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Abstract. We consider the linear Schrodinger equation under periodic boundary conditions, driven by a random force and damped
by a quasilinear damping:

%u +i(=A 4+ V@)u=v(Au — yrlul?Pu —iy; |u|2qu) +Jun(t, x). (*)
The force 1 is white in time and smooth in x; the potential V (x) is typical. We are concerned with the limiting, as v — 0, behaviour
of solutions on long time-intervals 0 < 7 < v~! T, and with behaviour of these solutions under the double limit  — 0o and v — 0.
We show that these two limiting behaviours may be described in terms of solutions for the system of effective equations for (x)
which is a well posed semilinear stochastic heat equation with a non-local nonlinearity and a smooth additive noise, written in
Fourier coefficients. The effective equations do not depend on the Hamiltonian part of the perturbation —iy; |u 129y (but depend on
the dissipative part —yg|u |21’ u). If p is an integer, they may be written explicitly.

Résumé. Nous considérons I’équation de Schrodinger linéaire avec les conditions aux limites périodiques, perturbée par une force
aléatoire et amortie par un terme quasi linéaire:

%u +i(-A+V@)u=v(Au— vrlul*Pu —iy; Iulzqu) +/vn(t, x). (*)
La force 7 est un processus aléatoire blanc en temps ¢ et lisse en x; le potentiel V (x) est typique. Nous étudions le comportement
asymptotique des solutions sur de longs intervalles de temps 0 <t < vIT, quand v — 0, et le comportement des solutions quand
t — oo et v — 0. Nous démontrons qu’on peut décrire ces deux comportements asymptotiques en termes des solutions du systeme
d’équations effectives pour (x). Ce dernier est une équation de la chaleur avec un terme quasi linéaire non local et une force
aléatoire lisse additive, qui est écrite dans 1’espace de Fourier. Les équations ne dépendent pas de la partie hamiltonienne de la
perturbation —iyy |u|2‘1u (mais elles dépendent de la partie dissipative —yg|u |2p u). Si p est un entier, on peut écrire ces équations
explicitement.

MSC: 35Q56; 60H15
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0. Introduction
In [9,10] we considered the KdV equation on a circle, perturbed by a random force and a viscous damping. There

we suggested auxiliary effective equations which are well posed and describe long-time behaviour of solutions for the
perturbed KdV through a kind of averaging.

1Supported by I’Agence Nationale de la Recherche through the grant ANR-10-BLAN 0102.
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In this work we apply the method of [9,10] to a weakly nonlinear situation when the unperturbed equation is not an
integrable nonlinear PDE (e.g. KdV), but a linear Hamiltonian PDE with a generic spectrum. Since analytic properties
of the latter are easier and better understood then those of the former, in the weakly nonlinear situation we understand
better properties of the effective system and its relation with the original equation. Accordingly we can go further in
analysis of long time behaviour of solutions.

More precisely, we are concerned with v-small dissipative stochastic perturbations of the space-periodic linear
Schrodinger equation

d
5qui(—AquV(x))Lmo, xeT, (0.1)

i.e. with equations
d . .
Eu +1Au = v(Au — nyp(|u|2)u — lylfq(|u|2)u) +Jvn(t,x), xe Td, 0.2)

where 1(t, x) = % 230:1 bjB;(t)ej(x). Here Au = Ayu = —Au + V(x)u and the potential V (x) > 1 is sufficiently
smooth; the real numbers p,q are nonnegative, the functions f),(r) and f,(r) are the monomials |r|” and |r|?,
smoothed out near zero, and the constants yg, y; satisfy

YR, V1 >0, vr+yvr=1. (0.3)

If ygr = 0, then due to the usual difficulty with the zero-mode of a solution u, the term Au in the r.h.s. should be
modified to A — u. The functions {e;(x), j > 1} in the definition of the random force form the real trigonometric
base of L»(T?), the real numbers b j decay sufficiently fast to zero when j grows, and {B;(7), j > 1}, are the standard
complex Wiener processes. So the noise 1 is white in time and sufficiently smooth in x. It is convenient to pass to the
slow time t = vt and write the equation as

i+ v A = Au— yr £ (1ul?)u —iyr £y (Ju?)u +n(z, ), 0.4)
where i = du/dt. The equation is supplemented with the initial condition
u(0, x) =up(x). 0.5)

It is known that under certain restrictions on p, g and d the problem (0.4), (0.5) has a unique solution u"(z, x), T >0,
and Eq. (0.4) has a unique stationary measure p". We review these results in Section 1 (there attention is given to the
1d case, while higher-dimensional equations are only briefly discussed).

Let {¢k, k > 1}, and {At, k > 1}, be the eigenfunctions and eigenvalues of Ay, 1 <A; <Ay <.-.. We say that a
potential V is nonresonant if 2311 Ajsj # 0 for every finite nonzero integer vector (s1, 52, ...). In Sections 1.4, 1.5
we show that nonresonant potentials are typical both in the sense of Baire and in the sense of measure. Assuming that
V is nonresonant we are interested in two questions:

Q1. What is the limiting behaviour as v — 0 of solutions u#"(t, x) on long time-intervals 0 <t < T?
Q2. What is the limiting behaviour of the stationary measure ¥ as v — 0?

For any complex function u(x),x € T4, denote by ¥ (u) = v = (v, v2,...) the complex vector of its Fourier
coefficients with respect to the basis {¢x}, i.e. u(x) = ) v;¢p;. Denote
|2

1 :
Ij=§|vj , pj=Argv;, j=>1. 0.6)
Then (1, ) € R x T are the action-angles for the linear Eq. (0.1). The v- and (/, ¢)-variables are convenient to
study the two questions above. Writing (0.4) in the (/, ¢)-variables we arrive at the following system:



Stochastic CGL equations 1035

where the dots stand for terms of order one (stochastic and deterministic). We have got slow/fast stochastic equations
to which the principle of averaging is formally applicable (e.g., see [2,14] for the classical deterministic averaging and
[4,8] for the stochastic averaging). Denoting IJV (t) =1;(u" (7)) and averaging in ¢ the /-equations in (0.7), using the
rules of the stochastic calculus [4,8] and following the arguments in [10], we show in Section 2 that along sequences
v; — 0 we have the convergences

D(1% () =~ D(I°0)), (0.8)

where the limiting process 1 0(r), 0 <t <T,is aweak solution of the averaged I-equations. As in the KdV-case the
averaged equations are singular and we do not know if their solution is unique. So we do not know if the convergence
(0.8) holds as v — 0. To continue the analysis we write Eq. (0.4) in the v-variables

O +iv™ vk = Pe() + Y BijB (1), 0.9)
j=1

where the drift Py and the dispersion By; are constructed in terms of the r.h.s. of Eq. (0.4) and the transformation ¥'.
It turns out that the Hamiltonian term —iy; f, (Ju|?)u contributes to P(v) a term which disappears in the averaged /-
equations. We remove it from P (v) and denote the rest P (v). For any vector 0 = (61, 6, ...) € T denote by @y the
linear transformation of the space of complex vectors v which multiplies each component v; by e'?i . Following [9] we
average the vector field P by actions of the transformations @y and get the effective drift R(v) = fﬂl‘oo D_y p (Dyv) do.
In Section 3.1 we show that

Ri(v) = —hpv + RY (v), (0.10)

where R%(v) is a smooth locally Lipschitz nonlinearity.

