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Abstract. We use subgroup distortion to determine the rate of escape of a simple random walk on a class of polycyclic groups,
and we show that the rate of escape is invariant under changes of generating set for these groups. For metabelian groups, we define
a stronger form of subgroup distortion which applies to non-finitely generated subgroups. Under this hypothesis, we compute the
rate of escape for certain random walks on some abelian-by-cyclic groups via a comparison to the toppling of a dissipative abelian
sandpile.

Résumé. Nous utilisons la notion de distorsion des sous-groupes afin de déterminer la vitesse de fuite (sous linéaire) d’une marche
aléatoire simple sur une classe de groupes polycycliques, et nous montrons que cette vitesse est invariante par changement de
générateurs pour ces groupes. Pour les groupes métabéliens, nous définissons une forme plus forte de distorsion des sous-groupes
qui s’applique à des sous-groupes non finiment engendrés. Sous cette hypothèse, nous calculons la vitesse de fuite pour certaines
marches aléatoires sur certains groupes abélien par cyclique via l’intermédiaire d’une comparaison avec la chute d’un tas de sable
abélien dissipatif.
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1. Introduction

One of the most basic properties of a random walk is how fast it moves. The first notion one might consider is the
speed of the random walk,

lim
n→∞

|Xn|G
n

, (1.1)

where | · |G is the word length corresponding to the support of the law of Xn. This limit always exists, and, for non-
amenable groups, any simple symmetric random walk has positive speed [7,13,16]. A random walk has positive speed
if and only if there exist non-constant bounded harmonic functions with respect to the Markov operator associated to
the random walk [27]. This also implies that the Poisson boundary of the random walk is non-trivial [15]. Thus, for
non-amenable groups, the speed is positive. The situation is more complicated and less well understood for amenable
groups. Many random walks on amenable groups have zero speed, and so we need different notions to gauge how fast
the walk is moving. Below we introduce three such notions, each of them parametrized by an exponent of the number
of steps taken. We start with a definition introduced by Revelle [22].

We recall that a generating set of a finitely generated group is a finite subset of G which is closed under inversion
and which generates G as a semigroup. Each generating set of G induces a natural word length on G and these
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metrics are quasi-isometric. For a particular generating set S, we denote this word length by | · |S , but when the choice
of generating set does not matter we will use | · |G to some word length on G. We will say a random walk on a finitely
generated group G is adapted if the law of the random walk, μ, is supported on a finite generating set of G and
μ(g) = μ(g−1) for all g ∈ G.

Definition 1.1 (α-tight degree of escape). A random walk has α-tight degree of escape if

(1) ∃γ, δ > 0 such that P(|Xn|G > γnα) ≥ δ, and
(2) ∃β > 0 such that P(|Xn|G > xnα) ≤ c exp(−cxβ) for all x ≥ 0,

hold for all n ≥ 0.

The next definition concerns the general behavior of the expected distance travelled by the random walk. For two
increasing functions f,g : R → R, we write f � g if there exists c > 0 such that

f (x) ≤ cg(cx) for all x ∈ R.

If f � g and g � f we write f 	 g. We extend this definition to functions from N → N via continuous, piecewise
linear extension.

Definition 1.2 (Displacement exponent α). A random walk has displacement exponent α if

Eμ|Xn|G 	 nα. (1.2)

It is important to keep the measure μ driving the random walk in mind when computing this quantity. It is evident
that

Eμ|Xn|S 	 Eμ|Xn|T (1.3)

for any two distinct word metrics on G, but if μ and ν are supported on two distinct generating sets of G, it is unknown
whether or not Eμ|Xn|G is coarsely equivalent to Eν |Xn|G. This is one of the significant open questions concerning
the rate of escape. However, the expected displacement is not a quasi-isometric invariant of graphs due to an example
of Benjamini and Revelle [4].

Definition 1.3 (α-law of iterated logarithm). A random walk has a law of iterated logarithm with exponent α if

0 < lim sup
n→∞

|Xn|G
(n log logn)α

< ∞. (1.4)

In the literature, the above denominator is sometimes called an outer radius for the random walk [12] or the upper
Lévy class [23].

The methods we use will obtain each of these notions of the rate of escape simultaneously, so we group them under
the following definition.

Definition 1.4 (Escape exponent α). An random walk has escape exponent α if it has α-tight degree of escape,
displacement exponent α, and an α-law of iterated logarithm.

Adapted random walks on groups of polynomial volume growth have escape exponent 1/2, which follows from
the Gaussian estimates for the heat kernel [14]. For groups of super-polynomial volume growth much less is known.
Revelle showed that there exist adapted random walks on Sol and BS(1,2) with escape exponent 1/2, while Lee and
Peres have shown there is a universal lower bound of 1/2 on the displacement exponent for all adapted random walks
on groups [17]. Austin Naor and Peres have shown a connection between a lower bound on the displacement exponent
and the compression of embeddings of a group into Lp [1], and in conjunction with a result of Tessera [25] this shows
all adapted random walks on polycyclic groups have displacement exponent 1/2. An upper bound on the displacement
exponent provides a similar lower bound on Erschler’s critical constant for recurrence of G-spaces [10].
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Examples of groups known to have displacement exponent different than 1/2 are rare and restricted to iterated
lamplighter groups. Independently, Revelle and Erschler showed that there exist adapted random walks on

Z2 
 Z 
 · · · 
 Z︸ ︷︷ ︸
i times

(1.5)

with displacement exponent 1−2−i−1 [9,22], and, in addition, Revelle showed that these walks have escape exponent
1 − 2−i−1 [22]. Erschler also showed that iterated wreath products involving Z2 have expected displacement greater
than n1−ε for any ε > 0 [9]. This class of examples has been effectively mined out as Z2 
Zd , for d ≥ 3, has non-trivial
Poisson boundary for any adapted random walk whose projection to Zd is transient [15]. Thus these examples have
positive speed, or, equivalently, displacement exponent 1.

We will show that certain polycyclic groups have escape exponent 1/2 for any adapted random walk. To do this
we take advantage of the structure of polycyclic groups in conjunction with the idea of subgroup distortion. Subgroup
distortion has been much studied in geometric group theory [6,11]; for polycyclic groups, the primary reference is
Osin [19].

