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Abstract. We study a one-dimensional stochastic differential equation driven by a stable Lévy process of order α with drift and
diffusion coefficients b,σ . When α ∈ (1,2), we investigate pathwise uniqueness for this equation. When α ∈ (0,1), we study
another stochastic differential equation, which is equivalent in law, but for which pathwise uniqueness holds under much weaker
conditions. We obtain various results, depending on whether α ∈ (0,1) or α ∈ (1,2) and on whether the driving stable process is
symmetric or not. Our assumptions involve the regularity and monotonicity of b and σ .

Résumé. Nous étudions une équation différentielle stochastique de dimension 1 dirigée par un processus de Lévy stable. Lorsque
α ∈ (1,2), nous examinons l’unicité trajectorielle pour cette équation. Quand α ∈ (0,1), nous étudions une autre équation, équi-
valente en loi, mais pour laquelle l’unicité trajectorielle s’avère vraie sous des hypothèses bien plus faibles. Nous obtenons des
résultats variés, selon que α ∈ (0,1) ou α ∈ (1,2) et selon que le processus stable dirigeant l’équation est symétrique ou non. Nos
hypothèses concernent la régularité et la monotonie des coefficients de dérive et de diffusion.
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1. Introduction and results

For a−, a+ in [0,∞) and α ∈ (0,2) \ {1}, we consider the measure on R∗:

να
a−,a+(dz) = |z|−α−1[a−1{z<0} + a+1{z>0}]dz. (1)

Let now N(ds dz) be a Poisson measure on [0,∞) × R∗ with intensity measure ds να
a−,a+(dz). Setting

{
Zt = ∫ t

0

∫
R∗ zN(ds dz) if α ∈ (0,1),

Zt = ∫ t

0

∫
R∗ zÑ(ds dz) if α ∈ (1,2),

(2)

the process (Zt )t≥0 is a stable process of order α with parameters a−, a+, or a (α, a−, a+)-stable process in short. It
is said to be symmetric if a− = a+. Here Ñ stands for the compensated Poisson measure, see Jacod and Shiryaev [9],
Chapter II. Any one-dimensional stable process can be written as in (2), see Bertoin [4] and Sato [15] for many details
on stable processes. We consider, for some measurable functions σ,b : R �→ R, the S.D.E.

Xt = x +
∫ t

0
σ(Xs−)dZs +

∫ t

0
b(Xs)ds. (3)
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Our aim in this paper is to investigate pathwise uniqueness for this equation. Let us recall briefly the known results on
this topic.

• Pathwise uniqueness classically holds when b,σ are both Lipschitz-continuous, see e.g. Ikeda and Watanabe [8],
Chapter 4, and Protter [13], Chapter 5.

• When α ∈ (1,2), a+ = a− and b = 0, Komatsu [10] has shown pathwise uniqueness if σ is Hölder-continuous with
index 1/α, see also Bass [1].

• Bass, Burdzy and Chen [3] have proved that the above results are sharp: if a− = a+ and b = 0, for any β <

min(1,1/α), one can find a function σ , Hölder-continuous with index β , bounded from above and from below,
such that pathwise uniqueness fails for (3).

• When α ∈ (1,2) and a− = 0, Li and Mytnik [12] have proved pathwise uniqueness if σ is non-decreasing and
Hölder-continuous with index 1−1/α and if b is the sum of a Lipschitz-continuous function and of a non-increasing
function. This last result continues the work of Fu and Li [7].

We refer to the review paper of Bass [2] and to the works of Fu and Li [7] and Li and Mytnik [12] for many more
details on the subject. In [7,12], much more general jumping S.D.E.s are considered. See also Situ [16] for a book on
general S.D.E.s with jumps.

Our aims in this paper are the following. We will investigate pathwise uniqueness for (3) when α ∈ (1,2) without
assuming a− = a+ or a− = 0. When α ∈ (0,1), we will study another stochastic differential equation, which is
equivalent in law, but for which pathwise uniqueness holds under much weaker conditions.

1.1. Preliminaries

When α ∈ (1,2), we will study the S.D.E. (3). When α ∈ (0,1), we will rather study the following equation: for
M(ds dz du) a Poisson measure on [0,∞) × R∗ × R∗ with intensity measure ds να

a−,a+(dz)du,

Yt = x +
∫ t

0

∫
R∗

∫
R∗

z[1{0<u<γ (Ys−)} − 1{γ (Ys−)<u<0}]M(ds dz du) +
∫ t

0
b(Ys)ds, (4)

where γ (x) = sign(σ (x)) · |σ(x)|α . See Fu and Li [7], Eq. (5.6), for a similar equation. This equation is equivalent, in
law, to (3). It has to be seen as another representation of (3).

Lemma 1. Let α ∈ (0,1) and a−, a+ ∈ [0,∞).

(i) Let (Yt )t≥0 solve (4). There exists a (α, a−, a+)-stable process (Zt )t≥0 such that (Yt )t≥0 solves (3).
(ii) Let (Xt )t≥0 solve (3). There exists, on an enlarged probability space, a Poisson measure M on [0,∞) × R∗ ×

R∗ with intensity measure ds να
a−,a+(dz)du such that (Xt )t≥0 solves (4).

Let us finally recall the following existence result.

Proposition 2. Let α ∈ (0,2) \ {1} and a−, a+ ∈ [0,∞). Assume that σ,b have at most linear growth.

(i) If b,σ are continuous, there is weak existence for (3).
(ii) For any solution to (3), any β ∈ (0, α), any T > 0, E[sup[0,T ] |Xt |β ] < ∞.

These results must be standard, but we found no precise reference. The weak existence is almost contained in Situ
[16], Theorem 175.

1.2. The case where α ∈ (1,2)

This section is devoted to the study of (3) when α ∈ (1,2). We first introduce some notation.

Lemma 3. For α ∈ (1,2), set a = cos(πα) ∈ (−1,1). Then for c ∈ [0,1],

β(α, c) := 1

π
arccos

(
c2(1 − a2) − (1 + ca)2

c2(1 − a2) + (1 + ca)2

)
∈ [α − 1,1].
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There holds β(α,0) = 1, β(α,1) = α − 1 and β(α, c) ∈ (α − 1,1) for c ∈ (0,1).

We may assume that a− ≤ a+ without loss of generality: if a− > a+, write σ(Xs−)dZs = σ̃ (Xs−)dZ̃s , where
σ̃ = −σ and Z̃t = −Zt is a (α, a+, a−)-stable process.

Theorem 4. Consider a stable process (Zt )t≥0 of order α ∈ (1,2) with parameters 0 ≤ a− ≤ a+. Set β =
β(α, a−/a+) as in Lemma 3. Assume that σ,b have at most linear growth and that for some constants κ0, κ1 ∈ [0,∞),

• σ is Hölder-continuous with index (α − β)/α (which lies in [1 − 1/α,1/α]),
• for all x, y ∈ R, sign(x − y)(a+ − a−)(σ (y) − σ(x)) ≤ κ1|x − y|,
• for all x, y ∈ R, sign(x − y)(b(x) − b(y)) ≤ κ0|x − y|.

Consider two solutions (Xt )t≥0 and (X̃t )t≥0 to (3) started at x and x̃.

(i) For any t ≥ 0, there holds

E
[|Xt − X̃t |β

] ≤ |x − x̃|βeCt ,

where C depends only on κ0, κ1, α, a−, a+. Thus pathwise uniqueness holds for (3).
(ii) If furthermore b is constant and (a+ − a−)σ is non-decreasing, then ∀t ≥ 0,

E
[|Xt − X̃t |β

] = |x − x̃|β.

Observe that the condition on b holds as soon as b = b1 + b2, with b1 non-increasing and b2 Lipschitz-continuous.
When a+ = a−, we have β = α − 1 and thus we only assume that σ is Hölder-continuous with index 1/α, as Komatsu
[10] or Bass [1]. But when a− < a+, there is automatically a compensation in the driving stable process, which
introduces a sort of drift term. Our assumption on σ holds if σ = σ1 + σ2, with σ1 Lipschitz-continuous and σ2

Hölder-continuous with index (α − β)/α and non-decreasing. Observe that (α − β)/α < 1/α, so that if σ is non-
decreasing, the assumption on σ is weaker if a− < a+ than if a− = a+. Finally, if a− = 0, then β = 1, so that our
assumption on σ holds if σ = σ1 + σ2, with σ1 Lipschitz-continuous and σ2 Hölder-continuous with index 1 − 1/α

and non-decreasing. This last case is thus very similar to the result of Li and Mytnik [12].
As compared to [1,10,12], point (i) allows us to treat the case a− 
= a+ and a− 
= 0 and provides some simple

stability estimates with respect to the initial datum. Point (ii) is a remarkable property. It was already discovered by
Komatsu [10] when a− = a+ (and thus β = α − 1), although not explicitly stated. A similar remarkable identity holds
in the Brownian case (with α = 2 and β = α − 1 = 1), see Le Gall [11], Theorem 1.3 and its proof.

As a by-product, our proof allows us to check the following statement. See [6], Theorems 4 and 5, for similar
considerations about the stochastic heat equation.

Proposition 5. Assume that α ∈ (1,2) and that a− = a+ > 0. Suppose that σ,b have at most linear growth, that σ is
Hölder-continuous with index 1/α and that b is non-increasing and continuous.

(i) If (b, σ ) is injective, then (3) has at most one invariant distribution.
(ii) If there is a strictly increasing function ρ : R+ �→ R+ such that

∀x, y ∈ R, 1{x 
=y}|x − y|α−2[∣∣b(x) − b(y)
∣∣ + ∣∣σ(x) − σ(y)

∣∣α] ≥ ρ
(|x − y|),

then for any pair of solutions (Xt )t≥0 and (X̃t )t≥0 to (3) started at x and x̃ (driven by the same stable process (Zt )t≥0),
limt→∞ |Xt − X̃t | = 0 a.s.

