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Abstract. Let (Xt , Yt )t∈T be a discrete or continuous-time Markov process with state space X × R
d where X is an arbitrary

measurable set. Its transition semigroup is assumed to be additive with respect to the second component, i.e. (Xt , Yt )t∈T is assumed
to be a Markov additive process. In particular, this implies that the first component (Xt )t∈T is also a Markov process. Markov
random walks or additive functionals of a Markov process are special instances of Markov additive processes. In this paper, the
process (Yt )t∈T is shown to satisfy the following classical limit theorems:

(a) the central limit theorem,
(b) the local limit theorem,
(c) the one-dimensional Berry–Esseen theorem,
(d) the one-dimensional first-order Edgeworth expansion,

provided that we have supt∈(0,1]∩T Eπ,0[|Yt |α] < ∞ with the expected order α with respect to the independent case (up to some
ε > 0 for (c) and (d)). For the statements (b) and (d), a Markov nonlattice condition is also assumed as in the independent case.
All the results are derived under the assumption that the Markov process (Xt )t∈T has an invariant probability distribution π ,
is stationary and has the L

2(π)-spectral gap property (that is, (Xt )t∈N is ρ-mixing in the discrete-time case). The case where
(Xt )t∈T is non-stationary is briefly discussed. As an application, we derive a Berry–Esseen bound for the M-estimators associated
with ρ-mixing Markov chains.

Résumé. Soit (Xt , Yt )t∈T un processus de Markov en temps discret ou continu et d’espace d’état X × Rd où X est un ensemble
mesurable quelconque. Son semi-groupe de transition est supposé additif suivant la seconde composante, i.e. (Xt , Yt )t∈T est un
processus additif Markovien. En particulier, ceci implique que la première composante (Xt )t∈T est également un processus de
Markov. Les marches aléatoires Markoviennes ou les fonctionnelles additives d’un processus de Markov sont des exemples de
processus additifs Markoviens. Dans cet article, on montre que le processus (Yt )t∈T satisfait les théorèmes limites classiques
suivants :

(a) le théorème de la limite centrale,
(b) le théorème limite local,
(c) le théorème uniforme de Berry–Esseen en dimension un,
(d) le développement d’Edgeworth d’ordre un en dimension un,

pourvu que la condition de moment supt∈(0,1]∩T Eπ,0[|Yt |α] < ∞ soit satisfaite, avec l’ordre attendu α du cas indépendant (à un
ε > 0 près pour (c) et (d)). Pour les énoncés (b) et (d), il faut ajouter une condition nonlattice comme dans le cas indépendant. Tous
les résultats sont obtenus sous l’hypothèse d’un processus de Markov (Xt )t∈T admettant une mesure de probabilité invariante π et
possédant la propriété de trou spectral sur L

2(π) (c’est à dire, (Xt )t∈N est ρ-mélangeante dans le cas du temps discret). Le cas où
(Xt )t∈T est non-stationnaire est brièvement abordé. Nous appliquons nos résultats pour obtenir une borne de Berry–Esseen pour
les M-estimateurs associés aux chaînes de Markov ρ-mélangeantes.
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1. Introduction

In this paper, we are concerned with the class of Markov Additive Processes (MAP). The discrete and continuous-
time cases are considered so that the time parameter set T will denote N or [0,+∞). Let X be any set equipped by
a σ -algebra X and let B(Rd) be the Borel σ -algebra on R

d (d ≥ 1). A (time homogeneous) MAP (Xt , Yt )t∈T is a
(time homogeneous) Markov process with state space X × R

d and transition semigroup (Qt )t∈T satisfying: ∀t ∈ T,
∀(x, y) ∈ X × Rd , ∀(A,B) ∈ X × B(Rd),

Qt(x, y;A × B) = Qt(x,0;A × B − y). (1.1)

In other words, the transition semigroup is additive in the second component. It follows from the definition that the
first component (Xt )t∈T of a MAP is a (time homogeneous) Markov process. The second component (Yt )t∈T must be
thought of as a process with independent increments given σ(Xs, s ≥ 0). We refer to [15] for the general structure of
such processes. Note that a discrete-time MAP is also called a Markov Random Walk (MRW). In stochastic modelling,
the first component of a MAP is usually associated with a random environment which drives or modulates the additive
component (Yt )t∈T. The MAPs have been found to be an important tool in various areas as communication networking
(e.g. see [2,71,72]), finance (e.g. see [1,3,56]), reliability (e.g. see [17,37,64,70]), . . . Some important instances of
MAP are:

• In discrete/continuous-time: (Xt , Yt )t∈T where (Yt )t∈T is a R
d -valued additive functional (AF) of the Markov

process (Xt )t∈T. Therefore any result on the second component of a MAP applies to an AF. Basic discrete and
continuous-time AFs are respectively

Y0 = 0,∀t ∈ N
∗ Yt =

t∑
k=1

ξ(Xk); ∀t ∈ [0,+∞[ Yt =
∫ t

0
ξ(Xs)ds, (1.2)

where ξ is a R
d -valued function satisfying conditions under which Yt is well-defined for every t ∈ T. When (Xt )t∈T

is a regular Markov jump process, then any non-decreasing AF has the form (e.g. [16])∫ t

0
ξ1(Xs)ds +

∑
s≤t

ξ2(Xs−,Xs),

where Xt− = lims→t,s<t Xs , ξ1 and ξ2 are non-negative measurable functions such that ξ2(x, x) = 0 for every
x ∈ X. General representations and properties of AFs may be found in [5,77], and references therein. Such AFs are
basically introduced when some kind of “rewards” are collected along with the dynamics of the Markov process
(Xt )t∈T through the state space X. Thus, Yt is the accumulated reward on the finite interval [0, t]. Even if the state
space X is a finite set, the numerical computation of the probability distribution of such AFs is not an easy task (e.g.
see [9,82]).

• In discrete-time: the Markov renewal processes when the random variables Yt , t ∈ N, are non-negative; if we
consider a hidden Markov chain (Xt ,Zt )t∈N, where the so-called observed process (Zt )t∈N is R

d -valued (Z0 = 0),
then (Xt ,

∑t
k=1 Zk)t∈N is a MAP.

• In continuous time: the Markovian Arrival Process where (Xt )t∈T is a regular jump process and (Yt )t∈T is a point
process (see [2]), which includes the so-called Markov Modulated Poisson Process.

Seminal works on MAPs are [21,22,59,69,75] and are essentially concerned with a finite Markov process (Xt )t∈T

as first component. The second component (Yt )t∈T was sometimes called a process defined on a Markov process.
When X is a finite set, the structure of MAPs are well understood and an account of what is known can be found
in [2], Chapter XI. In this paper, we are concerned with Gaussian approximations of the distribution of the second
component Yt of a MAP. Central limit theorems for (Yt )t∈T may be found in [7,27,30,50,51,59,61,75,83,84] under
various assumptions. Here, such results are derived when (Xt )t∈T has an invariant probability measure π , is stationary
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and has the L2(π)-spectral gap property (see conditions (AS1) and (AS2) below). Moreover, standard refinements of
the central limit theorem (CLT) related to the convergence rate are provided. Before, notations and assumptions used
throughout the paper are introduced.

Let (Xt , Yt )t∈T be a MAP with state space X × R
d and transition semigroup (Qt )t∈T. (X, X ) is assumed to

be a measurable space equipped with a σ -algebra X . In the continuous-time case, (Xt , Yt )t∈T is assumed to be
progressively measurable. (Xt )t∈T is also a Markov process with transition semigroup (Pt )t∈T given by

Pt (x,A) := Qt

(
x,0;A × R

d
)
.

Throughout the paper, we assume that (Xt )t∈T has a unique invariant probability measure denoted by π (∀t ∈ T,π ◦
Pt = π). We denote by L

2(π) the usual Lebesgue space of (classes of) functions f : X → C such that ‖f ‖2 :=√
π(|f |2) = (

∫
X

|f |2 dπ)1/2 < ∞. The operator norm of a bounded linear operator T on L
2(π) is defined by ‖T ‖2 :=

sup{f ∈L2(π):‖f ‖2=1} ‖T (f )‖2. We appeal to the following conditions.

AS1. (Xt )t∈T is stationary (i.e. X0 ∼ π ).

AS2. The semigroup (Pt )t∈T of (Xt )t∈T has a spectral gap on L
2(π):

lim
t→+∞‖Pt − Π‖2 = 0, (1.3)

where Π denotes the rank-one projection defined on L2(π) by: Πf = π(f )1X.

AS3. The process (Yt )t∈T satisfies the moment condition

sup
t∈(0,1]∩T

Eπ,0
[|Yt |α

]
< ∞, (1.4)

where | · | denotes the euclidean norm on R
d and Eπ,0 is the expectation when (X0, Y0) ∼ (π, δ0).

In the discrete-time case, notice that the moment condition (1.4) reduces to (AS3d)

Eπ,0
[|Y1|α

]
< ∞ (AS3d)

and that condition (AS2) is equivalent to the ρ-mixing property of (Xt )t∈N, with ρ-mixing coefficients going to 0
exponentially fast [81]. Condition (AS2) is also related to the notion of essential spectral radius (e.g. see [86]).

Under (AS1) and (AS2), we show that the second component (Yt )t∈T of the MAP satisfies, in discrete and contin-
uous time, the following standard limit theorems:

(a) the central limit theorem, under (AS3) with the optimal value α = 2;
(b) the local limit theorem, under (AS3) with the optimal value α = 2 and the additional classical Markov non-lattice

condition;
(c) the one-dimensional Berry–Esseen theorem, under (AS3) with the (almost) optimal value (α > 3);
(d) a one-dimensional first-order Edgeworth expansion, under (AS3) with the (almost) optimal value (α > 3) and the

Markov non-lattice condition.

These results correspond to the classical statements for the sequences of independent and identically distributed
(i.i.d.) random variables, with the same order α (up to ε > 0 in (c) and (d)). Such results are known for special MAPs
satisfying (AS2) (comparison with earlier works is made after each statement), but to the best of our knowledge, the
results (a)–(d) are new for general MAPs satisfying (AS2), as, for instance, for AF involving unbounded functionals.

Here, the main arguments are:

• for the statement (a): the ρ-mixing property of the increments (Yt+1 − Yt )t∈T of the process (Yt )t∈T (see Proposi-
tion 3.1). This result, which has its own interest, is new to the best of our knowledge. The closest work to this part
is a result of [38] which, by using φ-mixing properties, gives the CLT for MAPs associated with uniformly ergodic
driving Markov chains (i.e. (Pt )t∈T has a spectral gap on the usual Lebesgue space L

∞(π)). Condition (AS2) is
less restrictive than uniform ergodicity (which is linked to the so-called Doeblin condition).
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• For the refinements (b)–(d): the Nagaev–Guivarc’h spectral method. The closest works to this part are, in discrete-
time the paper [49] in which these refinements are obtained for the AF: Yt =∑t

k=1 ξ(Xk), and in continuous-time
the work of Lezaud [62] which proves, under the uniform ergodicity assumption, a Berry–Esseen bound for the
integral additive functional (1.2). Here, in discrete-time, we borrow to a large extent the weak spectral method of
[49]: this is outlined in Proposition 4.2, which gives a precise expansion (close to the i.i.d. case) of the characteristic
function of Yt . For continuous-time MAPs, similar expansions can be derived from the semigroup property of the
Fourier operators of the MAP. Proposition 4.2, and its continuous-time counterpart Proposition 4.4, are the key
results to establish limit theorems (as for instance the statements (b)–(d)) with the help of Fourier techniques.

The classical (discrete and continuous-time) models for which the spectral gap property (AS2) is met, are briefly
reviewed in Sections 2.2–2.4. The above limit theorems (a)–(d) are valid in all these examples and open up possibilities
for new applications. First, our moment conditions are optimal (or almost optimal). For instance, in continuous time,
the Berry–Esseen bound in [62] requires that ξ in the integral (1.2) is bounded, while our statement (c) holds true
under the condition π(|ξ |3+ε) < ∞. Second, our results are true for general MAPs. For instance, they apply to Yt =∑t

k=1 ξ(Xk−1,Xk). This fact enables us to prove a Berry–Esseen bound for M-estimators associated with ρ-mixing
Markov chains, under a moment condition which greatly improves the results in [76].

The paper is organised as follows. The L
2(π)-spectral gap assumption for a Markov process is briefly discussed

in Section 2 and connections to standard ergodic properties are pointed out. In Section 3, the CLT for (Yt )t∈T under
(AS1)–(AS3) with α = 2 is derived. The functional central limit theorem (FCLT) is also discussed. Section 4 is
devoted to refinements of the CLT. First, the Fourier operator is introduced in Section 4.1, the characteristic function
of Yt is investigated in Section 4.2, and our limit theorems are proved for discrete-time MAPs in Section 4.3. Their
extension to the non-stationary case is discussed in Section 4.4. The continuous-time case is studied in Section 4.5.
The statistical application to M-estimators for ρ-mixing Markov chains is developed in Section 5.

