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Abstract. This paper continues a study on trajectories of Brownian Motion in a field of soft trap whose radius distribution is
unbounded. We show here that for both point-to-point and point-to-plane model the volume exponent (the exponent associated to
transversal fluctuation of the trajectories) ξ is strictly less than 1 and give an explicit upper bound that depends on the parameters
of the problem. In some specific cases, this upper bound matches the lower bound proved in the first part of this work and we get
the exact value of the volume exponent.

Résumé. Cet article est la seconde partie d’une étude sur les trajectoires Brownienne dans un champs de pièges mous dont le rayon
est aléatoire et a une distribution non-bornée. Nous montrons que l’exposant de volume (qui est l’exposant associé aux fluctuations
transversales des trajectoires) ξ est strictement inférieur à 1 et nous donnons une borne supérieure explicite qui dépend des para-
mètres du problème, et ceci aussi bien pour le modèle dans la configuration point-à-point que pour celui dans la configuration point
à plan. Dans certains cas particulier, cette borne supérieure coïncide avec la borne inférieure démontrée dans la première partie de
cette étude, ce qui nous permets d’identifier la valeur de l’exposant de volume.
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1. Introduction

In this paper we investigate properties of the trajectories of Browian Motion in a disordered medium: given a random
function V defined on R

d and λ > 0, we study trajectories of a Brownian motion (Bt )t≥0 killed at (space-dependent)
rate λ + V (Bt ) conditioned to survive up to the hitting time either of a distant hyperplane or a distant ball (we
refer to these two cases respectively as point-to-plane and point-to-point). We focus more specifically on transversal
fluctuation, i.e. fluctuation of the trajectories along the directions that are normal to the line that links the two points.

In an homogeneous medium these fluctuation are of order
√

L where L is the distance to the hyperplane or point.
It is commonly believed that disorder should make these fluctuation larger, e.g. of order Lξ where ξ > 1/2 is called
volume exponent. This phenomenon is called superdiffusivity and should hold for low dimension (d ≤ 3) or when
amplitude of the variations of V are large enough. We study it in a model where the random potential V is gener-
ated by a field of soft trap of random IID radii. The tail distribution of the radius of a trap is heavy-tailed so that
our potential presents long range correlation. This model is a variant of a more studied model of Brownian motion
among soft obstacles extensively studied by Sznitman (see the monograph [10] and reference therein) and for which
superdiffusivity was shown to hold in dimension 2 by Wüthrich (ξ ≥ 3/5, [11]) who also proved a universal bound
ξ ≤ 3/4, valid for any dimension [12].
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For our model with correlated potential, we proved in [5] that superdiffusivity holds when d = 2 and in larger
dimension when correlations in the environment are strong enough (see (2.12)). The lower-bound that we get for
ξ depends on the parameter of the model and in certain cases it is larger than 3/4 (which is an upper bound for
the volume exponent in any dimension in a large variety of model in the same universality class see e.g. [6] for
directed polymer, and [4] for directed Brownian Polymer in an environment with long-range transversal correla-
tion).

In this paper, our aim is to find an upper-bound for the volume exponent ξ . It turns out that for some particular
choices of the parameter, the upper bound one finds for ξ matches the lower bound found in [5] and therefore allows
us to derive the existence and exact value of the volume exponent (Corollary 2.2).

It is quite rare to be able to derive volume exponent for disordered model, even at the level of physicists prediction.
For the two dimensional model studied in [11] and a whole class of related random growth model (e.g. two dimensional
first-passage percolation, oriented first-passage percolation and directed polymer in random environment in 1 + 1
dimension) it is predicted that ξ = 2/3 and it has been proved in very particular cases ([1,2,7] and some more).
These works have in common that they rely on exact calculation and therefore cannot be exported to general cases
yet.

Here, lower-bound and upper-bound are both derived using energy v.s. entropy comparisons, and the reason why
we are able to get the exact exponent is somehow different. When the tail distribution of radiuses of traps gets heavy,
most of the fluctuation are caused by very large traps and this makes the system almost “one-dimensional” in a sense,
and therefore easier to handle.

2. Model and result

Let V ω(x), x ∈ R
d , be a random potential defined as follows: we consider first a Poisson Point Process, in R

d × R
+,

viewed as a set of points

ω := {
(ωi, ri) ∈ R

d × R+ | i ∈ N
}

(2.1)

(the ordering of the points (ωi, ri) being made in some arbitrary deterministic way, e.g. such that |ωi | is an increasing
sequence), whose intensity is given by L × ν where L is the Lebesgue measure on R

d and ν is a probability measure
on R

+. For the sake of simplicity we restrict to the case of ν satisfying

∀r ≥ 1, ν
([r,∞])= r−α (2.2)

for some α > 0 (but the result would hold with more generality, e.g. assuming only that ν has power-law decay at
infinity). Denote by P and E the associated probability law and expectation.

This process represents a field random traps centered at ωi of and radius ri . From ω we construct the potential
V ω : Rd → R+ ∪ ∞ defined by

V ω(x) :=
∞∑
i=1

r
−γ

i 1{|x−ωi |≤ri } (2.3)

for some γ > 0. Note that V ω(x) < ∞ for every x ∈ R
d , for almost every realization of ω if and only if the condition

α + γ − d > 0 holds. We suppose in what follows that we have the stronger condition α − d > 0 (mainly not too have
to treat too many different cases in the proof, but we could have results without this condition) which means that a
given point lies almost surely in finitely many traps.

Given L > 0, we consider the hyperplane HL at distance L from the origin.

HL := {L} × R
d−1. (2.4)

Denote by P, E (resp. Px , Ex ) the law and expectation associated to standard d-dimensional Brownian motion (Bt )t≥0

started from the origin (resp. from x).
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Given λ > 0 we study the trajectories of a Brownian Motion started from the origin killed with rate (V ω(·) + λ)

conditioned to survive till it hits HL. The survival probability is equal to

Zω
L := E

[
exp

(
−
∫ THL

0

(
V ω(Bt ) + λ

)
dt

)]
. (2.5)

(For any set A, TA denotes the hitting time of A.) The law of the trajectories conditioned to survival μω
L is absolutely

continuous with respect to P, and its density is given by

dμω
L

dP
(B) := 1

Zω
L

exp

(
−
∫ THL

0

(
V ω(Bt ) + λ

)
dt

)
. (2.6)

To study transversal fluctuation of the trajectory around the axis Re1 (e1 = (1,0, . . . ,0) being the first coordinate
vector), one has to give a true definition to the notion of volume exponent discussed in the introduction. In that aim,
define

Cξ
L := {

z ∈ R
d | ∃α ∈ [0,L], |z − αe1| ≤ Lξ

}=
⋃

α∈[0,L]
B
(
αe1,L

ξ
)

(2.7)

and

Aξ
L := {

(Bt )t≥0 | ∀s ∈ [0, THL
],Bs ∈ Cξ

L

}
(2.8)

the event “the trajectories stays in the tube Cξ
L till the hitting time of HL.” We define the upper and lower volume

exponent ξ0 and ξ1 as follows:

ξ1 := inf
{
ξ
∣∣ lim

L→∞ E
[
μω

L

(
Aξ

L

)]= 1
}
,

(2.9)
ξ0 := sup

{
ξ
∣∣ lim

L→∞ E
[
μω

L

(
Aξ

L

)]= 0
}
.