Since the noise in (0.9) is additive (i.e., the matrix B is v-independent), then the construction of the effective
dispersion, given in [9] for a non-additive noise, simplifies significantly and defines the effective noise for Eq. (0.9)
whose kth component equals (D, b12 Jlkzl) 1/2dB,.(t). Accordingly the effective equations for (0.4) become

1/2
Uk = R (v)dr + (bew,?l) dBy(t), k=1 (0.11)
I

By construction this system is invariant under rotations: if v(t) is its weak solution, then @gv(7) also is a weak
solution. Due to (0.10) this is the heat equation # = —Au for a complex function u(t, x), perturbed by a non-local
smooth nonlinearity and a nondegenerate smooth noise, written in terms of the complex Fourier coefficients v;. It
turns out to be a monotone equation, so its solution is unique (see Section 3.2).

In particular, if in (0.4) p = 1, then the system of effective equations takes the form

1/2
o = —vk((kk — M) +vRY |v1|2Lk1) dr + (Z b%wg,) dB,(v), k=>1, (0.12)
1

where My, = f V(x)(p,%(x) dx and Ly = (2 — 6y1) f(p,% (x)(plz(x) dx. See Example 3.1 (the calculations, made there for
d = 1, remain the same for d > 2).

It follows directly from the construction of effective equations that actions {/ (vx(7)) = %|Uk(7,')|2, k > 1} of any
solution v(t) of (0.11) is a solution of the system of averaged /-equations. On the contrary, every solution / 0(r) of
the averaged I-equations, obtained as a limit (0.8), can be lifted to a weak solution of (0.11). Using the uniqueness
we get

Theorem 0.1. Let IV (t) = I (u’ (1)), where u’(t), 0 <t < T, is a solution of (0.4), (0.5). Then lim, .o D(I"(-)) =
D(10(~)), where Io(r), 0 <t <T,is aweak solution of the averaged I-equations. Moreover, there exists a unique
solution v(t) of (0.11) such that v(0) = vg = ¥ (ug) and DI (v(-)) = DUO(-)), where I(v(1)); = %|vj (‘L’)|2.
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The solutions 7°(z) and v(7) satisfy some apriori estimates, see Theorem 3.5. Concerning distribution of the angles
@ (" (7)) and their joint distribution with the actions see Section 2.4.

Now let u” be the unique stationary measure for Eq. (0.4) and u’” be a corresponding stationary solution,
D'’ (t)) = n”. As above, along sequences v; — 0 the actions I'"/ (t) = I (u"" (t)) converge in distribution to a
stationary solution /’(t) of the averaged I-equations. This solution can be lifted to a stationary weak solutions v’ ()
of effective Eqs (0.11). Since that system is monotone, then its stationary measure m is unique. So the limit above
holds as v — 0. As the effective system is rotation invariant, then in the (1, ¢)-variables its unique stationary measure
has the form dm = m;(dI) x dg, where dp = dg; d¢; - - - is the Haar measure on T, It turns out that the measure
lim,_,o ;" also has the rotation-invariant form and we arrive at the following result (see Theorem 4.3, 4.4 for a precise
statement):

Theorem 0.2. When v — 0 we have the convergences D(I(u'"(-)) — DIW'(-)) and ¥ o u’ — m, where dm =
my(dl) x de.

Accordingly every solution u" (t) of (0.2) obeys the following double limit

lim lim D(u" (1)) =¥ ' om. (0.13)
v—>0ft—>00

By Theorems 0.1 and 0.2, the actions I (1" (7)) of a solution u" of (0.4), (0.5) converge in distribution to those of a
solution v(7) of the effective system (0.11) with v(0) = ¥ (1), both for 0 <7 < T and when t — oco. We conjecture
that this convergence hold for each 7 > 0, uniformly in 7 (the space of measures is equipped with the Wasserstein
distance).

In Example 4.6 we discuss Theorem 0.2 for equations with p = 1, when the effective equations become (0.12). In
particular, we show that Theorem 0.2 implies that in Eqs (0.2) with small v there is no direct or inverse cascade of
energy.

In Example 4.5 we discuss Theorem 0.2 for the case yg = 0 (when the nonlinear part of the perturbation is Hamil-
tonian) and its relation to the theory of weak turbulence.

We note that the effective Eqs (0.11) depend on the potential V (x) in a regular way and are well defined without
assuming that V (x) is nonresonant (cf. Eqs (0.12)). In particular, if V™ (x) — 1 as M — oo, where each V¥ (x) > 1
is a nonresonant potential, then in (0.13) m™ — m (1), where m(1) is a unique stationary measure for Eq. (0.12) with
V(x) = 1. In this equation ¥y; = &;;, My = 1 and the constants Lj; can be written down explicitly.

In Section 5 we show that Theorems 0.1, 0.2 remain true for 1d equations with non-viscous damping (when Au in
the L.h.s. of (0.2) is removed, but yg > 0).

Inviscid limit

A stationary measure u" for Eq. (0.4) also is stationary for the fast-time Eq. (0.2). Let U" () be a corresponding
stationary solution, DU V(t) = n". It is not hard to see that the system of solutions UV () is tight on any finite time-
interval [0, T']. Let {U"/, v; — 0}, be a converging subsequence, i.e.

DY) — QF, AT

Then ™ is an invariant measure for the linear Eq. (0.1) and Q* = D(U*(-)), where U*(),0 <t < T,isa stationary
process such that D(U*(¢)) = u* and every trajectory of U* is a solution of (0.1). The limit D(U"/) — D(U*) is the
inviscid limit for Eq. (0.2). Equation (0.1) has plenty of invariant measures: if we write it in the action-angle variables
(0.6), then every measure of the form m(d/) x dg is invariant (see [12] for the more complicated inviscid limit for
nonlinear Schrédinger equation). Theorem 0.2 explains which one is chosen by Eq. (0.2) for the limit lim,_, o u".

The inviscid limit for the damped/driven KdV equation, studied in [9,10] is similar: the limit of the stationary
measures for the perturbed equations is a stationary measure of the corresponding effective equations. Due to a com-
plicated structure of the nonlinear Fourier transform which integrates KdV, uniqueness of their invariant measure is
not proved yet. So the final results concerning the damped/driven KdV are less complete than those for the weakly
perturbed CGL equation in Theorem 0.2.
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Finally consider the damped/driven 2d Navier—Stokes equations with a small viscosity v and a random force,
similar to the forces above and proportional to /v:

v —vAV+ (v- Vv + Vp= oy, x); dive=0,veR? xeT> (0.14)

It is known that (0.14) has a unique stationary measure ", the family of measures {u”, 0 < v < 1} is tight, and every
limiting measure lim,, =0 w1V is a non-trivial invariant measure for the 2d Euler Eq. (0.14),,—9, see Section 5.2 of [13].
Hovewer it is nonclear if the limiting measure is unique and how to single it out among all invariant measures of the
Euler equation. The research [9,10] was motivated by the belief that the damped/driven KdV is a model for (0.14).
Unfortunately, we still do not know up to what extend the description of the inviscid limit for the damped/driven
KdV and for weakly nonlinear CGL in terms of the effective equations is relevant for the inviscid limit of the 2d
hydrodynamics.

Agreements

Analyticity of maps By — B between Banach spaces By and By, which are the real parts of complex spaces BY
and Bj, is understood in the sense of Fréchet. All analytic maps which we consider possess the following additional
property: for any R a map analytically extends to a complex (§g > 0)-neighbourhood of the ball {|u|p, < R} in By.

Notations

x4 stands for the indicator function of a set A (equal 1 in A and equal O outside A). By s(¢) we denote various
functions of ¢ such that (t) — 0 when ¢t — o0, and by s (¢) denote functions »(¢) such that s(t) = o(z~") for
each N. We write »(¢) = »(¢; R) to indicate that s(¢) depends on a parameter R.