Finally, we point out that the natural way to consider the Nagaev–Guivarc’h method in continuous-time is the
semigroup property of the Fourier operators of the MAP (see Section 4.1 for details). To the best of our knowledge,
this property, which is closely related to the additivity condition (1.1) defining a MAP, has been introduced and only
exploited in [50].

2. The L
2(π)-spectral gap property (AS2)

2.1. Basic facts on property (AS2)

We discuss the condition (AS2) for the semigroup (Pt )t∈T of (Xt )t∈T. It is well-known that (Pt )t∈T is a contraction
semigroup on each Lebesgue-space L

p(π) for 1 ≤ p ≤ +∞, that is: we have ‖Pt‖p ≤ 1 for all t ∈ T, where ‖ · ‖p

denotes the operator norm on L
p(π). Condition (AS2), introduced by Rosenblatt [81] and also called strong ergodicity

on L
2(π), implies that (Pt )t∈T is strongly ergodic on each L

p(π) (1 < p < +∞), that is ‖Pt − Π‖p → 0 when
t → +∞. Moreover, (AS2) is fulfilled under the so-called uniform ergodicity property, i.e. the strong ergodicity on
L

∞(π). These properties, established in [81], can be easily derived from the Riesz–Thorin interpolation theorem [6]
which insures, thanks to the contraction property of Pt , that

‖Pt − Π‖p ≤ ‖Pt − Π‖α
p1

‖Pt − Π‖1−α
p2

≤ 2 min
{‖Pt − Π‖α

p1
,‖Pt − Π‖1−α

p2

}
, (2.1)

where p1,p2 ∈ [1,+∞] and p ∈ [1,+∞] satisfy 1/p = α/p1 + (1 − α)/p2 for some α ∈ [0,1]. Indeed, assume that
condition (AS2) holds. Then inequality (2.1) with (p1 = 2,p2 = +∞) and α ∈ (0,1) gives the strong ergodicity on
L

p(π) for each p ∈ (2,+∞). Notice that the value p = +∞ is obtained with α = 0, but in this case, the uniform
ergodicity cannot be deduced from (AS2) and (2.1). In fact the uniform ergodicity condition is stronger than (AS2)
(see [81]). Next inequality (2.1) with (p1 = 2,p2 = 1) and α ∈ (0,1) gives the strong ergodicity on L

p(π) for each
p ∈ (1,2). The value p = 1 is obtained with α = 0, but the strong ergodicity on L

1(π) cannot be deduced from (AS2)
and (2.1). Finally, if the uniform ergodicity is assumed, then inequality (2.1) with (p1 = +∞,p2 = 1) and α = 1/2
yields (AS2).

Also notice that the strong ergodicity property on L
p(π) holds if and only if there exists some strictly positive

constants C and ε such that we have for all t ∈ T:

‖Pt − Π‖p ≤ Ce−εt . (2.2)
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Indeed, if κ0 := ‖Pτ − Π‖p < 1 for some τ ∈ T (which holds under the strong ergodicity property), then we have
for all n ∈ N

∗: ‖Pnτ − Π‖p = ‖P n
τ − Π‖p = ‖(Pτ − Π)n‖p ≤ κn

0 . Writing t = w + nτ with n ∈ N
∗ and w ∈ [0, τ ),

we obtain: ‖Pt − Π‖p = ‖Pw(P n
τ − Π)‖p ≤ κn

0 ≤ Ce−εt with C := 1/κ0 and ε := (−1/τ) lnκ0. The converse im-
plication is obvious. Thus, the strong ergodicity property on L

2(π), i.e. condition (AS2), is equivalent to require
L

2(π)-exponential ergodicity (2.2), that is the L
2(π)-spectral gap property.

In the next subsection, Markov models with a spectral gap on L
2(π) arising from stochastic modelling and poten-

tially relevant to our framework are introduced. Assumption (AS2) can be also met in more abstract settings, as for
instance in [41] where the L

2-spectral gap property for classic Markov operators (with a state space defined as the
d-dimensional torus) is proved.

2.2. Geometric ergodicity and property (AS2)

Recall that (Xt )t∈N is V -geometrically ergodic if its transition kernel P has an invariant probability measure π and is
such that there are r ∈ (0,1), a finite constant K and a π -a.e finite function V : X → [1,+∞] such that

∀n ≥ 0,π-a.e. x ∈ X, sup
{∣∣P nf (x) − π(f )

∣∣, f : X → C, |f | ≤ V
}≤ KV (x)rn. (VG)

In fact, when (Xt )t∈N is ψ -irreducible (i.e. ψ(A) > 0 �⇒ P(x,A) > 0,∀x ∈ X) and aperiodic [67], condition (VG) is
equivalent to the standard geometric ergodicity property [78]: there are functions r : X → (0,1) and C : X → [1,+∞)

such that: for all n ∈ N, π-a.e. x ∈ X,∥∥P n(x, ·) − π(·)∥∥TV := sup
{∣∣P nf (x) − π(f )

∣∣, f : X → C, |f | ≤ 1
}≤ C(x)r(x)n.

There is another equivalent operational condition to geometric ergodicity for ψ -irreducible and aperiodic Markov
chains (Xt )t∈N, the so-called “drift-criterion”: there exist a function V : X → [1,+∞], a small set C ⊂ X and con-
stants δ > 0, b < ∞ such that

PV ≤ (1 − δ)V + b1C.

We refer to [67] for details and applications, and to [57] for a recent survey on the CLT for the additive functionals of
(Xt )t∈N in (1.2). Now, the transition kernel P is said to be reversible with respect to π if

π(dx)P (x,dy) = π(dy)P (y,dx)

or equivalently if P is self-adjoint on the space L
2(π). It is well known that a V -geometrically ergodic Markov

chain with a reversible transition kernel has the L
2(π)-spectral gap property [78]. Moreover, for a ψ -irreducible and

aperiodic Markov chain (Xt )t∈N with reversible transition kernel, (V -)geometric ergodicity is shown to be equivalent
to the existence of a spectral gap in L

2(π), and, when X0 ∼ μ, we also have [78], Theorem 2.1, [80]

∥∥μP n(·) − π(·)∥∥TV ≤ 1

2
|μ − π |L2(π)r

n, (R)

where r := limn→+∞(‖P n − Π‖2)
1/n and |μ − π |L2(π) := ‖dμ/dπ − 1‖2 if well-defined and ∞ otherwise. Note

that the reversibility condition is central to the previous discussion on the L
2(π)-spectral gap property. Indeed, there

exists a ψ -irreducible and aperiodic Markov chain which is geometrically ergodic but does not admit a spectral gap
on L

2(π) [43].
Such a context of geometric ergodicity and reversible kernel is relevant to the Markov Chain Monte Carlo method-

ology for sampling a given probability distribution, i.e. the target distribution. Indeed, the basic idea is to define a
Markov chain (Xt )t∈N with the target distribution as invariant probability measure π . Then a MCMC algorithm is a
scheme to draw samples from the stationary Markov chain (Xt )t∈N. But, the initial condition of the algorithm, i.e.
the probability distribution of X0, is not π since the target distribution is inaccessible. Therefore the convergence
in distribution of the Markov chain to π in regard of the probability distribution of X0 must be guaranteed and the
knowledge of the convergence rate is crucial to monitor the sampling. Thus, central limit theorem for the Markov
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chains and quantitative bounds as in (R) are highly expected. Geometric ergodicity of Hasting–Metropolis type algo-
rithms has been investigated by many researchers. Two standard instances are the full dimensional and random-scan
symmetric random walk Metropolis algorithm [25,55], and references therein. Note that the first algorithm is also
referred to as a special instance of the Hasting algorithm and the second one to as a Metropolis-within-Gibbs sampler.
Let π be a probability distribution on R

d which is assumed to have a positive and continuous density with respect
to the Lebesgue measure. The so-called proposal densities are assumed to be bounded away from 0 in some region
around zero (the moves through the state space X are based on these probability distributions). These conditions assert
that the corresponding transition kernel for each algorithm is ψ -irreducible, aperiodic and is reversible with respect
to π . Geometric ergodicity for the Markov chain (Xt )t∈N (and so the existence of a spectral gap in L

2(π)) is closely
related to the tails of the target distribution π . For instance, in the first algorithm, it can be shown that π must have an
exponential moment [55], Corollary 3.4. A sufficient condition for geometric ergodicity in case of super-exponential
target densities, is of the form [55], Theorem 4.1,

lim|x|→+∞

〈
x

|x| ,
∇π(x)

|∇π(x)|
〉
< 0.

For the second algorithm, sufficient conditions for geometric ergodicity are reported in [25] when the target density
decreases either subexponentially or exponentially in the tails. A very large set of examples and their respective merit
are discussed in these two references. We refer to [79], and references therein, for a recent survey on the theory of
Markov chains in connection with MCMC algorithms.

2.3. Uniform ergodicity and hidden Markov chains

As quoted in the introduction, a discrete-time MAP is closely related to a hidden Markov chain. Standard issues for
hidden Markov chains require to be aware of the convergence rate of the hidden Markov state process (Xt )t∈N. One
of them is the state estimation via filtering or smoothing. In such a context, minorization conditions on P are usually
involved. The basic one is: there exists a bounded positive measure ϕ on X such that for some m ∈ N

∗:

∀x ∈ X,∀A ∈ X P m(x,A) ≥ ϕ(A). (UE)

It is well-known that this is equivalent to the uniform ergodicity property or to condition (VG) with V (x) = 1 [67],
Theorems 16.2.1 and 16.2.2. Recall that uniform ergodicity gives the L

2(π)-spectral gap property (AS2), but the
converse is not true. Another minorization condition is the so-called “Doeblin condition”: there exists a probability
measure ϕ such that for some m, ε < 1 and δ > 0 [20]

ϕ(A) > ε �⇒ ∀x ∈ X, P m(x,A) ≥ δ. (D0)

It is well known that, for ergodic and aperiodic Markov chains, (D0) is equivalent to the uniform ergodicity. We refer
to [14], and the references therein, for an excellent overview of the interplay between the Markov chain theory and
the hidden Markov models.

2.4. Property (AS2) for continuous time Markov processes

The Markov jump processes are a basic class of continuous-time Markov models which has a wide interest in stochas-
tic modelling. The L

2(π)-exponential convergence has received attention a long time ago. We refer to [18] for a good
account of what is known on ergodic properties for such processes. In particular, the L

2(π)-spectral gap property is
shown to be equivalent to the standard exponential ergodicity for the birth–death processes:

∃β > 0 such that ∀(i, j) ∈ X
2,∃Ci ≥ 0,

∣∣Pt(i, j) − πj

∣∣≤ Ci exp(−βt), t → +∞,

where (Pt (i, j))i,j∈X is the matrix semigroup of (Xt )t≥0. This is also true for the reversible Markov jump processes.
Hence, in these cases, criteria for exponential ergodicity are also valid to check the L

2(π)-exponential convergence.
Moreover, explicit bounds on the spectral gap are discussed in details in [18]. For the birth–death processes, we also
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refer to [58], and references therein, where explicit formulas are obtained for classical Markov queuing processes. The
birth–death processes are often used as reference processes for analyzing general stochastic models. This idea was in
force in the Liggetts’s derivation of the L

2-exponential convergence of supercritical nearest particle systems [63]. The
interacting systems of particles are also a source of examples of processes with a L

2-spectral gap. We refer to [63] for
such a discussion on various classes of stochastic Ising models. In physics and specially in statistical physics, many
evolution models are given by stochastic ordinary/partial equations. When the solutions are finite/infinite dimensional
Markov processes, standard issues arise: existence and uniqueness of an invariant probability measure, ergodic prop-
erties which include the rate of convergence to the invariant measure with respect to some norm. Such issues may be
included in the general topic of the stability of solutions of stochastic differential equations (SDEs). Thus, it is not
surprising that ergodic concepts as the V -geometric ergodicity and Lyapunov-type criteria associated with, originally
developed by Meyn and Tweedie [67] for studying the stability of discrete-time Markov models, have been found to be
of value (e.g. see [32], and references therein). Here, we are only concerned with the L

2(π)-exponential convergence
so that we only mention some results related with.

An instance of L
2(π)-spectral gap can be found in [28] where the following SDE is considered

dXt = −1

2
b(Xt )dt + dWt, X0 = x ∈ R

d,

where (Wt )t≥0 is the standard d-dimensional Brownian motion and b(·) is a gradient field from R
d to R

d (with
suitable properties ensuring essentially the existence of a unique strong solution to the equation, which has a unique
invariant probability measure). When b(·) is a radial function satisfying b(x) ∼ C|x|α for α > 1 when x → +∞, then
the semigroup is shown to be ultracontractive and to have a L

2(π)-spectral gap [28].
Another instance of L

2(π)-spectral gap is related to the R-valued Markov process solution to

dXt = b(Xt )dt + a(Xt )dWt, (2.3)

where (Wt )t≥0 is the standard 1-dimensional Brownian motion and X0 is a random variable independent of (Wt )t≥0.
Standard assumptions ensure that the solution of the SDE above is a positive recurrent diffusion on some interval and
a (strictly) stationary ergodic time-reversible process. Under additional conditions on the scale and the speed densities
of the diffusion (Xt )t≥0 [29], (A4) and reinforced (A5), Proposition 2.8, the transition semigroup of (Xt )t≥0 is shown
to have the L

2(π)-spectral gap property (explicit bounds on the spectral gap are also provided). The basic example
studied in [29] is when a(x) := cxν and b(x) := α(β −x) with ν ∈ [1/2,1], α,β ∈ R. Conditions ensuring the L

2(π)-
spectral gap property are provided in terms of these parameters. Applications to some classical models in finance are
discussed. Note that statistical issues for continuous-time Markov processes as the jump or diffusion processes, are
related to the time discretization or sampling schemes of these processes. This often provides discrete-time Markov
chains which inherit ergodic properties of the original continuous-time process. Thus we turn to the discussion on the
discrete-time case (e.g. see [19] for the jump processes, [29] and the references therein for the (hidden) diffusions).
Finally, the context of the stochastic differential equation (2.3) can be generalized to Markov H -valued processes
solution to infinite dimensional SDEs, where H is a Hilbert space. A good account of these generalizations can be
found in [33], and references therein.

