimate EΩR

∑ |ηl |. We have

|ηl | ≤
∣∣∣∣
∫ τl+1

τl

(
F̃

(
I ν,m(s), ϕν,m(s)

) − F̃
(
I ν,m(τl), ϕ

ν,m(τl) + ν−1Λm(s − τl)
))

ds

∣∣∣∣
+

∣∣∣∣
∫ τl+1

τl

(
F̃

(
I ν,m(τl), ϕ

ν,m
(
τl + ν−1Λm(s − τl)

)) − 〈F̃ 〉m(
I ν,m(τl)

))
ds

∣∣∣∣
+

∣∣∣∣
∫ τl+1

τl

(〈F̃ 〉m(
I ν,m(τl)

) − 〈F̃ 〉m(
I ν,m(s)

))
ds

∣∣∣∣ =: Υ 1
l + Υ 2

l + Υ 3
l .

To estimate the quantities Υ
j
l we first optimise the choice of the phase τ0. Consider the events El ,1 ≤ l ≤ K ,

El = {
I ν
k (τl) ≤ γ

}
, where γ ≥ νa, a = 1/10. (2.18)

By Lemma 2.1 and the Fubini theorem we can choose τ0 ∈ [0,L) in such a way that

K−1
K−1∑
l=0

P(El ) = κ
(
γ −1;R,m

)
.
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For any l consider the event

Ql =
{

sup
τl≤τ≤τl+1

∣∣I ν(τ ) − I ν(τl)
∣∣
hI

≥ P1(R)L1/3
}
,

where P1(R) is a suitable polynomial. It is not hard to verify (cf. [10]) that P(Ql) ≤ κ∞(L−1). Setting

Fl = El ∪ Ql

we have that

1

K

K−1∑
l=0

P(Fl ) ≤ κ
(
γ −1;R,m

) + κ
(
ν−1/2;m) =: κ̃.

Accordingly,

1

K

K−1∑
l=0

∣∣(EFl
)Υ

j
l

∣∣ ≤ P(R)

K

K−1∑
l=0

P(Fl ) ≤ P(R)κ̃ := κ̃1, j = 1,2,3.

Similar, since for ω ∈ ΩR the integrand in (2.16) is ≤ Q(R), then

1

K

∑
l

|EΩR
ηl − EΩR\Fl

ηl | ≤ κ̃Q(R). (2.19)

If ω ∈ ΩR \ Fl , then for τ ∈ [τl, τl+1] we have that I ν
k (τl) ≥ γ − P1(R)L1/3 ≥ 1

2γ , if ν is small. This relation and
(2.4), (2.5), (2.6) imply that

PΩR\Fl

{∣∣ϕν,m(s) − (
ϕν,m(τl) + ν−1Λm(s − τl)

)∣∣ ≥ νa for some s ∈ [τl, τl+1]
}

≤ κ∞
(
ν−1;R,m

)
(we recall that γ ≥ ν1/10). Accordingly,(∑

l

EΩR\Fl
Υ 1

l

)
≤ Cνa + κ∞

(
ν−1;R,m

)
. (2.20)

It is clear that(∑
l

EΩR\Fl
Υ 3

l

)
≤ P(R)L1/3 = P(R)ν1/6. (2.21)

So it remains to estimate the expectation of
∑

Υ 2
l . For any ω ∈ ΩR \ Fl abbreviate

F(ψ) = F̃
(
I ν,m(tl), ϕ

ν,m(tl) + ψ
)
, ψ ∈ T

m,

where in the r.h.s. ψ is identified with the vector (ψ,0, . . .) ∈ T
∞. We can write Υ 2

l as

Υ 2
l =

∣∣∣∣
∫ τl+1

τl

F
(
ν−1Λm(s − τl)

)
ds − 〈F 〉

∣∣∣∣ = L

∣∣∣∣ ν

L

∫ ν−1L

0
F

(
Λmt

)
dt − 〈F 〉

∣∣∣∣.
Since the function F(ψ) is analytic and the vector Λ is nonresonant, then by Lemma 1.1 Υ 2

l ≤ Lκ(ν−1L;m,R,γ,Λ).

Therefore(∑
l

EΩR\Fl
Υ 2

l

)
≤ κ

(
ν−1/2;m,R,γ,Λ

)
. (2.22)
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Now (2.17), (2.19) and (2.20)–(2.22) imply that

Aν ≤ κ∞(R) + C(R)m−1/3 + κ
(
ν−a;R,m

) + κ
(
γ −1;R,m

)
+ Cνa + P(R)ν1/6 + κ

(
ν−1/2;m,R,γ,Λ

)
.