Let F be a coarse type of functions (the typical examples being polynomial and exponential). Following [19], we
say a subgroup H < G has lower F distortion if there is an invertible function f of coarse type F such that there
exists c > 0 such that

|h|G ≤ cf −1(|h|H
) + c (1.6)

for all h ∈ H . We will be interested in the case of lower exponential distortion.

|h|G ≤ c log
(|h|H + 1

) + c (1.7)

for all h ∈ H . Note that lower F distortion of a group/subgroup pair is does not depend on the choice of word
metrics for either the group or its subgroup. For convenience, we assume that the trivial group has every type of lower
distortion. When, in addition to (1.6) we have

1

c
f −1(|h|H

) − c ≤ |h|G, (1.8)

we say H has strict F distortion in G.

Theorem 1. Let G be a torsion-free polycyclic group satisfying a short exact sequence

1 → N → G → Zr → 1, (1.9)

where N is finitely generated and nilpotent. If N , has lower exponential distortion in G, then any simple symmetric
random walk on G has escape exponent 1/2.

This theorem applies very broadly to the class of polycyclic groups; by a theorem of Mal’cev [24] every polycyclic
group has a torsion-free, polycyclic subgroup of finite index which satisfies (1.9) for some nilpotent group N . We will
refer to N as the nilpotent kernel of G.

Lower exponential distortion of the nilpotent kernel is not necessary for a polycyclic group to have escape exponent
1/2. In particular, the nilpotent kernel of a polycyclic group with polynomial volume growth has upper polynomial
distortion, and all simple symmetric random walks on such groups have escape exponent 1/2. However, the set
of elements with strict exponential distortion does not necessarily form a subgroup in polycyclic groups [19]. We
examine this phenomenon in abelian-by-cyclic groups in Section 5.

We also show that certain adapted random walks on metabelian groups have escape exponent 1/2. Metabelian
groups satisfy a short exact sequence

1 → A → G → Zr → 1, (1.10)
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where A is abelian. The abelian kernel of a metabelian group need not be finitely generated, and so upper distortion
does not necessarily make sense. We will restrict our attention to cases where the above short exact sequence splits
and r = 1, i.e. G = A �φ Z for some φ ∈ Aut(A). In this case, the “distortion” of A may be assessed using properties
of φ.

Let pφ denote the characteristic polynomial of φ. We define max(k) S to be the kth largest element of a set S. We
say a polynomial p ∈ Z[t, t−1] has property (EDP) if

max
i

(1)|pi |
(

1 + 1

maxi
(2)|pi |

)
>

∑
i

|pi |, (EDP)

where pi denotes the coefficient of t i in p.
We will show in Section 6.2 that if the abelian kernel is finitely generated and pφ has a multiple in Z[t, t−1] which

satisfies (EDP), then the abelian kernel has lower exponential distortion. However, when the abelian kernel is not
finitely generated, i.e. if A = Z[q]d , q ∈ Q, (EDP) can be viewed as a stand in for lower exponential distortion. The
first result concerning (EDP) and the rate of escape is the following.

Theorem 2. Let G = Z[ρ]d �φ Z where ρ is an algebraic number. If the characteristic polynomial, pφ , of φ has a
multiple with property (EDP), then there exist adapted random walks on G with escape exponent 1/2.

We will prove this theorem in Section 4.2. Often, the abelian kernel will not have lower exponential distortion,
or, if it is not finitely generated, the characteristic polynomial will not have property (EDP) despite the group having
exponential volume growth. This case is treated by the following theorem, which we prove Section 5.

Theorem 3. Let G = Z[ρ]d �φ Z where ρ is an algebraic number. If the characteristic polynomial, pφ , of φ can be
factored over Z as p+p0, where

(1) p+ has a multiple which satisfies (EDP),
(2) the roots of p+ are distinct with modulus distinct from 1 and
(3) the roots of p0 are distinct with modulus 1,

then there exist adapted random walks on G with escape exponent 1/2.

Remark. This result is interesting when G is 2-generated. If A = A1 ⊕A2 where A1 has lower exponential distortion
in G and A2 is undistorted in G, the rate of escape can be determined for random walks whose law is not supported
on any elements with non-trivial projections to both A1 and A2 without appeal to Theorem 3. However, there are cases
where the abelian kernel may not split so nicely, but where we can apply Theorem 3 to determine the escape exponent.

Before delving into the proofs of the above theorems, we present a simple result concerning the relationship be-
tween the rate of escape on a group and the rate of escape on quotients of that group. Proofs of the theorems then
follow, and we conclude with a discussion of these results and examples to which they apply.

2. A comparison theorem for the expected displacement of a random walk

The principal result of this section is the following lemma.

Lemma 2.1. Let G be a finitely generated group with a subgroup H , and suppose Xn is a random walk on G driven
by a measure μ. Set Γ = H \ G and let π :G → Γ be the canonical projection. Then

Eμ

∣∣π(Xn)
∣∣
Γ

≤ Eμ|Xn|G. (2.1)
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Proof. For each coset γ ∈ H \ G we pick a unique gγ such that γ = Hgγ . Then we have

Eμ

∣∣π(Xn)
∣∣
Γ

=
∑
γ∈Γ

|γ |Γ μ(n)(γ ) (2.2)

=
∑

gγ :γ∈Γ

min
{|hgγ |G: h ∈ H

}
μ(n)(Hgγ ) (2.3)

=
∑

gγ :γ∈Γ

(
min

{|hgγ |G: h ∈ H
} ∑

h∈H

μ(n)(hgγ )

)
(2.4)

≤
∑

gγ :γ∈Γ

∑
h∈H

|ngγ |Gμ(n)(hgγ ). (2.5)

For each g ∈ G, there exists h ∈ H such that g = hgγ as the cosets of Γ partition G. Hence,∑
gγ :γ∈Γ

∑
h∈H

|hgγ |Gμ(n)(hgγ ) =
∑
g∈G

|g|Gμ(n)(g) (2.6)

= Eμ|Xn|G. (2.7)

�

We now consider the potential application of this result to the Hanoi towers groups, H (see [18]). The Schreier
graph Γ (H,Stab(1), S) is homeomorphic to the infinite Sierpinski graph, and the corresponding limit space for the
group is the Sierpinski Gasket. Barlow and Perkins have shown that Brownian motion, Wt , on the Sierpinski gasket
satisfies

Ed(0,Wt ) 	 t1/dw , (2.8)

where dw = log(5)/ log(2) is the walk dimension [2]. Teufl has proven a refined version of this fact for a simple
symmetric random walk on the infinite Sierpinski graph [26]. Similar estimates may be attainable on many fractal
spaces, and one should be able to pass through the homeomorphism between the limit space and corresponding
Schreier graph to prove the following conjectures.