From the definition, ξ1 ≥ ξ0 but one expects that ξ1 = ξ0 and their common value is referred to as the volume exponent.
The main result of this paper is to get an upper-bound on ξ1. Set

ξ̃ (α, γ, d) := max

(
3

4
,

1

1 + α − d
,min

(
1

1 + γ
,

2 + d

2α

))
< 1. (2.10)

Theorem 2.1. For all ξ > ξ̃(α, γ, d), one has

lim
L→∞ E

[
μω

L

(
Aξ

L

)]= 1. (2.11)

Or equivalently ξ1 ≤ ξ̃ .

In some special case, when (α −d) = γ ≤ 1/3, then the upper bound above coincides with the lower-bound proved
in a first study on this model [5], Theorem 2.1,

ξ0 ≥ min

(
1

2
,

1

1 + α − d
,

3

3 + 2γ + α − d

)
(2.12)

(to be more precise the definition of ξ0 in [5] is a bit different because the set Cξ
L there is not exactly the same, but

Theorem 2.1 there implies (2.12)). And therefore

Corollary 2.2. For any value of α,d and γ that satisfies (α − d) = γ ≤ 1/3, one has

ξ1 = ξ0 = 1

1 + γ
. (2.13)
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A much related problem is the study of trajectories conditioned to survive up to the hitting time of a distant ball.
We introduce this model now for two reason:

– We use it as a tool for the proof of the result above.
– An analogous result can be proved using the same method for this model.

For a Brownian Motion started at x and killed with rate λ + V (·), we denote by

Zω(x, y) := Ex

[
e− ∫ TB(y)

0 (λ+V (Bt ))dt1{TB(y)<∞}
]
, (2.14)

the probability of survival up to the hitting time of TB(y) of B(y) = B(y,1) the Euclidean ball of radius one and center
y, |x − y| ≥ 1 (we keep this notation for what follows and denote by B(z, r) the Euclidean ball of center z radius
r ∈ R+), and by μω

x,y the law of the trajectory (Bt )t∈[0,TB(y)] conditioned to survival, its derivative with respect to Px

is equal to

dμω
x,y

dPx

:= 1

Zω(x, y)
e− ∫ TB(y)

0 (λ+V (Bt ))dt1{TB(y)<∞}. (2.15)

For this reason, for a given y ∈ R
d one defines in analogy with Aξ

L and Cξ
L.

Cξ
y := {

z ∈ R
d | ∃α ∈ [0,1], |z − αy| ≤ |y|ξ}=

⋃
α∈[0,1]

B
(
αy, |y|ξ ) (2.16)

and

Aξ
y := {

(Bt )t≥0 | ∀s ∈ [0, TB(y)],Bs ∈ Cξ
y

}
. (2.17)

The following analogous of Theorem 2.1

Theorem 2.3. For all ξ > ξ̃(α, γ, d), one has

lim|y|→∞ E
[
μω

0,y

(
Aξ

y

)]= 1. (2.18)

Remark 2.4. For the point-to-point model, one does not have an equivalent of Corollary 2.2, the reason being that
the lower-bound that we have on ξ0 in [5] was slightly suboptimal. However we strongly believe that the analogous
results hold.

The ideas of this proof are inspired by [9] and [12] where an upper bound on the volume exponent is proved for
model with traps of bounded range (ξ1 ≤ 3/4). In [9], Sznitman uses martingale techniques to prove concentration of
Zω(x, y) around its mean, and in [12] Wüthrich uses these concentration results to prove the bound on the volume
exponent.

These techniques cannot directly apply to our model, and in fact both bounds proved in [9] and [12] do not hold
when there are too strong correlations in the environment. This is not surprising as in [5] it was shown that the
upper-bound ξ1 ≤ 3/4 proved in [12] does not always hold.

Our strategy is to study the model with a slightly modified potential:

– First in Section 3 we present our modification of the potential and show that it does not modify much that probabil-
ities of Aξ

y , Aξ
L (Proposition 3.1).

– In Section 4, we show that the partition function associated to the modified potential concentrates around its mean,
using a multiscale analysis (Proposition 4.1).

– In Section 5, we use Proposition 4.1 to prove Theorems 2.1 and 2.3.

Remark 2.5. Some of the refinement of the techniques (in particular, the multiscale analysis) used here are not needed
if one simply wants to prove that E[μω

0,y(Aξ
y)] tends to zero for some ξ < 1. The reason we use them is that they allow

us to get a slightly better bound, and that they are absolutely necessary to get Corollary 2.2.
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3. Modification of the potential V

We slightly modify V in order to have a potential with nicer properties. In particular we want to

– Make it bounded (by a constant depending on L).
– Suppress traps whose radius is too large to have only finite range correlation (what “too large” depends also on L)

in order to treat potential for far away region independently.

In this section we define this modified potential and show that with our choice for modifications of the potential does
not significantly change the probability of Aξ

L (or if it does, that it does it in the right direction). Given ξ > ξ̃(α, t, d)

we define

ξ̄ := min(ξ, d/α). (3.1)

The modified potential V̄ ω
L by

V̄ ω
L (x) :=

ξ̄ log2 L∑
n=0

min

( ∞∑
i=1

1{ri∈[2n,2n+1)}r
−γ

i 1{|x−ωi |≤ri },2−nγ logL

)
(3.2)

(it is the same as V except that it ignores traps whose radius is larger than 2Lξ̄ , and that it cuts the contribution of
traps of diameter [2n,2n+1) at the level 2−nγ logL). In analogy with (2.5), (2.6), (2.14), (2.15) one defines Z̄ω

L , μ̄ω
L,

Z̄ω(x, y), μ̄ω
L(x, y), by replacing V ω by V̄ ω

L .

This is not a very drastic modification and it should not change the probability of Aξ
L (and that of Aξ

y for |y| = L)
and for two reasons:

– With P-probability going to one, there is no trap of radius more than 2Lξ̄ that intersects Cξ
L.

– With P-probability going to one,

max

( ∞∑
i=1

1{ri∈[2n,2n+1)}r
−γ

i 1{|x−ωi |≤ri },2−nγ logL

)

is equal to
∑∞

i=1 1{ri∈[2n,2n+1)}r
−γ

i 1{|x−ωi |≤ri } for all x in B(0,L2) the Euclidean ball of radius L2 centered at zero.