Choosing first R large, then m large and next γ small and ν small in such a way that (2.15) and (2.18) hold, we make
the r.h.s. arbitrarily small. This proves the lemma.

2.4. Joint distribution of actions and angles

Denote μ̃ν
s = D(I ν(s), ϕν(s)) = (I × ϕ) ◦ D(uν(s)), where uν(s),0 ≤ s ≤ T , is a solution of (1.1) and (I ν, ϕν) is a

solution of the system (2.3), (2.4). For any f ∈ L1(0, T ), f ≥ 0, such that
∫

f = 1, set μ̃ν(f ) = ∫ T

0 f (s)μ̃ν
s ds. Also

let us denote m0(f ) = ∫ T

0 f (s)D(I 0(s))ds; this is a measure on hI+.

Theorem 2.4. For any f as above,

μ̃νj (f ) ⇀ m0(f ) × dϕ as νj → 0. (2.23)

Proof. For a piecewise constant function f the convergence follows from Theorem 2.2 and Lemma 2.3 since by the
lemma, for any 0 ≤ T1 < T2 ≤ T , the integral

∫ T2
T1

F̃ (I ν(s), ϕν(s))ds is close to
∫ T2
T1

〈F̃ 〉(I ν(s))ds, and by the theorem

the integral
∫ T2
T1

〈F̃ 〉(I ν(s))ds is close to
∫ T2
T1

〈F̃ 〉(I 0(s))ds = ∫
T∞

∫ T2
T1

F̃ (I 0(s),ψ)ds dψ (we are applying the lemma
and the theorem on segments [0, T1] and [0, T2]).

To get the convergence for a general function f we approximate it by piecewise constant functions. See Section 2
of [9] for details. �

2.5. Multidimensional case

Let (2.1) be not Eq. (1.1), but Eq. (1.14), written in the v-variables. Assume that V ∈ CN , where N is sufficiently big,
and (1.15), (1.16) hold. Now we should consider (2.1) as an equation in a space hr, r > d/2. The maps P 1 :hr → hr

and P 2 :hr → hr are smooth and the differentials dmP 1(v) :hr × · · · × hr → hr are poly-linear mappings such that
their norms are bounded by polynomials of |v|hr . This allows to apply to Eq. (2.1) the method of [10]2 in the same
way as in Sections 2.3–2.4 and establish validity of Theorems 2.2 and 2.4.

3. Effective equations and uniqueness of limit

Let (2.1) be Eq. (1.1) or Eq. (1.14), written in the v-variables, and (2.11) – the corresponding averaged equation. Ac-
cordingly, by h we denote either the space h1 as in Section 1, or the space hr , r > d/2, as in Section 1.3. For simplicity
we assume that p and q in (1.14) are integers. If they are not, then in the calculations below the nonlinearities |u|2pu

and |u|2qu should be modified by Lipschitz terms which cause no extra difficulties.

3.1. Effective equations

Let us write the averaged drift 〈vk · Pk〉 and the averaged diffusion 〈Akr 〉 in the form (2.8) and (2.9), respectively.
Using (2.2) we write the term R′(v) in (2.8) as

R′
k(v) =

3∑
m=1

∫
e−iθkP m

k (Φθv)dθ =:
3∑

m=1

Rm
k (v), k ≥ 1.

2In was assumed in [10] that the relevant maps and vector-fields are analytic. This analyticity was imposed only for simplicity. Sufficiently high
smoothness and polynomial estimates on the corresponding high order differentials are sufficient for all construction of [10].
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By (1.22) and (1.23),

R1(v) = κ

∫
Φ−θΨ

(
∂2

∂x2
G(Φθv)

)
dθ

= −κ

∫
Φ−θ ÂΦθv dθ + κ

∫
Φ−θ L0(Φθv)dθ (3.1)

= −κÂ + κR0(v),

R0(v) =
∫

Φ−θ L0(Φθv)dθ,

since Â commutes with the rotations Φθ . The operator R0 is bounded and selfadjoint in h0. For any v we have