The basic example of application is the following: if b(x) = −x, then the conclusions of (i) and (ii) hold under the
sole assumption that σ is Hölder-continuous with index 1/α. In particular, no positivity of σ is required at all. We
only treat the case where a− = a+, because the other possible results are less interesting (although the proof is easily
extended): some monotonicity conditions have to be imposed on the true drift coefficient, which involves b and σ .
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1.3. The case where α ∈ (0,1)

Our goal is now to show that when α ∈ (0,1), (4) is a nice representation of (3), in the sense that pathwise uniqueness
holds for a larger class of functions σ , the Lipschitz condition being replaced by a weaker condition. First, we state a
general result without monotonicity conditions on σ .

Theorem 6. Let α ∈ (0,1) and a−, a+ ∈ [0,∞). Consider a Poisson measure M on [0,∞) × R∗ × R∗ with intensity
mesure ds να

a−,a+(dz)du. Assume that σ,b have at most linear growth and that for some constant κ0 ∈ [0,∞),

• γ (x) = sign(σ (x)) · |σ(x)|α is Hölder-continuous with index α,
• for all x, y ∈ R, sign(x − y)(b(x) − b(y)) ≤ κ0|x − y|.

Consider two solutions (Yt )t≥0 and (Ỹt )t≥0 to (4) started at x and x̃. Then for any β ∈ (0, α), any t ≥ 0,

E
[|Yt − Ỹt |β

] ≤ |x − x̃|βeCt ,

where C depends only on α,a−, a+, β, κ0 and on the Hölder constant of γ . Thus pathwise uniqueness holds for (4).

Observe at once that if σ is bounded below by a positive constant and Hölder-continuous with index α, then γ is
also Hölder-continuous with index α. But if σ vanishes, it has to be Lipschitz-continuous around its zeros. This is not
only a technical condition as shown by Komatsu [10] or Bass [1], Remark 3.4: if α ∈ (0,1), x = 0, b = 0, a− = a+ = 1
and σ(x) = |x|β (whence γ (x) = |x|βα) for some β < 1, then uniqueness in law fails for (3), whence it also fails for
(4).

When a− = 0 and σ is non-negative, (4) is a particular case of [7], Eq. (5.6). To apply [7], Theorem 5.6, one needs,
roughly, the local Lipschitz-continuity of σ .

It might be surprising at first glance that in some cases, pathwise uniqueness holds for (4) but not for (3). This comes
from the fact that, e.g. when starting from two initial positions x and x̃, (4) builds two different stable processes
(coupled in a suitable way) to drive (Yt )t≥0 and (Ỹt )t≥0, while in (3), the same stable process drives (Xt )t≥0 and
(X̃t )t≥0. We see that the choice made in (4) is more efficient.

Let us now try to take advantage of some monotonicity considerations when a− 
= a+. This seems possible only if
α ∈ (1/2,1) and if a−/a+ is small enough.

Lemma 7. For α ∈ (1/2,1), set a = cos(πα) ∈ (−1,0). Then for c ∈ [0,−a),

β(α, c) := 1

π
arccos

(
1 − a2 − (c + a)2

1 − a2 + (c + a)2

)
∈ (0,2α − 1].

There holds β(α,0) = 2α − 1 and, for any c ∈ (0,1), limα→1− β(α, c) = 1.

We only consider the case a− < a+ without loss of generality.

Theorem 8. Assume that α ∈ (1/2,1), that a−/a+ < | cos(πα)| and set β := β(α, a−/a+) as in Lemma 7. Consider
a Poisson measure M on [0,∞) × R∗ × R∗ with intensity measure ds να

a−,a+(dz)du. Assume that σ,b have at most
linear growth and that for some constants κ0, κ1 ∈ [0,∞),

• γ (x) = sign(σ (x)) · |σ(x)|α is Hölder-continuous with index α − β ,
• for all x, y ∈ R, sign(x − y)(γ (x) − γ (y)) ≤ κ1|x − y|α ,
• for all x, y ∈ R, sign(x − y)(b(x) − b(y)) ≤ κ0|x − y|.

Consider two solutions (Yt )t≥0 and (Ỹt )t≥0 to (4) started at x and x̃.

(i) Then for any t ≥ 0,

E
[|Yt − Ỹt |β

] ≤ |x − x̃|βeCt ,

where C depends only on a−, a+, α, κ0, κ1. Thus pathwise uniqueness holds for (4).
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(ii) If furthermore b is constant and γ is non-increasing, then ∀t ≥ 0,

E
[|Yt − Ỹt |β

] = |x − x̃|β.

This last property is of course remarkable. If a− = 0, the above result holds when γ = γ1 + γ2, with γ1 Hölder-
continuous with index α and γ2 non-increasing and Hölder-continuous with index 1 − α, which is very small when α

is close to 1. More generally, when a− < a+ and if α is very close to 1, one has to assume only very few regularity on
γ , provided it is non-increasing.

1.4. Comments

First observe that when a− < a+, the favorable monotonicity of σ is not the same if α ∈ (0,1) and if α ∈ (1,2). This
is due to the fact that when α ∈ (1,2), the main problem is due to the compensation (which appears negatively in the
equation).

Let us summarize roughly our results. Denote by H(δ) the set of Hölder-continuous functions with index δ and
by H↓(δ) (resp. H↑(δ)) its subset of non-increasing (resp. non-decreasing) functions. Recall that when σ is bounded
below by a positive constant, the regularity of γ (x) = sign(σ (x)) · |σ(x)|α is the same as that of σ . We have pathwise
uniqueness for (4) (if α ∈ (0,1)) and (3) (if α ∈ (1,2)) if b = b1 + b2 has at most linear growth, with b1 ∈ H(1) and
b2 non-increasing and if σ = σ1 +σ2 (or γ = γ1 +γ2) satisfies (we set β(α, c) = 0 if α ∈ (0,1/2] or if c ≥ − cos(πα)):

α ∈ (0,1) α ∈ (1,2)

a− = a+ γ ∈ H(α) σ ∈ H(1/α)

a− < a+ γ1 ∈ H(α), σ1 ∈ H(1),
γ2 ∈ H↓(α − β(α, a−/a+)) σ2 ∈ H↑(1 − β(α, a−/a+)/α)

a− = 0 γ1 ∈ H(α), σ1 ∈ H(1),
γ2 ∈ H↓(1 − α) σ2 ∈ H↑(1 − 1/α)

See Fig. 1 for an illustration. Thus the situation is quite intricate. When a− = a+ and σ is bounded from below, we
have to assume that σ ∈ H(min{α,1/α}). It seems quite strange that the required regularity of σ is low when α is
small, maximal when α = 1 and small again when α is near 2. A more tricky representation of (3) might allow one to
obtain some better results.

When a− = 0 and σ is bounded from below and monotonic, we have to assume that σ ∈ H(α) (if α ∈ (0,1/2]),
σ ∈ H↓(1 − α) (if α ∈ (1/2,1)) and σ ∈ H↑(1 − 1/α) (if α ∈ (1,2)). Thus few regularity is needed when α is near 0
or 1 and higher regularity is needed when α is near 1/2 and 2.

Fig. 1. Index of Hölder regularity of γ (if α ∈ (0,1)) or σ (if α ∈ (1,2)) required for pathwise uniqueness as a function of α. The four curves
coincide on [0,1/2].
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Theorem 4 is not so good when a− < a+, because we have to assume the Lipschitz-continuity of the decreasing
part of σ . On the contrary, Theorem 6 works quite well for any value of a−, a+.

Theorems 4 and 8 really rely on specific properties of stable processes. Theorem 6, of which the proof is much
simpler, may be easily extended to other jumping S.D.E.s with finite variations. For example, some of the Lipschitz
assumptions of [5] can be consequently weakened.

1.5. Plan of the paper

In the next section, we prove Lemmas 3 and 7 and show that some integrals vanish. These integrals are those that
appear when we use the Itô formula to compute |Xt − X̃t |β for two solutions to (3) or (4). Section 3 shows how to
approximate these integrals. We prove Theorem 4 and Proposition 5 in Section 4. Section 5 is devoted to the proofs
of Theorems 6 and 8. We finally check Proposition 2 and Lemma 1 in Section 6.

2. Computation of some integrals

This technical section contains the main tools of the paper. We introduce

for α ∈ (0,1) and β ∈ (0, α), Iα,β
a−,a+ =

∫
R∗

[|1 − x|β − 1
]
να
a−,a+(dx), (5)

for α ∈ (1,2) and β ∈ (0, α), Ĩ α,β
a−,a+ =

∫
R∗

[|1 + x|β − 1 − βx
]
να
a−,a+(dx). (6)

Observe that all the above integrals converge absolutely. The aim of this section is to prove Lemmas 3 and 7, as well
as the following identities.

Lemma 9. (i) Let α ∈ (1/2,1) and 0 ≤ a− ≤ a+ such that a−/a+ < − cos(πα). Set β = β(α, a−/a+) ∈ (0,2α − 1]
as in Lemma 7. There holds I

α,β
a−,a+ = 0.

(ii) Let α ∈ (1,2) and 0 ≤ a− ≤ a+. Set β = β(α, a−/a+) ∈ [α − 1,1] as in Lemma 3. There holds Ĩ
α,β
a−,a+ = 0.