3. The ρ-mixing property and central limit theorems

Let (Xt , Yt )t∈T be a MAP taking values in X×Rd . E(x,0), Eπ,0 are the expectation with respect to the initial conditions
(X0, Y0) ∼ (δx, δ0) and (X0, Y0) ∼ (π, δ0) respectively. First, basic facts for MAPs are proposed. Second, they are
used to show that, for a discrete-time MAP, the increment process (Yn − Yn−1)n∈N∗ is exponentially ρ-mixing under
(AS1) and (AS2). Then, a CLT is obtained under conditions (AS1) and (AS2) and the expected moment condition
(AS3) (i.e. (AS3d)) with α = 2.

3.1. Basic facts on MAPs

Let F
(X,Y )
t := σ(Xu,Yu,u ≤ t), F

X
t := σ(Xu,u ≤ t) and F

Y
t := σ(Yu,u ≤ t) be the filtration generated by the pro-

cesses (Xt , Yt )t∈T, (Xt )t∈T and (Yt )t∈T respectively.



Limit theorems for MAP 403

The additivity property (1.1) for the semigroup (Qt )t∈T reads as follows for any measurable (C-valued) function
g on X × R

d and any a ∈ R
d :

Qt(g)a = Qt(ga), (3.1)

where ga(x, y) := g(x, y + a) for every (x, y) ∈ X × R
d . Let us introduce the following notation:

Q̃s(x;dx1 × dy1) := Qs(x,0;dx1 × dy1).

Then, we have:

Lemma 3.1. For any C-valued function g on X × R
d such that E[|g(Xu,Yu)|] < ∞ for every u ∈ T, we have:

E
[
g(Xs+t , Ys+t )|F (X,Y )

s

]= Qt(gYs )(Xs,0) = Q̃t (gYs )(Xs). (3.2)

or in terms of the increments of the process (Yt )t∈T:

E
[
g(Xs+t , Ys+t − Ys)|F (X,Y )

s

]= Qt(g)(Xs,0) = Q̃t (g)(Xs) = E(Xs,0)

[
g(Xt ,Yt )

]
. (3.3)

Proof. The two formula are derived as follows:

E
[
g(Xs+t , Ys+t )|F (X,Y )

s

] = E
[
g(Xs+t , Ys+t )|Xs,Ys

]
(Markov property)

= Qt(g)(Xs,Ys)

= Qt(gYs )(Xs,0) (from (3.1))

= Q̃t (gYs )(Xs);
E
[
g(Xs+t , Ys+t − Ys)|F (X,Y )

s

] = E
[
g(Xs+t , Ys+t − Ys)|Xs,Ys

]
(Markov property)

= E
[
g−Ys (Xs+t , Ys+t )|Xs,Ys

]
= Qt(g0)(Xs,0) = Q̃t (g)(Xs) (from (3.2))

= E(Xs,0)

[
g(Xt ,Yt )

]
. �

Lemma 3.2. For every n ≥ 1, any C-valued function g such that for every 0 ≤ u1 ≤ · · · ≤ un

E
[∣∣g(Xu1, Yu1,Xu2, Yu2 − Yu1, . . . ,Xun, Yun − Yun−1)

∣∣]< ∞
we have for any s ≥ 0 and t1, . . . , tn ≥ 0:

E
[
g(Xs+t1, Ys+t1 − Ys, . . . ,Xs+∑n

i=1 ti
, Ys+∑n

i=1 ti
− Y

s+∑n−1
i=1 ti

)|F (X,Y )
s

]
=
∫

Q̃s(Xs;dx1 × dz1)

n∏
i=2

Q̃s(xi−1;dxi × dzi)g(x1, z1, . . . , xn, zn)

=
(

n⊗
i=1

Q̃ti

)
(g)(Xs). (3.4)

Proof. Lemma 3.1 gives the case n = 1. Let us check that Formula (3.4) is valid for n = 2. This can help the reader
to follow the induction.

E
[
g(Xs+t1, Ys+t1 − Ys,Xs+t1+t2, Ys+t1+t2 − Ys+t1)|F (X,Y )

s

]
= E

[
E
[
g(Xs+t1 , Ys+t1 − Ys,Xs+t1+t2 , Ys+t1+t2 − Ys+t1)|F (X,Y )

s+t1

]|F (X,Y )
s

]
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= E
[
E
[
g(Xs+t1, Ys+t1 − Ys,Xs+t1+t2 , Ys+t1+t2 − Ys+t1)|Xs+t1, Ys+t1

]|F (X,Y )
s

]
= E

[∫
g(Xs+t1 , Ys+t1 − Ys, x2, y2 − Ys+t1)Qt2(Xs+t1 , Ys+t1;dx2 × dy2)|F (X,Y )

s

]
= E

[∫
g(Xs+t1 , Ys+t1 − Ys, x2, z2)Q̃t2(Xs+t1;dx2 × dz2)

∣∣F (X,Y )
s

]
(using (1.1))

=
∫

Q̃t1(Xs;dx1 × dz1)

∫
Q̃t2(x1;dx2 × dz2)g(x1, z1, x2, z2) (using (3.3))

= (Q̃t1 ⊗ Q̃t2)(g)(Xs).

Let us now complete the induction. Assume that Property (3.4) is valid for n − 1. Then

E
[
g(Xs+t1, Ys+t1 − Ys, . . . ,Xs+∑n

i=1 ti
, Ys+∑n

i=1 ti
− Y

s+∑n−1
i=1 ti

)|F (X,Y )
s

]
= E

[
E
[
g(Xs+t1, Ys+t1 − Ys, . . . ,Xs+∑n

i=1 ti
, Ys+∑n

i=1 ti
− Y

s+∑n−1
i=1 ti

)|F (X,Y )
s+t1

]|F (X,Y )
s

]
= E

[(
n⊗

i=2

Q̃ti

)(
g(Xs+t1, Ys+t1 − Ys, ·, . . . , ·)

)
(Xs+t1)

∣∣∣F (X,Y )
s

]
(induction)

=
(

Q̃t1 ⊗
(

n⊗
i=2

Q̃ti

))
(g)(Xs) (using (3.3)).

�

Corollary 3.1. Under (AS1), the following properties hold.

1. The process (Yt )t∈T has stationary increments, i.e.

Eπ,0
[
g(Ys+t1 − Ys, . . . , Ys+∑n

i=1 ti
− Y

s+∑n−1
i=1 ti

)
]= π

((
n⊗

i=1

Q̃ti

)
(g)

)
(3.5)

does not depend on s for any function g as in Lemma 3.2.
2. If Eπ,0[|Yu|] < ∞ for every u ∈ T, then:

∀(s, t) ∈ T
2

Eπ,0[Ys+t ] = Eπ,0[Yt ] + Eπ,0[Ys].
3. (ξn := Yn − Yn−1)n∈N∗ is a stationary sequence of R

d -valued random variables and if h is a C-valued function
such that Eπ,0[|h(ξ1, . . . , ξn)|2] = 1, then Q̃⊗n

1 (h) ∈ L
2(π) with∥∥Q̃⊗n

1 (h)
∥∥

2 ≤ 1, (3.6)

where Q̃⊗n
1 denotes the n-fold kernel product

⊗n
i=1 Q̃1.

Proof. Take the expectation of (3.4) with respect to the probability mesure π :

Eπ,0
[
g(Ys+t1 − Ys, . . . , Ys+∑n

i=1 ti
− Y

s+∑n−1
i=1 ti

)
]

= Eπ,0

[(
n⊗

i=1

Q̃ti

)
(g)(Xs)

]
= EπPs,0

[(
n⊗

i=1

Q̃ti

)
(g)(X0)

]

= Eπ,0

[(
n⊗

i=1

Q̃ti

)
(g)(X0)

]
(invariance property of π).
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The second property is deduced from the stationarity of the increments of (Yt )t∈T. Indeed, we can write Eπ,0[Yt ] =
Eπ,0[Ys+t − Ys] = Eπ,0[Ys+t ] − Eπ,0[Ys]. That (ξn)n∈N∗ is a stationary sequence of random variables follows from
(3.5) with s = 0, t1 = · · · = tn = 1. The last property follows from (3.4) and the Jensen inequality∥∥Q̃⊗n

1 h
∥∥2

2 = ∥∥E(·,0)

[
h(ξ1, . . . , ξn)

]∥∥2
2 ≤ Eπ,0

[∣∣h(ξ1, . . . , ξn)
∣∣2]= 1. �

Lemma 3.3. Let ξn := Yn − Yn−1 for n ∈ N
∗ (recall that Y0 = 0 a.s.). Let f and h be two C-valued functions

such that Eπ,0[|f (ξ1, . . . , ξn)|2] < ∞ and Eπ,0[|h(ξn+t , . . . , ξn+t+m)|2] < ∞ for (t, n,m) ∈ (N∗)3. Under (AS1), the
covariance has the following form

Covπ,0
(
f (ξ1, . . . , ξn);h(ξn+t , . . . , ξn+t+m)

)= Eπ,0
[
f (ξ1, . . . , ξn)(Pt−1 − Π)

(
Q̃⊗m+1

1 (h)
)
(Xn)

]
, (3.7)

where Q̃⊗m+1
1 denotes the (m + 1)-fold kernel product

⊗m+1
i=1 Q̃1.

Proof. Apply formula (3.4) with E(x,0) to the specific function g(x1, z1, . . . , xn+t+m, zn+t+m) = f (z1, . . . , zn) ×
h(zn+t , . . . , zn+t+m) with t, n,m ≥ 1:

E(x,0)

[
f (ξ1, . . . , ξn)h(ξn+t , . . . , ξn+t+m)

]
= Q̃⊗n+m+t

1 (g)(x)

=
∫

(X×Rd )n+t+m

Q̃1(x;dx1 × dz1)

n+t+m∏
i=2

Q̃1(xi−1;dxi × dzi)g(x1, . . . , zn+t+m)

=
∫

(X×Rd )n
Q̃1(x;dx1 × dz1)

n∏
i=2

Q̃1(xi−1;dxi × dzi)f (z1, . . . , zn)

×
∫

(X×Rd )t−1

n+t−1∏
i=n+1

Q̃1(xi−1;dxi × dzi)

×
∫

(X×Rd )m+1

n+t+m∏
i=n+t

Q̃1(xi−1;dxi × dzi)h(zn+t , . . . , zn+t+m).

The second term reduces to
∫

Xt−1

∏n+t−1
i=n+1 Q̃1(xi−1;dxi ×R

d) = ∫
Xt−1

∏n+t−1
i=n+1 P1(xi−1;dxi) = ∫

X
Pt−1(xn;dxn+t−1).

The third is Q̃⊗m+1
1 (h)(xn+t−1). Then we have

E(x,0)[f (ξ1, . . . , ξn)h(ξn+t , . . . , ξn+t+m)]

=
∫

(X×Rd )n
Q̃1(x;dx1 × dz1)

n∏
i=2

Q̃1(xi−1;dxi × dzi)f (z1, . . . , zn)Pt−1
(
Q̃⊗m+1

1 (h)
)
(xn)

= E(x,0)

[
f (ξ1, . . . , ξn)Pt−1

(
Q̃⊗m+1

1 h
)
(Xn)

]
(using (3.4) with E(x,0)).

Then, integrating against the probability measure π(·) gives

Eπ,0
[
f (ξ1, . . . , ξn)h(ξn+t , . . . , ξn+t+m)

]= Eπ,0
[
f (ξ1, . . . , ξn)Pt−1

(
Q̃⊗m+1

1 h
)
(Xn)

]
. (3.8)

Since Π(Q̃⊗m+1
1 (h))(x) = π(Q̃⊗m+1

1 (h)) for every x ∈ X, we obtain

Eπ,0
[
f (ξ1, . . . , ξn)Π

(
Q̃⊗m+1

1 (h)
)
(Xn)

] = Eπ,0
[
f (ξ1, . . . , ξn)

]
π
(
Q̃⊗m+1

1 (h)
)

= Eπ,0
[
f (ξ1, . . . , ξn)

]
Eπ,0

[
h(ξn+t , . . . , ξn+t+m)

]
,

where the last equality follows from (3.5). �
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Remark 3.1. We can prove a continuous-time counterpart of Lemma 3.3. But, we restrict ourself to the discrete-time
version because this is the version we need in the paper.