1. Preliminaries
1.1. Apriori estimates

We consider the 1d CGL equation on a segment [0, ] with a conservative linear part of order one and a small
nonlinearity. The equation is supplemented with Dirichlet boundary conditions which we interpret as odd 2m-periodic
boundary conditions. Introducing the slow time 7 = vt (cf. the Introduction) we write the equation as follows:

- . d ¢
i+ v (st 4+ V@)u) = sau — yrlul?Pu —iyrlul®u + ar Y biB;(0)ej ),
i=1

(1.1
ux)=ulx+2mn) = —u(—x).

Here i = %u, D, q € Z+ :=NU {0} (only for simplicity, see next section), ¢ > 0, constants yr and y; satisfy (0.3)
and R 5 V(x) > 0 is a sufficiently smooth even 2m-periodic function, {e;, j > 1} is the sine-basis,

1
ej(x) = ﬁsinjx,

and B, j > 1, are standard independent complex Wiener processes. That is, B;(t) = B;(t) +iB—(t), where B+ (7)
are standard independent real Wiener processes. Finally, the real numbers b; all are nonzero and decay when j grows
in such a way that B; < oo, where

o0
B, ::22j2’b? <oo forr>0.
j=1

By H", r € R we denote the Sobolev space of order r of complex odd periodic functions and provide it with the
homogeneous norm || - ||,

o0 o0
Il =Y w1 foru(x) = wer(x), ullo= llul

=1 =1
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(if r €N, then [lull, = |5%]L,).

x"

Let u(z, x) be a solution of (1.1) such that u(0, x) = up. Applying Ito’s formula to %Hull2 we get that

1 1
d<5||u||2) = (—muéﬁii — sellul} + 5Bo) dr +dM (1), (1.2)

where M (7) is the martingale fOT ijuj . dﬁj(r). Here |u|, stands for the L,-norm, 1 <r < oo, and for complex
numbers z1, zo we denote by z; - z their real scalar product,

z1-z22 =Rez1722.

So (uj +iu_j)-(dB; +idB_;) =u;dB; +u_;dp_;. From (1.2) we get in the usual way (e.g., see Section 2.2.3 in
[13]) that

el IO < C (2, By, ugll) V7 >0 (13)

for a suitable p,, > 0, uniformly in v > 0.
Denoting

5(r)—1||u(r)||2+ r|u|2p+2ds+z r||u||2ds
=3 YR o l2pt2 2 J 1

and noting that the characteristic of the martingale M is (M) () = Zb%uj 127 < b12w||u||2t, where by = max |bj],
we get from (1.2) that

1 s 1 x [T 2
E(t) < Zlluoll” + 5 Bot + M(z) — = [ lullyds
2 2 2 Jo

1 1 _ _ I, _
< 5 luo)® + 5 Boz + ¢ 1b%4[(%bM2M<f>) - 5(%bM2M><f>}-

Applying in a standard way the exponential supermartingale estimate to the term in the square bracket in the r.h.s.
(e.g., see [13], Section 2.2.3 ), we get that

1 1 -
P{S“P(‘f(p - gBof) > 5 luol* + P} < e 2ehir (1.4)

>0

for any p > 0.
Now let us re-write Eq. (1.1) as follows:

- d
u—+1v 1(—14”+V(X)M+V7/I|u|2qu)=%uxx_VR|u|2pu+Ezbj,3j(T)€j~ (15)

The Lh.s. is a Hamiltonian system with the hamiltonian —v 'H@),

1 v 92
H(u)=E(Au,u)+y12q+2/|u|2q+2dx, A:—@—i-V(x).

For any j € N we denote
2 iar
lull.” =(A"u, u).
Then dH (1) (v) = (Au, v) + yrv(lu*u, v) and

1 | — 1
5 22 b HWej, e)) =2 Bl +yvX (1),
j=1
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where

B! =2Zb§||ej||/f =2 "biA, v,

and
X(1)=2q Re/ <|u|2‘1_2u2 beej (x)2) dx + / |u| Zbiej (x)?dx
J J

< CBolu(n)|3.

Therefore applying Ito’s formula we get that
dH (u(1)) = (—we(Au, PP u) + 52(Au, urr) = y1vYR / Ju[2P 242 d
+ %y1v<|u|2‘1u, Mxx) + B + yle(r)) dr +dM (1), (1.6)

where dM (t) = Y_bj{Au+ yv|ul*u, ej) - dB (7).
Denoting U, (x) = qﬁuq“ and Up(x) = ﬁu”“, we have

2

’

a
(I, ury) < —/ ||| dx = _Ha_Uq
X

and a similar relation holds for g replaced by p. Accordingly,

1 9 2 3 2
dH (u(D)) < =5 | slulls + yr | 5-Up| +sy1v|——U.
- 2 2 ax ? ax ¢
+vy1yR/ [u]?Pr2+2dx — C,. ||ul)? —2B{>dz +dM(7), (1.7)

where C,, may be chosen independent from s if yg > 0. Considering relations on H (u)™, m > 1, which follow from
(1.7) and (1.6), using (1.4) and arguing by induction we get that

m o =7 m—1 2
E( sup H(u(1)) +5/0 H (u)llullzds)

0<t<T
< H@uo)" 4+ Cp (e, T, B)(1 + lluol"), (1.8)
EH (u(t))" < Cy (3¢, B)(1+ H(uo)™ + llug|") V¥t >0, (1.9)

for any m. Estimates (1.8) in a traditional way (cf. [5,12,16,18]) imply that Eq. (1.1) is regular in space H! in the
sense that for any uo € ' it has a unique strong solution, satisfying (1.4), (1.8).

1.2. Stationary measures

The a-priori estimates on solutions of (1.1) and the Bogolyubov—Krylov argument (e.g., see in [13]) imply that
Eq. (1.1) has a stationary measure 4", supported by space 2. Now assume that

b #0 V). (1.10)

Then the approaches, developed in the last decade to study the 2d stochastic Navier—Stokes equations, apply to (1.1)
and allow to prove that under certain restrictions on the equation the stationary measure p" is unique. In particular
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this is true if y; = 0 (the easiest case), or if p > g and yr # 0 (see [16]), or if yg =0 and p = 1 (see [18]). In this
case any solution u(¢) of (1.1) with u(0) = ug € H! satisfies

Du(t) =~ u” ast— oo. (1.11)

This convergence and (1.3), (1.9) imply that

[d)%”““%“(d@ < C(x, B), (1.12)

[IIuII%’"u”(du) < Cu(sx, By) Vm. (1.13)

1.3. Multidimensional case

In this section we briefly discuss a multidimensional analogy of Eq. (1.1):

i+ v Au = Au— yr £ (lul?)u — iy £y (ul?)u

+%;bjﬂj(z)e,-(x), u=u(t,x),x €T, (1.14)

Here Au= —Au + V(x)u, V€ CN(T?,R) and V (x) > 1. The numbers y;, yr satisfy (0.3). Functions f), > 0 and
fq = 0 are real-valued smooth and

fr®)y =t fort>1, fa) =11 fort>1,

where p, g > 0. If yr =0, then the term Au in the r.h.s. should be modified to A — u. By {ex, k > 1}, we denote the
usual trigonometric basis of the space L>(T4) (formed by all functions n—d/2 fs1(x1) -+ fs,(xa), where each fi(x) is
sinsx or cossx), parameterised by natural numbers. These are eigen-functions of the Laplacian, —Ae, = A,e,. We
assume that

By, =2 1'bf < o0, (1.15)
k

where N| = N (d) is sufficiently large. In this section we denote by (H", | - ||,) the Sobolev space H" = H" (T¢, C),
regarded as a real Hilbert space, and (-, -) stands for the real L;-scalar product.