Conjecture 1. The Hanoi towers group, H, admits a simple symmetric random walk on such that

nlog 2/ log 5 � E|Xn|H. (2.9)

Conjecture 2. Let G be a self-similar group and let X be its limit space. If Wt is the Brownian motion of X , then for
any simple symmetric random walk Xn on G,

Ed(0,Wn) � E|Xn|G. (2.10)

3. Lower exponential distortion and the rate of escape

The goal of this section is to prove the following theorem, from which Theorem 1 follows as a corollary when H is
nilpotent.

Theorem 4. Let G be a torsion-free, finitely generated group with a short exact sequence,

0 → H → G → Zr → 0, (3.1)

where H is finitely generated and torsion-free. If H has lower exponential distortion in G, then any simple symmetric
random walk on G has escape exponent 1/2.
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The idea underlying this theorem is, that under the assumption of lower exponential distortion of H in G, the
distance travelled by a random walk after n steps can be controlled by the maximum of that random walk’s projection
to Zr . We will prove this theorem by generalizing some results obtained by Pittet [20] to arbitrary generating sets
of G.

We introduce some notation we will use throughout this section. Fix a finite symmetric generating sets B of H and
let A be the canonical basis of Zr . For a generating set S of G, note that the projection πZr (S) is a generating set of
Zr , but the projection πH (S) is not necessarily a generating set of H . This means that Zr is undistorted in G, but H

may be distorted. We will show that H is at most exponentially distorted.
Since commutators of elements in Zr may be non-trivial in G, it will be helpful to fix a standard embedding of Zr

into G. Let k = (k1, . . . , kr ) ∈ Zr , and set k = a
k1
1 · · ·akr

r . The set K = {k: k ∈ Zr} is a section of Zr in G, and every

g ∈ G can be written uniquely in normal form: g = hk = ha
k1
1 · · ·akr

r , h ∈ H , k ∈ K . By |k| we denote the length of k

in the canonical basis for Zr and note that this is bi-Lipschitz equivalent to |k|S .
We start with an elementary lemma on the expansion factor of automorphisms [20].

Lemma 3.1. Let G be a finitely generated group with generating set S, and let H be a finitely generated subgroup of
Aut(G) with generating set T . Then there exists q ≥ 1 such that for all h ∈ H and for all g ∈ G

|h · g|S ≤ q |h|T |g|S. (3.2)

Proof. Set q = sups∈S,t∈T |t · s|S . The desired estimate follows via induction. �

The following lemma establishes an exponential upper bound on the distortion of H in G.

Lemma 3.2. Under the above assumptions, for any generating set S of G there exists non-negative integers q and C

such that, given g = hk,

|h|B ≤ q |g|S (3.3)

and

|k| ≤ C|g|S. (3.4)

The proof of the lemma relies on the following lemma taken directly from Pittet. We exclude the proof as no
changes are necessary to bring it into our present setting. Note that the word metric on G does not appear in this
lemma.

Lemma 3.3. There exists an integer q > max{|[a, a′]|B : a, a′ ∈ A} such that for each ε ∈ {−1,1}, each k ∈ Zr , and
each i ∈ {1, . . . , r}, there exists h ∈ H such that

a
k1
1 · · ·akr

r aε
i = ha

k1
1 · · ·aki+ε

i · · ·akr
r (3.5)

and

|h|B ≤ q |k|. (3.6)

Proof of Lemma 3.2. In the normal form, we can write each s ∈ S as s = sH sK , where the factors are the projections
to H and K . Let MH = maxs∈H {|sH |B} and MK = maxs∈K{|sK |A}. Fix q such that Lemmas 3.1 and 3.3 hold and fix
C such that qC ≥ 1 + MH + MKqMK . We will induct on |g|S .

The result is trivial when |g|S = 0. We will assume the estimates hold for group element with length at most l

relative to S. Let |g|S = l + 1. Then, for any s ∈ S such that there exists g′ ∈ G with g = g′s and |g′|S = l, we have
by the induction hypothesis

g′ = h′k′, (3.7)
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where |h′|B ≤ qCl and |k′| ≤ Cl.
Observe that

g = h′k′sH sK (3.8)

= h′(k′sk′−1)k′sK. (3.9)

Set x = k′sk′−1 ∈ H . By Lemma 3.1, |x|B ≤ qCl |sH |B ≤ MH qCl .
We now apply Lemma 3.3 |sK |A-times to find yi ∈ H , i ∈ {1, . . . , |sK |A}, such that k′sK = y1 · · ·y|sK |Ak. We have

|yi |B ≤ q |k′|+i ≤ qCl+MK (3.10)

and |k| = |k′| + |sK |A ≤ Cl + MK ≤ C(l + 1).
Thus g = h′xy1 · · ·y|sK |Ak, where∣∣h′xy1 · · ·y|sK |A

∣∣
B

≤ qCl + MH qCl + MKqCl+MK (3.11)

≤ qC(l+1), (3.12)

which completes the proof. �

We next adapt this result to paths in the group.

Lemma 3.4. Under the conditions of Lemma 3.2, consider a sequence σ = s1 · · · sl ∈ Sl . Let

k(i) = πZr (s1 · · · si) = (
k1(i), . . . , kr (i)

)
, (3.13)

and set

M(σ) = max
1≤i≤l

∣∣k(i)
∣∣. (3.14)

Then there exist constants q and C such that, for any l and any sequence σ ∈ Sl ,

s1 · · · sl = hk (3.15)

with h ∈ H and k ∈ K ,

|h|B ≤ ClqCM(σ) (3.16)

and |k| ≤ M(σ).