3.2. ρ-mixing property of (Yn − Yn−1)n≥1 for discrete-time stationary MAPs

Let us recall some basic facts on the ρ-mixing of a (strictly) stationary sequence of random variables (ξn)n∈N∗ (e.g.
see [11]). For any p ∈ N

∗ and q ∈ N
∗ ∪ {∞} with p ≤ q , Gq

p := σ(ξp, . . . , ξq) denotes the σ -algebra generated by
random variables ξp, . . . , ξq . The ρ-mixing coefficient at horizon t > 0, denoted by ρ(t), is defined by

ρ(t) := sup
n∈N∗

sup
{∣∣Corr(f ;h)

∣∣f ∈ L
2(Gn

1

)
, h ∈ L

2(G∞
n+t

)}
, (3.9)

where Corr(f ;h) is the correlation coefficient of the two random variables f and g. In fact, ρ-mixing coefficient may
be computed as follows from [11], Proposition 3.18: for t > 0

ρ(t) = sup
n∈N∗

sup
m∈N∗

sup
{∣∣Corr(f ;h)

∣∣f ∈ L
2(Gn

1

)
, h ∈ L

2(Gn+t+m
n+t

)}
. (3.10)

The stationary sequence (ξn)n∈N∗ is said to be ρ-mixing if

lim
t→+∞ρ(t) = 0.

We know from condition (AS2) that (Xn)n∈N is ρ-mixing [81]. In the special case when Yn :=∑n
k=1 ξ(Xk), it

is clear that (Yn − Yn−1)n≥1 is also ρ-mixing from [11], p. 28. We extend this fact to general (Yn)n∈N in the next
proposition.

Proposition 3.1 (ρ-mixing). Under (AS1) and (AS2), the stationary sequence (ξn := Yn − Yn−1)n∈N∗ is ρ-mixing at
an exponential rate: there exists ε > 0 such that

ρ(t) = O
(
exp(−εt)

)
.

Proof. For the sake of simplicity, assume that d = 1. First, note that the random variables f and h in (3.10) can be
assumed to be of L

2-norm 1. Thus, we just have to deal with covariances. Recall that (ξn := Yn −Yn−1)n∈N∗ is known
to be stationary under (AS1) from Corollary 3.1. The σ -algebra Gn

1 and Gn+t+m
n+t in the mixing coefficients will be

relative to the stationary sequence (ξn)n∈N∗ . Second, let us consider two L
2-normed random variables f (ξ1, . . . , ξn) ∈

L
2(Gn

1 ), h(ξn+t , . . . , ξn+t+m) ∈ L
2(Gn+t+m

n+t ). For any m ≥ 1, the map x → Q̃⊗m+1
1 (h)(x) belongs to L

2(π) and
we have ‖Q̃⊗m+1

1 (h)‖2 ≤ 1 from Corollary 3.1 (see (3.6)). Since Pt and Π are contractions on L
2(π), we have

(Pt−1 − Π)(Q̃⊗m+1
1 (h)) ∈ L

2(π).
The Cauchy–Schwarz inequality and the last comments allow us to write from (3.7)

Cov(f ;h)2 ≤ Eπ,0
[∣∣f (ξ1, . . . , ξn)

∣∣2]Eπ,0
[∣∣(Pt−1 − Π)

(
Q̃⊗m+1

1 (h)
)
(Xn)

∣∣2]
= Eπ,0

[∣∣(Pt−1 − Π)
(
Q̃⊗m+1

1 (h)
)
(X0)

∣∣2] (π is Pn-invariant)

= ∥∥(Pt−1 − Π)
(
Q̃⊗m+1

1 (h)
)∥∥2

2

≤ ‖Pt−1 − Π‖2
2

∥∥Q̃⊗m+1
1 (h)

∥∥2
2 (since Q̃⊗m+1

1 (h) ∈ L
2(π))

≤ ‖Pt−1 − Π‖2
2 (since ‖Q̃⊗m+1

1 (h)‖2 ≤ 1).

Therefore, it follows that for every t ≥ 1:

sup
{∣∣Corr(f ;h)

∣∣f ∈ L
2(Gn

1

)
, h ∈ L

2(Gn+t+m
n+t

)} ≤ ‖Pt−1 − Π‖2.
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The right-hand side term in the inequality above does not depend on m and n, so that we obtain from (3.10)

ρ(t) ≤ ‖Pt−1 − Π‖2.

The proof is completed by using the exponential estimate (2.2) of ‖Pt−1 − Π‖2 under (AS2). �

3.3. Central limit theorem for the Markov additive processes

In a first step, we consider a discrete-time X × R
d -valued MAP, (Xn,Yn)n∈N, for which the driving Markov chain

(Xn)n∈N is assumed to satisfy (AS1) and (AS2). Recall that condition (AS3d) for α = 2 is

Eπ,0
[|Y1|2

]
< ∞.

This condition implies that Eπ,0[|Y1|] < ∞, and we suppose that Eπ,0[Y1] = 0 for convenience (if not, replace Yn by
Yn − Eπ,0[Yn] = Yn − nEπ,0[Y1] from Corollary 3.1).

We know from Proposition 3.1 that (Yn+1 − Yn)n∈N is stationary and is exponentially ρ-mixing when (AS1) and
(AS2) hold. Then, under the expected moment condition Eπ,0[|Y1|2] < ∞, the CLT for (Yn)n∈N∗ follows from [52,
73] (e.g. see [11], Theorem 11.4). To the best of our knowledge, Theorem 3.1 for general MAP is new. The notation
N (0,0) stands for the Dirac distribution at 0.

Theorem 3.1. Under (AS1) and (AS2) and (AS3d) for α = 2, (Yn/
√

n)n∈N converges in distribution when n → +∞
to the d-dimensional Gaussian law N (0,Σ), where Σ is the asymptotic covariance d × d-matrix

Σ := lim
n

1

n
Eπ,0

[
YnY

∗
n

]
,

where the symbol ∗ denotes the transpose operator.

That (Yn/
√

n)n∈N satisfies the CLT under the condition Eπ,0[|Y1|2] < ∞ was known in some cases. Such standard
situations are recalled in the two next remarks (with d = 1 to simplify).

Remark 3.2 (Martingale method). If there exists a measurable function ξ : X → R such that Yn − Yn−1 = ξ(Xn)

and Eπ,0[|Y1|2] = π(ξ2) < ∞, then (Yn/
√

n)n∈N converges in distribution to the Gaussian law N (0, σ 2) where
σ 2 = π(ξ2) + 2

∑+∞
�=1 π(ξP �ξ) ∈ [0,+∞). This result follows from the Gordin–Lifsic theorem [34]. Indeed, (AS2)

implies that (Xn)n∈N is ergodic and that there is a solution ξ̃ ∈ L
2(π) to the Poisson equation: ξ̃ − P ξ̃ = ξ . Then, the

difference martingale method of [34] can be used to obtain the CLT.

Remark 3.3 (Uniform ergodicity). Recall that the Markov chain (Xn)n∈N is said to be uniformly ergodic if
limn→+∞ ‖P n − Π‖∞ = 0. This property implies (AS2) (but is stronger) and is fulfilled if and only if (Xn)n∈N is
ergodic, aperiodic and satisfies the Doeblin condition (D0). In addition, for an aperiodic and ergodic Markov chain
(Xn)n∈N, Doeblin’s condition is equivalent to the uniform mixing (or φ-mixing) property, and then, the φ-mixing
coefficients go to 0 at least exponentially fast (see [10,81]).

Set ξn := Yn − Yn−1. If (Xn)n∈N is uniformly ergodic and if Eπ,0[Y 2
1 ] < ∞, then the real number σ 2 = Eπ,0[ξ2

1 ] +
2
∑+∞

�=1 Eπ,0[ξ1ξ�] is well-defined in [0,+∞). If σ 2 > 0, then the sequence (Yn/
√

n)n∈N converges in distribution to
N (0, σ 2) [38]. This CLT is established as follows: the stationarity and the uniform ergodicity of (Xn)n∈N extend to
the sequence (ξn)n∈N, and the φ-mixing coefficients of (ξn)n∈N also go to 0 at an exponential rate (see [38], Remark 4,
Lemma 1). The proof is completed using [53], Theorem 18.5.2.

The CLT for a continuous-time MAP (Xt , Yt )t≥0 is deduced from the discrete-time statement.

Theorem 3.2. Under (AS1) and (AS2) and (AS3) with α = 2, (Yt/
√

t)t>0 satisfies a CLT.
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Proof. For t ∈ [0,+∞), we set t = n + v, where n is the integer part of t and v ∈ [0,1). We can write:

Yt√
t

= (Yt − Yn)√
t

+
√

n√
t

Yn√
n
. (3.11)

Recall that (Qt )t≥0 is the transition semigroup of (Xt , Yt )t≥0. It is easily checked that the MAP (Xt , Yt )t≥0 “sampled”
at discrete instants, (Xn,Yn)n∈N, is a discrete-time MAP with transition kernel Q := Q1 which satisfies (AS1), (AS2)
and (AS3d). Therefore, (Yn/

√
n)n∈N satisfies a CLT thanks to Theorem 3.1. Finally, the sequence ((Yt − Yn)/

√
t)t>0

converges in probability to 0 from the Tchebychev inequality and condition (AS3d):

Pπ,0
{|Yt − Yn| >

√
tε
} = Pπ,0

{|Yv| >
√

tε
}

(stationary increments)

≤ Eπ,0[|Yv|2]
tε2

≤ supv∈(0,1] Eπ,0[|Yv|2]
tε2

−→
t→+∞ 0.

Therefore, (Yt/
√

t)t>0 satisfies a CLT from (3.11). �

Remark 3.4 (FCLT). Proposition 3.1 allows us to deduce from [8], Theorem 19.2, that a functional central limit
theorem also holds (d = 1). That is, under the assumptions of Theorem 3.1, we have:(

Y�nt�√
n

)
t≥0

L−→
n→+∞(Bt )t≥0 (3.12)

as random elements of D[0,∞), the Skorokhod space of cadlag functions on R+, and where (Bt )t≥0 is a Brownian
motion with zero drift and some variance parameter. Let us give some comments on the FCLT relevant to our context.

(a) The case of a discrete-time MAP (Xn,Yn)n∈N with (Xn)n∈N satisfying the Doeblin condition is covered by [38].
(Yn)n∈N is shown to be φ-mixing and a FCLT for φ-mixing sequences is used. We extend their approach to our
case of L

2-spectral gap.
(b) Under (AS1) and (AS2) and the expected moment condition of order 2, Maigret [65] has established a FCLT

for (Yn := ξ(Xn−1,Xn))n∈N∗ in the specific case where (Xn)n∈N is Harris-recurrent. It is worth noticing that
condition (AS2) cannot be compared with the Harris-recurrence property.

(c) If (Xt )t≥0 is a stationary ergodic Markov process with a strongly continuous transition semigroup (Pt )t≥0 on
L

2(π), the following convergence holds for any f ∈ L
2(π) such that π(f ) = 0 [7], Theorem 2.1, Proposition 2.3,

(see also [84] in the Harris-recurrent case):(
1√
n

∫ nt

0
ξ(Xs)ds

)
t≥0

L−→
n→+∞(Bt )t≥0,

where (Bt )t≥0 is a Brownian motion with zero drift and some variance parameter. Set Yt := ∫ t

0 ξ(Xs)ds. Since
ξ ∈ L

2(π), we have Eπ,0[|Yt |2] ≤ π(|ξ |2) for every t ∈ (0,1], thus (AS3) with α = 2 is true. Then, the convergence
result above is easily deduced from (3.12) using the discrete-time stationary MAP (Xn,Yn)n≥1 introduced in the
proof of Theorem 3.2.

(d) Glynn and Whitt deal with the integral functional of a regenerative process in [30,31]. Their results apply to a
Markov process which is a specific instance of a regenerative process. Conditions for the CLT (FCLT) to hold
are expressed in terms of a second moment on the increments YT1 := ∫ T1

0 ξ(Xs)ds of the process (Yt )t>0 over a
regeneration cycle of length T1 (and an additional condition of negligeability in probability of sup0≤s≤T1

|Ys |).
The fact that we only consider the Markov case makes our conditions easier to check.

4. Refinements of the central limit theorem for MAPs

Let (Xt , Yt )t∈T be a MAP taking values in X×R
d . The canonical scalar product on R

d is denoted by 〈·, ·〉. The Fourier
operators associated with (Xt , Yt )t∈T are introduced in the next subsection and are shown to satisfy a semigroup
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property. In the discrete-time case, precise expansions of the characteristic function of the additive component Yt can
be deduced from [49] under (AS2). They are central to the derivation of our limit theorems in this section. Limit
theorems are first considered for discrete-time MAPs. A local limit theorem, a Berry–Esseen bound and a first-order
Edgeworth expansion are obtained. The continuous-time case is addressed thanks to the basic reduction to the discrete-
time case used for the CLT.