〈
R1(v), v

〉 = κ

∫
〈�GΦθv,GΦθv〉dθ ≤ −Cκ|v|2

h1 , (3.2)

since ‖GΦθv‖1 ∼ |Φθv|h1 = |v|h1 . Writing in (3.1) L0(v) = Ψ ◦ V ◦ G(v) as

L0(v) = κ∇(
h2 ◦ G

)
(v), h2(u) = 1

2

∫
V (x)

∣∣u(x)
∣∣2

dx,

we have R0(v) = ∇〈h2 ◦ G〉(v). Since

〈
h2 ◦ G

〉
(v) = 1

2

∑
j,l

∫
T∞

〈
V (x)eiθj vjϕj (x), eiθl vlϕl(x)

〉
dθ

= 1

2

∑
l

|vl |2Ml, Ml = 〈V ϕl,ϕl〉,

then R0 = diag{Ml, l ≥ 1}. Accordingly,

R1 = κ diag{−λl + Ml, l ≥ 1} > 0, Ml = 〈V ϕl,ϕl〉. (3.3)

The term R2 is defined as an integral with the integrand

Φ−θP
2Φθ(v) = −γRΦ−θΨ

(|u|2pu
)∣∣

u=G◦Φθv
=: Fθ(v).

Writing f p(|u|2)u3 as ∇hp(u), where hp(u) = ∫
Fp(|u|2)dx, (Fp)′ = 1

2f p , and denoting G ◦ Φθ = Lθ , we have

Fθ(v) = −γRL∗
θ∇hp(u)|u=Lθ (v) = −γR∇(

hp ◦ Lθ(v)
)
.

So

R2(v) = −γR∇v

(∫
T∞

(
hp ◦ G

)
(Φθv)dθ

)
= γR∇v

〈
hp ◦ G

〉
. (3.4)

Similar R3(v) = −iγI∇v〈hq ◦G〉 (since the operator G ◦Φθ is complex-linear). As 〈hq ◦G〉 is a function solely of
the actions (I1, I2, . . .), then ∇vk

〈hq ◦ G〉 ∈ C is a vector, real-proportional to vk . Therefore vk · R3
k (v) = 0 for each k.

That is,〈
(vk · Pk)

〉
(v) = vk · R1

k (v) + vk · R2
k (v), (3.5)

3If d = 1 and p is an integer, then f p(|u|2) = |u|2p .
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where R1 and R2 are defined by (3.3) and (3.4). Now we set

R(v) = R1(v) + R2(v)

and consider the following system of stochastic equations:

dvk(τ ) = Rk(v)dτ + Yk dβk, k ≥ 1. (3.6)

Equations (3.6) are called the system of effective equations.

Example 3.1 (p = 1). Now h1(u) = 1
4

∫ |u|4 dx. So

h1 ◦ G(v) = 1

4

∫ ∣∣∣∣∑
k

vkϕk(x)

∣∣∣∣4

dx = 1

4

∑
k1,k2,k3,k4

vk1vk2 v̄k3 v̄k4

∫
ϕk1ϕk2ϕk3ϕk4 dx.

Since

〈vk1vk2 v̄k3 v̄k4〉 =
{ |vk1 |2|vk2 |2 if k1 = k3, k2 = k4 or k1 = k4, k2 = k3,

0 otherwise,

then

〈
h1 ◦ G(v)

〉 = 1

2

∑
k1 	=k2

|vk1 |2|vk2 |2L′
k1k2

+ 1

4

∑
k

|vk|4L′
kk, (3.7)

where L′
k1k2

= ∫
ϕ2

k1
ϕ2

k2
dx. So that

R2
k (v) = −γR∇vk

〈
h1 ◦ G

〉
(v) = −γRvk

(
|vk|2L′

kk + 2
∑
l 	=k

|vl |2L′
kl

)

= −γRvk

∑
l

|vl |2Lkl.

Here Lkk = L′
kk and Lkl = 2L′

kl if k 	= l. So the system of effective equations becomes

dvk = −vk

(
κ(λk − Mk) + γR

∑
l

|vl |2Lkl

)
dτ + Yk dβk, k ≥ 1. (3.8)

If v(τ) = {vk(τ ), k ≥ 1} satisfies (3.6), then for Ik = I (vk(τ )) we have

dIk(τ ) = vk · Rk(v)dτ + Y 2
k dτ + Ykvk · dβk, k ≥ 1. (3.9)

By (3.5) the drift in this system equals (〈vk · Pk〉(I ) + Y 2
k )dτ , while the diffusion matrix is δkr |vk|2Y 2

k = 〈Akr 〉. So
system (3.9) has the same set of weak (= martingale) solutions as (2.11), see [19]. We have got

Proposition 3.2. Let v(τ) be a weak solution of (3.6) such that v(0) = v0 and

E sup
0≤τ≤T

∣∣v(τ)
∣∣2n

h
≤ C|v0|2n

h + C(n,T ) ∀n. (3.10)

Then ΠI (v(τ)) is a weak solution of the system (2.11), satisfying (2.12) and such that I (0) = I0.