Proof. We start with point (i). Observe that β ≤ 2α − 1 < α, so that the integral is convergent. We write I
α,β
a−,a+ =

a−A1 + a+A2 + a+A3, where

A1 =
∫ ∞

0

[
(1 + x)β − 1

]
x−α−1 dx,

A2 =
∫ 1

0

[
(1 − x)β − 1

]
x−α−1 dx,

A3 =
∫ ∞

1

[
(x − 1)β − 1

]
x−α−1 dx.

Using an integration by parts and then putting u = 1/(1 + x), one can check that

A1 = β

α

∫ ∞

0
(1 + x)β−1x−α dx = β

α

∫ 1

0
uα−β−1(1 − u)−α du = βΓ (α − β)Γ (1 − α)

αΓ (1 − β)
,

where Γ is the Euler function. Next, an integration by parts implies that

A2 = 1

α
− β

α

∫ 1

0
(1 − x)β−1x−α dx = 1

α
− βΓ (β)Γ (1 − α)

αΓ (1 − (α − β))
.

Finally, setting x = 1/u, we get

A3 =
∫ ∞

1
(x − 1)βx−α−1 dx − 1

α
=

∫ 1

0
(1 − u)βuα−β−1 du − 1

α
= Γ (β + 1)Γ (α − β)

Γ (α + 1)
− 1

α
.
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We thus find, recalling that Γ (a + 1) = aΓ (a),

Iα,β
a−,a+ = β

α

[
a−

Γ (α − β)Γ (1 − α)

Γ (1 − β)
− a+

Γ (β)Γ (1 − α)

Γ (1 − (α − β))
+ a+

Γ (β)Γ (α − β)

Γ (α)

]
.

Using now Euler’s reflection formula Γ (x)Γ (1 − x) = π/ sin(πx) for x ∈ (0,1),

Iα,β
a−,a+ = βΓ (β)Γ (α − β)

αΓ (α)

[
a−

sin(πβ)

sin(πα)
− a+

sin(π(α − β))

sin(πα)
+ a+

]

= a+βΓ (β)Γ (α − β)

αΓ (α) sin(πα)

[
c sin(πβ) − sin

(
π(α − β)

) + sin(πα)
]
,

where we have set c = a−/a+. We have chosen β = β(α, c) in such a way that c sin(πβ)− sin(π(α−β))+ sin(πα) =
0, whence I

α,β
a−,a+ = 0 as desired. Indeed, recall that cos(πβ) = b, where b = (1 − a2 − (c + a)2)/(1 − a2 + (c + a)2),

with a = cos(πα). Since β,α ∈ (0,1), we have sin(πα) = √
1 − a2 and sin(πβ) = √

1 − b2, whence

c sin(πβ) − sin
(
π(α − β)

) + sin(πα)

= c sin(πβ) − sin(πα) cos(πβ) + sin(πβ) cos(πα) + sin(πα)

= (a + c)
√

1 − b2 + (1 − b)
√

1 − a2.

Recall that a + c < 0 < 1 − b, since c = a−/a+ < − cos(πα) = −a. We thus need to check that (a + c)2(1 − b2) =
(1 − b)2(1 − a2), i.e. (a + c)2(1 + b) = (1 − b)(1 − a2). This is easily verified.

We now prove (ii). We write Ĩ
α,β
a−,a+ = a+B1 + a−B2 + a−B3, where

B1 =
∫ ∞

0

[
(1 + x)β − 1 − βx

]
x−α−1 dx,

B2 =
∫ ∞

1

[
(x − 1)β − 1 + βx

]
x−α−1 dx,

B3 =
∫ 1

0

[
(1 − x)β − 1 + βx

]
x−α−1 dx.

Using two integrations by parts and then putting u = 1/(1 + x), one can prove that, if α − 1 ≤ β < 1,

B1 = β(β − 1)

α(α − 1)

∫ ∞

0
(1 + x)β−2x1−α dx

= β(β − 1)

α(α − 1)

∫ 1

0
uα−β−1(1 − u)1−α du

= −β(1 − β)Γ (2 − α)Γ (α − β)

α(α − 1)Γ (2 − β)
.

Since now α ∈ (1,2) and β ∈ (0,1),

Γ (2 − α) = π

Γ (α − 1) sin(π(α − 1))
= π(α − 1)

Γ (α) sin(π(α − 1))
,

(7)

Γ (2 − β) = (1 − β)Γ (1 − β) = π(1 − β)

Γ (β) sin(πβ)
.

Hence

B1 = −βΓ (β)Γ (α − β) sin(πβ)

αΓ (α) sin(π(α − 1))
.
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This formula remains valid if β = 1, since then B1 = 0 and sin(πβ) = 0. Next we use one integration by parts and we
put u = 1/x to get

B2 = β − 1

α
+ β

α

∫ ∞

1

[
1 + (x − 1)β−1]x−α dx

= β − 1

α
+ β

α(α − 1)
+ β

α

∫ 1

0
uα−β−1(1 − u)β−1 du

= − 1

α
+ β

α − 1
+ βΓ (β)Γ (α − β)

αΓ (α)
.

Finally, an integration by parts shows that

B3 = 1 − β

α
− β

α

∫ 1

0

[
(1 − x)β−1 − 1

]
x−α dx = 1 − β

α
− β

α
[G1 + G2],

where

G1 =
∫ 1

0

[
(1 − x)β−1 − (1 − x)β

]
x−α dx =

∫ 1

0
(1 − x)β−1x1−α dx = Γ (β)Γ (2 − α)

Γ (β + 2 − α)

and, using an integration by parts,

G2 =
∫ 1

0

[
(1 − x)β − 1

]
x−α dx

= 1

α − 1
− β

α − 1

∫ 1

0
(1 − x)β−1x1−α dx

= 1

α − 1
− βΓ (β)Γ (2 − α)

(α − 1)Γ (β + 2 − α)
.

Thus

B3 = 1

α
− β

α − 1
+ β(β + 1 − α)Γ (β)Γ (2 − α)

α(α − 1)Γ (β + 2 − α)

= 1

α
− β

α − 1
+ βΓ (β)Γ (α − β) sin(π(α − β))

αΓ (α) sin(π(α − 1))
.

We used (7) and that

Γ (β + 2 − α)

β + 1 − α
= Γ (β + 1 − α) = π

Γ (α − β) sin(π(α − β))
.

This last equality uses that β − α + 1 ∈ (0,1), but one easily checks that the expression of B3 remains valid if
β = α − 1, because then 1 + β − α = sin(π(α − β)) = 0. We finally find that

Ĩ α,β
a−,a+ = βΓ (β)Γ (α − β)

αΓ (α)

[
−a+

sin(πβ)

sin(π(α − 1))
+ a− + a−

sin(π(α − β))

sin(π(α − 1))

]
.

Set c = a−/a+ and recall that b := cos(πβ) = (c2(1 − a2) − (1 + ca)2)/(c2(1 − a2) + (1 + ca)2), for a =
cos(πα) ∈ (−1,1). It remains to check that sin(πβ) = c sin(π(α−1))+c sin(π(α−β)), i.e. sin(πβ) = −c sin(πα)+
c sin(πα) cos(πβ) − c sin(πβ) cos(πα). Observe that since α ∈ (1,2), sin(πα) = −√

1 − a2, while since β ∈
(0,1], sin(πβ) = √

1 − b2. We need to verify that
√

1 − b2 = c
√

1 − a2 − cb
√

1 − a2 − ca
√

1 − b2, i.e. that
(1 + ac)

√
1 − b2 = c(1 − b)

√
1 − a2, i.e. that (1 + ac)2(1 + b) = c2(1 − a2)(1 − b). This is easily done. �
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We now give the

Proof of Lemma 3. Recall that α ∈ (1,2), that a = cos(πα) ∈ (−1,1), that 0 ≤ c ≤ 1 and that β(α, c) = π−1 arccosb,
where b := (c2(1 − a2) − (1 + ca)2)/(c2(1 − a2) + (1 + ca)2).

First, we have β(α,0) = π−1 arccos(−1) = 1 and β(α,1) = π−1 arccos(−a) = π−1 arccos(− cos(πα)) = α − 1.
To check that β(α, c) ∈ (α − 1,1) if c ∈ (0,1), it suffices to prove that b ∈ (−1,−a) (because −1 = cos(π) and

−a = cos(π(α − 1))). First, b > −1 is obvious if c > 0. Next, we have to check that c2(1 − a2) − (1 + ca)2 <

−a(c2(1 − a2) + (1 + ca)2), i.e. that c2(1 + a)2 < (1 + ca)2, which holds true because c < 1 and |a| < 1. �

We conclude this section with the

Proof of Lemma 7. Recall that α ∈ (1/2,1), that 0 ≤ c < −a = − cos(πα) < 1 and that β(α, c) = π−1 arccosb,
where b = (1 − a2 − (c + a)2)/(1 − a2 + (c + a)2). First, β(α,0) = π−1 arccos(1 − 2a2) = π−1 arccos(1 −
2 cos2(πα)) = 2α − 1.

To prove that β(α, c) ∈ (0,2α − 1], it suffices to check that b ∈ [1 − 2a2,1). First, b < 1 is obvious. Next, b ≥
1 − 2a2 because (1 −a2)− (c +a)2 ≥ (1 − 2a2)[(1 −a2)+ (c +a)2], since 2a2(1 −a2) ≥ 2(c +a)2(1 −a2). Indeed,
a2 > (c + a)2, since 0 ≤ c < −a.

Finally, for c < 1 fixed, limα→1− a = −1, whence limα→1− b = −1. Thus limα→1− β(α, c) = π−1 ×
arccos(−1) = 1. �

3. Approximation lemmas

To prove our main results, we will apply Itô’s formula to compute |Xt − X̃t |β , for (Xt )t≥0 and (X̃t )t≥0 two solutions
to (3) or (4), with some suitable value of β ∈ (0, α). This is not licit, since the function |x|β is not of class C2. The
two lemmas below will allow us to overcome this difficulty.