4.1. Fourier operators. A semigroup property

For any t ∈ T and ζ ∈ R
d , we consider the linear operator St (ζ ) acting (in a first step) on the space of bounded

measurable functions f : X → C as follows:

∀x ∈ X
(
St (ζ )f

)
(x) := E(x,0)

[
ei〈ζ,Yt 〉f (Xt )

]
. (4.1)

Note that St (0) = Pt . In the discrete-time case, S1(ζ ) corresponds to the Fourier operator which was first introduced
by Nagaev [68] in the special case when Yn =∑n

k=1 ξ(Xk) (see [42,44] and the reference therein), and was extended
to discrete-time MAPs in [4,40] to prove local limit theorems and renewals theorems (see also [26]). All these works
are based on the following formula (see Proposition 4.1 below):

∀ζ ∈ R
d,∀n ∈ N

(
Sn(ζ )f

)
(x) := E(x,0)

[
ei〈ζ,Yn〉f (Xn)

]= (S1(ζ )nf
)
(x). (4.2)

This formula clearly reads as the semigroup property: Sm+n(ζ ) = Sm(ζ ) ◦ Sn(ζ ). In the continuous-time, it seems
that the operators St (ζ ) were first introduced in [50] for investigating AFs of continuous-time Markov processes on a
compact metric state space X. In [50], Pt was assumed to have a spectral gap on the space of all continuous C-valued
functions on X, and (St (ζ ))t>0 was thought of as a semigroup (see (SG) below) on this space.

Here, in view of (AS2), the above mentioned semigroup property has to be considered on the Lebesgue spaces
L

p(π) (1 ≤ p ≤ ∞).

Proposition 4.1. For all t ∈ T and ζ ∈ R
d , St (ζ ) defines a linear contraction on L

p(π), and we have:

∀ζ ∈ R
d,∀(s, t) ∈ T

2 St+s(ζ ) = St (ζ ) ◦ Ss(ζ ). (SG)

In particular, relation (4.2) holds for all f ∈ L
p(π).

Proof. The first assertion is easy to prove. Next, for any ζ ∈ Rd and f ∈ Lp(π), let us set: g(x, y) := f (x)ei〈ζ,y〉 with
x ∈ X and y ∈ R

d . Then, using the Markov property and Lemma 3.1:(
St+s(ζ )f

)
(x) := E(x,0)

[
ei〈ζ,Yt+s 〉f (Xt+s)

]
= E(x,0)

[
E(x,0)

[
ei〈ζ,Yt+s 〉f (Xt+s)|F (X,Y )

s

]]= E(x,0)

[
(QtgYs )(Xs,0)

]
= E(x,0)

[
ei〈ζ,Ys 〉(Qtg)(Xs,0)

]= E(x,0)

[
ei〈ζ,Ys 〉EXs,0

[
f (Xt )e

i〈ζ,Yt 〉]]
= E(x,0)

[
ei〈ζ,Ys 〉(St (ζ )f

)
(Xs)

]= (Ss(ζ )
(
St (ζ )f

))
(x)

the third equality results from: gYs (x, y) = f (x)ei〈ζ,(y+Ys)〉 = ei〈ζ,Ys 〉g(x, y). This gives the semigroup property (SG).
The last assertion is obvious. �

4.2. Expansions of the characteristic function of the additive component

Here we assume that (Xn,Yn)n∈N is a discrete-time MAP taking values in X×Rd (possibly derived from a continuous-
time MAP) such that the driving Markov chain (Xn)n∈N is stationary and satisfies (AS2). This last property ensures
that S1(0) has good spectral properties, and the iterates S1(ζ )n occurring in (4.2) are studied using the Nagaev–
Guivarc’h spectral method which consists in applying the perturbation theory to the Fourier operators S1(ζ ) for small
ζ . However using the standard perturbation theorem requires strong assumptions on Y1. Here we shall appeal to the
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weak spectral method introduced in [45] and based on the Keller–Liverani perturbation theorem [60]. This method
is fully developed in the Markov framework in [49], see references therein. In the sequel, F (�) denotes the partial
derivative of order � of a C-valued function F defined on an open subset of R

d .
Conditions (AS1) and (AS2) are assumed to hold throughout the subsection.

Proposition 4.2. Let m0 ∈ N
∗. Under condition (AS3d) for some α > m0, there exists a bounded open neighborhood

O of ζ = 0 in R
d such that we have for all f ∈ L

s(π) with any s > α
α−m0

:

∀n ∈ N,∀ζ ∈ O Eπ,0
[
ei〈ζ,Yn〉f (Xn)

]= λ(ζ )nL(ζ, f ) + Rn(ζ, f ), (4.3)

where λ(·), L(·, f ), Rn(·, f ) are C-valued functions of class Cm0 on O, with λ(0) = 1 and L(0, f ) = π(f ). Moreover,
we have the following properties for � = 0, . . . ,m0:

– sup
ζ∈O

∣∣L(�)(ζ, f )
∣∣< ∞, (4.4a)

– ∃κ ∈ (0,1), sup
ζ∈O

∣∣R(�)
n (ζ, f )

∣∣= O
(
κn
)
. (4.4b)

If f := 1X, we have Rn(0,1X) = 0.

When Yn =∑n
k=1 ξ(Xk), the above properties are proved in [49], Section 7.3, by using (4.2) and some operator-

type derivation arguments. For a general additive component Yn, the method is the same1 using Lemmas 4.1 and 4.2
below which slightly extend [49], Lemmas 4.2, 7.4. Mention that, by using the same lemmas, Proposition 4.2 can also
be deduced from [35] which specifies the method introduced in [36,45] to prove Taylor expansions of λ(·), L(·, f ),
Rn(·, f ).2

The operator norm in the space L(Lp,L
p′

) of the linear bounded operators from L
p(π) to L

p′
(π) is denoted by

‖ · ‖p,p′ .

Lemma 4.1. If 1 ≤ p′ < p, then the map ζ → S1(ζ ) is continuous from R
d to L(Lp,L

p′
).

Proof. We have for ζ ∈ R
d , ζ0 ∈ R

d and f ∈ L
p(π), thanks to Hölder’s inequality∣∣(S1(ζ ) − S1(ζ0)

)
f (x)

∣∣p′ = ∣∣E(x,0)

[
ei〈ζ,Y1〉f (X1)

]− E(x,0)

[
ei〈ζ0,Y1〉f (X1)

]∣∣p′

≤ E(x,0)

[∣∣ei〈ζ−ζ0,Y1〉 − 1
∣∣p′ ∣∣f (X1)

∣∣p′]
≤ 2p′

E(x,0)

[
min

{
1,
∣∣〈ζ − ζ0, Y1〉

∣∣}p′ ∣∣f (X1)
∣∣p′]

,

the last inequality resulting from the classic inequality |eia − 1| ≤ 2 min{1, |a|}. An integration with respect to π and
the use of Hölder’s inequality give

π
(∣∣(S1(ζ ) − S1(ζ0)

)
f
∣∣p′) ≤ 2p′

Eπ,0
[
min

{
1,
∣∣〈ζ − ζ0, Y1〉

∣∣}(pp′)/(p−p′)](p−p′)/p
Eπ,0

[∣∣f (X1)
∣∣p]p′/p

≤ 2p′∥∥min
{
1,
∣∣〈ζ − ζ0, Y1〉

∣∣}∥∥p′
(pp′)/(p−p′)‖f ‖p′

p ,

since π is invariant. Thus, we deduce that ‖S1(ζ )−S1(ζ0)‖p,p′ ≤ 2‖min{1, |〈ζ −ζ0, Y1〉|}‖(pp′)/(p−p′) goes to 0 when
|ζ − ζ0| → 0 from Lebesgue’s theorem. �

1See the beginning of the Appendix. In particular, mention that λ(ζ ) is the dominant eigenvalue of S1(ζ ), L(ζ, ·) is related to the associated
eigenprojection, and κ can be chosen as κ = (e−ε + 1)/2 where ε > 0 is defined in (2.2).
2As observed in [35], the passage from the Taylor expansions to the differentiability properties can be derived from [13].
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Lemma 4.2. Assume that (AS3d) holds for some α > m0 (m0 ∈ N∗), and let 1 ≤ j ≤ m0. If p > 1 and pj := αp/(α +
jp) ≥ 1, then ζ → S1(ζ ) is j -times continuously differentiable from Rd to L(Lp,Lpj ), and supζ∈Rd ‖S(j)

1 (ζ )‖p,pj
≤

Eπ,0[|Y1|α]j/α .

Proof. For the sake of simplicity, we suppose that d = 1. Below we consider any ζ ∈ R, ζ0 ∈ R and f ∈ Lp(π). For
1 ≤ j ≤ m0, define (formally) the following linear operator:

∀x ∈ X
(
S

(j)

1 (ζ )f
)
(x) := E(x,0)

[
(iY1)

j eiζY1f (X1)
]
.

First we have:∣∣S(j)

1 (ζ )f (x)
∣∣pj ≤ E(x,0)

[|Y1|jpj |f (X1)|pj
]

so that, from Hölder’s inequality,∥∥S(j)

1 (ζ )
∥∥

p,pj
≤ Eπ,0

[|Y1|α
]j/α

.

Second, define Δ := S
(j−1)

1 (ζ ) − S
(j−1)

1 (ζ0) − (ζ − ζ0)S
(j)

1 (ζ0). Then, for j ∈ {1, . . . ,m0 − 1}, we have thanks to the
classic inequality |eia − 1 − ia| ≤ 2|a|min{1, |a|}∣∣Δf (x)

∣∣pj ≤ 2pj |ζ − ζ0|pj E(x,0)

[
min

{
1,
∣∣(ζ − ζ0)Y1

∣∣}pj |Y1|jpj
∣∣f (X1)

∣∣pj
]
.

It follows from Hölder’s inequality that the operator norm satisfies

‖Δ‖p,pj
≤ 2|ζ − ζ0|

∥∥min
{
1,
∣∣(ζ − ζ0)Y1

∣∣}|Y1|j
∥∥

α/j
.

This proves that S
(j−1)

1 (·) is differentiable from R to L(Lp,L
pj ), and that its derivatives is S

(j)

1 . Finally, we obtain:∣∣(S(j)

1 (ζ ) − S
(j)

1 (ζ0)
)
f (x)

∣∣pj ≤ 2pj E(x,0)

[
min

{
1,
∣∣(ζ − ζ0)Y1

∣∣}pj |Y1|jpj
∣∣f (X1)

∣∣pj
]

from which we deduce that the operator norm satisfies∥∥S(j)

1 (ζ ) − S
(j)

1 (ζ0)
∥∥

p,pj
≤ 2
∥∥min

{
1,
∣∣(ζ − ζ0)Y1

∣∣}|Y1|j
∥∥

α/j
.

Thus S1(·) is j -times continuously differentiable from R to L(Lp,Lpj ). �

Next, let us return to our probabilistic context. Let ∇ and Hess denote the gradient and the Hessian operators
respectively. In the following proposition, the d-dimensional vector ∇λ(0) and the symmetric d × d-matrix Hessλ(0)

are related to the mean vector Eπ,0[Y1] and the asymptotic covariance matrix associated with the sequence (Yn −
nEπ,0[Y1])/√n.

Proposition 4.3.

(i) If (AS3d) holds for some α > 1, then ∇λ(0) = iEπ,0[Y1].
(ii) If (AS3d) holds for some α > 2, then the following limit exists in the set of the non-negative symmetric d × d-

matrices:

Σ := lim
n

1

n
Eπ,0

[(
Yn − nEπ,0[Y1]

)(
Yn − nEπ,0[Y1]

)∗]= −Hessλ(0).

Proof. Assume that d = 1 for the sake of simplicity (for d ≥ 2, the proof is similar by using partial derivatives). By
differentiating at ζ = 0 the equality Eπ,0[eiζYn ] = λ(ζ )nL(ζ,1X) + Rn(ζ,1X) of Proposition 4.2, we obtain:

iEπ,0[Yn] = nλ(1)(0) + L(1)(0,1X) + R(1)
n (0,1X).
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Since Eπ,0[Yn] = nEπ,0[Y1] (from Corollary 3.1), we deduce that λ(1)(0) = i and limn Eπ,0[Yn]/n = iEπ,0[Y1] from
(4.4b). To prove (ii), assume for convenience that Eπ,0[Y1] = 0. Then λ(1)(0) = 0, and differentiating twice the above
equality at ζ = 0 gives: −Eπ,0[Y 2

n ] = nλ(2)(0) + L(2)(0,1X) + R
(2)
n (0,1X). We obtain the desired property by using

again (4.4b). �

4.3. Refinements of the CLT for discrete-time MAPs

In this subsection, (Xn,Yn)n∈N is a MAP taking values in X × R
d , with a driving Markov chain (Xn)n∈N satisfying

(AS1) and (AS2). The assumptions below imply that Eπ,0[|Y1|] < ∞, and for convenience we suppose that Eπ,0[Y1] =
0 (if not, replace Yn by Yn − nEπ,0[Y1]).

Theorems 4.1 to 4.3 below have been established in [49] for additive components of the form Yn =∑n
k=1 ξ(Xk).

To the best of our knowledge, the present extensions to general MAP are new.