Noting that (fp(|u|2)u — |u|*Pu) and (fq(|u|2)u — |u|*%u) are bounded Lipschitz functions with compact support
we immediately see that the a-priori estimates from Section 1.1 remain true for solutions of (1.14). Accordingly, for
any ug € HIN L442 Eq. (1.1) has a solution u(t, x) such that u (0, x) = uo, satisfying (1.3), (1.8), (1.9).

Now assume that

2
p,g<oo ifd=1,2, p,q<ﬁ ifd > 3. (1.16)

Applying Ito’s formula to the processes (A" u(t), u(t))", m,n > 1, using (1.3), (1.8), (1.9) and arguing by induction
(first in n and next in m) we get that

2n r 2 2n—2
B( s uo] 5+ [ ], e, e
0<t<T 0

< lluoll 3, + Cn,n, T)(1+ ugl|), (1.17)

E|u(®)|> <Com,n) V>0, (1.18)
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for each m and n, where C(m,n,T) and C(m,n) also depends on |V |-~y and By, (see (1.15)), and N = N(m),
Ni = Ni(m).

Relations (1.17) with m = mg > 1 in the usual way (cf. [5,12,16,18]) imply that Eq. (1.14) is regular in the space
H™0 N Lyg4o in the sense that for any ug € H™° N Ly, it has a unique strong solution u(z, x), equal ug at t =0,
and satisfying estimates (1.3), (1.17) with m = mg for any n. By the Bogolyubov—Krylov argument this equation
has a stationary measure ", supported by the space H"™° N Ly, 42, and a corresponding stationary solution u"(7),
Du’(t) = u", also satisfies (1.3) and (1.18) with m = my.

If (1.10) holds and (1.16) is replaced by a stronger assumption, then a stationary measure is unique. If y; =0, the
uniqueness readily follows, for example, from the abstract theorem in [13]. In [18] this assertion is proved if

ye=0 and g<1 ifd=1, g¢g<I1 ifd=2  g<2/d ifd=3. (1.19)

In [16] it is established if
. 2 .
p=q, yr,y1 >0 ifd=1,2, and p=q<m, yr,y1 >0 ifd>3; (1.20)

the argument of that work also applies if p > q.

Note that when yr =0 or when p < ¢ (i.e., when the nonlinear damping is weaker than the conservative term),
the assumptions (1.19), (1.20), needed for the uniqueness of the stationary measure, are much stronger than the
assumptions (1.16), needed for the regularity. This gap does not exist (at least it shrinks a lot) if the random force in
Eq. (1.14) is not white in time, but is a kick-force. See in [11] the abstract theorem and its application to the CGL
equations.

1.4. Spectral properties of Ay: One-dimensional case

As in Section 1.1 we denote Ay = A = —32/8x2 + V(x), where the potential V (x) > 0 belongs to the space Cév
of C¥-smooth even and 27-periodic functions, N > 1. Let ¢1, ¢7, ... be the Ly-normalised complete system of real
eigenfunctions of Ay with the eigenvalues 1 < .| < A < ---. Consider the linear mapping

U:H3ulx)~v=(vy,v2,...) € C®,

defined by the relation u(x) = Y vgdr (x). In the space of complex sequences v we introduce the norms

ol =) Iy, meR,
k>1

and denote 2" = {v | |v|pm < oo}. Due to the Parseval identity, ¥ : H — h0is a unitary isomorphism. By {¥y,,, k,
m > 1} we denote the matrix of ¥ with respect to the basis {e;} in H and the standard basis in hO. Since ¥ maps real
vectors to real, its matrix has real entries.

For any m € N we have |v|ﬁm = (A™u(x),u(x)). So the norms |v|p» and |u||,, are equivalent form =0,..., N.
Since ¥* = ¥~ then the norms are equivalent for integer |m| < N. By interpolation they are equivalent for all real

|m| < N.So

the maps W¥:H"™ — h™, |m|<N, areisomorphisms. (1.21)
Denote G = ¥~ : i — H™. Then

W oAoG =diag{it, k>1}=:A.
Consider the operator

L:=Wo(—A)oG=Wo(A-V)oG=A-WoVoG=A-/L0 (1.22)
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By (1.21) £9 =¥ o V o G defines bounded linear maps
L0 — K" Vim| <N, (1.23)

and in the space h° it is selfadjoint.
For any finite M consider the mapping

AM.cN - RM, V) Ay ).

Since the eigenvalues A ; are different, this mapping is analytic. As VA ;(V) = ¢; (x)? and the functions ¢12, ¢§, e
are linearly independent by the classical result of G. Borg (1946), then for any V € CY the linear mapping

dAM(v): Cév —RM s surjective (1.24)

(all this result may be found in [17]; e.g. see there p. 46 for Borg’s theorem). In the space Cév consider a Gaussian
measure (g with a nondegenerate correlation operator K (so for the quadratic function f(V) =(V,&)1,(V,n)1, we
have f F(V)ug(dV)=(KE, n)). Relation (1.24) easily implies

Lemma 1.1. For any M > 1 the measure AM o i is absolutely continuous with respect to the Lebesgue measure on
RM,

We will call a vector A € R*® nonresonant if for any nonzero integer vector s of finite length we have
A-s#0Q. (1.25)

A potential V (x) is called nonresonant if its spectrum A(V) = (A1, A2, ...) is nonresonant. The nonresonant potentials
are defined in C, év by a countable family of open dense relations (1.25). So

the nonresonant potentials form a subset of C g" of the second Baire category. (1.26)
Applying Lemma 1.1 we also get
the nonresonant potentials form a subset of Cé\' of full g measure (1.27)

for any Gaussian measure g as above.
The nonresonant vectors A are important because of the following version of the Kronecker—Weyl theorem:

Lemma 1.2. Let f € C"T1(T") for some n € N. Then for any nonresonant vector A we have

1 T
lim T/ f(qo—i—tA”)dt:(Zn)—"/fdx, A= (Aq, ..., Ay),
0

T—o00

uniformly in qo € T". The rate of convergence depends on n, A and | f|cn+1.
Proof. Let us write f(g) as the Fourier series f(g) = Y. fs¢9. Then for each nonzero s we have |f| <

Coytlflone |s|™"~1. So for any & > 0 we may find R = R, such that | Z|S|>R feel$e| < % for each ¢. Now it suffices
to show that

VT > T, (1.28)

T
‘l/ fr(qo+1A")dt — fo
0

< =
T -2

for a suitable T,, where fr(g) = lelsR fsel$4. But

1T n
\? / st A" gy
0

2
< -
— Tls- A"
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for each nonzero s. Therefor the Lh.s. of (1.28) is

= E( inf }s-A”D_lZw <T7'|fIcoC (R, A).

— T \Is|<R

Now the assertion follows. O
1.5. Spectral properties of Ay : Multi-dimensional case

Now let, as in Section 1.3, A = Ay be the operator A = —A + V(x), x € T¢, where 1 < V(x) € CN(T?). Let
{dr(x), k > 1} be its Lr-normalised eigenfunctions and {Ax, k > 1}, be the corresponding eigenvalues, 1 < A; <
Ay <.--.Forany M > 1 denote by Fy; C CN(Td) the open domain

Fy={VIil<i<- <Ay}

Its complement Fj,[ is a real analytic variety in C N (Td) of codimension > 2, so Fj; is connected (see [6] and refer-
ences therein). The functions A1, ..., Ay are analytic in Fy;. Let us fix any nonzero vector s € Z such that s; =0
for I > M. The set

O, ={VeFy|AV) s=0}

clearly is closed in Fjs. Since the function A(V) - s is analytic in Fjy, then either Q5 = F)s, or Qg is nowhere dense
in Fys. Theorem 1 from [6] immediately implies that Qg # F)y, so (1.26) also holds true in the case we consider now.