Lemma 10. Let 0 < β < α < 1 and a−, a+ ∈ [0,∞). For η > 0, set φη(x) = (η2 + x2)β/2. For Δ ∈ R∗,

Jα,β,η
a−,a+(Δ) :=

∫
R∗

[
φη(Δ − z) − φη(Δ)

]
να
a−,a+(dz)

→ |Δ|β−α
[
1Δ>0I

α,β
a−,a+ + 1Δ<0I

α,β
a+,a−

]
as η → 0, recall (5). Furthermore, for all η > 0, all Δ ∈ R∗,

∣∣Jα,β,η
a−,a+(Δ)

∣∣ ≤ Kα,β,η
a−,a+(Δ) :=

∫
R∗

∣∣φη(Δ − z) − φη(Δ)
∣∣να

a−,a+(dz) ≤ C|Δ|β−α,

where C depends only on α,a−, a+, β .

Proof. We fix Δ ∈ R∗ and we observe that for all η > 0,

∣∣φη(Δ − z) − φη(Δ)
∣∣ ≤ C min

{|z|β, |Δ|β−1|z|}. (8)

This is easily deduced from the facts that |φη(x + y) − φη(x)| ≤ |y|β and |φ′
η(x)| ≤ β|x|β−1. Separate the cases

|z| ≤ |Δ|/2 and |z| ≥ |Δ|/2. But now∫
R∗

min
{|z|β, |Δ|β−1|z|}|z|−α−1 dz ≤

∫
|z|≥|Δ|

|z|β−α−1 dz +
∫

|z|≤|Δ|
|Δ|β−1|z|−α dz

= C|Δ|β−α.
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We immediately deduce that |Kα,β,η
a−,a+(Δ)| ≤ C|Δ|β−α . And by Lebesgue’s dominated convergence theorem, since

limη→0 φη(x) = |x|β for all x ∈ R,

lim
η→0

Jα,β,η
a−,a+(Δ) =

∫
R∗

[|Δ − z|β − |Δ|β]
νa−,a+(dz)

= |Δ|β
∫

R∗

[|1 − z/Δ|β − 1
]
νa−,a+(dz)

= 1{Δ>0}|Δ|β
∫

R∗

[∣∣1 − z/|Δ|∣∣β − 1
]
νa−,a+(dz)

+ 1{Δ<0}|Δ|β
∫

R∗

[∣∣1 − z/|Δ|∣∣β − 1
]
νa+,a−(dz).

In the last inequality and when Δ < 0, we have used the substitution x = −z, which leads to να
a−,a+(dz) = να

a+,a−(dx).
Using finally the substitution x = z/|Δ|, for which να

a−,a+(dz) = |Δ|−ανα
a−,a+(dx), we get

lim
η→0

Jα,β,η
a−,a+(Δ) = 1{Δ>0}|Δ|β−α

∫
R∗

[|1 − x|β − 1
]
νa−,a+(dx)

+ 1{Δ<0}|Δ|β−α

∫
R∗

[|1 − x|β − 1
]
νa+,a−(dx)

as desired. �

Lemma 11. Let 0 < β ≤ 1 < α < 2 and a−, a+ in [0,∞). For η > 0 and x ∈ R, set φη(x) = (η2 + x2)β/2. Define,
for Δ,δ ∈ R,

J̃ α,β,η
a−,a+(Δ, δ) :=

∫
R∗

{
φη(Δ + δz) − φη(Δ) − δzφ′

η(Δ)
}
να
a−,a+(dz),

K̃α,β,η
a−,a+(Δ, δ) :=

∫
|δz|≤|Δ|

(
φη(Δ + δz) − φη(Δ) − |Δ + δz|β + |Δ|β)2

να
a−,a+(dz),

L̃α,β,η
a−,a+(Δ, δ) :=

∫
|δz|>|Δ|

∣∣φη(Δ + δz) − φη(Δ) − |Δ + δz|β + |Δ|β ∣∣να
a−,a+(dz).

For any Δ ∈ R∗, any δ ∈ R,

lim
η→0

J̃ α,β,η
a−,a+(Δ, δ) = |Δ|β−α|δ|α[

1{δΔ>0}Ĩ α,β
a−,a+ + 1{δΔ<0}Ĩ α,β

a+,a−
]
,

lim
η→0

K̃α,β,η
a−,a+(Δ, δ) = lim

η→0
L̃α,β,η

a−,a+(Δ, δ) = 0.

Furthermore, we can find a constant C, depending only on α,a−, a+, β , such that for all η > 0, all Δ ∈ R∗, all δ ∈ R,∣∣J̃ α,β,η
a−,a+(Δ, δ)

∣∣ ≤ C|Δ|β−α|δ|α,

K̃α,β,η
a−,a+(Δ, δ) ≤ C|Δ|2β−α|δ|α,

L̃α,β
a−,a+(Δ, δ) ≤ C|Δ|β−α|δ|α.

Proof. We first observe that there is a constant C such that for all η > 0,∣∣φη(Δ + δz) − φη(Δ)
∣∣ ≤ C min

{|Δ|β−1|δz|, |δz|β}
,∣∣φη(Δ + δz) − φη(Δ) − δzφ′

η(Δ)
∣∣ ≤ C min

{|Δ|β−2(δz)2, |Δ|β−1|δz|}.
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This is easily deduced from the facts that |φη(x + y) − φη(x)| ≤ |y|β , |φ′
η(x)| ≤ β|x|β−1, |φ′′

η (x)| ≤ C|x|β−2 and
β − 1 ≤ 0. Separate the cases |δz| ≤ |Δ|/2 and |δz| ≥ |Δ|/2. Similarly,∣∣|Δ + δz|β − |Δ|β ∣∣ ≤ C min

{|Δ|β−1|δz|, |δz|β}
.

Next we observe that∫
R∗

min
{|Δ|β−2(δz)2, |Δ|β−1|δz|}|z|−α−1 dz

≤ |Δ|β−2|δ|2
∫

{|z|≤|Δ|/|δ|}
|z|1−α dz + |Δ|β−1|δ|

∫
{|z|≥|Δ|/|δ|}

|z|−α dz = C|Δ|β−α|δ|α

from which we immediately deduce that |J̃ α,β,η
a−,a+(Δ, δ)| ≤ C|Δ|β−α|δ|α and that we can apply Lebesgue’s dominated

convergence theorem:

lim
η→0

J̃ α,β,η
a−,a+(Δ, δ) =

∫
R∗

{|Δ + δz|β − |Δ|β − βδz · sign(Δ)|Δ|β−1}να
a−,a+(dz)

= |Δ|β
∫

R∗

{∣∣1 + (δ/Δ)z
∣∣β − 1 − β(δ/Δ)z

}
να
a−,a+(dz)

= 1{δΔ>0}|Δ|β
∫

R∗

{∣∣1 + |δ/Δ|z∣∣β − 1 − β|δ/Δ|z}να
a−,a+(dz)

+ 1{δΔ<0}|Δ|β
∫

R∗

{∣∣1 + |δ/Δ|z∣∣β − 1 − β|δ/Δ|z}να
a+,a−(dz)

= |Δ|β−α|δ|α[
1{δΔ>0}Ĩ α,β

a−,a+ + 1{δΔ<0}Ĩ α,β
a+,a−

]
.

We finally have put x = |δ/Δ|z, for which να
a−,a+(dz) = (|δ|/|Δ|)ανα

a−,a+(dx).

To study K̃
α,β,η
a−,a+(Δ, δ), we note that∫

|δz|≤|Δ|
min

{|Δ|β−1|δz|, |δz|β}2|z|−α−1 dz

≤ |Δ|2β−2|δ|2
∫

|δz|≤|Δ|
|z|1−α dz = C|Δ|2β−α|δ|α.

This implies that K̃
α,β,η
a−,a+(Δ, δ) ≤ C|Δ|2β−α|δ|α and that we can apply the dominated convergence theorem to get

limη→0 K̃
α,β,η
a−,a+(Δ, δ) = 0.

Finally,∫
|δz|>|Δ|

min
{|Δ|β−1|δz|, |δz|β}|z|−α−1 dz

≤ |δ|β
∫

|δz|>|Δ|
|z|β−α−1 dz = C|Δ|β−α|δ|α

implies that L̃
α,β,η
a−,a+(Δ, δ) ≤ C|Δ|β−α|δ|α and that limη→0 L̃

α,β,η
a−,a+(Δ, δ) = 0. �

4. The case with infinite variation

We now have all the weapons in hand to study pathwise uniqueness when α ∈ (1,2). We first prove that we can apply
Itô’s formula with the function |x|β .
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Lemma 12. Let α ∈ (1,2), 0 ≤ a− ≤ a+ and β ∈ (0,1]. Assume that σ,b have at most linear growth and that for
some constant κ0 ≥ 0, for some β ∈ (0,1],
• for all x, y ∈ R, sign(x − y)(b(x) − b(y)) ≤ κ0|x − y|,
• σ is Hölder-continuous with index (α − β)/α.

Consider two solutions (Xt )t≥0 and (X̃t )t≥0 to (3) started at x and x̃, driven by the same (α, a−, a+)-stable process
(Zt )t≥0 defined by (2). Put Δt = Xt − X̃t and δt = σ(Xt ) − σ(X̃t ). Then a.s., for all t ≥ 0,

|Δt |β = |x − x̃|β + β

∫ t

0
1{Δs 
=0}|Δs |β−1 sign(Δs)

[
b(Xs) − b(X̃s)

]
ds

+
∫ t

0
1{Δs 
=0}|Δs |β−α|δs |α

(
1{δsΔs>0}Ĩ α,β

a−,a+ + 1{δsΔs<0}Ĩ α,β
a+,a−

)
ds + Mt,

where Ĩ
α,β
a−,a+ was defined in (6) and where (Mt)t≥0 is the L1-martingale given by

Mt =
∫ t

0

∫
R∗

[|Δs− + δs−z|β − |Δs−|β]
Ñ(ds dz).