4.3.1. A local limit theorem
The classical Markov nonlattice condition is needed to state the local limit theorem (LLT):

Nonlattice condition. There is no a ∈ R
d , no closed subgroup H in R

d , H �= R
d , and no bounded measurable

function β : X → R
d such that: Y1 + β(X1) − β(X0) ∈ a + H Pπ,0-a.s.

This condition is equivalent to the following operator-type property. For each p ∈ (1,∞) and for all compact subset
K of R

d \ {0}, there exists ρ ∈ (0,1) such that:

sup
ζ∈K

∥∥S1(ζ )n
∥∥

p
= O

(
ρn
)
. (4.5)

This result is established in [49], Section 5, for additive functionals. The proof for general MAPs is similar. Since
Eπ,0[ei〈ζ,Yn〉] = π(S1(ζ )n1X) by (SG), it follows that

sup
ζ∈K

∣∣Eπ,0
[
ei〈ζ,Yn〉]∣∣= O

(
ρn
)
.

Theorem 4.1. The assumptions of Theorem 3.1 are supposed to be satisfied, so that (Yn/
√

n)n∈N∗ converges in
distribution to a d-dimensional Gaussian vector with covariance matrix Σ . Let us assume that Σ is a definite positive
matrix. Finally, suppose that the nonlattice condition is true. Then, we have for all compactly supported continuous
function g : Rd → R:

lim
n→+∞

√
detΣ(2πn)d/2

Eπ,0
[
g(Yn)

]=
∫

Rd

g(x)dx.

Proof. Thanks to (4.3) with f := 1X, Theorem 4.1 can be established as in the i.i.d. case: use Proposition 4.2 to
control L(·,1X) and Rn(ζ,1X) and, as in [12], use the nonlattice condition and the following second-order Taylor
expansion of λ(·), which follows from Theorem 3.1 and from [46], Lemma 4.2.

Lemma 4.3. Assume that conditions (AS2) and (AS3d) with α = 2 hold and that Eπ,0[Y1] = 0. Then the function
λ(·) in equality (4.3) satisfies the following second-order Taylor expansion3:

λ(ζ ) = 1 − 〈ζ,Σζ 〉/2 + o
(|ζ |2). �

Remark 4.1. We mention that a local limit theorem has been obtained in [66] for the process (Yn :=∑n
k=1 Zk)n∈N∗

associated with a stationary hidden Markov chain (Xn,Zn)n∈N. In [66], (Xn)n∈N is only assumed to be an ergodic
stationary Markov chain so that the additional conditions for the local limit theorem to hold are more involved than
those of Theorem 4.1.

3A direct application of Proposition 4.2 gives this expansion, but under condition (AS3d) with α > 2.
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4.3.2. Rate of convergence in the one-dimensional CLT
Here we suppose that d = 1. Under the condition Eπ,0[|Y1|2+ε] < ∞, the asymptotic variance σ 2 of Proposition 4.3
is defined by σ 2 := limn Eπ,0[Y 2

n ]/n.

Theorem 4.2. Under conditions (AS1) and (AS2) and (AS3d) for some α > 3 and if σ 2 > 0, then there exists some
constant B > 0 such that

∀n ≥ 1 sup
a∈R

∣∣∣∣Pπ,0

{
Yn

σ
√

n
≤ a

}
− �(a)

∣∣∣∣≤ B√
n
, (4.6)

where �(·) is the distribution function of the Gaussian distribution N (0,1).

Proof. Here, the functions λ(·), L(·) := L(·,1X) and Rn(·) := Rn(·,1X) in Proposition 4.2 are three times continu-
ously differentiable on O and satisfy the following properties:

supu∈O |L(u) − 1|/|u| < ∞ (from (4.4a) and L(0) = 1),
supu∈O |Rn(u)/u| = O(κn) (from (4.4b) and Rn(0) = 0),
λ(u) = 1 − σ 2u2/2 + O(u3) for u small enough (since λ(1)(0) = 0 and λ(2)(0) = −σ 2 from Proposition 4.3).

Then, we can borrow the proof of the Berry–Esseen theorem of the i.i.d. case (see [23]). �

Remark 4.2. The details of the previous proof are reported in [48], Theorem 2, for the additive functional Yn =∑n
k=1 ξ(Xk,Xk−1) of a V -geometrically Markov chain. They are the same in our context. In fact, by writing out the

arguments of [48], Theorem 2, we can derive the following more precise property: the constant B in (4.6) depends on
the sequence (Yn)n∈N, but only through σ 2 and Eπ,0[|Y1|3+ε]. Of course, this control is not as precise as in the i.i.d.
case [23], but it is enough to obtain interesting statistical properties as in [24,48] or in Section 5.

Remark 4.3. Let us consider the specific case Yn −Yn−1 = ξ(Xn) for some real-valued measurable function ξ . Under
conditions (AS1) and (AS2), if the real number σ 2 defined in Remark 3.2 is positive, then we have (4.6) under
the expected moment condition π(|ξ |3) < ∞. This follows from [47], Corollary 3.1, which is based on the spectral
method and martingale difference arguments (see also [49], Section 6). Note that the moment condition π(|ξ |3) < ∞
is optimal according to the i.i.d. case [23].

Remark 4.4. Let (Xn)n∈N be a ρ-mixing Markov chain. The additive functionals of (Xn)n∈N involved in the M-
estimation of Markov models (see (5.5)) are of the form Yn = ∑n

k=1 ξ(Xk−1,Xk). Since (Xn,Yn)n∈N is a MAP,
Theorem 4.2 applies provided that ξ : X × X → R is a measurable function such that Eπ,0[ξ(X0,X1)] = 0 and
Eπ,0[|ξ(X0,X1)|3+ε] < ∞ for some ε > 0. This will be supported by the statistical result of Section 5.

Finally let us state a first-order Edgeworth expansion.

Theorem 4.3. Assume that conditions (AS1) and (AS2) and (AS3d) hold for some α > 3, that σ 2 is positive and the
nonlattice condition is true. Then, there exists μ3 ∈ R such that:

Pπ,0

{
Yn

σ
√

n
≤ a

}
= �(a) + μ3

6σ 3
√

n

(
1 − a2)η(a) + o

(
1√
n

)
, (4.7)

where η(·) is the density of the Gaussian distribution N (0,1).

Other limit theorems can be stated under condition (AS2) as, for instance, a multidimensional Berry–Esseen the-
orem in the Prohorov metric (see [49], Section 9), and the multidimensional renewal theorems (see [39]). Although
Proposition 4.2 extends to the case when the order of regularity m0 is not integer, it does not allow to deal with the
convergence of Yn (properly normalized) to stable laws, since we assume α > m0 (in place of the expected condition
α = m0). For an additive functional Yn =∑n

k=1 ξ(Xk), a careful examination of the proof of Lemmas 4.1 and 4.2
shows that this limitation could be overcame under a condition of the type: ξ ∈ L

β(π) �⇒ Pξ ∈ Lβ ′
(π) with β ′ > β .
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Anyway mention that, under condition (AS2) and the previous condition on ξ , convergence to stable laws is obtained
in [54], Section 2.3, by using a “martingale approximation” approach. A natural question is to ask whether the last
condition on ξ is necessary.

4.4. The non-stationary case

Under (AS2), we discuss the extension of the previous results to the non-stationary case. Let μ be the initial distri-
bution of (Xn)n∈N. The careful use of [49], Proposition 7.3, allows us to extend Proposition 4.2 as follows. Under
condition (AS3d)4 with α > m0, and under the following assumption on μ

(NS) μ is a bounded linear form on L
r (π) with r such that 1 < r < αs/(α + m0s),

where s > α/(α − m0), all the conclusions of Proposition 4.2 remain true when π is replaced by μ, namely: for some
bounded open neighborhood O of ζ = 0 in R

d , we have for f ∈ L
s(π)

∀n ∈ N,∀ζ ∈ O Eμ,0
[
ei〈ζ,Yn〉f (Xn)

]= λ(ζ )nL(ζ, f,μ) + Rn(ζ,f,μ), (4.8)

with C-valued functions λ(·), L(·, f,μ), Rn(·, f,μ) satisfying the same properties as in Proposition 4.2. It is worth
noticing that λ(·) is the same function as in (4.3), contrary to L(·, f,μ) and Rn(·, f,μ) which both depend on μ.

Condition (NS) means that μ is absolutely continuous with respect to π with density φ ∈ L
r ′
(π) where r ′ =

r/(r − 1) is the conjugate number of r . It is easily checked that r ′ > αs/((α − m0)s − α) > 1. Note that the bigger is
the exponent α in condition (AS3d), the closer to 1 is the allowed value of r ′.

Proposition 4.3 extends to the non-stationary case as follows.

(i) If (AS3d) and (NS) hold with m0 = 1, then ∇λ(0) = i limn Eμ,0[Yn]/n.
(ii) If (AS3d) and (NS) hold with m0 = 2, then the conclusions of Proposition 4.3(ii) remain true with μ in place

of π .

Using the decomposition (4.8) (with f := 1X), we obtain as in the stationary case the following statements.

1. Under (AS2), (AS3d) with α = 2 and μ satisfying condition (NS) with m0 = 1: the CLT, and the LLT under the
additional non-lattice condition.

2. Under (AS2), (AS3d) with α > 3 and μ satisfying condition (NS) with m0 = 3: the Berry–Esseen bound, and under
the non-lattice condition, the first order Edgeworth expansion (4.7) with the additional term −bμη(u)/(σ

√
n),

where bμ is the asymptotic bias: bμ = limn Eμ,0[Yn] (see [49] for details).

For instance, let us sketch the proof of the CLT. Equality (4.8) with f := 1X gives

Eμ,0
[
ei〈ζ,Yn/

√
n〉]= λ

(
ζ/

√
n
)n

L
(
ζ/

√
n,1X,μ

)+ Rn

(
ζ/

√
n,1X,μ

)
.

Since m0 = 1 we have limn L(ζ/
√

n,1X,μ) = 1 and limn Rn(ζ/
√

n,1X,μ) = 0. Finally, the second-order Taylor
expansion of Lemma 4.3 shows that limn λ(ζ/

√
n) = exp(−〈ζ,Σζ 〉/2).

In general, the previous statements 1. and 2. do not apply to the case when the initial distribution μ is a Dirac
mass (which is not defined on L

r (π)). However, when the state space X of the driving Markov chain is discrete, these
statements are valid with any initial distribution δx provided that π(x) > 0 (because δx is then a continuous linear
form on each L

p(π) ≡ �p(π)).

4.5. The continuous-time case

In this section, we consider the case where T = (0,+∞). The process (Xt )t>0 is assumed to satisfy conditions (AS1)
and (AS2). Let us mention that the moment condition (AS3) reduces to

∀v ∈ (0,1] Eπ,0
[|Yv|α

]
< ∞

4In this non-stationary case, we only require condition (AS3d) with the stationary distribution π and the mean vector remains Eπ,0[Y1].
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when the semigroup (Qt )t≥0 is strongly continuous on L2((π,0)) (so is (Pt )t>0 on L2(π)).
All the theorems of the previous subsection are extended to (Yt )t>0. Recall that Theorems 4.1–4.3 concern the

multidimensional local limit theorem, the one-dimensional Berry–Esseen theorem, the one-dimensional first-order
Edgeworth expansion respectively. For the sake of simplicity, we still assume that Eπ,0[Y1] = 0.

Theorem 4.4. The conclusions of Theorems 4.1–4.3 are valid for (Yt/
√

t)t>0 under the same assumptions, up to the
following change: the moment condition (AS3d) is reinforced (with the same condition on α) in (AS3):

sup
v∈(0,1]

Eπ,0
[|Yv|α

]
< ∞.

Note that the extensions to the non-stationary case presented in Section 4.4 can be adapted to the continuous-time
case.

When Yt is defined by Yt := ∫ t

0 ξ(Xs)ds, any moment condition of the type supv∈[0,1] Eπ,0[|Yv|α] < ∞ (α ≥ 1) is
fulfilled if we have π(|ξ |α) < ∞. Indeed:

∀v ∈ [0,1] Eπ,0
[|Yv|α

]≤ Eπ,0

[∫ 1

0

∣∣ξ(Xs)
∣∣α ds

]
=
∫ 1

0
Eπ,0

[∣∣ξ(Xs)
∣∣α]ds = π

(|ξ |α).
Note that the nonlattice condition used in Theorem 4.4 is the same as in the discrete-time case (see Section 4.3.1)

and plays the same role. Indeed, writing t = n + v where n is the integer part of t , we know that Eπ,0[ei〈ζ,Yt 〉] =
π(S1(ζ )n(Sv(ζ )1X)). Using (4.5) and the fact that Sv is a contraction on L

p(π) (p ∈ (1,+∞)), it follows that

sup
ζ∈K

∣∣Eπ,0
[
ei〈ζ,Yt 〉]∣∣= O

(
ρn
)
. (4.9)

We prove Proposition 4.4 below which is the continuous-time version of Proposition 4.2. Then, combining Propo-
sition 4.4 with relation (4.9), the Fourier techniques of the i.i.d. case can be used to extend Theorems 4.1–4.3 to
(Yt/

√
t)t>0

Proposition 4.4. Let m0 ∈ N
∗. Write time t as t = n + v where n is the integer part of t . Under condition (AS3) for

some α > m0, there exists a bounded open neighborhood O of ζ = 0 in R
d such that we have for all f ∈ L

s(π) with
any s > α/(α − m0):

∀t ∈ (0,+∞),∀ζ ∈ O Eπ,0
[
ei〈ζ,Yt 〉f (Xt )

]= λ(ζ )nL
(
ζ, Sv(ζ )f

)+ Rn

(
ζ, Sv(ζ )f

)
,

where λ(·), L(·, ·) and Rn(·, ·) are the functions of Proposition 4.2. Moreover, the C-valued functions Lv,f (ζ ) :=
L(ζ,Sv(ζ )f ) and Rn,v,f (ζ ) := Rn(ζ, Sv(ζ )f ) are of class Cm0 on O, and we have the following properties for
� = 0, . . . ,m0:

sup
ζ∈O,v∈[0,1]

∣∣L(�)
v,f (ζ )

∣∣< ∞,

∃κ ∈ (0,1), sup
ζ∈O,v∈[0,1]

∣∣R(�)
n,v,f (ζ )

∣∣= O
(
κn
)
.