And indeed one has

Proposition 3.1. There exists c such that, for all ξ ≥ ξ̃ , for any y such that |y| = L, with probability going to one
when L tends to infinity,

μω
0,y

(
Aξ

y

)≥ μ̄ω
0,y

(
Aξ

y

)− e−cL2
,

(3.3)
μω

L

(
Aξ

L

)≥ μ̄ω
L

(
Aξ

L

)− e−cL2
.

Proof. We only prove the first line in (3.3) which is the result concerning the point-to-point model. The other one is
proved analogously. Set

Ṽ ω
L (x) :=

∞∑
i=1

1{ri≤2Lξ̄ }r
−γ

i 1{|x−ωi |≤ri } (3.4)

(the only difference with V is that traps with radius larger than 2Lξ̄ are not taken into account) and define μ̃ω
0,y and

Z̃ω(0, y) as in (2.14) and (2.15).



1034 H. Lacoin

Our first job is to show that μ̄ω
0,y and μ̃ω

0,y are close in total variation, then we compare μ̃ω
0,y(Aξ

y) with μ̄ω
0,y(Aξ

y).

We notice that V̄ ω and Ṽ ω coincide with probability tending to one on B(0,L2), indeed a consequence of Lemma A.1
(proved in the Appendix) is that

P
[∃x ∈ B

(
0,L2), V̄ ω(x) �= Ṽ ω(x)

]≤ 1

L
. (3.5)

When the event {∀x ∈ B(0,L2), V̄ ω(x) = Ṽ ω(x)} holds then μ̄ω
0,y(·|SL) and μ̃0,y(·|SL), the measures conditioned

on the event

SL = {∀t ∈ [0, TB(y)], |Bt | ≤ L2}, (3.6)

are equal, and therefore it remains only to show that with large probability μ̄0,y((SL)c) and μ̃0,y((SL)c) are small.
Set τL2 := inf{t, |Bt | ≥ L2}, then

μ̄0,y

(
(SL)c

)≤ E[e−λTB(y)1{τ
L2≤TB(y)<∞}]

Z̄(0, y)
≤ E[e−λτ

L2 ]
Z̄(0, y)

. (3.7)

As V̄ (x) ≤ logL for all x, thanks to standard tubular estimate for Brownian motion (see e.g. (1.11) of [8]) for C large
enough

log Z̄ω(0, y) ≥ −CL logL. (3.8)

Other standard estimates give that there exists c such that

E
[
e−λτ

L2
]≤ e−cL2

(3.9)

so that for L large

μ̄ω
0,y

(
(SL)c

)≤ e−cL2
(3.10)

tends to zero when L tends to infinity. Working on the event “V̄ and Ṽ coincide on B(0,L2)” holds we get the same
conclusion for μ̃ω

0,y so that with probability going to one∥∥μ̃ω
0,y − μ̄ω

0,y

∥∥
TV ≤ e−cL2

. (3.11)

Now we remark that with probability going to one Ṽ and V coincide on Cξ
y i.e. that

lim|y|=L→∞ P
[∃x ∈ Cξ

y , V̄ ω(x) �= V ω(x)
]= lim|y|=L→∞ P

[∃i, ri ≥ 2Lξ̄ ,B(ω, ri) ∩ Cξ
y �= ∅

]= 0. (3.12)

Indeed the number of traps of radius larger that 2Lξ̄ that intersects Cξ
y is a Poisson variable and its mean is∫ ∞

2Lξ̄

(
σd

(
r + Lξ

)d + Lσd−1
(
r + Lξ

)d−1)
αr−α−1 dr ≤ CL1+ξ(d−1)−αξ̄ . (3.13)

We let the reader check that with our choice of ξ and ξ̄ ,

1 + ξ(d − 1) − αξ̄ < 0 (3.14)

so that the r.h.s. of (3.13) tends to zero. For any x in (Cξ
y )c we necessarily have Ṽ ω(x) ≤ V ω(x) from the definitions,

so that on the event “Ṽ and V coincide on Cξ
y ,”

μω
0,y

(
Aξ

y

)≥ μ̃ω
0,y

(
Aξ

y

)
. (3.15)

A combination of the above and (3.11) allows us to conclude. �
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4. Concentration inequalities

In this section, one derives some concentration inequalities similar to the one obtained in [9] for the log partition
function with the modified potential log Z̄ω(u, v). It could be shown that for some choice of parameters, these con-
centration results do not hold for the original potential. We suppose that L is fixed, and set

Z̄ω(u, v) := Ex

[
e
∫ Ty

0 (λ+V̄ ω(Bt ))dt
]
, (4.1)

χ = χ(ξ) := max

(
1

2
, (1 − γ )ξ̄ ,

1

2

(
1 + ξ̄ (1 + d − 2γ − α)

))
. (4.2)

Proposition 4.1. Suppose that ξ ≥ ξ̃ (α, γ, d). For any ε > 0 one can find δ such that for any (u, v) ∈ R
d , |u−v| ≤ 2L

P
(∣∣log Z̄ω(u, v) − E log Z̄ω(u, v)

∣∣≥ Lχ+ε
)≤ exp

(−Lδ
)
. (4.3)

As the environment is translation invariant, we need only to prove the result the case |v| ≤ 2L, u = 0.
The proof of this proposition requires a multi-scale analysis, to treat traps of different scale in separate steps. One

could get a result by doing a rougher analysis, but this would never get us something optimal. On the contrary, the
multi-scale analysis allows us to get sharper results that are optimal for some special choice of the parameters (i.e.
they allow to get an upper bound on the volume exponent that matches the lower bound).

For all n define Fn to be the sigma-algebra generated by the traps of radius smaller than 2n

Fn := σ
(
ω(A),A ∈ B

(
R

d × R+
)
,A ⊂ R

d × [
1,2n

])
(4.4)

(ω(A) above stands for the number of point in A and B(Rd ×R+) stands for the sigma fields of Borel-sets). We define
for n ≥ 0,

Mn := E
[
log Z̄ω(0, v)|Fn

]
. (4.5)

(Note that Mξ̄ log2 L = log Z̄ω(0, v).) The sequence (Mn)n≥0 is a martingale for the filtration (Fn)n≥0. We prove
Proposition 4.1 by proving concentration for every increment of (Mn)n≥0 (there are only O(logL) increments so that
this is sufficient to get the result).