Proof. For η > 0, consider φη(x) = (η2 + x2)β/2 as in Lemma 11. Applying the Itô formula, see e.g. Jacod and
Shiryaev [9], Theorem 4.57, p. 56, we get, recalling (2),

φη(Δt ) = φη(x − x̃) +
∫ t

0

∫
R∗

[
φη(Δs− + δs−z) − φη(Δs−)

]
Ñ(ds dz)

+
∫ t

0

∫
R∗

[
φη(Δs− + δs−z) − φη(Δs−) − δs−zφ′

η(Δs−)
]
να
a−,a+(dz)ds

+
∫ t

0
φ′

η(Δs−)
[
b(Xs) − b(X̃s)

]
ds

=: φη(x − x̃) + M
η
t +

∫ t

0
J̃ α,β,η

a−,a+(Δs, δs)ds +
∫ t

0
Aη

s ds,

where J̃
α,β,η
a−,a+(Δ, δ) was defined in Lemma 11. First, we clearly have a.s.

lim
η→0

φη(Δt ) = |Δt |β and lim
η→0

φη(x − x̃) = |x − x̃|β.

Next, we observe that J̃
α,β,η
a−,a+(Δt , δt ) = J̃

α,β,η
a−,a+(Δt , δt )1{Δt 
=0}, since Δt = 0 implies that δt = 0. Since σ is Hölder-

continuous with index (α − β)/α by assumption, we deduce that |Δt |β−α|δt |α is uniformly bounded. Thus, using
Lemma 11 and Lebesgue’s dominated convergence theorem, we get a.s.

lim
η→0

∫ t

0
J̃ α,β,η

a−,a+(Δs, δs)ds

=
∫ t

0
1{Δs 
=0}|Δs |β−α|δs |α

(
1{δsΔs>0}Ĩ α,β

a−,a+ + 1{δsΔs<0}Ĩ α,β
a+,a−

)
ds.

Since φ′
η(x) = βx(η2 + x2)(β−2)/2, we may write A

η
t = A

η,+
t − A

η,−
t , where

A
η,+
t = β|Δt |

(
Δ2

t + η2)(β−2)/2(sign(Δt )[b(Xt ) − b(X̃t )]
)
+,

A
η,−
t = β|Δt |

(
Δ2

t + η2)(β−2)/2(sign(Δt )[b(Xt ) − b(X̃t )]
)
−.
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First, limη→0
∫ t

0 A
η,−
s ds = β

∫ t

0 1{Δs 
=0}|Δs |β−1(sign(Δs)[b(Xs) − b(X̃s)])− ds by the monotone convergence the-

orem. Next, our assumption on b implies that A
η,+
t ≤ βκ0|Δt |β . Hence we can apply the dominated convergence

theorem to compute limη→0
∫ t

0 A
η,+
s ds and we finally get a.s.,

lim
η→0

∫ t

0
Aη

s ds = β

∫ t

0
1{Δs 
=0}|Δs |β−1 sign(Δs)

[
b(Xs) − b(X̃s)

]
ds

as desired. It only remains to prove that M
η
t tends to Mt in L1. We write Mt = M1

t + M2
t and M

η
t = M

η,1
t + M

η,2
t ,

where

M1
t =

∫ t

0

∫
R∗

1{|δs−z|≤|Δs−|}
[|Δs− + δs−z|β − |Δs−|β]

Ñ(ds dz),

M2
t =

∫ t

0

∫
R∗

1{|δs−z|>|Δs−|}
[|Δs− + δs−z|β − |Δs−|β]

Ñ(ds dz),

M
1,η
t =

∫ t

0

∫
R∗

1{|δs−z|≤|Δs−|}
[
φη(Δs− + δs−z) − φη(Δs−)

]
Ñ(ds dz),

M
2,η
t =

∫ t

0

∫
R∗

1{|δs−z|>|Δs−|}
[
φη(Δs− + δs−z) − φη(Δs−)

]
Ñ(ds dz).

Using Lemma 11 and Lebesgue’s dominated convergence theorem, there holds

lim
η→0

E
[∣∣M1

t − M
1,η
t

∣∣2] = lim
η→0

∫ t

0
E

[
K̃α,β,η

a−,a+(Δs, δs)
]

ds = 0,

since K̃
α,β,η
a−,a+(Δs, δs) ≤ C|Δs |2β−α|δs |α ≤ C|Δs |β and since E[sup[0,t] |Δs |β ] < ∞ by Proposition 2(ii). Similarly,

writing Ñ(ds dz) = N(ds dz) − να
a−,a+(dz)ds,

lim
η→0

E
[∣∣M2

t − M
2,η
t

∣∣] ≤ 2 lim
η→0

∫ t

0
E

[
L̃α,β,η

a−,a+(Δs, δs)
]

ds = 0,

because L̃
α,β,η
a−,a+(Δs, δs) ≤ C|Δt |β−α|δt |α ≤ C. This ends the proof. �

Proof of Theorem 4. We thus consider α ∈ (1,2), 0 ≤ a− ≤ a+ and two solutions (Xt )t≥0 and (X̃t )t≥0 to (3). We put
Δt = Xt − X̃t and δt = σ(Xt ) − σ(X̃t ). We set β = β(α, a−/a+) ∈ [α − 1,1] as in Lemma 3 and we use Lemma 12.
With our choice for β , there holds Ĩ

α,β
a−,a+ = 0 by Lemma 9. We thus find

|Δt |β = |x − x̃|β + β

∫ t

0
1{Δs 
=0}|Δs |β−1 sign(Δs)

[
b(Xs) − b(X̃s)

]
ds

+ C1{a−
=a+}
∫ t

0
1{Δsδs<0}|Δs |β−α|δs |α ds + Mt,

where C = I
α,β
a+,a− and where (Mt)t≥0 is a L1-martingale.

Step 1. We prove point (i). Due to our assumption on b, sign(Δs)[b(Xs) − b(X̃s)] ≤ κ0|Δs |. If a− = a+,
we thus get, taking expectations, E[|Δt |β ] ≤ |x − x̃|β + βκ0

∫ t

0 E[|Δs |β ]ds and we conclude with the Gronwall
Lemma. If a− < a+, our assumption on σ guarantees us that if δsΔs < 0, then |δs | ≤ κ1|Δs |/(a+ − a−), whence
|Δs |β−α|δs |α1{δsΔs<0} ≤ C|Δs |β . Hence taking expectations, we get E[|Δt |β ] ≤ |x − x̃|β +C

∫ t

0 E[|Δs |β ]ds: we also
conclude with the Gronwall Lemma.
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Step 2. We check point (ii). Assuming that (a+ − a−)σ is non-decreasing, we deduce that either a− = a+ or
for all s ≥ 0, a.s., δsΔs ≥ 0. If furthermore b is constant, we thus get |Δt |β = |x − x̃|β + Mt , whence E[|Δt |β ] =
|x − x̃|β . �

We now study the large time behavior of solutions when a− = a+.

Proof of Proposition 5. We thus assume that a− = a+ > 0, that α ∈ (1,2), that b is non-increasing and continuous
and that σ is Hölder-continuous with index 1/α.

Step 1. Consider any pair of solutions (Xt )t≥0, (X̃t )t≥0 to (3) driven by the same stable process and set, as usual,
Δt = Xt − X̃t , δt = σ(Xt ) − σ(X̃t ). Lemma 12 with β = β(α,1) = α − 1 implies, since I

α,β
a−,a+ = I

α,β
a+,a− = 0 by

Lemma 9, that

|Δt |α−1 = |x − x̃|α−1 + Mt + (α − 1)

∫ t

0
sign(Δs)1{Δs 
=0}|Δs |α−2[b(Xs) − b(X̃s)

]
ds,

where Mt = ∫ t

0

∫
R∗(|Δs− + δs−z|α−1 − |Δs−|α−1)Ñ(ds dz). Using that b is non-increasing, we deduce that

|Δt |α−1 + (α − 1)

∫ t

0
1{Δs 
=0}|Δs |α−2

∣∣b(Xs) − b(X̃s)
∣∣ds = |x − x̃|α−1 + Mt =: Ut . (9)

Consequently, Ut is a non-negative martingale. Thus it a.s. converges as t → ∞, as well as its bracket:∫ ∞

0

∫
R∗

[|Δs + δsz|α−1 − |Δs |α−1]2
να
a−,a+(dz)ds < ∞.

But if Δs 
= 0, since a− = a+, setting c = a+
∫

R∗ [|1 + x|α−1 − 1]2|x|−α−1 dx > 0,∫
R∗

[|Δs + δsz|α−1 − |Δs |α−1]2
να
a−,a+(dz) = a+|Δs |2α−2

∫
R∗

[|1 + δsz/Δs |α−1 − 1
]2|z|−α−1 dz

= c|Δs |2α−2(|δs/Δs |
)α = c|Δs |α−2|δs |α,

whence∫ ∞

0
1{Δs 
=0}|Δs |α−2|δs |α ds < ∞ a.s. (10)

We also have sup[0,∞) Ut < ∞, whence, due to (9),∫ ∞

0
1{Δs 
=0}|Δs |α−2

∣∣b(Xs) − b(X̃s)
∣∣ds < ∞ a.s. (11)

Finally, Doob’s L1 inequality (see e.g. Revuz and Yor [14], Theorem 1.7, p. 54) implies, since Ut is a non-negative
L1 càdlàg martingale, that for any a > 0,

Pr
[

sup
[0,∞)

Ut ≥ a
]

≤ a−1 sup
[0,∞)

E[Ut ] = a−1|x − x̃|α−1.

