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Abstract. By direct calculus we identify explicitly the Lipschitzian norm of the solution of the Poisson equation −LG = g in
terms of various norms of g, where L is a Sturm–Liouville operator or generator of a non-singular diffusion in an interval. This
allows us to obtain the best constant in the L1-Poincaré inequality (a little stronger than the Cheeger isoperimetric inequality) and
some sharp transportation–information inequalities and concentration inequalities for empirical means. We conclude with several
illustrative examples.

Résumé. Par un calcul direct, on identifie explicitement la norme Lipschitzienne de la solution de l’équation de Poisson −LG = g

en terme de différentes normes de g, où L est l’opérateur de Sturm–Liouville ou le générateur d’une diffusion non singulière sur un
intervalle. Ainsi, nous pouvons obtenir, d’une part la meilleure constante dans l’inégalité de Poincaré L1 (une inégalité un peu plus
forte que l’inégalité isopérimétrique de Cheeger) et d’autre part certaines inégalités de transport-information et de concentration
fines pour la moyenne empirique. On conclut avec des exemples illustratifs.
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1. Framework and introduction

Let I be an interval of R so that its interior I 0 = (x0, y0) where −∞ ≤ x0 < y0 ≤ +∞. Consider a Sturm–Liouville
operator on I :

L = a(x)
d2

dx2
+ b(x)

d

dx

with the Neumann boundary condition at ∂I = {x0, y0} ∩ R, where a, b : I → R are measurable and satisfy:

(A1) a, b are locally bounded (i.e., bounded on any compact subinterval of I );
(A2) a(x) > 0, dx-a.e. and 1/a is locally dx-integrable on I .

Here dx is the Lebesgue measure. On I 0, L can be rewritten as the Feller’s form

L = 1

m′(x)

d

dx

(
1

s′(x)

d

dx

)
= d

dm

d

ds
, (1.1)
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where m,s are respectively the speed and scale functions of Feller, which are absolutely continuous functions on I

such that dx-a.s.

s′(x) = exp

(
−

∫ x

c

b(u)

a(u)
du

)
and m′(x) = 1

a(x)s′(x)
, (1.2)

where c is some fixed point in I . Let C∞
0 (I ) be the space of infinitely differentiable real functions f on I with compact

support and D be the space of all functions f in C∞
0 (I ) such that f ′|∂I = 0 (i.e., satisfying the Neumann boundary

condition). The operator L defined on D is symmetric on L2(I,m), where m denotes also the measure m′(x)dx. Let
(Xt : t ≥ 0) be the diffusion on the interval I generated by L (the Neumann boundary condition corresponds to the
reflection at the boundary ∂I ). See [17] for background and precise definitions.

We will assume that:

(A3) the diffusion is non-explosive and positively recurrent, i.e., m(I) = ∫
I
m′(y)dy < +∞ and∫ y0

c

s′(x)

(∫ x

c

m′(y)dy

)
dx = +∞ if y0 /∈ I,

∫ c

x0

s′(x)

(∫ c

x

m′(y)dy

)
dx = +∞ if x0 /∈ I.

(A4) the generator L, defined on D = {f ∈ C∞
0 (I ); f ′|∂I = 0}, is essentially self-adjoint on L2(I,dm), or equiv-

alently [11,12]:

s /∈ L2((x0, c],dm
)

if x0 /∈ I ; and s /∈ L2([c, y0),dm
)

if y0 /∈ I.

Notice that when a(x) = 1 and I = R, the assumptions (A3) and (A4) are automatically satisfied once if m(I) < +∞
(see [17] for (A3), [12] for (A4)).

Throughout this paper we assume that (A1)–(A4) are satisfied. In that case (Xt )t≥0 is reversible w.r.t. the probability
measure μ(dx) = 1

m(I)
m′(x)dx. Let (Pt )t≥0 be the transition semigroup of (Xt )t≥0, L2 the generator of (Pt ) on

L2(I,μ) with domain D(L2), which is an extension of (L, D).
Consider the Poisson equation

−L2G = g, (1.3)

where g ∈ L2(I,μ) such that μ(g) := ∫
I
g dμ = 0. By the ergodicity of the diffusion, the solution G of the Poisson

equation, if exists, is unique in L2(I,μ) up to the difference of some constant. In the physical interpretation of the
heat diffusion, g represents the heat source, G is the equilibrium heat distribution.

The objective of this paper is to estimate

‖G‖Lip(ρ) := sup
x,y∈I,x<y

|G(y) − G(x)|
|ρ(y) − ρ(x)| (1.4)

in terms of various norms on the heat source g. Here ρ is some absolutely continuous function on I such that ρ′(x) > 0,
dx-a.e.