Lemma 4.2. For any ε there exists δ such that for all n ∈ [1, ξ̄ log2 L],

P
[|Mn − Mn−1| ≥ Lχ+ε

]≤ e−Lδ

. (4.6)

To prove the above lemma we can adapt and use the technique developed in [9]: given n we partition Rd in disjoint
cubes of side length 2n,(

2nx + [
0,2n

]d)
x

∈ Z
d , (4.7)

and index them by N in an arbitrary way and call that sequence (Cn,k)k≥1. Then one sets

Fn,k := σ

(
ω(A),A ∈ B

(
R

d × R+
)
,A ⊂

[(
R

d × [
1,2n−1])∪

(
k⋃

i=1

Cn,i × [
2n−1,2n

])])
, (4.8)

which is the sigma algebra generated by traps of radius smaller than 2n−1 and traps of radius in [2n−1,2n] whose
centers are located in the set of cube

⋃k
i=1 Cn,i (ω(A) above stands for the number of point in A and B(Rd × R+)

stands for the sigma field of Borel-sets).
One defines for k ≥ 0

Mn,k := E
[
log Z̄ω(0, v)|Fn,k

]
. (4.9)
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One remarks that for fixed n, (Mn,k)k≥0 is a martingale for the filtration (Fn,k)k≥0. It is an interpolation between
Mn−1 = Mn,0 and Mn = Mn,∞. This allows us to use a Martingale concentration result by Kesten to prove Lemma 4.2.

Proposition 4.3 (From [3], Theorem 3). Let (Xn)n≥0 be a martingale with respect to the filtration Gn, (law P

expectation E) that satisfies

|Xn+1 − Xn| ≤ c1, ∀n ≥ N (4.10)

and

E
[
(Xn+1 − Xn)

2|Gn

]≤ E[Vn|Gn] (4.11)

for some sequence of random variable (Vn)n≥0 satisfying:

P

(∑
n≥0

Vn ≥ x

)
≤ e−c2x (4.12)

for all x ≥ c3.
Set x0 := max(

√
c3, c1). Then X∞ = limn→∞ Xn exists and for all x ≤ c2x

3
0

P
(|X∞ − X0| ≥ x

)≤ C

(
1 + 1

c2x0

)
e−x/(Cx0), (4.13)

where C is a universal constant not depending on the (ci)
3
i=1.

Our proof of Lemma 4.2 consists simply in checking, for each value of n, the assumptions of Proposition 4.3 for
the martingale (Mn,k)k≥0. For any cube Cn,k one defines

C̃n,k :=
⋃

x∈Cn,k

B
(
x,2n

)
(4.14)

(this is the zone where the V can be modified when one adds traps of radius smaller than 2n with center in Cn,k) and
Tk to be the hitting time of C̃n,k .

Lemma 4.4. For every n and k set Mn,k = Mn,k − Mn,k−1. One can find a constant C such that for every n and k,

|Mn,k| ≤ C(logL)22n(1−γ ) (4.15)

and

E
[|Mn,k|2|Fn,k−1

]≤ E[Un,k|Fn,k−1], (4.16)

where

Un,k = Cμ̄ω
0,y(Tk ≤ TB(y))2

n[2(1−γ )+d−α](logL)2. (4.17)

Moreover

P

[ ∞∑
k=1

Un,k ≥ x

]
≤ e−C−22n(−1+2γ+α−d)(logL)−2x (4.18)

for all x ≥ C2L2n(1−2γ+d−α)(logL)3.
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Proof of Lemma 4.2. According to Lemma 4.4 the assumptions of Proposition 4.3 are satisfied with

c1 = c1(L,n) := C(logL)22n(1−γ ) ≤ C(logL)2Lξ̄(1−γ )+ ,

c2 = c2(L,n) := C−22n(−1+2γ+α−d)(logL)−2 ≥ C−2L−ξ̄ (1−2γ+d−α)+(logL)−2, (4.19)

c3 = c3(L,n) := C2L2n(1−2γ+d−α)(logL)3 ≤ C2(logL)3L1+ξ̄ (1−2γ+d−α)+ .

And therefore we get that for x0(L) = C(logL)2Lmax(ξ̄ (1−γ )+,(1+ξ̄ (1−2γ+d−α)+)/2), for all t ≤ c2x
2
0/C (and note that

c2x
2
0 ≥ L)

P
[|Mn−1 − Mn| ≥ Cx0t

]≤ (
1 + Ld

)
e−t (4.20)

provided the constance C has been chosen large enough. This is enough to conclude. �

At this point of the proof, we can explain a bit better our choice for the multi-scale analysis, and for the modification
of the potential. Both are aimed to optimize the constant c1, c2, c3 above.

Proof of Lemma 4.4. One defines ω̃, to be an independent copy of the environment ω (let its law be denoted by Ẽ).
Let ωn,k be an interpolation between ω and ω̃ defined by

ωn,k :=
{

(ωi, ri)

∣∣∣ (ωi, ri) ∈ (
R

d × [
1,2n−1])∪

(
k⋃

j=1

Cn,j × [
2n−1,2n

])}

∪
{

(ω̃i , ri)

∣∣∣ (ωi, ri) ∈
( ∞⋃

j=k+1

Cn,j × [
2n−1,2n

])∪ (
R

d × [
2n,∞))}

. (4.21)

And set

Vn,k := V̄ ωn,k ,

Zn,k(u, v) := Z̄ωn,k (u, v), (4.22)

μn,k
u,v := μ̄

ωn,k
u,v .

With this notation, note that ωn,k has the same distribution as ω and that

Mn,k = Ẽ
[
logZn,k(0, v)

]
. (4.23)

Furthermore

|Mn,k| ≤ Ẽ

[
log max

(
Zn,k−1

Zn,k

(0, y),
Zn,k

Zn,k−1
(0, y)

)]
. (4.24)

The first step of our proof is to bound Zn,k−1
Zn,k

(0, y) and Zn,k

Zn,k−1
(0, y) by simpler functional depending only on Vn,k ,

Vn,k−1 in C̃k . We use the following (abuse of) notation

(Vn,k − Vn,k−1)+ := max
x∈Rd

(
Vn,k(x) − Vn,k−1(x)

)
+. (4.25)

Lemma 4.5. There exists a constant C such that for all n and k, for all v in R
d

Zn,k−1

Zn,k

(0, v) ≤ 1 + μ
n,k
0,v[Tk ≤ TB(v)]

(
eC(Vn,k−Vn,k−1)+2n logL − 1

)
,

(4.26)
Zn,k

Zn,k−1
(0, v) ≤ 1 + μ

n,k−1
0,v [Tk ≤ TB(v)]

(
eC(Vn,k−1−Vn,k)+2n logL − 1

)
.
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Proof. By symmetry of the problem it is sufficient to show that

Zn,k−1

Zn,k

(0, v) − 1 ≤ μ
n,k
0,v[Tk ≤ TB(v)]

(
eC(Vn,k−Vn,k−1)+2n logL − 1

)
. (4.27)

Using the Markov property at Tk one gets

Zn,k−1

Zn,k

(0, v) = μ
n,k
0,v[Tk > TB(v)] + μ

n,k
0,v

[
Tk ≤ TB(v); Zn,k−1

Zn,k

(BTk
, v)