But sup[0,∞) |Δt |α−1 ≤ sup[0,∞) Ut by (9). Hence for any β ∈ (0, α − 1), for any c > 0,

E

[
sup

[0,∞)

|Δt |β
]

=
∫ ∞

0
Pr

[
sup

[0,∞)

|Δt |α−1 ≥ a(α−1)/β
]

da

≤ c +
∫ ∞

c

a−(α−1)/β |x − x̃|α−1 da

= c + β

α − 1 − β
|x − x̃|α−1c1−(α−1)/β .
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Choose c = |x − x̃|β : for some constant C depending only on α,β ,

E

[
sup

[0,∞)

|Δt |β
]

≤ C|x − x̃|β. (12)

Step 2. We now prove point (i). Consider two invariant distributions Q and Q̃ for (3). Let X0 ∼ Q and X̃0 ∼ Q̃ be
two random variables independent of (Zt )t≥0. Consider the associated solutions (Xt )t≥0 and (X̃t )t≥0 to (3) starting
from X0 and X̃0 (pathwise existence holds for (3): we have checked pathwise uniqueness in Theorem 4 and weak
existence in Proposition 2). Then we have Xt ∼ Q and X̃t ∼ Q̃ for all t ≥ 0. From (10) and (11), we have a.s.

∫ ∞

0
Γ (Xt , X̃t )dt < ∞,

where

Γ (x, y) := 1{x 
=y}
(
1 + |x − y|)α−2[∣∣b(x) − b(y)

∣∣ + ∣∣σ(x) − σ(y)
∣∣α]

≤ 1{x 
=y}|x − y|α−2[∣∣b(x) − b(y)
∣∣ + ∣∣σ(x) − σ(y)

∣∣α]
.

We easily deduce, see e.g. [6], Lemma 10, that there is a deterministic sequence (tn)n≥1 increasing to infinity such
that Γ (Xtn, X̃tn) goes to 0 in probability. Since (σ, b) is injective by assumption, we have Γ (x, y) > 0 for all x 
= y.
Furthermore, Γ is continuous and Xtn ∼ Q and X̃tn ∼ Q̃ for all n ≥ 1. We thus infer from [6], Lemma 11, that Q = Q̃.

Step 3. We next prove point (ii). Consider two solutions (Xt )t≥0 and (X̃t )t≥0 to (3), issued from x and x̃. Using
our assumptions and (10)–(11), we get

∫ ∞

0
ρ
(|Xt − X̃t |

)
dt < ∞.

Hence, see e.g. [6], Lemma 10, there is a deterministic sequence (tn)n≥1 increasing to infinity such that ρ(|Xtn − X̃tn |)
goes to 0 in probability. Since ρ is strictly increasing and vanishes only at 0, we deduce that |Xtn − X̃tn | goes to 0 in
probability. We thus infer from (12), choosing e.g. β = (α − 1)/2, that

E

[
sup

[tn,∞)

|Xt − X̃t |β
∣∣Ftn

]
≤ C|Xtn − X̃tn |β.

We used that conditionally on Ftn , (Xtn+t )t≥0 and (X̃tn+t )t≥0 solve (3). We easily deduce that sup[tn,∞) |Xt − X̃t |
tends to 0 in probability. Since finally s �→ sup[s,∞) |Xt − X̃t | is non-increasing, it a.s. admits a limit as s → ∞ and
this limit can only be 0. �

5. The case with finite variation

We now study the case where α ∈ (0,1). Here again, we first prove that we can apply Itô’s formula with the function
|x|β .

Lemma 13. Let α ∈ (0,1), 0 ≤ a− ≤ a+ and β ∈ (0, α). Assume that σ,b have at most linear growth and that for
some constant κ0 ≥ 0, for some β ∈ (0,1],
• for all x, y ∈ R, sign(x − y)(b(x) − b(y)) ≤ κ0|x − y|,
• σ is Hölder-continuous with index θ for some θ ∈ [α − β,α].
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Consider two solutions (Yt )t≥0 and (Ỹt )t≥0 to (4) started at x and x̃, driven by the same Poisson measure M . Put
Δt = Yt − Ỹt . Then for all t ≥ 0, recall (5),

E
[|Δt |β

] ≤ |x − x̃|β + βκ0

∫ t

0
E

[|Δs |β
]

ds

+
∫ t

0
E

[(
γ (Ys) − γ (Ỹs)

)
+|Δs |β−α

[
1{Δs>0}Iα,β

a+,a− + 1{Δs<0}Iα,β
a−,a+

]]
ds

+
∫ t

0
E

[(
γ (Ỹs) − γ (Ys)

)
+|Δs |β−α

[
1{Δs>0}Iα,β

a−,a+ + 1{Δs<0}Iα,β
a+,a−

]]
ds

with an equality and κ0 = 0 if b is constant.

Proof. We define, for y, ỹ ∈ R and u ∈ R∗,

Γ (y, ỹ, u) = 1{0<u<γ (y)} − 1{γ (y)<u<0} − 1{0<u<γ (ỹ)} + 1{γ (ỹ)<u<0}.

Let also φη(x) = (η2 + x2)β/2. Applying the Itô formula for jump processes, see e.g. [9], Theorem 4.57, p. 56, we get

φη(Δt ) = φη(x − x̃) +
∫ t

0
φ′

η(Δs)
(
b(Ys) − b(Ỹs)

)
ds

+
∫ t

0

∫
R∗

∫
R∗

[
φη

(
Δs− + zΓ (Ys−, Ỹs−, u)

) − φη(Δs−)
]
M(ds dz du).

First, since |φ′
η(x)| ≤ β|x|β−1 and since sign(φ′

η(x)) = sign(x), we deduce from our assumption on b that for any
η > 0, any y, ỹ,

φ′
η(y − ỹ)

(
b(y) − b(ỹ)

) = ∣∣φ′
η(y − ỹ)

∣∣ sign(y − ỹ)
(
b(y) − b(ỹ)

)
≤ ∣∣φ′

η(y − ỹ)
∣∣κ0|y − ỹ|

≤ βκ0|y − ỹ|β.

We deduce that

φη(Δt ) ≤ φη(x − x̃) + βκ0

∫ t

0
|Δs |β ds

+
∫ t

0

∫
R∗

∫
R∗

[
φη

(
Δs− + zΓ (Ys−, Ỹs−, u)

) − φη(Δs−)
]
M(ds dz du) (13)

with of course an equality and κ0 = 0 if b is constant. Observe now that for any y, ỹ ∈ R, any u ∈ R∗,

Γ (y, ỹ, u) = 1{γ (ỹ)<u<γ (y)} − 1{γ (y)<u<γ (ỹ)}.

Hence integrating in u and recalling Lemma 10,∫
R∗

∫
R∗

∣∣φη

(
Δs− + zΓ (Ys−, Ỹs−, u)

) − φη(Δs−)
∣∣να

a−,a+(dz)du

= (
γ (Ys) − γ (Ỹs)

)
+

∫
R∗

∣∣φη(Δs + z) − φη(Δs)
∣∣να

a−,a+(dz)

+ (
γ (Ỹs) − γ (Ys)

)
+

∫
R∗

∣∣φη(Δs − z) − φη(Δs)
∣∣να

a−,a+(dz)
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= (
γ (Ys) − γ (Ỹs)

)
+Kα,β,η

a+,a−(Δs, δs) + (
γ (Ỹs) − γ (Ys)

)
+Kα,β,η

a−,a+(Δs, δs)

≤ C
∣∣γ (Ys) − γ (Ỹs)

∣∣ · |Δs |β−α.

Since γ is Hölder-continuous with index θ , this is bounded by C|Δs |θ−α+β . Using Proposition 2(ii) and that θ − α +
β ∈ [0, α), we can thus take expectations in (13):

E
[
φη(Δt )

] ≤ φη

(|x − x̃|) + βκ0

∫ t

0
E

[|Δs |β
]

ds +
∫ t

0
E

[
Bη

s

]
ds (14)

(with an equality and κ0 = 0 if b is constant), where

Bη
s =

∫
R∗

∫
R∗

[
φη

(
Δs− + zΓ (Ys−, Ỹs−, u)

) − φη(Δs−)
]

duνα
a−,a+(dz).

First, we obviously have limη→0 E[φη(Δt )] = E[|Δt |β ] and limη→0 φη(x − x̃) = |x − x̃|β . Next, integrating in u as
previously and recalling Lemma 10, we obtain

Bη
s = (

γ (Ys) − γ (Ỹs)
)
+

∫
R∗

[
φη(Δs + z) − φη(Δs)

]
να
a−,a+(dz)

+ (
γ (Ỹs) − γ (Ys)

)
+

∫
R∗

[
φη(Δs − z) − φη(Δs)

]
να
a−,a+(dz)

= (
γ (Ys) − γ (Ỹs)

)
+Jα,β,η

a+,a−(Δs) + (
γ (Ỹs) − γ (Ys)

)
+Jα,β,η

a−,a+(Δs).