Let λ1 be the spectral gap of L2, i.e. the lowest eigenvalue or spectral point above zero of −L2. Then cP := λ−1
1 is

the best constant in the following Poincaré inequality

Varμ(f ) ≤ cP

∫
I

a(x)f ′(x)2 dμ(x), f ∈ D, (1.5)

where Varμ(f ) := μ(f 2)− (μ(f ))2 is the variance of f w.r.t. μ and μ(f ) := ∫
I
f dμ. The importance of the spectral

gap is that it describes the exponential convergence rate:∥∥Ptf − μ(f )
∥∥

2 ≤ e−λ1t
∥∥f − μ(f )

∥∥
2 ∀t ≥ 0,
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where ‖ · ‖2 is the L2(I,μ)-norm. The constant λ1 can be also interpreted by means of the Poisson equation:

∥∥G − μ(G)
∥∥

2 ≤ cP ‖g‖2 or
∫

I

a(x)G′(x)2 dμ(x) ≤ cP ‖g‖2
2.

Those physical interpretations explain why the study of λ1 or cP is of fundamental importance. Since the study on
λ1 is of a very long history, it is not possible for us to describe even the main line, the reader is referred to the books
[9,24] for bibliographies. For the stronger log-Sobolev inequality, the first characterization was due to Bobkov–Götze
[3], see [2,9] for further improvements of constant.

Our initial motivation was to understand Chen’s variational formula for λ1 [8]:

cP = inf
ρ

sup
x∈I

s′(x)

ρ′(x)

∫ y0

x

[
ρ(t) − μ(ρ)

]
m′(t)dt, (1.6)

where ρ runs over all C1(I ) functions with ρ′ > 0, in L2(I,μ). Notice that no variational formula is known for
the best log-Sobolev constant on the real line. But our main motivation comes from some concentration inequalities
for the empirical mean (1/t)

∫ t

0 g(Xs)ds, which are immediate consequences of the estimate on ‖G‖Lip(ρ) via the
forward–backward martingale decomposition or transportation–information inequalities developed in [15], see also
[18].

Our method for estimate of ‖G‖Lip(ρ) is direct: the solution of the Poisson equation (1.3) can be solved explicitly
(unlike the corresponding heat equation), only some further (easy) control is needed for completing the job. Besides
those motivations, the estimation of G′ is physically meaningful: in the heat diffusion problem, in presence of the heat
source g with μ(g) = 0, G represents the equilibrium heat distribution; an estimate on |G′| allows us to control the
variation of the equilibrium heat distribution.

This paper is organized as follows. In the next section, we state the main results and present several applications in
concentration inequalities and transportation–information inequalities, L1-Poincaré inéquality (a little stronger than
the Cheeger isoperimetric inequality), and provide several examples to illustrate the results. In Section 3 the proof of
the main result is given.

2. Main results and applications

2.1. Main results

Given an absolutely continuous function ρ : I −→ R such that ρ′ > 0, dx-a.e., let dρ(x, y) = |ρ(x) − ρ(y)| be the
metric on I associated with ρ. If the Lipschitzian norm ‖f ‖Lip(ρ) of f w.r.t. dρ defined in (1.4) is finite, we say that
f is ρ-Lipschitzian. Let L2

0(I,μ) := {f ∈ L2(I,μ);μ(f ) = 0}.
Now, we can state the main result in this paper.

Theorem 2.1. Assume (A1)–(A4) and let ρ, ρ1, ρ2 be absolutely continuous functions on I such that ρ, ρk ∈ L2(I,μ),
ρ′, ρ′

k > 0, dx-a.e.

(i) If

cLip(ρ1, ρ2) := ess sup
x∈I

s′(x)

ρ′
2(x)

∫ y0

x

[
ρ1(t) − μ(ρ1)

]
m′(t)dt < +∞, (2.1)

then for any ρ1-Lipschitzian function g ∈ L2
0(I,μ), there is a unique solution G with μ(G) = 0 belonging to the

domain D(L2) of the Poisson equation (1.3). Moreover, G (or one dx-version of it) is ρ2-Lipschitzian and satisfies

‖G‖Lip(ρ2) ≤ cLip(ρ1, ρ2)‖g‖Lip(ρ1). (2.2)

Furthermore, this inequality (2.2) becomes equality for g = ρ1 − μ(ρ1).
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(ii) Let ϕ : I → R
+ be a nonnegative function in L2(I,μ). If

c(ϕ,ρ) := ess sup
x∈I

s′(x)

ρ′(x)
m(I)

(
μ

(
I+
x

)∫
I−
x

ϕ dμ + μ
(
I−
x

)∫
I+
x

ϕ dμ

)
< +∞, (2.3)

where I+
x = {y ∈ I ; y ≥ x}, I−

x = {y ∈ I ; y < x}, then for any function g ∈ L2(I,μ) such that |g| ≤ ϕ, there is
a unique solution G with μ(G) = 0 to the Poisson equation −L2G = g − μ(g). Moreover, G (or one dx-version
of it) is ρ-Lipschitzian and satisfies

sup
g:|g|≤ϕ

‖G‖Lip(ρ) = c(ϕ,ρ). (2.4)

Its proof is postponed to Section 3.