Note that we have λ(0) = 1, Lv,f (0) = π(f ), and Rn,v,1X
(0) = 0.

Proof. From (4.1) and (SG), we obtain for any ζ ∈ R
d , f ∈ L

p (1 ≤ p ≤ ∞):

Eπ,0
[
ei〈ζ,Yt 〉f (Xt )

]= π
(
Sn+v(ζ )f

)= π
(
S1(ζ )n

(
Sv(ζ )f

))= Eπ,0
[
ei〈ζ,Yn〉(Sv(ζ )f

)
(Xn)

]
, (4.10)

and the desired expansion then follows from Proposition 4.2. The two following (straightforward) extensions of Lem-
mas 4.1–4.2 are needed to establish the others assertions. Let t ∈ (0,+∞).

Lemma 4.4. If 1 ≤ p′ < p, then the map ζ → St (ζ ) is continuous from Rd to L(Lp,Lp′
).
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Lemma 4.5. Assume that Eπ,0[|Yt |α] < ∞ for some α > m0 (m0 ∈ N∗), and let 1 ≤ j ≤ m0. If p > 1 and
pj := αp/(α + jp) ≥ 1, then ζ → St (ζ ) is j -times continuously differentiable from R

d to L(Lp,L
pj ), and

supζ∈Rd ‖S(j)
t (ζ )‖p,pj

≤ Eπ,0[|Yt |α]j/α .

The regularity properties (in ζ ) of the functions L(ζ,Sv(ζ )f ) and Rn(ζ, Sv(ζ )f ) are not a direct consequence of
those stated in Proposition 4.2 because of the additional term Sv(ζ )f . To that effect we need a careful use of the
operator-type derivation procedure. This part is postponed to the Appendix on the basis of [49]. �

5. A Berry–Esseen theorem for the M-estimators of ρ-mixing Markov chains

The M-estimators are a general class of estimators in parametric statistics. This covers the special cases of maximum
likelihood estimators, the least square estimators and the minimum contrast estimators. In the i.i.d. case, a modern
treatment on M-estimation is reported in [85], Chapter 5, and a Berry–Esseen bound for M-estimators is obtained in
[74]. In a statistical framework, such a bound has to be uniform in the parameters. Pfanzagl’s method, which is applied
to Markov data in [48], requires a preliminary result on the rate of convergence in the CLT for additive functionals,
with a precise control of the constants with respect to the functional (cf. Remark 5.1). Earlier extensions of [74] to
the Markov context are discussed in [48]. For ρ-mixing Markov chains, the closest work to ours is [76]. Our main
improvement is on the moment conditions which are now close to those of the i.i.d. case. A detailed comparison is
presented at the end of the section.

Let Θ be any nonempty parameter set. For a Markov chain (Xn)n∈N with state space X and transition kernel Pθ

which depends on θ ∈ Θ , we introduce the following uniform L2-spectral gap (i.e. the uniform ρ-mixing) property.

(M) The Markov chain (Xn)n∈N has a uniform L
2-spectral gap with respect to the parameter set Θ if

1. for all θ ∈ Θ , (Xn)n∈N has a unique Pθ -invariant distribution πθ ;
2. for all θ ∈ Θ , (Xn)n∈N is stationary (i.e. X0 ∼ πθ );
3. its transition kernel satisfies condition (AS2) in a uniform way with respect to θ , namely there exist C > 0

and κ ∈ (0,1) such that

∀θ ∈ Θ,∀n ≥ 1
∥∥P n

θ − Πθ

∥∥
2,θ

≤ Cκn,

where Πθ(f ) := πθ (f )1X for f ∈ L
2(πθ ) and ‖ · ‖2,θ denotes the operator norm on L

2(πθ ).

In order to derive a Berry–Esseen bound for the M-estimators of (Xn)n∈N satisfying (M), we need a uniform Berry–
Esseen bound for some specific additive functionals of the Markov chain (Xn)n∈N. In the next subsection, we propose
such a uniform Berry–Esseen bound for the second component of a general parametric MAP. This result will be
applied to the MAPs associated with these specific additive functionals (see Remark 5.1).

5.1. A uniform Berry–Essen bound for the second component of a parametric MAP

Here we propose a refinement of Proposition 4.3 and Theorem 4.2. Let us introduce the following condition.

(A) For every θ ∈ Θ , (Xn,Yn)n∈N is a X × R-valued MAP, Y1 is Pθ -integrable and centered (i.e. Eθ [Y1] = 0).

Below, the driving Markov chain (Xn)n∈N is assumed to satisfy condition (M). Thus, the notation Pθ stands for the
underlying probability measure, which depends on θ through the transition kernel Qθ of (Yn,Xn)n∈N and the initial
(stationary) distribution (πθ ,0). Eθ [·] denotes the associated expectation.

Theorem 5.1. Assume that condition (A) is true for the MAP (Xn,Yn)n∈N and that the driving Markov chain (Xn)n∈N

satisfies condition (M). If M2 := supθ∈Θ Eθ [|Y1|2+ε] < ∞ with some ε > 0, then σ 2(θ) := limn Eθ [Y 2
n ]/n is well-

defined and is finite for each θ ∈ Θ , the function σ 2(·) is bounded on Θ , and there exists a positive constant CY such
that

∀n ≥ 1 sup
θ∈Θ

∣∣∣∣σ 2(θ) − Eθ [Y 2
n ]

n

∣∣∣∣≤ CY

n
. (5.1)
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The constant CY depends on the sequence (Yn)n∈N, but only through the constant M2.
If the two following additional conditions hold true

∃ε > 0, M3 := sup
θ∈Θ

Eθ

[|Y1|3+ε
]
< ∞, (5.2)

σ0 := inf
θ∈Θ

σ(θ) > 0, (5.3)

then there exists a positive constant BY such that

∀θ ∈ Θ,∀n ≥ 1 sup
a∈R

∣∣∣∣Pθ

{
Yn

σ(θ)
√

n
≤ a

}
− �(a)

∣∣∣∣≤ BY√
n
. (5.4)

The constant BY depends on the sequence (Yn)n∈N but only through σ0 and the constant M3.

Recall that the proofs of Proposition 4.3 and Theorem 4.2 are based on Proposition 4.2. Here, for any fixed
θ ∈ Θ , Proposition 4.2 applies and gives an expansion of Eθ [eiζYnf (Xn)], but for a neighbourhood Oθ of ζ = 0,
some C-valued functions λθ (·), Lθ(·, f ), Rθ,n(·, f ), and some κθ ∈ (0,1), which all may depend on θ . Conse-
quently, in order to prove Theorem 5.1, we must establish that, under conditions (M), (A) and the moment condition
supθ∈Θ Eθ [|Y1|m0+ε] < ∞, all the conclusions of Proposition 4.2 are fulfilled in a uniform way with respect to θ ∈ Θ .
This job has been done in [48], Section III.2, in the context of V -geometrically ergodic Markov chains. The argu-
ments in the present setting are the same up to the following changes: replace the uniform V -geometrical ergodicity
assumption of [48] by assumption (M), and replace the domination condition (Dm0 ) of [48] by the moment condition
supθ∈Θ Eθ [|Y1|m0+ε] < ∞. The previous assumptions allow us to extend Lemmas 4.1 and 4.2, and so Proposition 4.2,
in a uniform way in θ ∈ Θ .

Remark 5.1. In the next subsection, Theorem 5.1 will be applied as follows. Given a Markov chain (Xn)n∈N satisfying
condition (M) with respect to Θ , we consider the MAP (Xn,Yn(p))n∈N where Yn(p) depends on some parameter
p ∈ P and is of the form

Yn(p) :=
n∑

k=1

g(p,Xk−1,Xk).

The property of the constant CY in Theorem 5.1 ensures that inequality (5.1) is uniform in p and θ when M2 :=
supp∈P ,θ∈Θ Eθ [|Y1(p)|2+ε] < ∞ (of course, the asymptotic variance in (5.1) is replaced by some σ 2(θ,p)). In the

same way, the Berry–Esseen bound (5.4) is uniform in p and θ when M3 := supp∈P ,θ∈Θ Eθ [|Y1(p)|3+ε] < ∞ and
infp∈P ,θ∈Θ σ(θ,p) > 0.

Note that these comments extend to a general MAP (Xn,Yn)n∈N which may depend on some parameter γ via its
probability distribution and its functional form, provided that the bounds M2,M3, σ0 in Theorem 5.1 are uniform in γ .

Remark 5.2. The conclusions of Theorem 5.1 are also valid when X0 ∼ μθ with μθ of the form μθ = φθ dπθ , provided
that supθ∈Θ ‖φθ‖r ′ < ∞, with r ′ defined as in Section 4.4 (case m0 = 3).

5.2. A Berry–Esseen bound for the M-estimators of ρ-mixing Markov chains

Throughout this subsection, Θ is some general parameter space and (Xn)n≥0 is a Markov chain with state space
X satisfying the uniform L

2-spectral gap condition (M). The underlying probability measure and the associated
expectation are denoted by Pθ and Eθ [·]. Recall that (Xn)n∈N is assumed to be stationary under (M). Let us introduce
the additive functional of (Xn)n≥0

Mn(α) = 1

n

n∑
k=1

F(α,Xk−1,Xk), (5.5)
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where α ≡ α(θ) ∈ A is the parameter of interest, F(·, ·, ·) is a real-valued measurable function on A × X2 and A is
an open interval on the real line. Function F is assumed to satisfy the following moment condition

sup
{
Eθ

[∣∣F(α,X0,X1)
∣∣], θ ∈ Θ,α ∈ A

}
< ∞. (5.6)

Set Mθ(α) := Eθ [F(α,X0,X1)]. We assume that, for each θ ∈ Θ , there exists a unique α0 = α0(θ) ∈ A, the so-called
true value of the parameter of interest, such that we have Mθ(α) > Mθ(α0), ∀α �= α0. To estimate α0, we consider the
M-estimator α̂n defined by

Mn(̂αn) = min
α∈A

Mn(α).

Also assume that, for all (x, y) ∈ X
2, the map α → F(α,x, y) is twice continuously differentiable on A. Let F (1) and

F (2) be the first and second order partial derivatives of F with respect to α. Then

M(1)
n (α) = 1

n

n∑
k=1

F (1)(α,Xk−1,Xk), M(2)
n (α) = 1

n

n∑
k=1

F (2)(α,Xk−1,Xk). (5.7)

We shall appeal to the following assumptions.

(V0) There exists some real constant ε > 0 such that

sup
θ∈Θ,α∈A

Eθ

[∣∣F (1)(α,X0,X1)
∣∣3+ε + ∣∣F (2)(α,X0,X1)

∣∣3+ε]
< ∞.

(V1) ∀θ ∈ Θ,Eθ [F (1)(α0,X0,X1)] = 0 and α0 ≡ α0(θ) is the unique parameter value for which this property is true;
(V2) m(θ) := Eθ [F (2)(α0,X0,X1)] satisfies infθ∈Θ m(θ) > 0;
(V3) ∀n ≥ 1, M

(1)
n (̂αn) = 0.

Notice that (V0) gives supθ∈Θ m(θ) < ∞. Set Y
(1)
n (α) := nM

(1)
n (α) and Y

(2)
n (α) := nM

(2)
n (α). Then, thanks to The-

orem 5.1 applied to MAPs (Xn,Y
(1)
n (α))n∈N and (Xn,Y

(2)
n (α))n∈N, the conditions (V0)–(V2) enable us to define the

asymptotic variances:

σ 2
1 (θ) := lim

n

1

n
Eθ

[
Y (1)

n (α0)
2], σ 2

2 (θ) := lim
n

1

n
Eθ

[(
Y (2)

n (α0) − nm(θ)
)2]

,

and we know that supθ∈Θ σj (θ) < ∞ for j = 1,2. The following additional conditions are also required:

(V4) infθ∈Θ σj (θ) > 0 for j = 1,2.
(V5) There exist η > 2 and a measurable function W > 0 such that supθ∈Θ Eθ [Wη] < ∞ and

∀(α,α′) ∈ A2,∀(x, y) ∈ E2
∣∣F (2)(α, x, y) − F (2)

(
α′, x, y

)∣∣≤ ∣∣α − α′∣∣(W(x) + W(y)
)
.