]
, (4.28)

and hence

Zn,k−1

Zn,k

(0, v) − 1 = μ
n,k
0,v

[
Tk ≤ TB(v);

(
Zn,k−1

Zn,k

(BTk
, v) − 1

)]
≤ μ

n,k
0,v[Tk ≤ TB(v)] max

z∈∂C̃k

(
Zn,k−1

Zn,k

(z, v) − 1

)
. (4.29)

We are left with showing that for all z ∈ ∂C̃k

Zn,k−1

Zn,k

(z, v) ≤ eC(Vn,k−Vn,k−1)+2n logL. (4.30)

One has

Zn,k−1

Zn,k

(z, v) = μn,k
z,v

[
e
∫ TB(v)

0 (Vn,k−Vn,k−1)(Bt )dt
]

≤ μn,k
z,v

[
e
∫ TB(v)

0 (Vn,k−Vn,k−1)+(Bt )dt
]
. (4.31)

We study the tail distribution of the variable
∫ TB(v)

0 (Vn,k − Vn,k−1)+(Bt )dt under μ
n,k
z,v . On the event

∫ TB(v)

0 (Vn,k −
Vn,k−1)+(Bt )dt > a one can define

τa := min

{
t > 0

∣∣∣ ∫ t

0
(Vn,k − Vn,k−1)+(Bs)ds = a

}
. (4.32)

Necessarily, (as Vn,k − Vn,k−1 ≡ 0 outside of C̃n,k)

τa ≥ a

(Vn,k − Vn,k−1)+
and Bτa ∈ C̃n,k. (4.33)

Using the Markov property and the above one gets that

μn,k
z,v

(∫ TB(v)

0
(Vn,k − Vn,k−1)+(Bt )dt ≥ a

)
= 1

Zn,k(z, v)
Ez

[
e− ∫ τa

0 (λ+Vk(Bt ))dtZn,k(Bτa , v)
]

≤ 1

Zn,k(z, v)
Ez

[
e−λτa−aZn,k(BτT

, v)
]

≤ e−(λ/(Vn,k−Vn,k−1)++1)a max
x∈C̃k

Zn,k(x, v)

Zn,k(z, v)
≤ e−(λ/(Vn,k−Vn,k−1)++1)a+c2n logL, (4.34)
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where in the last inequality one used an Harnack-type inequality (it is proved in (2.22), p. 225, in [10] for x and z

such that |x − z| ≤ 1 so that we can get the result below by iterating it) there exists a constant c such that:

∀x ∀z ∈ R
d ,

∣∣∣∣log
Zn,k−1(x, v)

Zn,k−1(z, v)

∣∣∣∣≤ c
(
1 + |x − z|)‖Vn,k−1‖∞. (4.35)

Hence

μn,k
z,v

[
e
∫ TB(v)

0 (Vn,k−Vn,k−1)+(Bt )dt
]

≤ 1 +
∫ ∞

0
ea min

(
1, e−(λ/(Vn,k−Vn,k−1)++1)a+c2n logL

)
da

= λ + (Vn,k − Vn,k−1)+
λ

ec2n logL(Vn,k−Vn,k−1)+/(λ+(Vn,k−Vn,k−1)+). (4.36)

�

Let us introduce the notation

Nn,k,+ := ∣∣{points that are in ωn,k and not in ωn,k−1}
∣∣,

(4.37)
Nn,k,− := ∣∣{points that are in ωn,k−1 and not in ωn,k}

∣∣.
These two quantities are independent Poisson variable of mean 2n(d−α)(2α − 1). According to the definition of V̄ ω

and Vn,k one has

(Vn,k − Vn,k−1)+ ≤ 2−(n−1)γ (Nn,k,+ ∨ logL),
(4.38)

(Vn,k−1 − Vn,k)+ ≤ 2−(n−1)γ (Nn,k,− ∨ logL).

Combining Lemma 4.5, equations (4.24) and (4.38), one gets (4.15). In order to get (4.16) we use equation (4.24) to
get that

|Mk|2 ≤ Ẽ

[
max

((
log

Zn,k−1

Zn,k

(0, v)

)2

,

(
log

Zn,k

Zn,k−1
(0, v)

)2)]
. (4.39)

And from Lemma 4.5,

log
Zn,k−1

Zn,k

(0, v) ≤ log
(
1 + μ

n,k
0,v(Tk ≤ TB(v))e

C2n(logL)(Vn,k−1−Vn,k−1)+)
(Jensen)≤ C2n(logL)μ

n,k
0,v(Tk ≤ TB(v))(Vn,k−1 − Vn,k−1)+

(4.38)≤ C2n(1−γ )(logL)μ
n,k
0,v(Tk ≤ TB(v))Nn,k,+. (4.40)

One can get an analogous bound for log Zn,k

Zn,k−1
(0, v) and get that

|Mk|2 ≤ C24n(1−γ )(logL)2

× Ẽ
[
max

(
N 2

n,k,+μ
n,k
0,v(Tk ≤ TB(v))

2, N 2
n,k,−μ

n,k−1
0,v (Tk ≤ TB(v))

2)]. (4.41)

Replacing max by a sum and conditioning to Fn,k−1 one gets that to bound E[|Mk|2|Fn,k−1] it is sufficient to bound

E
[
Ẽ
[

N 2
n,k,+μ

n,k
0,v(Tk ≤ TB(v))

2]|Fn,k−1
]
,

(4.42)
E
[
Ẽ
[

N 2
n,k,−μ

n,k−1
0,v (Tk ≤ TB(v))

2]|Fn,k−1
]
.
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The reader can check that

Ẽ
[

N 2
n,k,+μ

n,k
0,v(Tk ≤ TB(v))

2]= E
[

N 2
n,k,+μ̄ω

0,v(Tk ≤ TB(v))
2|Fn,k

]
,

(4.43)
Ẽ
[

N 2
n,k,−μ

n,k−1
0,v (Tk ≤ TB(v))

2]= E
[

N 2
n,k,+μ̄ω

0,v(Tk ≤ TB(v))
2|Fn,k−1

]
.