For the first integral, we have used the substitution x = −z, so that να
a−,a+(dz) = να

a+,a−(dx). Using finally Lemma 10,
that γ is Hölder continuous with index θ ∈ [α − β,α], Proposition 2(ii) (since θ + β − α ∈ [0, α)) and Lebesgue’s
dominated convergence theorem, we deduce that

lim
η→0

∫ t

0
E

[
Bη

s

]
ds

=
∫ t

0
E

[(
γ (Ys) − γ (Ỹs)

)
+|Δs |β−α

[
1{Δs>0}Iα,β

a+,a− + 1{Δs<0}Iα,β
a−,a+

]]
ds

+
∫ t

0
E

[(
γ (Ỹs) − γ (Ys)

)
+|Δs |β−α

[
1{Δs>0}Iα,β

a−,a+ + 1{Δs<0}Iα,β
a+,a−

]]
ds

as desired. �

We can now give the

Proof of Theorem 6. We consider α ∈ (0,1), a− ≤ a+ and two solutions (Yt )t≥0 and (Ỹt )t≥0 to (4), issued from
x and x̃. We also fix β ∈ (0, α). We put Δt = Yt − Ỹt . Applying Lemma 13 and recalling that γ is Hölder
continuous with index α, a rough upperbound using only that |Iα,β

a−,a+| + |Iα,β
a+,a−| < ∞ yields that E[|Δt |β ] ≤

|x − x̃|β + C
∫ t

0 E[|Δs |β ]ds and we conclude with the Gronwall Lemma. �

We conclude this section with the

Proof of Theorem 8. Let us thus assume that α ∈ (1/2,1), that a− < a+ with a−/a+ < − cos(πα) and let us set β =
β(α, a−/a+) ∈ (0, α). Consider two solutions (Yt )t≥0 and (Ỹt )t≥0 to (4), issued from x and x̃ and put Δt = Yt − Ỹt .
Applying Lemma 13 (γ is Hölder-continuous with index α − β by assumption) and recalling that I

α,β
a−,a+ = 0 due to

Lemma 9, we get

E
[|Δt |β

] ≤ |x − x̃|β + βκ0

∫ t

0
E

[|Δs |β
]

ds +
∫ t

0
E

[
Bη,1

s + Bη,2
s

]
ds
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(with an equality and κ0 = 0 if b is constant), where

Bη,1
s = Iα,β

a+,a−
(
γ (Ys) − γ (Ỹs)

)
+|Δs |β−α1{Δs>0},

Bη,2
s = Iα,β

a+,a−
(
γ (Ỹs) − γ (Ys)

)
+|Δs |β−α1{Δs<0}.

Step 1. We now prove point (i). Our assumption on γ guarantees that if Δs > 0, then (γ (Ys)− γ (Ỹs))+ ≤ κ1|Δs |α ,
whence B

η,1
s ≤ C|Δs |β . Similarly, B

η,2
s ≤ C|Δs |β . We thus find E[|Δt |β ] ≤ |x − x̃|β + C

∫ t

0 E[|Δs |β ]ds and we
conclude with the Gronwall Lemma.

Step 2. We now check point (ii), assuming that b is constant and that γ is non-increasing. Then Δs > 0 implies
γ (Ys) − γ (Ỹs) ≤ 0, whence B

η,1
s = 0. Similarly, B

η,2
s = 0 and we obtain E[|Δt |β ] = |x − x̃|β as desired. �

6. Weak existence and equivalence of the two equations

We start this section with the equivalence in law between (3) and (4).

Proof of Lemma 1. We fix α ∈ (0,1), a−, a+ ∈ [0,∞) and we start with point (i). We thus consider a solution (Yt )t≥0
to (4) driven by a Poisson measure M with intensity measure ds να

a−,a+(dz)du. Recall that γ (x) = sign(σ (x)) · |σ(x)|α .
Set

Zt =
∫ t

0

∫
R∗

∫
R∗

{
1{σ(Ys−)
=0}

z

σ (Ys−)
[1{0<u<γ (Ys−)} − 1{γ (Ys−)<u<0}] + 1{σ(Ys−)=0}z1{0<u<1}

}
M(ds dz du).

Then we obviously have∫ t

0
σ(Ys−)dZs =

∫ t

0

∫
R∗

∫
R∗

z[1{0<u<γ (Ys−)} − 1{γ (Ys−)<u<0}]M(ds dz du).

It only remains to prove that (Zt )t≥0 is a (α, a−, a+)-stable process. But (Zt )t≥0 is a pure jump process without
drift, so that we only need to check that, for J = {s ∈ [0,∞),ΔZs 
= 0}, ∑

s>0 1{s∈J }δ(s,ΔZs) is a Poisson measure
on [0,∞) × R∗ with intensity measure ds να

a−,a+(dz). Denote by q(ds dz) its compensator. It is enough (see Jacod
and Shiryaev [9], Theorem 4.8, p. 104) to show that q(ds dz) = να

a−,a+(dz)ds. By Definition of (Zt )t≥0, we clearly
have (recall that sign(σ (x)) = sign(γ (x))), for all measurable φ : [0,∞) × R∗ �→ R sufficiently integrable (e.g. φ

compactly supported in [0,∞) × R∗),∫ t

0

∫
R∗

φ(s, z)q(ds dz) =
∫ t

0

∫
R∗

∫
R∗

1{σ(Ys)>0}φ
(
s, z/σ (Ys)

)
1{0<u<γ (Ys)} duνα

a−,a+(dz)ds

+
∫ t

0

∫
R∗

∫
R∗

1{σ(Ys)<0}φ
(
s,−z/σ (Ys)

)
1{γ (Ys)<u<0} duνα

a−,a+(dz)ds

+
∫ t

0

∫
R∗

∫
R∗

1{σ(Ys)=0}φ(s, z)1{0<u<1} duνα
a−,a+(dz)ds.

Integrating in u, we deduce that∫ t

0

∫
R∗

φ(s, z)q(ds dz) =
∫ t

0

∫
R∗

1{σ(Ys)>0}φ
(
s, z/σ (Ys)

)
γ (Ys)ν

α
a−,a+(dz)ds

+
∫ t

0

∫
R∗

1{σ(Ys)<0}φ
(
s,−z/σ (Ys)

)∣∣γ (Ys)
∣∣να

a−,a+(dz)ds

+
∫ t

0

∫
R∗

1{σ(Ys)=0}φ(s, z)να
a−,a+(dz)ds.



156 N. Fournier

We perform the substitution x = z/|σ(Ys)|, for which να
a−,a+(dz) = |σ(Ys)|−ανα

a−,a+(dx), in the two first integrals. Re-

calling that |σ(Ys)|−α|γ (Ys)| = 1, we conclude that
∫ t

0

∫
R∗ φ(s, z)q(ds dz) = ∫ t

0

∫
R∗ φ(s, z)να

a−,a+(dz)ds as desired.
We now check point (ii). Let thus (Xt )t≥0 solve (3) with some (α, a−, a+)-stable process (Zt )t≥0. Put N =∑
s>0 1{s∈J }δ(s,ΔZs), which is a Poisson measure on [0,∞) × R∗ with intensity measure ds να

a−,a+(dz). On an en-
larged probability space, we consider a Poisson measure O(ds dz du) on [0,∞) × R∗ × R∗ with intensity measure
ds να

a−,a+(dz)du such that N(ds dz) = O(ds dz × [0,1]). We finally introduce the random point measure M(ds dz du)

on [0,∞) × R∗ × R∗ defined by

∫ t

0

∫
R∗

∫
R∗

ϕ(s, z,u)M(ds dz du)

=
∫ t

0

∫
R∗

∫
R∗

1{σ(Xs−)
=0}ϕ
(
s, z

∣∣σ(Xs−)
∣∣, uγ (Xs−)

)
O(ds dz du)

+
∫ t

0

∫
R∗

∫
R∗

1{σ(Xs−)=0}ϕ(s, z,u)O(ds dz du)

for all measurable ϕ: [0,∞) × R∗ × R∗ sufficiently integrable. Then we have

∫ t

0
σ(Xs−)dZs =

∫ t

0

∫
R∗

zσ (Xs−)N(ds dz)

=
∫ t

0

∫
R∗

∫
R∗

zσ (Xs−)1{u∈[0,1]}O(ds dz du)

=
∫ t

0

∫
R∗

∫
R∗

z · sign
(
σ(Xs−)

)
1{σ(Xs−)
=0}1{u/γ (Xs−)∈[0,1]}M(ds dz du)

=
∫ t

0

∫
R∗

z[1{0<u<γ (Xs−)} − 1{γ (Xs−)<u<0}]M(ds dz du).

We finally used that sign(σ (x)) = sign(γ (x)) and that σ(x) = 0 implies γ (x) = 0. It thus only remains to check that
M is a Poisson measure with intensity measure ds να

a−,a+(dz)du. Let us call p the compensator of M and observe that

∫ t

0

∫
R∗

∫
R∗

φ(s, z,u)p(ds dz du)

=
∫ t

0

∫
R∗

∫
R∗

1{σ(Xs−)
=0}φ
(
s, z

∣∣σ(Xs−)
∣∣, uγ (Xs−)

)
duνα

a−,a+(dz)ds

+
∫ t

0

∫
R∗

∫
R∗

1{σ(Xs−)=0}φ(s, z,u)duνα
a−,a+(dz)ds

for all measurable φ: [0,∞) × R∗ × R∗ sufficiently integrable. Performing the substitution v = z|σ(Xs−)|, w =
uγ (Xs−) and recalling that |σ(Xs−)|−α|γ (Xs−)| = 1, we easily conclude that p(ds dz du) = ds να

a−,a+(dz)du, which
ends the proof. �

We finally end this paper with weak existence and moment estimates for (3).