The ‘right’ inverse statement to Proposition 3.2 is given by the following

Proposition 3.3. Let I 0(τ ) be a weak solution of the averaged Eqs (2.11), constructed in Theorem 2.2. Then there
exists a weak solution v0(τ ) of (3.6) such that v(0) = v0, satisfying (3.10), and such that D(ΠI (v

0(·))) = D(I 0(·)).
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That is, the solutions of Eq. (2.11) which can be obtained as limits (when ν → 0) of actions I ν(u(τ )) of solutions
for (1.1) (or (1.14)) are those which can be covered by “regular” solutions of (3.6). For a proof we refer to Section 3
of [9], where the assertion is established in a similar but more complicated situation.

System (3.6) is invariant under rotations Φθ :

Proposition 3.4. Let v(τ) be a weak solution of (3.6), satisfying (3.10). Then, for any θ ∈ T
∞, Φθv(τ) is a weak

solution of (3.6), satisfying (3.10).

Proof. Applying Φθ to (3.6) we get that

d(Φθv) = ΦθR(v)dτ + ΦθY dβ(τ ), Y = diag{Yk}.

The vector fields R1(v) and R2(v) both are obtained by averaging and have the form Rj (v) = ∫
Φ−θF

j (Φθv)dθ . So
they commute with the rotations, as well as their sum R(v), and we have

d(Φθv) = R(Φθv)dθ + Y d
(
Φθβ(τ )

)
.

Since DΦθβ(τ ) = Dβ(τ ), then the assertion follows. �

3.2. The uniqueness

Let v1(τ ) and v2(τ ) be solutions of the effective system (3.6). Denoting v = v1 − v2, we have that

1

2

d

dτ

∣∣v(τ)
∣∣2
h0 ≤ −κ|v|2

h1 + 〈
R2(v1) − R2(v2), v1 − v2〉.

Consider the last term, denoting v
j
θ = Φθv

j ,u
j
θ = G(v

j
θ ). Since R2(v) is an integral over T

∞ with the integrand
−γRΦ−θΨ (|uθ |2puθ ), where uθ = G(Φθ(v)), then

〈
R2(v1) − R2(v2), v1 − v2〉 = −γR

∫ 〈
Ψ

(∣∣u1
θ

∣∣2p
u1

θ − ∣∣u2
θ

∣∣2p
u2

θ

)
,Φθv

1 − Φθv
2〉dθ

= −γR

∫ 〈(∣∣u1
θ

∣∣2p
u1

θ − ∣∣u2
θ

∣∣2p
u2

θ

)
, u1

θ − u2
θ

〉
dθ.

The integrand in the r.h.s. is nonnegative. So

1

2

d

dτ
|v|2

h0 ≤ −Cκ|v|2
h1 (3.11)

(i.e., the effective system (3.6) is strongly monotone). Therefore a strong solution of the system (3.6) is unique. By
the Yamada–Watanabe argument (see [7]) a weak solution also is unique. We have got

Theorem 3.5. Let I ν(τ ) = I (uν(τ )), where uν(τ ) is a solution of Eq. (1.1) or of Eq. (1.14) and uν(0) = u0. Then

D
(
I ν(·)) ⇀ Q0 as ν → 0

in the space HI , where Q0 is a weak solution of (2.11), satisfying (2.12), (2.13). There exists a unique weak solution
v(τ) of the effective Eqs (3.6), satisfying (3.10), such that v(0) = Ψ (u0) and D(ΠI (v(·)) = Q0.