And thus we have just to bound from above control the r.h.s. of the second line. We rewrite it as follows

E
[
μ̄ω

0,v(Tk ≤ TB(v))
2 N 2

n,k,+|Fn,k−1
]

= E
[
E
[
μ̄ω

0,v(Tk ≤ TB(v))
2|Fn,k−1 ∨ σ(Nn,k,+)

]
N 2

n,k,+|Fn,k−1
]
. (4.44)

Then one can remark that

E
[
μ̄ω

0,v(Tk ≤ TB(v))
2|Fn,k−1 ∨ σ(Nn,k,+)

]
is a non-increasing function of Nn,k,+. If f is a non-increasing function of N , g a non-decreasing function of N then

E
[
f (N )g(N )

]≤ E
[
f (N )

]
E
[
g(N )

]
. (4.45)

Therefore the right-hand side of (4.44) is less than

E
[
E
[

N 2
n,k,+

]
μ̄ω

0,v(Tk ≤ TB(v))
2|Fn,k−1

]
= E

[
N 2

n,k,+
]2

E
[
μ̄ω

0,v(Tk ≤ TB(v))
2|Fn,k−1

]
≤ C2n(d−α)

E
[
μ̄ω

0,v(Tk ≤ TB(v))|Fn,k−1
]
, (4.46)

which combined with (4.41), (4.42) and (4.44) ends the proof of (4.16)–(4.17).
As for (4.18), notice that

∞∑
k=1

μ̄ω
0,v(Tk ≤ TB(v)) = μ̄ω

0,v(ATB(y)
), (4.47)

where

AT := ∣∣{x ∈ Z
d | C̃x ∩ {

Bt , t ∈ [0, T ]} �= ∅
}∣∣ (4.48)

denotes the number of different C̃x visited before T . Large deviation estimates for the upper-tail distribution of ATB(y)

under μ̄ω
0,v are computed in the Appendix (Lemma A.3) and they allow us to obtain (4.18). �

5. Volume exponent from fluctuation

5.1. Preliminary result

Before going in to the proof of Theorems 2.1 and 2.3, we need a result that controls the growth of the expected value
of log Z̄ω(0, y) as a function of |y|.

Set yr := (r,0, . . . ,0) and define

α(r) := −E
[
log Z̄ω(0, yr )

]
. (5.1)

It is natural to think that r �→ α(r) is increasing function of r and that its growth is linear, but we cannot prove it.
Instead we prove a weaker result that will be sufficient to our purpose.
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Lemma 5.1. There exists a constant c = c(λ) such that for any l ≥ Lχ+ε , r ≤ 2L one has, for all large enough L,

α(r + l) ≥ α(r) + cl. (5.2)

Proof. Let us consider a family of ball (B(xi,1))i∈{1,...,kr }, xi ∈ ∂B(0, r) with kr = O(rd−1) that cover the sphere
∂B(0, r),

∂B(0, r) ⊂
kr⋃

i=1

(
B(xi,1)

)
. (5.3)

In order to reach yr+l starting from zero, a Brownian motion has to touch one of the B(xi,1) first (as it is shown on
Fig. 1) and therefore

Z̄ω(0, yr+l) ≤
kr∑

i=1

E
[
e− ∫ TB(xi )

0 (λ+V̄ ω(Bt ))dt1{TB(xi )
≤TB(yl+r )}e

− ∫ TB(yl+r )

TB(xi )
(λ+V̄ ω(Bt ))dt

1{TB(yl+r )<∞}
]
. (5.4)

Moreover

E
[
e− ∫ TB(xi )

0 (λ+V̄ ω(Bt ))dt1{TB(xi )
≤TB(yl+r )}e

− ∫ TB(yl+r )

TB(xi )
(λ+V̄ ω(Bt ))dt

1{TB(yl+r )<∞}
]

≤ E
[
e− ∫ TB(xi )

0 (λ+V̄ ω(Bt ))dt1{TB(xi )
<∞}ETB(xi )

[
e− ∫ TB(yl+r )

0 (λ+V̄ ω(Bt ))dt1{TB(yl+r )<∞}
]]

≤ Z̄ω(0, xi) max
z∈B(xi ,1)

Z̄ω(z, yr+l ), (5.5)

so that

Z̄ω(0, yr+l) ≤
kr∑

i=1

Z̄ω(0, xi) max
z∈B(xi ,1)

Z̄ω(z, yr+l ). (5.6)

Fig. 1. In order to reach B(yl+r ), the Brownian motion starting from zero must first hit ∂B(0, r), and thus by (5.3) it must it one of the B(xi). This
observation allows us to get an upper-bound on Z̄ω(0, yr+l ) in terms of Z̄ω(xi , yr+l ) and Z̄ω(0, xi ).
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Now recall that

Z̄ω(z, yr+l ) ≤ E
[
e−λTB(yr+l−z)1{TB(yr+l−z)<∞}

]≤ e−Cλ(|yr+l−z|−2) (5.7)

for some constant Cλ (it follows from standard estimate for Brownian motion). Then notice that for any choice of z

and xi one has

|z − yr+l| ≥ |yr+l | − |z| ≥ |yr+l | −
(|z − xi | + |xi |

)≥ l − 1, (5.8)

so that there exists a constant c such that for all l ≥ Lχ+ε , and z ∈ B(xi,1)

Z̄ω(z, yr+l ) ≤ e−2cl . (5.9)

As a consequence

Z̄ω(0, yr+l) ≤ (
kre−2cl

)
max

i∈{1,...,kr }
Z̄ω(0, xi). (5.10)

The different Z̄ω(0, xi) are identically distributed. Thanks to Proposition 4.1 one can find a δ such that for all L large
enough

P

(
log max

i∈{1,...,kr }
Z̄ω(0, xi) − α(r) ≥ Lχ+(ε/2)

)
≤ kre−Lδ

. (5.11)

As we also have that deterministically

max
i∈{1,...,kr }

Z̄ω(0, xi) ≤ 1. (5.12)

This implies

E

[
log max

i∈{1,...,kr }
Z̄ω(0, xi)

]
≤ −α(r) + Lχ+ε/2 + α(r)kre−Lδ

. (5.13)

Altogether by taking the expectation of − log of (5.10)

α(l + r) ≥ α(r) + 2cl − logkr − α(r)kre−Lδ − Lχ+ε/2 ≥ α(r) + cl, (5.14)

where the last inequality holds when the assumption given in the lemma for r and l are satisfied and L is large
enough. �

5.2. Proof of Theorem 2.3

The idea for the proof is the following: Set |y| = L, according to Proposition 3.1 it is sufficient to prove that

μ̄ω
0,y

((
Aξ

y

)c)⇒ 0, in probability when |y| → ∞. (5.15)

In order to go out of Cξ
y before hitting B(y), (Bt )t≥0 has to travel a longer distance that if it went in “straight-line.”

This extra distance traveled is at least of order L2ξ−1. Lemma 5.1 allows to say that the cost of traveling is linear
in the distance. However doing this may bring some extra-energy reward by allowing to visit regions that are more
favorable energetically. Proposition 4.1 ensures that the energetic gain may not be more than Lχ+ε . As with our choice
of parameter

2ξ − 1 > χ(ξ), (5.16)

the cost of extra-travel cannot be compensated by this energetic gain and this implies that the probability of (Aξ
y)

c is
small. This is not too complicated to make this heuristic rigorous.
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Fig. 2. If a trajectory does not belong to Aξ
y then it has to hit ∂Cξ

y at some point before T (B(y)) and thus, by (5.18) it has to hit one of the B(xi ).
This observation allows to get an upper bound on Yω

0,y
.