Proof. Let MH = maxs∈H {|sH |B} and MK = maxs∈K{|sK |A}. Fix q such that Lemmas 3.1 and 3.3 hold and fix C

such that C ≥ MH + MKqMK .
We will induct on l. If l = 0 the result is trivial. Assume the result holds for any sequence of length l. Set σ =

(s1, . . . , sl+1) and σ ′ = (s1, . . . , sl) with si ∈ S. Set g′ = s1 · · · sl and g = g′sl+1. From the induction hypothesis,

(1) g′ = h′k′,
(2) |h′|B ≤ ClqCM(σ ′) and
(3) |k′| ≤ M(σ ′).

Observe that

g = h′k′sH sK (3.17)

= h′(k′sH k′−1)k′sK. (3.18)
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Set x = k′sk′−1 ∈ H . By Lemma 3.1,

|x|B ≤ qC|k′||sH |B ≤ MH qCM(σ ′). (3.19)

We now apply Lemma 3.3 |sK |A-times to find yi ∈ H , i ∈ {1, . . . , |sK |A}, such that k′sK = y1 · · ·y|sK |Ak. We have

|yi |B ≤ q |k′|+i ≤ qCM(σ ′)+MK . (3.20)

It follows from the definition of M(σ) and the uniqueness of the normal form that |k| ≤ M(σ).
Finally,∣∣h′xy1 · · ·y|sK |A

∣∣
B

≤ ClqCM(σ ′) + MH qCM(σ ′) + MKqCM(σ ′)+MK (3.21)

= (
Cl + MH + MKqMK

)
qCM(σ ′) (3.22)

≤ C(l + 1)qCM(σ ′) (3.23)

≤ C(l + 1)qCM(σ). (3.24)

�

We have now assembled the tools need to prove Theorem 4.

Proof of Theorem 4. Note that if the path σ in Lemma 3.4 is a random walk path in G, then M(σ) is the maximum
of the projection of that random walk to Zr . We will refer to this random variable as Mn. By Lemma 3.4 and the
hypothesis we see that if Xn = hnkn, then

|kn|S ≤ |Xn|S ≤ |hn|S + |kn|S (3.25)

≤ C′ log
(|hn|H + 1

) + |kn|S (3.26)

≤ C
(
Mn + log(n)

) + |kn|S (3.27)

for some C > 0.
To see that Xn has 1/2-tight degree of escape, first observe that, for a simple symmetric random walk on Zr , there

exist γ, δ > 0 such that P(|kn| > γ
√

n) ≥ δ, which establishes the lower bound for |Xn|S . Next, note that there exists
c > 0 such that P(Mn > x) ≤ c′ exp(−c′x2/n) [23], which implies an upper bound of the form

P
(|Xn|S > xn1/2) ≤ c exp

(−cx2) (3.28)

exists for some c > 0.
The remaining results follow from classical results on simple symmetric random walks and their maxima on Zr

[23]. �

4. Metabelian groups

The behavior of the rate of escape for metabelian groups is more complex than that of polycyclic groups. Besides
displaying a broader range of known behaviors, metabelian groups are more restrictive in terms of the generating sets
for which we can determine the rate of escape. However, by using Lemma 2.1 we can get a rough picture of what
rates of escape are possible. This is enabled by the following lemma of Baumslag, which tells us that wreath products
essentially serve as universal objects in the class of metabelian groups [3].

Lemma 4.1. Let G be a finitely generated metabelian group. Then there exists a free abelian group A of finite rank
and a finitely generated abelian group T such that G is isomorphic to a subgroup of W/N , where W = A 
 T and N

is a normal subgroup of W contained in
⊕

T A.
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This, along with results from Erschler and Revelle [9,22], leads to the following observation.

Lemma 4.2. Let G be a finitely generated, torsion free metabelian group. Let W be as in Lemma 4.1. Then exists an
adapted random walk on G such that,

(1) if d = 1, n1/2 � E|Xn| � n3/4,
(2) if d = 2, n1/2 � E|Xn| � n/ log(n) and
(3) if d ≥ 3, n1/2 � E|Xn| � n,

where d is the dimension of T .

We will explore the first case of the above lemma more in the following sections.

4.1. Abelian-by-cyclic groups and polynomials

Let G = A �φ Z, where A is torsion free. We will treat A as a vector space and denote elements thereof in boldface.
We will assume that φ : Z → SL(A) is irreducible, that is, the characteristic polynomial, pφ , of φ is irreducible. This
allows us to assume that G is 2-generated by a basis element of A and a generator of Z. Explicitly, these generating
sets are of the form

S = {
(±w,0)

} ∪ {
(e,±1)

}
(4.1)

for some basis element w of A. We will concern ourselves only with random walks on such generating sets, but note
that one can add elements of the form (±v,0) to the generating sets and still apply the techniques described below.

Remark. If pφ were reducible we might need to admit additional basis vectors of A into our generating set. In
particular, this happens when A is the direct sum of at least two φ-invariant subspaces. However, it is possible for φ

to be reducible without requiring additional elements in the generating set. This occurs when the direct sum of the
φ-invariant subspaces is of finite index in A. We treat such an example in Section 6.3.

Let Xn = (Wn,Yn) be the random walk on G driven by a symmetric measure μ on S, where Wn ∈ A and
Yn ∈ Z. Let ξi = (wi , yi) denote the increments of Xn, and denote the distributions of wi and yi as πA(μ) and
πZ(μ), respectively. Then Yn = ∑n

i=1 yi is a simple symmetric random walk on Z with distribution πZ(μ), but the
behavior of Wn is more complicated. Observe that

Wn =
(

n∑
i=1

φYi−1 wi

)
(4.2)

=
(∑

i∈Z

ωi(n)φi

)
w, (4.3)

where ωi(n) are i.i.d. random variables equal in distribution to a simple random walk on Z with distribution πZ(μ),
stopped at the random time

θi(n) = #{0 < k ≤ n | Yk = Yk−1 = i}, (4.4)

which is the local time of Yn. This polynomial can be read as a word representing Wn in G, and
∑

i∈Z
|ωi(n)| is the

length of this word. However,
∑

i∈Z
|ωi(n)| = O(n3/4), and this estimate gives the upper bound for the rate of escape

on Z 
 Z [22]. When G does not contain a wreath product as a subgroup of finite index this estimate is too large, and
we need a way to find a more efficient representation for Wn.