We note that by (2.10), (3.11) (and since R(0) = 0), for any random initial data v(0) = v0, independent from the
random force and satisfyng E|v0|2h0 < ∞, Eq. (3.6) has a unique strong solution.
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4. Stationary solutions

4.1. Averaging

Again, let (2.1) be Eq. (1.1) or Eq. (1.14), written in the v-variables, and (2.11) be the corresponding averaged equa-
tion. Accordingly, by h we denote either the space h1 as in Section 1, or the space hr , r > d/2, as in Section 1.3.
Assume that the corresponding u-equation is regular in the space Hr (e.g., d = 1 or the assumptions, given at the end
of Section 1.3 are fulfilled), and that it has a unique stationary measure μν (see Sections 1.2, 1.3).

Let u′ν(τ ) be a stationary in time solution of Eq. (1.1), D(u′ν(τ )) ≡ μν . By estimates in Section 1 the set of laws
D(I ′ν(·)), where I ′ν = I (u′ν(τ )), is compact in hI . Let Q′ be any limiting measure as νj → 0. Clearly it is stationary
in τ . The same argument that was used to prove Theorem 2.2 (cf. [10]) imply that Q′ is a stationary solution of the
averaged equation:

Proposition 4.1. The measure Q′ is the law of a process I ′(τ ),0 ≤ τ ≤ T , which is a stationary weak solution
of the averaged Eq. (2.11). It meets estimates (2.12), (2.13), and the stationary measure π = D(I ′(0)) satisfies∫ |I |h2

I
π(dI ) < ∞.

The measures (I × ϕ) ◦ μν = D(I ′ν(s), ϕ′ν(s)) satisfies (2.23) for the same reason as in Section 2.4. Since the
measure μν is independent from s, then now

D
(
I ′ν(s), ϕ′ν(s)

)
⇀ π × dϕ as νj → 0. (4.1)

In the stationary case relation (2.7) implies that

P
{
I ′ν

k(τ ) < δ
} → 0 as δ → 0, (4.2)

uniformly in ν. In particular,

π{I | Ik = 0} = 0 ∀k. (4.3)

4.2. Lifting to effective equations

To study the limiting measure π further we lift it to a stationary measure of the effective system (3.6). We start with

Lemma 4.2. System (3.6) has at most one stationary measure m such that
∫ |v|2

h0m(dv) < ∞.

Proof. Assume that there are two stationary measures and consider the corresponding two stationary solutions of
Eq. (3.6). Their difference v(τ) satisfies (3.11). So a.s. it converges to zero as τ → ∞. Accordingly the two measures
are equal. �

Let v(τ) be a stationary solution of (3.6), D(v(τ )) ≡ m. By Proposition 3.4, Φθ(v(τ )) also is a (weak) stationary
solution. So D(Φθv(τ)) = Φθ ◦ m is a stationary measure for (3.6). Since it is unique, then

Φθ ◦ m = m ∀θ ∈ T
∞.

Accordingly, Πϕ ◦m is a rotation-invariant measure on T
∞, i.e. Πϕ ◦m = dϕ. This implies that in the (I, ϕ)-variables

the measure m has the form

dm = mI (dI ) × dϕ. (4.4)

Proposition 4.1 applies to any time-interval [0, T ]. So, replacing the sequence νj → 0 by a suitable subsequence
νj ′ → 0 we construct a stationary process I ′(τ ), τ ≥ 0, such that I ′νj ′ (τ ) converges to I ′(τ ) in distribution on any
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finite time-interval. Using Proposition 3.3 we construct a solution v′(τ ) of (3.6) such that D(ΠI (v
′(τ )) ≡ π . Since

D(v′(τ )) ⇀ m as τ → ∞, then

π = ΠI ◦ m. (4.5)

That is, the measure π is independent from the sequence νj . We have got

Theorem 4.3. If (1.10) holds, then I ◦ μν ⇀ π = ΠI ◦ m, where m is the unique stationary measure of the effective
system.

In view of (4.1), (4.4) and (4.5),

(I × ϕ) ◦ μν ⇀ (ΠI × Πϕ) ◦ m as ν → 0.

Denote h+ = {v ∈ h | vj 	= 0 ∀j}. By (4.2) and (4.3) (Ψ ◦ μν)(h+) = 1 and m(h+) = 1. So the convergence above
implies that

Theorem 4.4. If (1.10) holds, then μν ⇀ G ◦ m as ν → 0.

Example 4.5 (Hamiltonian perturbations). If in (1.14) γR = 0, i.e. if the nonlinear term of the perturbation is Hamil-
tonian, then the effective system is the linear equation

dv(τ) = R1(v)dτ + Y dβ,

where R1 is defined in (3.3) and Y = diag{Yk, k ≥ 1}. Let v(0) = 0. Then v(τ) is the diagonal complex Gaussian
process

v(τ) =
∫ τ

0
e(τ−s)R1

Y dβ(s), R1 = κ
(
Â − R0).