Let 1x be a Gaussian measure with a nondegenerate correlation operator, supported by the space CN (T9). As
A(V) - s is a non-trivial analytic function on Fy and Fj; is an analytic variety of positive codimension, then
uwr(Qs) =0 (e.g., see Theorem 1.6 in [1]). Since this is true for any M and any s as above, then the assertion
(1.27) also is true.

2. Averaging theorem

The approach and the results of this section apply both to Eqs (1.1) and (1.14). We present it for Eq. (1.1) and at
Section 2.5 discuss small changes, needed to treat (1.14). Everywhere below T is an arbitrary fixed positive number.

2.1. Preliminaries
In Eq. (1.1) with u € H! we pass to the v-variables, v = ¥ (u) € h':

O +iv v = Pr()dT + Y BijdB(r), k=1 2.1
j=1

Here Byj = W ;jb; (a matrix with real entries, operating on complex vectors), and
— pl 2 3

where P!, P2 and P3 are, correspondingly, the linear, dissipative and Hamiltonian parts of the perturbation:
82
Plwy=sWo—u,  P20)=—yr¥(u*u), P @) =—iy¥(ul*u),
X

where u = G (v). We will refer to Eqs (2.1) as to the v-equations.
For k > 1 let us denote Iy = I (vy) = %lvkl2 and ¢ = @(vg) = Argug € S where p0)=0¢€ S!. Consider the
mappings

k" sve> 1=, b, ..)eh], I, h" 3vi—> @ =(p1,¢2,...) € T®.



1044 S. B. Kuksin

Here h7, is the positive octant in the space
Wy = {1 ) 11 :22j2’|1.,-| < oo}.
J
We will write
(¥ W) =1 (), Oy (¥ W) =), Iy x M) (¥ @) = (I x ¢)(u).
The mapping I:H" — k' is 2-homogeneous continuous, while the mappings ¢ : H" — T° and (I x ¢):H" —
h x T are Borel-measurable and discontinuous (the torus T is given the Tikhonov topology and a corresponding

distance).
Now let us pass in Eq. (2.1) from the complex variables vy to the real variables I >0, ¢ € S':

Al (1) = (o - PO)dT + Y2 dTr + Y Wbi(u - dB)),  Ye=./> bHWR, 2.3)

!

and

dox (1) = (v—lxk + el 72 Gor) < P — vkl ™2 b (W - o) (i -ivk)) de
1

+ > okl 2 (v - dBy)
l

= (v + Gr(v)) dr + ngl(v)<|1:—kk| . dﬂ,(r)). (2.4)
I

Due to (1.22), (1.23)
A 0 0.7 r 1
P(v) = »Av + P"(v), P°:h"—h V§<r§N,

where the map P is real analytic. The mapping P°(v) and its differential dP°(v) both have a polynomial growth
in |v|r. For any vector v = (v, v2,...) € h° we denote v™ = (v1,.-.,Vp) € C™ and identify v™ with the vector
(wi,...,Uy,0,...). Then

~1/3

|U—Um pro13 < Cm [vnr

since A; ~ |I|%. Therefore

|P(v) — P(v™)

pr-2-1/3 = m_1/3Q(|U|h’),

where Q is a polynomial.
The functions Gy and gy; are singular as vy = 0 and satisfy the following estimates:

|Gk W) Xy =53] < 87Ok (Ivlr), (2.5)
|8kt (V) x{juy =8}| < s by, (2.6)

where Qy is a polynomial.
For any vector 6 = (01, 02, ...) € T* we denote by &Py the unitary rotation

0

DPy:h" —h", v vg, Wwherevg; =e%v; V.
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By (F) etc. we denote the averaged functions, (F)(v) = fToo F(®gv)df. They are ¢-independent, so (F) =
(F)(IT7(v)). The functions (P), (F), ... also satisfy the estimates above. So

(@ - POYI™) = (o - PO)D| <m™"PCeQ(111,),
where Q is a polynomial.
Since the dispersion matrix {By;} is nondegenerate, then repeating for Eqs (2.1) and (2.3) the arguments from

Section 7 in [10] (also see Section 6.2 in [9]), we get

Lemma 2.1. Let v’ (1) be a solution of (2.1) and I1”(t) = I (v’ (t)). Then for any k > 1 the following convergence
hold uniformly in v > 0:

T
/ P{I(1) <8}dt -0 ass— 0. Q2.7)
0

(Certainly the rate of the convergence depends on k.)
2.2. The theorem
Let us abbreviate
W=h,  hp=h;,,  C(0,T]hiy) =My,

where Ay is the positive octant {/ € h | I; > 0 Vj}. Fix any ug € h. Due to estimates (1.8), (1.9) and Eqgs (2.3), the
set of laws {D(1"(-))}, 0 < v < 1, is tight in H;. Denote by Qv any limiting measure as v =v; — 0, i.e.

D(1V () = Q% asv; — 0.
Let us consider the averaged drift (((vg - Px))(1) + Yk2) dr for Eq. (2.3). We have
(v - PO))(v) =/T (% vi) - Pe(Ppv)do = vi - Ry (v), (2.8)

where R; = me (e 1% Py (dgv)) d (note that ((vy - Px)) depends only on I = IT;(v), while R} (v) depends on v).
The diffusion matrix for (2.3) is {Ag,, k, r > 1}, where

A (0) = ) (Wrbrog) - (Pribrvr) = ) b} (v v) WP
l l

Its average is

(Apy) (v) = Zb, / Re(e )y, 5, ) Wy 0, d6

1/2
= il PV, Yk=(2b%|wkz|2> : (2.9)
1

Due to (1.21),

> YU <CuBn Vm<N. (2.10)
k

Our first goal is to prove the following averaging theorem:



1046 S. B. Kuksin

Theorem 2.2. The measure Q° is a solution of the martingale problem in the space h; = h} with the drift ({vy -
Py + Ykz) dt and the diffusion matrix (Ay,)(I). That is, Q0 =D°(")), where the process 1°(7) is a weak (in the
sense of stochastic analysis) solution of the system of averaged equations

dI = (v - PO)I) + Y7)dr + Z(\/ (A)),,(DdB (1), k=1; (2.11)
1(0) = Iy = I1;(vg). Moreover,
E sup [1°)]; < Cu(luoll}" +1) Vn, 2.12)
0<t<T
T
E/ |IO(1)|h% dr < C(luoll? +1). (2.13)
0

Proof. The crucial step of the proof is to establish the following lemma:

Lemma 2.3. Let F(v) be an analytic function on the space h = h' which extends to an analytic function on h*'> of a
polynomial growth. Then

AV :=E max
0<t<T

/T(F(ﬂ(s), 9"(5)) — (F)(1"(s)))ds| = 0 asv— 0. (2.14)
0

The lemma is proved below in Section 2.3, following the argument in [10]. Now we derive from it the theorem. Let
us equip the space H; with the Borel sigma-algebra F, the natural filtration of sigma-algebras {#;,0 <t < T} and
the probability Q°.

Let us denote Fi(v) = (vg - Pr)(v) + Yk2. The fact that the processes 1/ (t) — fOT Fr(v¥(s)) ds are martingales (see
(2.3)), the convergence D(1"/ (-)) — 0" and Lemma 2.3 with F = Fj, imply that the processes

zk<r)=1k(r>—[0 (k- POY(I () + Y7))ds, k=1,

are Qo-martingales, cf. Section 6 of [10].
Similar to (2.14) we find that

4

/r(l:"(l"(s), 9" (5)) — (F)(I"(s)))ds| -0 asv—0.
0

E max
0<t<T

Then using the same arguments as before, we see that the processes Z;(t)Z;(t) — for (Akj)(I (s))ds also are QO—
martingales. That is, QY is a solution of the martingale problem with the drift (Fy) + Y kz and the diffusion (A). Hence,
Q0 is a law of a weak solution of Eq. (2.11). See [19].