Let Pn denote the random polynomial in Z[t, t−1] given by (4.2). The map Z[t, t−1] → A corresponds to the
composition of the evaluation map Pn �→ Pn(φ) with the action of SL(A) on A.

We now define some properties we will use in the study of Pn. The length of a polynomial p is given by
‖p‖P = ∑

i |pi | where pi is the coefficient of the ith degree term of p. We let M(p) = max{i: |pi | > 0} and
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m(p) = min{i: |pi | > 0}. For convenience we denote M(Pn) by Mn and m(Pn) by mn, and note that these corre-
spond to the maximum and minimum of Yn. We will refer to d(p) = M(p) − m(p) as the diameter of p. We also set
K(p) = maxi |pi |.

For Z 
 Z each element of Z[t, t−1] corresponds to a distinct lamp configuration, while in G multiple elements of
Z[t, t−1] may represent the same element of A. In particular, if pφ is the characteristic polynomial of φ, then, by the
Cayley–Hamilton theorem, the following diagram commutes.

Z
[
t, t−1

]
Z

[
t, t−1

]
/〈pφ〉

A

Hence, rather than using ‖Pn‖P to estimate |Wn|G, we can obtain more accurate estimates by using a representative
in Z[t, t−1]/〈pφ〉 with smaller length. We reduce Pn modulo pφ via a process akin to a division algorithm which
lowers K(Pn) at the expense of increasing d(Pn).

4.2. The toppling lemma

We now restrict our attention solely to the modification of polynomials in Z[t, t−1]. The ability to reduce constant
polynomials is also sufficient to establish the lower exponential distortion of the (finitely generated) abelian kernel
of an abelian-by-cyclic group, so we present this case separately. Once constant polynomials can be reduced, we can
also reduce arbitrary polynomials.

Throughout this section, we will use log to denote the positive part of the logarithm function, log(k) to denote the
kth iterate of the positive part of the logarithm function, and log∗ to denote number of iterates of the logarithm needed
to produce an output less than 1.

We recall for the reader that a polynomial p has property (EDP) if

max
i

(1)|pi |
(

1 + 1

maxi
(2)|pi |

)
>

∑
i

|pi |, (EDP)

where pi denotes the coefficient of t i in p.
Rather than working with a polynomial P algebraically, we treat the absolute values of the coefficients of P as a

height function over Z. This allows us to treat the reduction of P like the toppling of an abelian sandpile (see [21]
and the references therein). We can view ‖P‖P as the total number of grains in the sandpile, and the toppling rule
for the sandpile corresponds to adding another polynomial to P when a given coefficient of P is sufficiently large in
absolute value. A site in a sandpile topples when it has more grains than a predetermined threshold. For our purposes,
we can take the threshold to be some fixed multiple of the largest coefficient of the polynomial we are reducing P by.
Note that our toppling rules are spatially homogeneous, i.e. the toppling rules correspond to all t -multiples of some
polynomial p. Thus property (EDP) can be viewed as defining a class of toppling rules.

For the classical abelian sandpile on Z, the toppling rule for site i corresponds to the polynomial t i−1(t2 − 2t + 1).
This toppling rule says that when site i topples it loses two grains and each of its neighbors gains a grain. Note that
t2 − 2t + 1 does not have (EDP). This toppling rule corresponds to the Heisenberg group, whose Z-action on Z2

is given by the matrix
( 1

0
1
1

)
, which has characteristic polynomial y. Toppling Pn by y does not produce a sharper

estimate on the length of Wn in this case because ‖Pn‖P does not change after toppling.
However, if we consider the group Sol instead, whose Z-action on Z2 is given by the matrix

( 2
1

1
1

)
which has

characteristic polynomial y(t) = t2 − 3t + 1, which has (EDP). In this case, grains of sand are lost during toppling,
and so the reduced sandpile will provide a sharper estimate on the length of Wn in G. Such sandpile models where
grains of sand can be lost during toppling are called dissipative.

The following lemmas provide some quantitative bounds on how far a sandpile will spread when it topples accord-
ing to a polynomial with (EDP).
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Lemma 4.3 (First toppling lemma). Fix K ∈ Z. If y ∈ Z[t, t−1] has property (EDP), then there exists x ∈ Z[t, t−1]
such that p(t) = K + x(t)y(t) satisfies the following

(1) K(p) < c maxi |yi | for some c > 0 and
(2) M(p) − m(p) ≤ C(b − a) logK for some C > 0.

In particular, ‖p‖P = O(logK).

Proof. We assume without loss of generality that K is positive and max(1)
i |yi | = y0 > 0. Let −a and b denote the

minimal and maximal degrees such that yi is non-zero. Set δ = ‖y‖P −y0 and r = maxi �=0 |yi |
y0

. Note that (EDP) implies
that δr < 1.

Set p(1) = K − �K/y0�y. It is clear that K(p(1)) ≤ rK , M(p(1)) = b, and m(p(1)) = a. However, the constant
term is K mody0.

We now proceed by induction on the diameter of p(i), d(p(i)) = M(p(i)) − m(p(i)). We have just done the d = 1
case. We will keep the salient information about our updates to p in terms of Ki = K(p(i)) and di = d(p(i)).

Suppose we are given Ki and di . Applying the base case to each term in p(i) yields di+1 = di + a + b and

Ki+1 ≤ δrKi + y0 (4.5)

= (δr)irK +
i−1∑
j=0

(δr)j y0 (4.6)

= (δr)irK + 1 − (δr)i

1 − δr
y0. (4.7)

Thus for i on the order of logK , Ki+1 will be bounded by some constant multiple of y0, and the desired estimates
hold. �

Lemma 4.4 (Second toppling lemma). Suppose y ∈ Z[t, t−1] has property (EDP). If P ∈ Z[t, t−1], then there exists
Q ∈ Z[t, t−1] such that

(1) P − Q ∈ 〈y〉,
(2) there exists C > 0, independent of P , such that K(Q) ≤ C and
(3) d(Q) ≤ d(P ) + O((log∗ K(P ))(logK(P ))).