Remark 2.2. Let CLip(ρ),0 be the Banach space of all ρ-Lipschitzian functions g with μ(g) = 0 equipped with norm
‖ · ‖Lip(ρ). Part (i) above says that the Poisson operator (−L2)

−1 :CLip(ρ1),0 → CLip(ρ2),0 is bounded and∥∥(−L2)
−1

∥∥
CLip(ρ1),0→CLip(ρ2),0

= cLip(ρ1, ρ2). (2.5)

Since L2 is self-adjoint on L2
0(I,μ), a general functional analysis result (see [25], Proposition 2.9) says that∥∥(−L2)

−1
∥∥

L2
0(I,μ)

≤ ∥∥(−L2)
−1

∥∥
CLip(ρ),0→CLip(ρ),0

.

But the left-hand side is exactly the Poincaré constant cP , so we get

cP ≤ ∥∥(−L2)
−1

∥∥
CLip(ρ),0→CLip(ρ),0

= cLip(ρ,ρ)

which is exactly the ‘≤’ part in (1.6). We now outline the idea of Chen for the converse inequality in (1.6). If the
eigenfunction ρ associated with λ1 = 1/cP exists, i.e. −L2ρ = λ1ρ, it must be strictly monotone (see [9]) and then
could be assumed to be increasing, and ρ′ is given by (3.2) with C = 0 and g = λ1ρ (see Section 3 for the reason why
C = 0), i.e.

ρ ′(x) = λ1s
′(x)

∫ y0

x

[
ρ(t) − μ(ρ)

]
m′(t)dt, dx-a.s.,

where the ‘≥’ part in (1.6) follows. When λ1 has no eigenfunction, Chen proved the converse inequality by using a
sequence of increasing functions ρ ∈ L2

0(I,μ) approximating this virtual eigenfunction.
That is our interpretation to Chen’s variational formula (1.6).

Remark 2.3. Let ‖g‖ϕ be the largest constant c such that |g(x)| ≤ cϕ(x) over I and bϕ B be the Banach space of those
measurable functions g such that its norm ‖g‖ϕ is finite. Let Pg = g − μ(g) :L2(I,μ) → L2

0(I,μ), the orthogonal
projection. Part (ii) above means that (−L)−1P is bounded from bϕ B to CLip(ρ),0 and its norm is exactly c(ϕ,ρ).

2.2. Applications to transportation–information inequalities and concentration inequalities

For any probability measure ν on I , say ν ∈ M1(I ), the Wasserstein distance between ν and μ w.r.t. a given metric d

on I is defined by

W1,d (ν,μ) = inf
π

∫ ∫
I 2

d(x, y)π(dx,dy),

where π runs over all couplings of ν,μ, i.e. all probability measures π on I 2 with the first and second mar-
ginal distributions ν,μ, respectively. When d is the trivial metric (d(x, y) = 1x �=y ), 2W1,d (μ, ν) = ‖μ − ν‖TV :=
sup|f |≤1 |(μ − ν)(f )|, the total variation of μ − ν.
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Under (A1)–(A4), the Dirichlet form (E ,D(E )) associated with the transition semigroup (Pt ) of (Xt ) is given by

D(E ) = D
(√−L2

) =
{
f ∈ L2(I,μ) ∩ A C(I ),

∫
I

a(x)f ′(x)2 dμ(x) < +∞
}
,

E (f,f ) :=
∫

I

a(x)f ′(x)2 dμ(x), f ∈ D(E ).

For f,g ∈ D(E ), let Γ (f,g) = af ′g′ be the carré-du-champs operator. The Fisher–Donsker–Varadhan information of
ν w.r.t. μ is defined by

I (ν|μ) =
{

E
(√ dν

dμ
,

√
dν
dμ

)
, if ν � μ and

√
dν
dμ

∈ D(E ),

+∞, otherwise.
(2.6)

Recall that for ρ0(x) = ∫ x

c
1√
a(y)

dy the associated metric dρ0(x, y) = |ρ0(y) − ρ0(x)| is the intrinsic metric of the

diffusion (Xt ).