Estimates (2.12), (2.13) follow from (1.8) and the basic properties of the weak convergence since ||u ||,2n ~ |v|%m =
[T () |- 0

2.3. Proof of Lemma 2.3

Fix any m > 1 and denote by IV, """ etc. the vectors, formed by the first m components of the infinite vectors
IV, ¢, etc. Below R stands for a suitable function of v such that R(v) — oo as v — 0, but

VR" -0 asv—0,Vn. (2.15)

Denote by 2z = §2), the event

Q2r ={ sup |v"(7:)|hl < R}.

0<t<T
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Then, by (1.9), P(£2%;) < 70 (R) uniformly in v (see the Notations). We denote
Poy(Q)=P(2r N Q), Eop (f) =E(f xag)-

Since for |v],1 < R we have |[v — v ;23 < C(R)m_l/3 and since F is Lipschitz on h?/3 uniformly on bounded sets,
then

A < 250(R) + Cr(R)m ™3 + Eg, max

0<t<T

/O (F (17, "™ — (Eym (1)) ds|.

Here (F)™ stands for averaging of the function T > I F(I™,0,...). So it remains to estimate for any m and R
an analogy 20 » of the quantity " for the finite-dimensional process "™ (t) on the event £2g (where its norm is
<R),

A, =Ego, max
m,R ROSTST

fo (F (17 ") — (Eym (1)) ds|.

Consider a partition of [0, T'] by the points

tj=1+/jL, 0<j<K,
where 1k is the last point 7; in [0, 7). The diameter L of the partition is
L=/,

and the non-random phase 1 € [0, L) will be chosen later. Denoting

T+l .
m =/ (F(I"™, @"™) = (F)"(1"™))ds, 0<I<K —1, (2.16)
T
we see that
K—-1
nr <LC(R)+Eg, Y |ml, 2.17)
1=0

so it remains to estimate E¢, > [177|. We have

| <

Tyl -
f + (F(Iv’m(s)s (Pv’m(s)) _ F(Iv’m(l'[), wv'm(fl) + v_lAm(s — TZ)))dS
T

+

T+l 5
/ S EE @), 0" (14 v A (s — w)) — (BY (17 (o)) ds
7

+

AN -
/ ) (EY" (1" (@) = (BY" (1" () ds| = 13! + 172 + 17
7

To estimate the quantities T/ we first optimise the choice of the phase 7g. Consider the events §,1 <[ <K,
={I;(m) <y}, wherey>v"a=1/10. (2.18)

By Lemma 2.1 and the Fubini theorem we can choose g € [0, L) in such a way that

K-1
K'Y PE) = (v R.m).
=0
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For any / consider the event

o={ s ["@-1r@l, zPwRL?]

TST=T41
where Pj(R) is a suitable polynomial. It is not hard to verify (cf. [10]) that P(Q;) < > (L. Setting
Fi=&U Q0

we have that

K—1
—ZP(E)<%( S R,m) + (v m) = &
=0

Accordingly,

K—1
R
—Z\(Ef,)rf|< ()ZPm)sP(R)%::%l, j=12.3.
=0

Similar, since for w € 2 the integrand in (2.16) is < Q(R), then

1 )
= 2 _Eoum —Egpmm| < %Q(R). (2.19)
1

If w € 2g \ F7, then for T € [17, 7y11] we have that 1)(7)) > y — P{(R)L'/3 > Ly, if v is small. This relation and
(2.4), (2.5), (2.6) imply that

Popz{le"" () — (™" (1) + v Am (s — 7/))| = v* for some s € [1/, 77411}
< zoo(vfl; R,m)

(we recall that y > vt/ 10). Accordingly,
(ZEQR\ETzl) < O + 500 (V71 R m). (2.20)
I

It is clear that

(ZEQR\f,Tf> <P(R)L'? = PR 2.21)
1

So it remains to estimate the expectation of ) le. For any w € 25 \ F; abbreviate

F) = F(I" @), "™ (@) + ), ¢ T,

where in the r.h.s. ¥ is identified with the vector (¥, 0, ...) € T°. We can write le as

v volL ”
Z/o F(A™t)dt — (F)|.

Since the function F (1) is analytic and the vector A is nonresonant, then by Lemma 1.1 le < L%(lﬁ1 L;m,R,y, A).
Therefore

<ZE_QR\}-1T,2> Sx(vfl/z;m,R,y, A). (2.22)
l

7=

Ti+1
/ F(v™'A™(s — 1)) ds — (F)‘ =L
7
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Now (2.17), (2.19) and (2.20)~(2.22) imply that
AV < 250(R) + C(R)m_l/3 + %(v_a; R,m) + %(y_l; R,m)
+Cv¥ 4+ P(RW'/0 + %(v_l/z; m,R,y, A).

Choosing first R large, then m large and next y small and v small in such a way that (2.15) and (2.18) hold, we make
the r.h.s. arbitrarily small. This proves the lemma.

2.4. Joint distribution of actions and angles

Denote iy =D(I"(s), ¢"(s)) = (I x ¢) o D(u"(s)), where u"(s),0 <s < T, is a solution of (1.1) and (I", ¢") is a
solution of the system (2.3), (2.4). For any f € L1(0,T), f > 0, such that f f=1,setu’(f) = fOT f(s)iy ds. Also
let us denote mo(f) = fOT f(s)D(IO(s)) ds; this is a measure on Ay .

Theorem 2.4. For any f as above,
£ (f) = mi(f) xdep asv;— 0. (2.23)

Proof. For a piecewise constant function f the convergence follows from Theorem 2.2 and Lemma 2.3 since by the
lemma, for any 0 < T} < T < T, the integral fTT12 F(I'(s), ¢"(s))ds is close to fTle (F)(I"(s)) ds, and by the theorem

the integral 2 (F)(I"(s))ds is close to [12(F)(1°(s))ds = o [ F(I%(s). %) ds dy (we are applying the lemma
and the theorem on segments [0, 771] and [0, 73]).

To get the convergence for a general function f we approximate it by piecewise constant functions. See Section 2
of [9] for details. 0

2.5. Multidimensional case

Let (2.1) be not Eq. (1.1), but Eq. (1.14), written in the v-variables. Assume that V € C¥, where N is sufficiently big,
and (1.15), (1.16) hold. Now we should consider (2.1) as an equation in a space A", r > d/2. The maps P':h" — h"
and P2:h" — K’ are smooth and the differentials " P! (v):h" x --- x h" — h’" are poly-linear mappings such that
their norms are bounded by polynomials of |v|-. This allows to apply to Eq. (2.1) the method of [10]? in the same
way as in Sections 2.3-2.4 and establish validity of Theorems 2.2 and 2.4.

3. Effective equations and uniqueness of limit

Let (2.1) be Eq. (1.1) or Eq. (1.14), written in the v-variables, and (2.11) — the corresponding averaged equation. Ac-
cordingly, by & we denote either the space i! as in Section 1, or the space 4", r > d /2, as in Section 1.3. For simplicity
we assume that p and g in (1.14) are integers. If they are not, then in the calculations below the nonlinearities |u|*Pu
and |u|*?u should be modified by Lipschitz terms which cause no extra difficulties.