Proof. We will assume that P has non-negative coefficients. This is sufficient as, for arbitrary P , we have the decom-
position P = Q − R, where qi = pi when pi > 0 and zero otherwise and ri = pi when pi < 0 and zero otherwise.
The technique below can then be applied independently to Q and R, with the only difference being that in one case
we use −y instead of y.

We will apply Lemma 4.3 iteratively to P (0) = P . This ensures (1). For the first pass we apply Lemma 4.3 to each
term of P . This produces a polynomial P (1) such that

(1) K(P (1)) ≤ |y0| logK(P (0)) and
(2) d(P (1)) ≤ d(P (0)) + C′ logK(P (0)) for some C′ > 0.

On the nth pass we have

(1) K(P (n)) ≤ |y0|∑n−1
i=1 log(i) |y0| + logn K(P (0)) and

(2) d(P (n)) ≤ d(P (0)) + C
∑n−1

i=0 logK(P (i)), for some C > 0.

It takes on the order of log∗ K(P (0)) iterations to bring K(P (n)) below some fixed constant C (which depends on
|y0|), from which the desired estimates follow. �

We now apply this lemma to prove Theorem 2.
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Proof of Theorem 2. Note that

|Yn|G ≤ |Xn|G ≤ |Wn|G + |Yn|G. (4.8)

By dint of the polynomial representation of Wn, Lemma 4.4 implies that

|Wn|G ≤ ‖Qn‖P (4.9)

= O
(
d(Pn)

)
, (4.10)

where Qn is the reduced version of Pn. One can observe that d(Pn) is on the order of the maximum of Yn, and so Xn

has escape exponent 1/2 via the reasoning in the proof of Theorem 4. �

5. Metabelian groups with mixed distortion

We no turn our attention towards proving Theorem 3. We will continue to operate under the notation and assumptions
introduced in Section 4.1. We now introduce some notions and notation that will help us talk more accurately about
Z-actions on Zd .

Fix φ ∈ SL(A), and let d denote the abelian rank of A. The expanding eigenspace, E+, of φ is the span of the eigen-
vectors whose eigenvalues have modulus distinct from 1. Note that the expanding eigenspace includes the directions
in which φ is expanding and the directions in which it is contracting.

The neutral eigenspace, E0, of φ is the span of the eigenvectors whose eigenvalues have modulus 1. Points in
E0 are not necessarily undistorted by the action of φ; for instance, if some of the corresponding eigenvalues have
multiplicities greater than 1, we may see polynomial distortion as in the Heisenberg group. Outside of exceptions like
this, it is convenient to think of φ as acting like a rotation on E0.

We will need to index over the eigenvectors which span these eigenspaces. We will denote their index sets by I+
and I0. We will refer to the eigenvalues as {λi} and the corresponding eigenvectors by {vi}. Furthermore, we will
assume the eigenvalues satisfy

|λ1| ≥ · · · ≥ |λd |. (5.1)

Let ‖ ·‖ denote the Euclidean norm on Cd , which projects isometrically to the Euclidean norm on Rd , Zd or Z[ρ]d .
Note that the Euclidean metric on Zd is equivalent to any intrinsic metric of Zd as a finitely generated group. We will
also use ‖ · ‖ to denote the extension of this norm to linear operators on Cd (i.e. the L2 norm).

Let π+ denote the projection to E+ and π0 the projection to E0. We denote the distance of a vector v ∈ Cd from
E+ as

d+(v) = ∥∥(I − π+)v
∥∥. (5.2)

Likewise, we denote the distance from E0 as d0.

Lemma 5.1. There exists C > 0 such that for all k ∈ Z and any v ∈ Cd

d0
(
φkv

) ≤ C|λ1|k (5.3)

and

d+
(
φkv

) ≤ C. (5.4)

Proof. Let wi denote the coefficients of w in its eigendecomposition. Then

(I − π0)φ
kw =

∑
i∈I+

λk
i wi(I − π0)vi (5.5)
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and

(I − π+)φkw =
∑
i∈I0

λk
i wi(I − π+)vi . (5.6)

The desired estimates follow by our assumptions on the moduli of the eigenvalues. �

The above lemma establishes how far the increments of Wn can move the random walk from E0 and E+. This result
can be seen as a more precise version of Lemma 3.1 for abelian-by-cyclic groups. When Zd has lower exponential
distortion in G, E0 = {0}, so in this case the exponential upper bound is sharp.

Using the above lemma, we can see that a random walk will move away from the expanding eigenspace at rate n1/2.

Lemma 5.2. There exists C > 0 such that

Eμd+(Wn) ≤ Cn1/2 (5.7)

for all n ≥ 0.

Proof. Consider the process W0
n = (I −π+)Wn, which gives the deviation of Wn from E+. This process is a random

walk in Cd whose increments have bounded length. The increments are of the form

ξ ε
kn

= εφknw, (5.8)

where kn ∈ Z, ε ∈ {−1,1} and w = ∑
i∈I0

wi(I − π0)vi . The distribution on εw is uniform, but the distribution of kn

is equal to that of Yn. However, if we let μn denote the distribution on the nth increment of the process, we have∑
ε

∑
k

ξ ε
kμn

(
ξε
k

) = 0. (5.9)

As the increments of W0
n are centered and have bounded length, the desired result holds by an application of the

Lindeberg–Feller theorem [8]. �

We now give a heuristic as to how to take advantage of the above lemma. Suppose Wn is typical for the process.
We know it takes on the order of n1/2 steps in A to get from Wn to E+. Next we will show that it takes on the order
of n1/2 steps utilizing the action of φ to get to a point with the same projection to E+ as Wn. In doing so, we will
generally pick up some distance from Wn, but so long as this is on the order of n1/2 we will have shown that Xn is
roughly distance n1/2 from the origin. We will do this by using Lemma 4.4 to reduce Pn relative to p+ = ∑

i∈I+ pit
i .

This reduction will be referred to as Qn; see Fig. 1 for a depiction of how Qn(φ)w compares to Wn.
We will need the following generalization of the Cayley–Hamilton theorem. The proof is a direct computation and

is left to the reader.