So the stationary measure for the effective system, Dv(∞), is a direct sum of independent complex Gaussian measures
with zero mean and the dispersions κ

−1Y 2
k /(λk − Mk), k ≥ 1.

The fact that a Hamiltonian nonlinearity produces no effect in the first order averaging (i.e. for the slow time τ � 1)
is well known in the theory of weak turbulence. To produce a non-trivial effect, the Hamiltonian term −iγIfq(|u|2)u
should be scaled by the additional factor ν−1/2, and for the weak turbulence theory to apply to calculate this effect
we should send the size of the x-torus to infinity when ν → 0, see [15].

Example 4.6 (p = 1, continuation). If p = 1, then the effective equations become

dvk = −vk

(
κ(λk − Mk) + γR

∑
l

|vl |2Lkl

)
dτ + Yk dβk. (4.6)

Assume that the random force in (1.1) (or in (1.14)) is small and is mostly concentrated at a frequency j∗. That is,

bj∗ = ε < 1, 0 < bl � ε if l 	= j∗.

Then the numbers Yk are of order ε and are concentrated close to j∗, i.e.,

Yj∗ ∼ ε, Yl ≤ εCN |l − j∗|−N ∀l,N.

So if v(τ) is a stationary solution of the effective equations and Ek = 1
2 E|vk(τ )|2, then

Ej∗ ∼ ε2λ−1
j∗ , El ≤ ε2CNλ−1

j∗ |l − j∗|−N ∀l,N.

That is, the systems (1.1) and (1.14) exhibit no inverse or direct cascade of energy. For other polynomial systems (1.1)
and (1.14) situation is the same. Certainly this is not surprising since by imposing the non-resonance condition we
removed from the system resonances, responsible for the two energy cascades.



Stochastic CGL equations 1055

5. Equations with non-viscous damping

Following Debussche–Odasso [3] we now discuss Eqs (1.1) with non-viscous damping, i.e. with κ = 0 but with
γR > 0 and p = 0 (Debussche–Odasso considered the case p = 0, q = 1):

u̇ + iν−1(−uxx + V (x)u
) = −γRu − iγI |u|2qu + d

dτ

∑
bjβj (τ )ej (x),

(5.1)
u(x) ≡ u(x + 2π) ≡ −u(−x);
u(0) = u0. (5.2)

Estimates (1.4), (1.8) and (1.9) are valid with κ = 0. Jointly with an analogy of estimate (1.17) with κ = 0,m = 1
they imply that for u0 ∈ H2 the set of actions I ν(τ ) = I (uν(τ )) of solutions for (5.1), (5.2) is tight in HI . As in
Section 2, any limiting measure Q0 = lim D(I νj (·)) is a law of a weak solution I 0(τ ) of the averaged Eqs (2.11)κ=0
with I (0) = I0 = I (u0). Constructions of Section 3 remain true, so I 0(τ ) may be lifted to a weak solution v0(τ ) of the
effective Eqs (3.6)κ=0,p=0. Now R1 = 0 and, repeating constructions of Example 3.1 we see that R2

k (v) = −γRvk.

So the effective equations become the linear system

dvk(τ ) = −γRvk dτ + Yk dβk. (5.3)

This system has a unique solution v(τ) such that v(0) = v0 = Ψ (u0). So

lim
ν→0

D
(
I ν(·)) = DΠI

(
v(·)).

Due to the result of [3], Eq. (5.1) has a unique stationary measure μν . Repeating arguments from Example 4.5, we
see that when ν → 0, the measures Ψ ◦ μν converge to the unique stationary measure of Eq. (5.3) which is

m = D
∫ 0

−∞
diag

{
e−sγRYk

}
dβk(s).

This is a direct sum of independent complex Gaussian measures with zero mean and the dispersion Y 2
k /γR, k ≥ 1. So

every solution u(τ) of (5.1) satisfies the Gaussian limit

lim
ν→0

lim
τ→∞ Du(τ) = G ◦ m.

If we replace in (5.1) the linear damping by the nonlinear term −γR|u|2u, then the effective system (5.3) should be
replaced by the nonlinear system (4.6) with λk = Mk = 0. In this case the limiting measure is non-Gaussian.
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