Proof of Proposition 2. Let us for example treat the case where α ∈ (1,2). We divide the proof into several steps.
Step 1. Consider the equation

Yt = x +
∫ t

0

∫
|z|≤1

σ(Ys−)zÑ(ds dz) +
∫ t

0
c(Ys)ds, (15)
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where c(x) = b(x) − σ(x)
∫
|z|≥1 zνα

a−,a+(dz). If b and σ have at most linear growth, one immediately checks, using

that
∫
|z|≤1 z2να

a−,a+(dz) < ∞, that for any T > 0, for some constant CT not depending on x, any solution to (15)
satisfies

E

[
sup
[0,T ]

Y 2
t

]
≤ CT

(
1 + x2). (16)

Finally observe that we can rewrite (3) as

Xt = x +
∫ t

0

∫
|z|≤1

σ(Xs−)zÑ(ds dz) +
∫ t

0
c(Xs)ds +

∫ t

0

∫
|z|>1

σ(Xs−)zN(ds dz). (17)

Step 2. We now prove the moment estimates. We have not found a direct proof relying on stochastic calculus. Fix
β ∈ (0, α), T > 0 and assume only that b,σ have at most linear growth. Consider a solution (Xt )t≥0 to (3) and rewrite
it as (17).

The last integral of (17) generates jumps at some discrete instants: write the restriction of N to [0,∞) × {|z| ≥
1} as

∑
n≥1 δ(Tn,Zn), where 0 < T1 < T2 < · · · are the jump instants of a Poisson process with parameter λ =∫

|z|≥1 να
a−,a+(dz) and where the random variables (Zn)n≥1 are i.i.d. with law λ−1να

a−,a+(dz). Hence (3) reduces to

(15) on each time interval (Tn, Tn+1).
Denote by G = σ(T1, T2, . . .). Then Xt solves (15) during [0, T1). Hence we have

E

[
sup

[0,T1∧T )

X2
t

∣∣G
]

≤ CT

(
1 + x2) whence E

[
sup

[0,T1∧T )

|Xt |β
∣∣G

]
≤ KT

(
1 + |x|β)

.

Furthermore, XT1 = XT1− + σ(XT1−)Z1, whence, since σ has at most linear growth, |XT1 |β ≤ L(1 + |XT1−|β)(1 +
|Z1|β). Consequently, we have

E

[
sup

[0,T1∧T ]
|Xt |β

∣∣G
]

≤ MT

(
1 + |x|β)

,

where MT = KT + L(1 + KT )E[1 + |Z1|β ] < ∞ (here we need that β < α to have E[|Z1|β ] < ∞). Exactly in the
same way, since (Xt )t≥0 solves (15) during (Tk, Tk+1) for any k ≥ 1, one can prove that

E

[
sup

[Tk∧T ,Tk+1∧T ]
|Xt |β

∣∣G
]

≤ MT

(
1 + E

[|XTk
|β |G

])

with the same constant MT . Put uk = E[sup[Tk∧T ,Tk+1∧T ] |Xt |β |G] for k ≥ 0 (set T0 = 0). We have proved that u0 ≤
MT (1 + |x|β) and that uk+1 ≤ MT (1 + uk). We classically deduce that for some constant AT > 1, depending on x,
uk ≤ Ak+1

T . Consequently, for any k ≥ 1,

E

[
sup

[0,Tk∧T ]
|Xt |β

∣∣G
]

≤ u0 + · · · + uk−1 ≤ AT + · · · + Ak
T ≤ Ak+1

T

AT − 1
.

Finally, we find

E

[
sup
[0,T ]

|Xt |β
]

≤
∑
k≥0

E

[
1{Tk<T <Tk+1}E

(
sup

[0,Tk+1∧T ]
|Xt |β

∣∣G
)]

≤ 1

AT − 1

∑
k≥0

Ak+2
T

(λT )k

k! e−λT < ∞.
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Step 3. To prove weak existence for (3), we assume that b and σ are continuous with at most linear growth. We
introduce the approximate equation, for n ≥ 1,

Xn
t = x +

∫ t

0
σ
(
Xn

s−
)

dZn
s +

∫ t

0
b
(
Xn

s

)
ds, (18)

where (Zn
t )t≥0 is a Lévy process with Lévy measure 1{|z|≤n}να

a−,a+(dz) (compensated, without drift and without

Brownian part). Since
∫
|z|≤n

z2να
a−,a+(dz) < ∞, we can apply Theorem 175 of Situ [16] to deduce that for each n ≥ 1,

(18) has a weak solution (Xn
t )t≥0. Exactly as in Step 2, for any β ∈ (0, α), any T > 0,

sup
n≥1

E

[
sup
[0,T ]

∣∣Xn
t

∣∣β]
< ∞. (19)

We now use Aldous’ criterion, see Jacod and Shiryaev [9], Theorem 4.5, p. 356, to check that the sequence of processes
((Xn

t )t≥0)n≥1 is tight in D([0,∞),R). For T > 0 and δ > 0, we introduce the set AT (δ) of all pairs of stopping times
(S,S′) satisfying a.s. 0 ≤ S ≤ S′ ≤ S + δ ≤ T . We have to check that for any η > 0,

lim
δ→0

sup
n≥1

sup
(S,S′)∈AT (δ)

Pr
[∣∣Xn

S′ − Xn
S

∣∣ > η
] = 0. (20)

To do so, we consider a Poisson measure Nn(ds dz) on [0,∞) × R∗ with intensity measure dt 1{|z|≤n}να
a−,a+(dz)

such that Zn
t = ∫ t

0

∫
R∗ zÑn(ds dz). We also introduce, for A > 0, the stopping time τA

n = inf{t ≥ 0: |Xn
t | ≥ A}. An

immediate computation shows that for any A > 0, any n ≥ 1, any (S,S′) ∈ AT (δ),

∣∣Xn
S′∧τA

n
− Xn

S∧τA
n

∣∣ ≤
∣∣∣∣
∫ S′∧τA

n

S∧τA
n

∫
|z|≤1

σ
(
Xn

s−
)
zÑn(ds dz)

∣∣∣∣
+

∫ S′∧τA
n

S∧τA
n

∫
|z|≥1

∣∣σ (
Xn

s−
)∣∣|z|Nn(ds dz) +

∫ S′∧τA
n

S∧τA
n

∣∣cn

(
Xn

s−
)∣∣ds

=: I 1,A
n + I 2,A

n + I 3,A
n ,

where cn(x) = b(x) − σ(x)
∫

1<|z|<n
να
a−,a+(dz). Since b and σ have at most linear growth, sup[0,τA

n )[|σ(Xn
s )| +

|cn(X
n
s )|] ≤ C(1 + A) a.s. for some constant C. Thus standard computations (recall that 0 ≤ S ≤ S′ ≤ S + δ ≤

T a.s.) show that E[(I 1,A
n )2] ≤ C(1 + A)2δ, E[I 2,A

n ] ≤ C(1 + A)δ and E[I 3,A
n ] ≤ C(1 + A)δ. Consequently,

E[|Xn
S′∧τA

n
− Xn

S∧τA
n
|] ≤ C(1 + A)

√
δ for all δ ∈ (0,1), the constant C depending only on a−, a+, α, b, σ . Finally,

using (19) with β = 1, we see that Pr[τA
n ≤ T ] ≤ Pr[sup[0,T ] |Xn

s | > A] ≤ CT /A. Hence for any η > 0, any value of
A > 0,

Pr
[∣∣Xn

S′ − Xn
S

∣∣ > η
] ≤ Pr

[∣∣Xn
S′∧τA

n
− Xn

S∧τA
n

∣∣ > η
] + Pr

[
τA
n ≤ T

]

≤ C(1 + A)
√

δ

η
+ CT

A
.

Choosing A = δ−1/4, we finally get, for all δ ∈ (0,1),

Pr
[∣∣Xn

S′ − Xn
S

∣∣ > η
] ≤ C(1 + δ−1/4)

√
δ

η
+ CT δ1/4 ≤ CT (1 + 1/η)δ1/4,

where CT depends only on T ,a−, a+, α, b, σ . This implies (20) and ends the step.
Step 4. We finally conclude. Consider, for each n ≥ 1, a (weak) solution (Xn

t )t≥0 to (18) driven by (Zn
t )t≥0. The

sequence ((Zn
t )t≥0)n≥1 is obviously tight, since it goes in law, in D([0,∞),R), to the (α, a−, a+)-stable process
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(Zt )t≥0. Using Step 3, we deduce that, up to extraction of a (not relabelled) subsequence, (Xn
t ,Zn

t )t≥0 converges in
law to some (Xt ,Zt )t≥0 in D([0,∞),R

2). By continuity of b,σ , it follows that (Xn
t , σ (Xn

t ), b(Xn
t ),Zn

t )t≥0 converges
in law (Xt , σ (Xt ), b(Xt ),Zt )t≥0 in D([0,∞),R

4).
Using [9], Corollary 6.30, p. 385, the sequence (Zn

t )t≥0 satisfies the P-UT property. Indeed, it suffices to check that
supn≥1 E[sup[0,t] |ΔZn

s |] < ∞ for all t > 0. But with the notation of Step 3,

E

[
sup
[0,t]

∣∣ΔZn
s

∣∣] ≤ E

[
1 +

∫ t

0

∫
|z|≥1

|z|Nn(ds dz)

]

≤ 1 + t

∫
1≤|z|≤n

|z|να
a−,a+(dz) ≤ 1 + Ct

since α > 1. We simply used that the supremum of the jumps is smaller than 1 plus the sum of all the jumps greater
than 1.

Applying [9], Theorem 6.22, p. 383, the sequence (Xn
t ,

∫ t

0 σ(Xn
s )dZn

s ,
∫ t

0 b(Xn
s )ds,Zn

t )t≥0 thus converges in law
to (Xt ,

∫ t

0 σ(Xs−)dZs,
∫ t

0 b(Xs)ds,Zt )t≥0 in D([0,∞),R
4). Passing to the limit in (18), we deduce that Xt = x +∫ t

0 σ(Xs−)dZs + ∫ t

0 b(Xs)ds. We have built a weak solution to (3). �
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