Lemma 5.3. Let φ ∈ SLd(C). Denote the eigenvalues of φ by λi and the corresponding eigenvectors by vi . Fix an
index set I ⊆ {1, . . . , d}. Let EI = spani∈I {vi}. Then φ is a solution of

pI (x) =
∏
i∈I

(x − λi) = 0 (5.10)

over EI .

Lemma 5.4. Given Pn, if p+ has property (EDP), then there exists Qn ∈ Z[t, t−1] such that

(1) Pn − Qn ∈ 〈p+〉,
(2) Pn(φ) − Qn(φ) acts trivially on E+,
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Fig. 1. The model of an efficient path in Zd �φ Z projected to Zd .

(3) d+(Qn(φ)w) ≤ O(‖Qn‖P ) for all w and
(4) there exists C > 0, independent of n, such that ‖Qn‖P ≤ Mn − mn + C(log∗ Kn)(logKn).

Proof. We apply Lemma 4.4 to Pn using y = p+. Item (1) follows from the construction used in Lemma 4.4, and
item (4) is the second conclusion of Lemma 4.4.

Item (2) follows from (1) and the following observation: if u ∈ E+, then

p+(φ)u =
∑
i∈I+

∏
i∈I+

(φ − λiI )uivi (5.11)

= 0. (5.12)

For (3) we compute that

d+
(
Qn(φ)w

) = ∥∥(I − π+)Qn(φ)w
∥∥ (5.13)

=
∥∥∥∥(I − π+)

∑
i

Qn(λi)wivi

∥∥∥∥ (5.14)

=
∥∥∥∥∑

i∈I−
Qn(λi)wivi

∥∥∥∥ (5.15)

≤
∑
i∈I−

∥∥Qn(λi)wivi

∥∥ (5.16)

≤ C
∑
i∈I−

∥∥Qn(λi)
∥∥. (5.17)

As λi has modulus 1 for each i ∈ I−, the final sum is on the order of ‖Qn‖P . �

We can now conclude that the random walk on G has escape exponent 1/2.

Proof of Theorem 3. Recall that Wn = Pn(φ)w. For the conclusion to hold we only need to show that |Wn|G has
the desired behavior. This is done by showing that |Wn|G is on the order of Mn plus a term that behaves like the
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displacement of random walk with bounded increments on a Euclidean space. As in the proof of Theorem 1, this will
be sufficient to imply escape exponent 1/2.

Apply Lemma 5.4 to obtain Qn. Observe that

Wn = Qn(φ)w − (
Pn(φ) − Qn(φ)

)
w, (5.18)

and so

|Wn|G ≤ ∣∣Qn(φ)w
∣∣
G

+ ∣∣(Pn(φ) − Qn(φ)
)
w

∣∣
G
. (5.19)

As (Pn(φ) − Qn(φ))w lies in E0, we have, by an application of the triangle inequality and Lemmas 5.2 and 5.4,∣∣(Pn(φ) − Qn(φ)
)
w

∣∣
G

= O
(‖Qn‖P + n1/2). (5.20)

Combining this with the estimate on |Qn(φ)w|G to be had from Lemma 5.4, we have

|Wn|G = O
(‖Qn‖P + n1/2), (5.21)

which is on the order of the maximum of Yn. Escape exponent 1/2 follows from this observation. �

6. Summary and examples

6.1. Polycyclic groups

Combining Theorem 1 with the known escape exponent for groups of polynomial volume growth we have the follow-
ing.

Theorem 5. Let G be a torsion-free polycyclic group. If the nilpotent kernel of G has strict polynomial distortion or
lower exponential distortion then any simple symmetric random walk on G has escape exponent 1/2. Furthermore, the
former case corresponds to G having polynomial volume growth, while in the latter case G has exponential volume
growth.

We now provide some tools for determining when the nilpotent kernel of a polycyclic group has lower exponential
distortion. Sol and similar groups make for a good place to begin.

Lemma 6.1. Let G = Z2 �φ Z with φ ∈ SL2(Z) with | tr(φ)| > 2. Then Z2 has lower exponential distortion in G.

Proof. Let B = b1, b2 be the canonical basis element of Z2, and let z be the standard basis element of Z. We compute
that

zkbiz
−2kb

det(φ)k

i = φkbi + det(φ)kφ−kbi (6.1)

= b
tr(φk)
i . (6.2)

The left-hand side above has length 3k + 2 in the word metric corresponding to S, while b
tr(φk)
i has length exponential

in k in terms on the word metric corresponding to B . Thus any w ∈ Z2 can be written in G as a word with length on
the order of log(|w|B + 1). �

We can move beyond abelian-by-cyclic polycyclic groups using the following observation.

Lemma 6.2. Let G = N �Zr be a torsion-free polycyclic group. Consider N as a group of upper-triangular matrices
with ones on the diagonal. If two coordinate subgroups, H1 and H2, of N have lower exponential distortion in G, then
so does K = [H1,H2].
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Proof. By hypothesis either H1 ∼= H2 ∼= K ∼= Z or K is trivial. We have assumed that the trivial group has lower
exponential distortion so we will suppose that K ∼= Z. Let k ∈ K . Then for any h1 ∈ H1 and h2 ∈ H2 such that
k = [h1, h2],

|k|G ≤ 2
(|h1|G + |h2|G

)
(6.3)

≤ c1 log
(|h1|H1 + 1

) + c2 log
(|h2|H2 + 1

) + c1 + c2. (6.4)

The lower exponential distortion of K follows from this as |k|K ≥ |h1|H1, |h2|H2 . �

Combining, the prior lemmas lets us construct nilpotent-by-cyclic groups whose nilpotent kernels have lower ex-
ponential distortion.

Corollary 6.1. Let H3(Z) denote the three dimensional Heisenberg group over Z and set G = H3(Z) �φ Z where φ

acts on the abelianization of H3(Z) as an element of SL2(Z), with trace greater than 2 in absolute value. Then H3(Z)

has lower exponential distortion in G.