(V6) There exists a sequence γn → 0 such that

sup
θ∈Θ

Pθ

{|̂αn − α0| ≥ d
}≤ γn,

with d := infθ∈Θ m(θ)/(4(Eθ [W(X0)] + 1)).

Theorem 5.2. Assume that the Markov chain (Xn)n∈N satisfies condition (M), that F satisfies condition (5.6), that
the M-estimator α̂n is defined as above, and finally that conditions (V0)–(V6) are fulfilled. Set τ(θ) := σ1(θ)/m(θ).
Then there exists a positive constant C such that

∀n ≥ 1 sup
θ∈Θ

sup
u∈R

∣∣∣∣Pθ

{ √
n

τ(θ)
(̂αn − α0) ≤ u

}
− �(u)

∣∣∣∣≤ C

(
1√
n

+ γn

)
.
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Thanks to Theorem 5.1, the proof of Theorem 5.2 borrows the adaptation of Pfanzgal’s method given in [48].
One of the main difficulties in this method is to obtain a Berry–Esseen bound for the additive functionals Yn(p) :=∑n

k=1 g(p,Xk−1,Xk) with p := (v, q,α0) and

g(p,Xk−1,Xk) := F (1)(α0,Xk−1,Xk) + v√
q

σ1(θ)

m(θ)

(
F (2)(α0,Xk−1,Xk) − m(θ)

)
for |v| ≤ 2

√
lnq . Observe that we have from (V0)–(V2):

sup
{(v,q):|v|≤2

√
lnq},θ∈Θ

Eθ

[∣∣g(p,X0,X1)
∣∣3+ε]

< ∞.

Then, Remark 5.1 gives the desired Berry–Esseen bound for (Yn(p))n∈N in a uniform way over the parameter (θ,p).
When the Xn’s are i.i.d., Theorem 5.2 corresponds to Pfanzagl’s theorem [74] up to the following changes: in

[74], πθ is the common law of the Xn’s; the additive functional is Mn(α) = (1/n)
∑n

k=1 F(α,Xk); we simply have
σ 2

1 (θ) = Eθ [F (1)(θ,X0)
2] and σ 2

2 (θ) = Eθ [(F (2)(θ,X0) − m(θ))2], and finally assumption (V0) is replaced by the
weaker (and optimal) moment condition: supθ∈Θ Eθ [|F (1)(θ,X0)|3 + |F (2)(θ,X0)|3] < ∞.

Earlier extensions of [74] to the Markov context are discussed in [48]. Let us compare our result with that of [76],
in which the family of transition probabilities Pθ is assumed to satisfy a uniform Doeblin condition with respect
to θ ∈ Θ . This condition corresponds to a uniform L

∞-spectral gap condition with respect to Θ which is stronger
than our condition (M) (see Section 2.1). Let us mention that the moment condition on F (1) and F (2) in [76] is the
following (α(θ) = θ in [76]):

sup
x∈X,θ∈Θ

Eθ

[∣∣F (1)(θ,X0,X1)
∣∣3 + ∣∣F (2)(θ,X0,X1)

∣∣3|X0 = x
]
< ∞.

Because of the supremum over x ∈ X, this condition is in general much stronger than our moment condition (V0) (de-
spite the order 3 + ε in (V0) instead of 3). To see that, neglect the role of θ and consider a functional f on X. Then the
difference between the condition used in [76] and (V0) is comparable to that between supx∈X E[|f (X1)|3|X0 = x] and
Eπ [|f (X1)|3+ε] (or, equivalently, between the supremum norm ‖P(|f |3)‖∞ and the norm ‖f ‖3+ε of f in L

3+ε(π)).
Consequently, Theorem 5.2 applies to the models considered in [76] but requires weaker moment conditions.

Remark 5.3. The conclusion of Theorem 5.2 holds true when X0 ∼ μθ and μθ satisfies the condition given in Re-
mark 5.2. In this case, if F is such that

sup
θ∈Θ,α∈A

Eθ

[∣∣F(α,X0,X1)
∣∣1+ε]

< ∞

for some ε > 0, then Mθ(α) = Eθ [F(α,X0,X1)] can also be defined by (see Section 4.4):

Mθ(α) = lim
n→∞ Eθ,μθ

[
Mn(α)

]
.

6. Conclusion

In this paper, we propose limit theorems for the second component (Yt )t∈T of a discrete or continuous-time Markov
Additive Process (MAP) (Xt , Yt )t∈T when (Xt )t∈T has a L

2(π)-spectral gap. The derivation of the CLT is based on
a ρ-mixing condition strongly connected to the L

2(π)-spectral gap property. The results related to the convergence
rate in the CLT are developed from the weak spectral method of [49]. Note that here the discrete and continuous-time
cases are covered in a unified way. In this context, the semigroup property (SG) for the family of operators (St (ζ ))t∈T

defined by (St (ζ )f )(x) := E(x,0)[ei〈ζ,Yt 〉f (Xt )] (ζ ∈ R
d , x ∈ X) has a central role. We mention that this semigroup

property is essentially true only for MAPs. The impact of the results is expected to be high for models involving a
L

2(π)-spectral gap, since the limit theorems are valid for general (discrete and continuous time) MAPs, and under
optimal (or almost optimal) moment conditions. This is illustrated in Section 5 where a Berry–Esseen bound for the
M-estimator associated with ρ-mixing Markov chains, is derived under the (almost) expected moment condition.
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Appendix: Additional material for the proof of Proposition 4.4

Here, we study the regularity properties of the functions ζ → L(ζ,Sv(ζ )f ) and ζ → Rn(ζ, Sv(ζ )f ) involved in the
decomposition of Proposition 4.4.

(1) Let us recall that we have (see (4.2))

∀ζ ∈ R
d,∀n ∈ N Eπ,0

[
ei〈ζ,Yn〉f (Xn)

]= π
(
S1(ζ )nf

)
and, for t in some open neighbourhood O of ζ = 0, (see [49], Section 7.2)

S1(ζ )n = λ(ζ )nΠ(ζ ) + N(ζ)n,

where λ(ζ ) is the dominant eigenvalue of S1(ζ ), Π(ζ) is the associated rank-one eigenprojection and N(ζ) is a
bounded linear operator on each L

p(π) 1 < p < ∞. Both equalities imply that

Eπ,0
[
ei〈ζ,Yn〉f (Xn)

]= λ(ζ )nπ
(
Π(ζ)f

)+ π
(
N(ζ)nf

)
. (A.1)

Furthermore the eigenprojection Π(ζ) and the operators N(ζ)n are defined as in the standard perturbation theory by

Π(ζ) = 1

2iπ

∮
Γ1

(
z − S1(ζ )

)−1 dz, N(ζ )n = 1

2iπ

∮
Γ0

zn
(
z − S1(ζ )

)−1 dz,

where these line integrals are considered respectively on some oriented circle Γ1 centered at z = 1, and on some
oriented circle Γ0 centered at z = 0, with radius κ < 1 where κ is (for instance) (1 + exp(−ε))/2 with ε defined in
(2.2).

(2) Let us return to the continuous-time case. We obtain from (4.10) and (A.1)

∀t ∈ O Eπ,0
[
ei〈ζ,Yt 〉f (Xt )

]= λ(ζ )nπ
(
Π(ζ)

(
Sv(ζ )f

))+ π
(
N(ζ)n

(
Sv(ζ )f

))
.

Thus, we can write with the notations introduced in Proposition 4.4

∀t ∈ O L
(
ζ, Sv(ζ )f

) := π
(
Π(ζ)

(
Sv(ζ )f

))
, Rn

(
ζ, Sv(ζ )f

) := π
(
N(ζ)n

(
Sv(ζ )f

))
.

Therefore, we only need to study the regularity of the map ζ → (z − S1(ζ ))−1 ◦ Sv(ζ ) on O for controlling that of the
map ζ → Eπ,0[ei〈ζ,Yt 〉f (Xt )] on O (and, as a result, proving Proposition 4.4).

(3) Recall that ‖ · ‖p,p′ denotes the operator norm in the space L(Lp,L
p′

) of the linear bounded operators from
L

p(π) to L
p′

(π). The notation W(·) ∈ Cj (θ, θ ′) means that there exists a bounded open neighborhood V of ζ = 0 in
R

d such that:

∀ζ ∈ V W(ζ) ∈ L
(
L

θ ,L
θ ′)

and W : V → L
(
L

θ ,L
θ ′)

has a continuous j -order differential on V .

Let us introduce the maps U : ζ → (z−S1(ζ ))−1 and V : ζ → Sv(ζ ). We are going to apply the next obvious regularity
property. Let 1 ≤ θ2m0+2 < θ2m0+1 < · · · < θ1 < θ0 < ∞ (note that Lθ0 ⊂ Lθ1 ⊂ · · · ⊂ L

θ2m0+1 ⊂ L
θ2m0+2 ), and assume

that we have:

U ∈ C 0(θ2m0+1, θ2m0+2) ∩ C 1(θ2m0−1, θ2m0+2) ∩ · · · ∩ Cm0−1(θ3, θ2m0+2) ∩ Cm0(θ1, θ2m0+2),

V ∈ C 0(θ0, θ1) ∩ C 1(θ1, θ3) ∩ · · · ∩ Cm0−1(θ1, θ2m0−1) ∩ Cm0(θ1, θ2m0+1).

Then UV ∈ Cm0(θ0, θ2m0+2).
(4) Let us introduce the following (non-increasing) maps from [1,+∞) to R:

T0(θ) := αθ

α + ε0θ
and T1(θ) := αθ

α + θ
,
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where ε0 will be defined in (A.4). Let θ > 1. Lemma 4.4 and the continuous inclusions between the Lebesgue spaces
show that

T0(θ) ≥ 1 �⇒ ∀θ ′ ∈ [1, T0(θ)
]

Sv(·) ∈ C 0(θ, θ ′). (A.2)

On the same way, Lemma 4.5 gives for j = 1, . . . ,m0:

T
j

1 (θ) ≥ 1 �⇒ ∀θ ′ ∈ [1, T
j

1 (θ)
]

Sv(·) ∈ Cj
(
θ, θ ′), (A.3)

and the derivatives in the last property are uniformly bounded in v ∈ [0,1] on any bounded open neighborhood of
ζ = 0.

Now set θ0 := s, θ1 := T0(s), and observe that the assumption on s (i.e. s > α/(α−m0)) is equivalent to T
m0
1 (θ0) =

αθ0/(α + m0θ0) > 1, so that there exists ε0 > 0 such that

(T0T1)
m0T0(θ1) = (T0T1)

m0T0
(
T0(θ0)

)= αθ0

α + (m0 + (m0 + 2)ε0)θ0
= 1. (A.4)

Define

θ2 := T0(θ1), θ3 := T1T0(θ1), θ4 := T0T1T0(θ1), . . . , θ2m0+2 := (T0T1)
m0T0(θ1),

namely: θ2j := (T0T1)
j−1T0(θ1) for j = 1, . . . ,m0 + 1, and θ2j+1 := T1(T0T1)

j−1T0(θ1) for j = 1, . . . ,m0. Note
that θ2m0+2 = 1. From (A.2) and (A.3), V (·) := Sv(·) satisfies the regularity properties stated in part (3), and the
corresponding derivatives (on any bounded open neighborhood of ζ = 0) are uniformly bounded in v ∈ [0,1].

Next, setting I := {θ1, θ2, . . . , θ2m0+2}, it follows from (A.2) and (A.3) (with v = 1) that condition C(m0) of [49],
Section 7.1, holds, so that the conclusions reported in [49], p. 48, are true:

(H0) if θ ∈ I and T0(θ) ∈ I , then ζ → (z − S1(ζ ))−1 ∈ C 0(θ, T0(θ)) uniformly in z ∈ Γ0 ∪ Γ1.

and for � = 1, . . . ,m0:

(H�) If θ ∈ ⋂�
k=0[T −1

0 (T0T1)
−k(I ) ∩ (T1T0)

−k(I )], then ζ → (z − S1(ζ ))−1 ∈ C�(θ, (T0T1)
�T0(θ)) uniformly in

z ∈ Γ0 ∪ Γ1.

Therefore U(·) := (z − S1(·))−1 satisfies the regularity properties stated in part (3).
(5) Finally, we deduce from the property of part (3) that there exists a neighbourhood V of ζ = 0 in R

d such that
the map ζ → (z − S1(ζ ))−1 ◦ Sv(ζ ) is m0-times continuously differentiable from V to L(Ls(π),L

1(π)) uniformly in
z ∈ Γ0 ∪ Γ1 and furthermore we have for � = 0, . . . ,m0:

sup
{∥∥((z − S1(ζ )

)−1 ◦ Sv(ζ )
)(�)∥∥

s,1; z ∈ Γ0 ∪ Γ1, ζ ∈ O, v ∈ (0,1]}< ∞.
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