3.1. Effective equations

Let us write the averaged drift (v - Px) and the averaged diffusion (Ag,) in the form (2.8) and (2.9), respectively.
Using (2.2) we write the term R’(v) in (2.8) as

3 3
R, (v) = Zfe—“’kp,:"@gv)de =: Z RI'(v), k=>1.
m=1 m=1

2In was assumed in [10] that the relevant maps and vector-fields are analytic. This analyticity was imposed only for simplicity. Sufficiently high
smoothness and polynomial estimates on the corresponding high order differentials are sufficient for all construction of [10].
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By (1.22) and (1.23),
82
R'(v) = %/ D_g¥ | —G(Pyv) | do
9x2
= —%/ D_gAdyvdd + %[ ®_o LO(Pyv) dO 3.1
= — %A+ #R°(v),
R°(v) = / @ _oLO(Pgu) do,
since A commutes with the rotations @g. The operator R? is bounded and selfadjoint in #°. For any v we have
<R1(v),v):%/(AG@gv,G@gv)d@5—C%|v|il, (3.2)
since ||GPgv|1 ~ |Pov|y1 = |v|p1. Writing in (3.1) LO0w) =¥ oV oG(v) as
1
L) = 3V (h* 0 G) (v), h* () = E/V(x);u(x)|2dx,
we have R%(v) = V(h% o G)(v). Since

1 . .
<h2 ) G)(v) =3 Z [EOQ<V(x)e‘9-/ vi;(x), el vl(pl(x)>d9
Jj.l

1
=3 dolwlPMi, My= (Ve e,
I

then R® = diag{M;, [ > 1}. Accordingly,
R' = scdiag{—n + M, 1=1} >0, M= (Vg ¢). (3.3)
The term R? is defined as an integral with the integrand

B P>®y(v) = —yr®—o¥ (|ul*’u)| =: Fy(v).

u=Godgv
Writing f7(Ju|*)u® as VAP (u), where h? (u) = [ FP(|u|?)dx, (FP)' =1 £, and denoting G o @y = Ly, we have
Fo(v) = —yRLEVAY () |u=14w) = —VrV (A 0 Lo (v)).

So
R>(v) = —y&rVy (/ (h? 0 G)(Pov) d9> = yrVy(h? o G). (3.4)
']I‘oo

Similar R3(v) = —iy; Vy{h1 o G) (since the operator G o @y is complex-linear). As (h? o G) is a function solely of
the actions (11, /2, ...), then V,, (k9 o G) € C is a vector, real-proportional to vg. Therefore vy - R,f(v) =0 for each k.
That is,

(v - PO)(©) = v - RE(v) + v - RE(v), 3.5

3Ifd =1 and p is an integer, then fP (|u|?) = |u|?P.
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where R! and R? are defined by (3.3) and (3.4). Now we set
R(v) =R'(v) + R*(v)

and consider the following system of stochastic equations:
dvk(v) = Rp(v)dt + YrdB,, k>1.

Equations (3.6) are called the system of effective equations.

Example 3.1 (p =1). Now h'(u) =} [ |u|*dx. So

1
hloG(v>=1f Xk:vupk(x)

4
1 o

dx:Z Z Vky Vky Uks Uky | Pky Php Pz Py AX
ki,k k3 ,kq

Since

oy Plok, |2 if ki = ka, ko = ka or ky = ka, ko = k3,

(Vky Uky Vky Uiy ) = .
PR TR T 0 otherwise,

then

1 1
(oG =3 D 1ok PlosP L, + 3 DIl Lig,
ki5£ks k

where L;clkz = f(p,%l (,0,%2 dx. So that

R;(v) = —yrVy (k' 0 G)(v) = —vak<|vk|2L;k +2)° |vl|2L;d)
I+£k

= —YRVk Z v * L.
I
Here Liy = Ly, and Ly =2L;, if k # 1. So the system of effective equations becomes
_ 2
dvg = —vk(%()»k — M) +yr Z v Lkl) dt + Y dBy, k=>1.
!

If v(t) = {vr (1), k > 1} satisfies (3.6), then for I = I (vx (7)) we have

Al () = v - Re()de + Y2 dt + Vv -dBy, k> 1.
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(3.6)

(3.7)

(3.8)

(3.9)

By (3.5) the drift in this system equals ((vg - Px)(I) + Ykz) dr, while the diffusion matrix is 8kr|vk|2Yk2 = (Agr). So

system (3.9) has the same set of weak (= martingale) solutions as (2.11), see [19]. We have got
Proposition 3.2. Let v(t) be a weak solution of (3.6) such that v(0) = v and

E sup [v(@)|}" < Clwl} +C(n, T) Vn.
T

0<t<

Then IT;(v(t)) is a weak solution of the system (2.11), satisfying (2.12) and such that I (0) = Iy.

The ‘right’ inverse statement to Proposition 3.2 is given by the following

(3.10)

Proposition 3.3. Ler [ O(7) be a weak solution of the averaged Eqs (2.11), constructed in Theorem 2.2. Then there
exists a weak solution v°(7) of (3.6) such that v(0) = vy, satisfying (3.10), and such that D(I1; @°()) =DU()).
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That is, the solutions of Eq. (2.11) which can be obtained as limits (when v — 0) of actions 7" (u(t)) of solutions
for (1.1) (or (1.14)) are those which can be covered by “regular” solutions of (3.6). For a proof we refer to Section 3
of [9], where the assertion is established in a similar but more complicated situation.

System (3.6) is invariant under rotations @g:

Proposition 3.4. Let v(t) be a weak solution of (3.6), satisfying (3.10). Then, for any 6 € T, ®yv(1) is a weak
solution of (3.6), satisfying (3.10).

Proof. Applying @y to (3.6) we get that
d(®gv) = PgR(v)dt + PpY dB(r), Y =diag{Ys}.

The vector fields R! (v) and R?(v) both are obtained by averaging and have the form Ri(v) = f ®_gFJ/ (Pyv)db. So
they commute with the rotations, as well as their sum R(v), and we have

d(Pgv) = R(Pyv) df + Y d(PgB(7)).
Since D®yB(t) = DB(7), then the assertion follows. O

3.2. The uniqueness

1

Let v!(7) and v2(7) be solutions of the effective system (3.6). Denoting v =v"' — v2, we have that

1d

EEM(T)&O < —%|v|il + (Rz(vl) — Rz(vz), vl — vz).

Consider the last term, denoting vé = Pyu/, ué = G(vé ). Since R2(v) is an integral over T* with the integrand
—YRP-oW (lug|* ug), where ug = G (®g(v)), then

(R(0") = R202). 0" =)= i [0 (Jud " = 4 i), 000! — 00%] 00

= [ (o Py = o ).} = ).
The integrand in the r.h.s. is nonnegative. So

1d

535Vl = =Clvly (3.11)

(i.e., the effective system (3.6) is strongly monotone). Therefore a strong solution of the system (3.6) is unique. By
the Yamada—Watanabe argument (see [7]) a weak solution also is unique. We have got

Theorem 3.5. Let IV (t) = I (u’ (1)), where u’(t) is a solution of Eq. (1.1) or of Eq. (1.14) and u" (0) = ug. Then
D(l”(-)) —~ 0" asv—0

in the space Hy, where Q° is a weak solution of (2.11), satisfying (2.12), (2.13). There exists a unique weak solution
v(7) of the effective Eqs (3.6), satisfying (3.10), such that v(0) = ¥ (ug) and D(IT; (v(-)) = Q°.