6.2. Metabelian groups

In what follows we will assume that G is a two-generated abelian-by-cyclic group. This is done for ease of presentation
rather than for any failure of the techniques used. It is clear that we may take any symmetric generating set in the
cyclic subgroup without changing the rate of escape as the behavior of the maximum of the random walk on the cyclic
subgroup is changed only up to a constant multiple. Admitting additional generators in the abelian kernel is also not
problematic. If we have generators {w(i), . . . ,w(k)}, then Wn = ∑k

i=1 P
(i)
n (φ)w(i), and we now just have to apply

Lemma 4.4 independently to each of these polynomials. Thus, so long as our generating set contains no elements with
non-trivial projections to both the abelian kernel and the cyclic subgroup, the corresponding random walk will have
escape exponent 1/2. We view this as merely a technical restriction.

The results on metabelian groups apply without hassle to groups whose abelian kernel is Zd . Next we consider
the case when the abelian kernel is of the form Z[ρ]d , where ρ is an algebraic number. If ρ is rational, then some
integer multiple of pφ will lie in Z[t, t−1], so our results readily apply to the Baumslag–Solitar groups BS(1, n) and
higher dimensional generalizations thereof. If ρ is not rational, one needs to find a multiple of pφ with (EDP) (which
implicitly must have integer coefficients).

Since metabelian groups may have non-finitely generated subgroups, subgroup distortion is not the appropriate tool
to analyze the behavior of random walks. Instead, for abelian-by-cyclic groups we can generalize to the characteristic
polynomial of φ having property (EDP).

Lemma 6.3. Let G = A�φ Z where A is finitely generated. If a multiple of the characteristic polynomial of φ satisfies
(EDP), then A has lower exponential distortion in G.

Proof. By the hypothesis, Lemma 4.3 states that the polynomial x(t) = K can be represented in 〈pφ〉 by a polynomial
p with ‖p‖P = O(logK). Via the polynomial model for G, p represents a word in G with length ‖p‖P . This implies
that any d-tuple in A, where d is the abelian rank of A, can be represented in G by a word whose length is logarithmic
in terms of the length in A, and so lower exponential distortion holds. �

We now highlight a specific case of the above lemma. For φ ∈ SL2(Z), there are hyperbolic φ with | tr(φ)| ≤ 2.
One can check that in this case det(φ) = −1. Then(

x2 + tr(φ)x − 1
)
pφ(x) = x4 − (

2 + tr(φ)2)x2 + 1, (6.5)

so these examples have lower exponential distortion as well. A similar analysis to this was done by Warshall to study
the existence of dead-ends in the Cayley graphs of abelian-by-cyclic groups [28]. This observation, along with the
fact that non-hyperbolic automorphisms imply polynomial volume growth, leads to the following corollary
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Corollary 6.2. Let φ be a hyperbolic automorphism of Z2. Then Z2 has lower exponential distortion in Z2 �φ Z if
and only if φ is hyperbolic.

For groups with higher dimensional abelian kernels the situation is more complicated. We treat this case in the
following section. We close this section with an example where G is not 2-generated.

Example. Let λ = 1+√
5

2 , and note that 1/ρ = ρ − 1. Consider the group G = Z[ρ]2 �φ Z, where

φ =
(

λ 0
0 λ−1

)
. (6.6)

Since φ is diagonal we need to take two generators from Z[ρ]2, namely e1 and e2, the standard basis vectors of Z2.
Note that Z[ρ]2 = span{e1, e2,

√
5e1,

√
5e2}. The characteristic polynomial of φ is x2 − √

5x + 1, which does not lie
in Z[t, t−1]. However,(

x2 + √
5x + 1

)
pφ = x4 − 3x2 + 1, (6.7)

so property (EDP) is satisfied, and we can conclude that any symmetric random walk on G whose law has support
{(±e1,0), (±e2,0), (0,±1)} has escape exponent 1/2.

It is interesting to note that Z[ρ]2 is isomorphic to Z4, and that the action induced on Z4 by φ corresponds to the
matrix (with coordinates ordered as (e1,

√
5e1, e2

√
5e2)),

M =
⎛
⎜⎝

0 1 0 0
1 1 0 0
0 0 −1 1
0 0 1 0

⎞
⎟⎠ , (6.8)

which has characteristic polynomial pM(x) = x4 −3x2 +1. The moral of this example is that if one wishes to consider
abelian kernels of the form Z[ρ]d where ρ is an algebraic number, it may pay rewrite the group in terms of an action
on Zd ′

for suitably chosen d ′.

6.3. Abelian kernels without lower exponential distortion

There are two examples we wish to highlight. The first example is due to Conner [5]. Let G1 = Z4 �φ Z where

φ =
⎛
⎜⎝

2 −1 2 −1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎠ . (6.9)

G has exponential volume growth, but every cyclic subgroup is undistorted in G [5,19].
The matrix φ has two positive, real eigenvalues distinct from 1 and two complex eigenvalues of modulus 1. The

characteristic polynomial factors as

pφ(x) = (
x2 − (

1 + √
2
)
x + 1

)(
x2 − (

1 − √
2
)
x + 1

)
, (6.10)

where the first factor corresponds to the eigenvalues with roots of modulus distinct from 1. That the characteristic
polynomial does not factor over Z makes this example difficult to work with.

We also consider G2 = Z4 �ψ Z for

ψ =
⎛
⎜⎝

3 −2 3 −1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎠ . (6.11)
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This group has two real eigenvalues distinct from 1 and two complex eigenvalues of modulus 1, namely i and −i. The
characteristic polynomial factors as

pψ(x) = (
x2 − 3x + 1

)(
x2 + 1

)
. (6.12)

The first factor corresponds to the eigenvalues with modulus distinct from 1 while the other factor corresponds to the
eigenvalues with modulus 1.

Every cyclic subgroup of G1 is undistorted [5]. This is because the E+ and E0 for φ only intersect Z4 at the origin.
However, the characteristic polynomial of ψ splits over Z so E+ and E0 have non-trivial intersections with Z4. In
particular, (E+ ⊕ E0) ∩ Z4 has finite index in Z4. One can also check that G2 is two generated if w is taken to be one
of the canonical basis vectors of Z4; this happens because the basis vectors do not lie in (E+ ⊕ E0) ∩ Z4.
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