Our aim is to compare Z̄ω(0, y) with

Y0,y = Z̄ω(0, y)μ̄ω
0,y

((
Aξ

y

)c)= E
[
e− ∫ TB(y)

0 (λ+V̄ (Bt ))dt1{T
∂Cξ

y
<TB(y)}

]
. (5.17)

Let us consider a family of ball (B(xi,1))i∈{1,...,mL}, xi ∈ ∂Cξ
y with mL = O(L(d−2)ξ+1) that satisfies

∂Cξ
L ⊂

mL⋃
i=1

B(xi,1). (5.18)

Trajectories in (Aξ
y)

c have to hit one of the B(xi,1) before hitting B(y) and therefore with a computation analogous
to the one we made to obtain (5.6) (see Fig. 2), we get that

Y0,y ≤
mL∑
i=1

Z̄ω(0, xi) max
z∈B(xi ,1)

Z̄ω(z, y). (5.19)

Note that one can find a constant C such that for any z ∈ B(x,1) (cf. (2.22), p. 225, in [10]),∣∣log Z̄ω(z, y) − log Z̄ω(x, y)
∣∣≤ C logL. (5.20)

Moreover, according to Proposition 4.1, for any ε > 0 one has, for L large enough,

P
(∃i ∈ {1, . . . ,mL}, log Z̄ω(0, xi) + α

(|xi |
)≥ Lχ+ε

)≤ mLe−Lδ

,
(5.21)

P
(∃i ∈ {1, . . . ,mL}, log Z̄ω(xi, y) + α

(|y − xi |
)≥ Lχ+ε

)≤ mLe−Lδ

so that combining (5.20) and (5.21) one gets that with high probability

Y0,y ≤ mLe2Lχ(ξ)+ε+C logL max
i∈{0,...,mL}

e−α(|xi |)−α(|y−xi |)

≤ mLeLχ(ξ)+ε+C logL max
x∈∂Cξ

L

e−α(|x|)−α(|y−x|). (5.22)

One also has that for any choice of r ∈ [0,3L/4] (recall L = |y|), with large probability (using Proposition 4.1 and
(5.20))

Z̄(0, y) ≥ Z̄ω
(
0, (r/L)y

)
min

z∈B((r/L)y,1)
Z̄ω(z, y) ≥ e−2Lχ(ξ)+ε−C logLe−α(r)−α(L−r). (5.23)
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Fig. 3. Suppose that x is on ∂Cξ
y for |y| = L then if x is on the “cylindric” part then |y − x| + |x| =

√
a2 + L2ξ +√

(L − a)2 + L2ξ ≥ 2
√

(L/2)2 + L2ξ = 2L2ξ−1(1 + o(1)). We let the reader check that this also holds when x is on one of the “hemispheres.”

Set x0 ∈ argmin
x∈∂Cξ

L

α(|x|) + α(|y − x|). For large values of L, either |x0| ≤ 3L/4 or |y − x0| ≤ 3L/4 holds, and

by symmetry one can assume that |x0| ≤ 3L/4. Then taking r = |x0| in (5.23) one obtains that with probability going
to one

log μ̄ω
0,y

((
Aξ

y

)c)= log
Y0,y

Z̄ω(0, y)
≤ α

(
L − |x0|

)− α
(|y − x0|

)+ 4Lχ+ε + C′ logL. (5.24)

Note that necessarily |y − x0| − (L − |x0|) ≥ L2ξ−1 for large L as it is the case for any x ∈ ∂C
ξ
y (see Fig. 3).

With our choice of ξ

2ξ − 1 > χ(ξ) > 0, (5.25)

so that one can use Lemma 5.1 to get that

α
(
L − |x|)− α

(|y − x|)≥ cL2ξ−1 (5.26)

and hence

log μ̄ω
0,y

(
Aξ

y

)≤ 4Lχ+ε + C′ logL − cL2ξ−1 ≤ − c

2
L2ξ−1. (5.27)

5.3. Proof of Theorem 2.1

To treat the point to plane model needs a bit more care but the general idea is the same. Thanks to Proposition 3.1, the
result is proved if μ̄ω

L((Aξ
L)c) tends to zero in probability.

Therefore our aim is to compare

Yω
L := Z̄ω

Lμ̄ω
L

((
Aξ

L

)c ∩ SL

)= E
[
e− ∫ THL

0 (λ+V̄ (Bt ))dt1{T
∂Cξ

L

<THL
}
]

(5.28)

with Z̄ω
L . First one can remark that

Z̄ω
L ≥ Z̄ω(0, yL+1), (5.29)

where yL = (L + 1,0, . . . ,0). Then one has to find a good upper bound on YL.
Consider a family of ball (B(xi,1))i∈{0,...,mL}, xi ∈ ∂Cξ

L with mL = O(L1+ξ(d−2)) that satisfies

∂Cξ
L ⊂

⋃
i∈{0,...,mL}

B(xi,1). (5.30)
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Fig. 4. If a trajectory does not belong to Aξ
L

then it has to hit ∂Cξ
y at some point before THL

and thus, by (5.30) it must hit one of the B(xi ). Then
before hitting HL is has to hit ∂B(xi , d(xi , HL) (because of distance consideration) and thus, by (5.31) one of the B(yi,j ). We use this information
to get an upper bound on Yω

L
.

Then for each i set ri,L := d(xi, HL), consider a family of balls (B(yi,j ,1))j∈{0,...,ni,L}, with yi,j ∈ B(xi, ri,l), ni,L =
O(Ld) that cover entirely the boundary of B(xi, ri,l).

∂B(xi, ri,L) ⊂
⋃

j∈{0,...,ni,L}
B(yi,j ,1). (5.31)

Then one remarks that trajectories in (Aξ
L)c have to hit, first one of the B(xi,1) (they have to hit ∂Cξ

L first), then one
of the B(yi,j ,1) (starting from xi one has to hit ∂B(xi, ri,L) before hitting HL see Fig. 4), so that with a computation
similar to the one made to obtain (5.6), we obtain that

YL ≤
∑

i∈{0,...,mL}

∑
j∈{0,...,ni,L}

Z̄ω(0, xi) max
z∈B(xi ,1)

Z̄ω(z, yi,j ), (5.32)

with the convention that Z̄ω(a, b) = 1 if |b − a| ≤ 1. Then recall (5.20)

max
z∈B(0,xi )

Z̄ω(z, yj ) ≤ ec logLZω(xi, yi,j ), (5.33)

and that concentration inequalities from Proposition 4.1 tells us that with high-probability, all the log Z̄ω(0, xi) and
log Z̄ω(xi, yi,j ) are not further than Lχ+ε away from their respective mean value, or more precisely