We note that by (2.10), (3.11) (and since R(0) = 0), for any random initial data v(0) = vg, independent from the
random force and satisfyng E|v0|i(J < 00, Eq. (3.6) has a unique strong solution.
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4. Stationary solutions
4.1. Averaging

Again, let (2.1) be Eq. (1.1) or Eq. (1.14), written in the v-variables, and (2.11) be the corresponding averaged equa-
tion. Accordingly, by & we denote either the space i' as in Section 1, or the space h”, r > d/2, as in Section 1.3.
Assume that the corresponding #-equation is regular in the space H" (e.g., d = 1 or the assumptions, given at the end
of Section 1.3 are fulfilled), and that it has a unique stationary measure u" (see Sections 1.2, 1.3).

Let u’" () be a stationary in time solution of Eq. (1.1), D(u’"(t)) = " By estimates in Section 1 the set of laws
D(1""(-)), where I'” = I (u’" (7)), is compact in h;. Let Q' be any limiting measure as v; — 0. Clearly it is stationary
in 7. The same argument that was used to prove Theorem 2.2 (cf. [10]) imply that Q' is a stationary solution of the
averaged equation:

Proposition 4.1. The measure Q' is the law of a process 1'(t),0 <t < T, which is a stationary weak solution
of the averaged Eq. (2.11). It meets estimates (2.12), (2.13), and the stationary measure w = D(I'(0)) satisfies
flllh%n(dl) < 00.

The measures (I x @) o u” =D’ (s), ¢'" (s)) satisfies (2.23) for the same reason as in Section 2.4. Since the
measure ©” is independent from s, then now

D(I'"(s),¢'"(s)) =7 xdp asvj— 0. 4.1
In the stationary case relation (2.7) implies that

P{I')(t) <8} >0 ass—0, 4.2)
uniformly in v. In particular,

a{l | I; =0}=0 Vk. 4.3)
4.2. Lifting to effective equations
To study the limiting measure 7 further we lift it to a stationary measure of the effective system (3.6). We start with
Lemma 4.2. System (3.6) has at most one stationary measure m such that f |v|20m(dv) < 00.

Proof. Assume that there are two stationary measures and consider the corresponding two stationary solutions of
Eq. (3.6). Their difference v(r) satisfies (3.11). So a.s. it converges to zero as T — 00. Accordingly the two measures
are equal. U

Let v(7) be a stationary solution of (3.6), D(v(t)) = m. By Proposition 3.4, ®g(v(r)) also is a (weak) stationary
solution. So D(Pyv(t)) = Py o m is a stationary measure for (3.6). Since it is unique, then

Ppom=m VO eT®,

Accordingly, IT, om is a rotation-invariant measure on T, i.e. IT, o m = d¢. This implies that in the (I, ¢)-variables
the measure m has the form

dm =mj(dl) x de. 4.4

Proposition 4.1 applies to any time-interval [0, T']. So, replacing the sequence v; — 0 by a suitable subsequence
vj — 0 we construct a stationary process I'(t), T > 0, such that / "Y' (r) converges to I'(t) in distribution on any
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finite time-interval. Using Proposition 3.3 we construct a solution v’(7) of (3.6) such that D(IT; (v'(t)) = 7. Since
D' (t)) — m as T — 00, then

w=1II;om. 4.5)

That is, the measure 7 is independent from the sequence v;. We have got

Theorem 4.3. If (1.10) holds, then I o u’ — w = I1j o m, where m is the unique stationary measure of the effective
system.

In view of (4.1), (4.4) and (4.5),
(Ix@)ou”— I xMy)om asv—0.

Denote hy ={veh|v; #0Vj}. By (4.2) and (4.3) (¥ o u”)(hy) =1 and m(h4) = 1. So the convergence above
implies that

Theorem 4.4. If (1.10) holds, then u* — G om as v — 0.

Example 4.5 (Hamiltonian perturbations). If in (1.14) yg =0, i.e. if the nonlinear term of the perturbation is Hamil-
tonian, then the effective system is the linear equation

dv(t) = R'(v)dr + Y dB,
where R is defined in (3.3) and Y = diag{Yy, k > 1}. Let v(0) = 0. Then v(t) is the diagonal complex Gaussian
process

v(T) =/re(””Rlel3(s), R' = 3(A - RY).
0

So the stationary measure for the effective system, Dv(00), is a direct sum of independent complex Gaussian measures
with zero mean and the dispersions ! Y,?/()»k — M), k> 1.

The fact that a Hamiltonian nonlinearity produces no effect in the first order averaging (i.e. for the slow time t < 1)
is well known in the theory of weak turbulence. To produce a non-trivial effect, the Hamiltonian term —iyy f, (Ju|®)u
should be scaled by the additional factor v="'2, and for the weak turbulence theory to apply to calculate this effect
we should send the size of the x-torus to infinity when v — 0, see [15].

Example 4.6 (p = 1, continuation). If p =1, then the effective equations become
dv, = 2
Vg =~k (z(xk — M) +yr Y vl Lk,) dr + Y dBy. (4.6)
l

Assume that the random force in (1.1) (or in (1.14)) is small and is mostly concentrated at a frequency j.. That is,
b, =¢e<l, O<b e ifl+# js.

Then the numbers Yy are of order € and are concentrated close to j, i.e.,
Y, ~e, Y, <eCnll—j|™ VI, N.

So if v(t) is a stationary solution of the effective equations and Ej = LE|vi(0) |2, then

Ej, ’\‘82)»;*1, E gschx;fu — ™V VI N.
That is, the systems (1.1) and (1.14) exhibit no inverse or direct cascade of energy. For other polynomial systems (1.1)
and (1.14) situation is the same. Certainly this is not surprising since by imposing the non-resonance condition we
removed from the system resonances, responsible for the two energy cascades.
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5. Equations with non-viscous damping

Following Debussche—Odasso [3] we now discuss Eqgs (1.1) with non-viscous damping, i.e. with »c = 0 but with
yr > 0 and p = 0 (Debussche—Odasso considered the case p =0,qg = 1):

d
. P . 2
v (e + V@) = —yru =iy ulPlu+ = 3 b8 (0ej (),

6D
ux)=ulx+2mn) = —u(—x);

1(0) = ug. (5.2)

Estimates (1.4), (1.8) and (1.9) are valid with s = 0. Jointly with an analogy of estimate (1.17) with > =0,m =1
they imply that for ug € H? the set of actions 1”(t) = I (u"(z)) of solutions for (5.1), (5.2) is tight in H;. As in
Section 2, any limiting measure QO =1lmD(I"i (-)) is a law of a weak solution 7°(t) of the averaged Eqs (2.11),.—9
with 1 (0) = Iy = I (ug). Constructions of Section 3 remain true, so /°(7) may be lifted to a weak solution v0(7) of the
effective Eqgs (3.6);.—0, p=0. Now R!' =0 and, repeating constructions of Example 3.1 we see that R,%(v) = —YRUk.
So the effective equations become the linear system

dvg (7)) = —yrur dt + Y dBy. (5.3)
This system has a unique solution v(t) such that v(0) = vo = ¥ (up). So

gi_r)r%)D(I”(-)) =DI;(v()).

Due to the result of [3], Eq. (5.1) has a unique stationary measure p”. Repeating arguments from Example 4.5, we
see that when v — 0, the measures ¥ o u” converge to the unique stationary measure of Eq. (5.3) which is

0
m :D/ diag{e "R Y, } B (s).

This is a direct sum of independent complex Gaussian measures with zero mean and the dispersion Y’ kz /vr,k>1.So
every solution u(t) of (5.1) satisfies the Gaussian limit

lim lim Du(r) =G om.
v—>0T—>00

If we replace in (5.1) the linear damping by the nonlinear term —yg|u |2u, then the effective system (5.3) should be
replaced by the nonlinear system (4.6) with Ay = M = 0. In this case the limiting measure is non-Gaussian.
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