P
(∃i ∈ {1, . . . ,mL}, log Z̄ω(0, xi) + α

(|xi |
)≥ Lχ+ε

)≤ mLe−Lδ

(5.34)

and

P
(∃i ∈ {1, . . . ,mL},∃j ∈ {0, . . . , ni,L}, log Z̄ω(xi, yi,j ) + α

(|yi,j − xi |
)≥ Lχ+ε

)
≤ mL

(
max

i
ni,L

)
e−Lδ

. (5.35)

Hence similarly to (5.22) there exists a constant C′ such that with high probability

logYω
L ≤ C′ logL + 2Lχ+ε − min

x∈∂Cξ
L

(
α
(|x|)+ α

(
d(x, HL)

))
. (5.36)
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Consider x0 ∈ argmin
x∈∂Cξ

L

α(|x|) + α(d(x, HL)). Note that either |x0| or d(x0, HL) is smaller than 3L/4. Suppose

|x0| ≤ 3/4L (the proof would work the same way in the other case). For any r ∈ [0,3L/4] one has that with high
probability (cf. (5.23)),

Z̄ω
L ≥ Z̄ω(0, yL+1) ≥ e−2Lχ(ξ)+ε−C logLeα(|x0|)+α(L+1−|x0|), (5.37)

so that

log μ̄ω
0,L

((
Aξ

L

)c)= logYω
L /Z̄ω

L ≤ α
(
L + 1 − |x0|

)− α
(
d(x0, HL)

)+ 4Lχ+ε + C′ logL. (5.38)

From geometric consideration as x0 ∈ ∂Cξ
L one has

|x0| + d(x0, HL) ≥
√

L2 + L2ξ ≥ L + 1

4
L2ξ−1. (5.39)

So that from Lemma 5.1 (as 2ξ − 1 > χ(ξ))

α
(
d(x0, HL)

)− α
(
L + 1 − |x0|

)≥ c

(
1

4
L2ξ−1 − 1

)
(5.40)

and hence with high probability, provided ε is small enough

log μ̄ω
0,L

((
Aξ

L

)c)≤ −c

(
1

4
L2ξ−1 − 1

)
+ 4Lχ+ε + C′ logL ≤ −cL2ξ−1

8
. (5.41)

Appendix: Technical estimates

We present here the proof of two technical statement. The first one, Lemma A.1, is the fact that with our setup, each
x in B(0,L2) lies in at most logL different traps with high probability.

The second statement Lemma A.3 is that under our Gibbs measure, Bt does not visit too many different cubes of
side-length l.

Lemma A.1. One has that for all L large enough,

P

[
max

x∈B(0,L2)

( ∞∑
i=1

1{|x−ωi |≤ri }

)
≥ logL

]
≤ 1

L
. (A.1)

Proof. Note that it is sufficient to show that

P

[
max

x∈B(0,1)

∞∑
i=1

1{|x−ωi |≤ri } ≥ logL

]
≤ 1

L2d+2
. (A.2)

Indeed, one can cover up B(0,L2) with O(L2d) balls of radius one, and use union bound and translation invariance.
Then we remark that maxx∈B(0,1) . . . is less than( ∞∑

i=1

1{|ωi |≤ri+1}

)
(A.3)

which is a Poisson variable whose mean is∫ ∞

1
αr−α−1σd(r + 1)d dr < ∞, (A.4)
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this is enough to conclude. �

For l ≥ 0, x ∈ Z
d define Cx := lx + [0, l]d and C̃x :=⋃

y∈Cy
B(x, l). For T ≥ 0 define

AT := ∣∣{x ∈ Z
d | C̃x ∩ {

Bt , t ∈ [0, T ]}}∣∣, (A.5)

the number of C̃x that are visited by (Bt )t∈[0,T ]). Scaling properties of the Brownian motion implies that AT is
typically of order O(T /l2) (and smaller than this when B is recurrent, i.e. for d = 1,2). We investigate large deviation
of AT above its typical value

Lemma A.2. There exist a constant C such that if nl2/T ≥ C then

P[AT ≥ n] ≤ e−n2l2/(4CT ). (A.6)

Proof. Set T0 := 0 and

Tn+1 := inf
{
t ≥ Tn, |Bt − BTn

| ≥ l
}
. (A.7)

Note that in the interval (Tn, Tn+1) the Brownian motion cannot visit more than 5d different C̃x , and therefore

P
[
AT ≥ 5dn

]≤ P[Tn ≤ T ]. (A.8)

To estimate the second term, one uses Chernov inequality and therefore, the first step is to compute the Laplace
transform of T1

E
[
e−uT1

] =
∫ ∞

0
ue−utP[T1 ≥ t]dt ≤ 4d

∫ ∞

0
ue−ut

∫ ∞

l/
√

t

1√
2π

e−x2/2 dx dt

≤ C

∫ ∞

0

√
t

l
e−ut−l2/(2t) dt ≤ e−l

√
u, (A.9)

where the last inequality holds if l2u is large enough, say larger than a constant C.

P[Tn ≤ T ] ≤ inf
u≥0

(
P
[
e−uT1+uT/n

])n ≤ inf
u≥C/l2

(
P
[
e−l

√
u+uT/n

])n = e−n2l2/(4T ), (A.10)

where the last equality holds provided nl2/T is large. �

We use the previous estimate to get a (rather rough) bound on the tail distribution of ATB(v)
under μ̄ω

0,v .

Lemma A.3. There exists a constant C such that for all L large enough and all |v| ∈ R
d , for all l ≥ 1 and for all

n ≥ C|v| logL
l

μ̄ω
0,v[ATB(v)

≥ n] ≤ e−nl/C. (A.11)

Proof. First recall that via standard tubular estimates for Brownian Motion, one can prove that almost surely, for all v

log Z̄ω
v ≥ −C|v| logL. (A.12)

And therefore

μ0,v(TB(v) ≤ T ) ≤ e−λT +|v| logL. (A.13)
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On the other hand if nl2/T ≥ C

μ̄ω
0,v[AT ≥ n] ≤ 1

Z̄ω
y

P[AT ≥ n] ≤ e|v| logL−n2l2/(4T ). (A.14)

Altogether one has that

μ̄ω
0,v[ATB(v)

≥ n] ≤ μ̄ω
0,v[AT ≥ n] + μ̄ω

0,v[TB(v) ≥ T ] ≤ eC|v| logL
(
e−λT + e−n2l2/(4T C)

)
, (A.15)

were the last inequality is valid when T ≤ nl2/C. Taking T = nl/C one gets that

μ̄ω
0,v[ATB(v)

≥ n] ≤ eCv| logL|(eλnl/C + e−nl/4)≤ eλnl/(2C), (A.16)

where the last inequality holds if C is large enough and n ≥ 2C2|v| logL
l

. �
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