Corollary 2.4. Assume (A1)–(A4). Let ρ ∈ A C(I ) ∩ L2(I,μ) so that ρ′(x) > 0, dx-a.e. and

cρ = ess sup
x∈I

s′(x)
√

a(x)

∫ y0

x

[
ρ(y) − μ(ρ)

]
m′(y)dy < +∞. (2.7)

Then for all ν ∈ M1(I )(
W1,dρ (ν,μ)

)2 ≤ 4c2
ρI (ν|μ), (2.8)

or equivalently for every ρ-Lipschitzian function g on I , we have for any initial measure ν � μ and t, r > 0,

Pν

(
1

t

∫ t

0
g(Xs)ds > μ(g) + r

)
≤

∥∥∥∥ dν

dμ

∥∥∥∥
L2(I,μ)

exp

(
− tr2

4c2
ρ‖g‖2

Lip(ρ)

)
. (2.9)

Proof. Remark that cρ = cLip(ρ,ρ0), the constant given in (2.1). The equivalence between the transportation–
information inequality (2.8) and the Gaussian concentration inequality (2.9) is due to Guillin et al. [15], Theorem 2.4.

By Kantorovitch–Rubinstein dual equality, (2.8) is equivalent to: if ‖g‖Lip(ρ) ≤ 1,

(∫
I

g d(ν − μ)

)2

≤ 4c2
ρI (ν|μ) ∀ν ∈ M1(I ).

We may assume that I (ν|μ) < +∞, i.e., ν = h2μ with h ∈ D(E ). Let G be the solution of −L2G = g − μ(g) with
μ(G) = 0 (its existence and uniqueness is assured by Theorem 2.1(i)). Notice that with f = h2 (h ≥ 0),∫

I

g d(ν − μ) = 〈−L2G,f 〉 = E (G,f ) =
∫

I

a(x)G′(x)f ′(x)dμ(x)

≤ ess sup
x∈I

[√
a(x)

∣∣G′(x)
∣∣] ∫

I

√
a(x)

∣∣f ′∣∣(x)dμ(x)

≤ 2cρ

√
μ

(
h2

)
μ

[
ah′2] = 2cρ

√
I (ν|μ), (2.10)

where the last inequality follows by Theorem 2.1(i) and Cauchy–Schwarz inequality, for ess supx∈I

√
a(x)|G′(x)| =

‖G‖Lip(ρ0). �

Remark 2.5 (Proposed by the referee). If the observable g is fixed and absolutely continuous, the best choice of ρ for
the Gaussian concentration inequality (2.9) is ρ̃ such that ρ̃′ = |g′| by Lemma 3.2 in Section 3 (though such ρ̃ is not
strictly increasing, but Theorem 2.1 is still valid as seen for its proof).
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Remark 2.6. The second inequality in (2.10) can be read as

W1,ρ(f μ,μ) ≤ cρ

∫
I

√
Γ (f,f )dμ ≤ 2cρ

√
I (f μ|μ).

Repeating the argument above but using part (ii) of Theorem 2.1, we get (2.11) below.

Corollary 2.7. Assume (A1)–(A4). Let 0 ≤ ϕ ∈ L2(I,μ) such that c(ϕ,ρ0) < +∞. Then for all ν = f μ ∈ M1(I ),

∥∥ϕ(ν − μ)
∥∥

TV ≤ c(ϕ,ρ0)

∫
I

√
Γ (f,f )dμ ≤ 2c(ϕ,ρ0)

√
I (ν|μ). (2.11)

Or equivalently for every g : I → R such that |g(x) − g(y)| ≤ βϕ(x, y) := [ϕ(x) + ϕ(y)]1x �=y (i.e., ‖g‖Lip(βϕ) ≤ 1),
we have for any initial measure ν � μ and t, r > 0,

Pν

(
1

t

∫ t

0
g(Xs)ds > μ(g) + r

)
≤

∥∥∥∥ dν

dμ

∥∥∥∥
L2(I,μ)

exp

(
− tr2

4c(ϕ,ρ0)2

)
. (2.12)

The Gaussian concentration inequality (2.12) follows from (2.11) by [15], Theorem 2.4, and the fact that ‖ϕ(ν −
μ)‖TV = supg:‖g‖Lip(βϕ )≤1

∫
I
g d(ν − μ) (cf. [14]). Notice that βϕ is a metric once ϕ is positive (and a pseudo-metric

satisfying the triangular inequality in the general case).

Remark 2.8. When ϕ = 1 in (2.11), the constant c(ϕ,ρ0) becomes

cδ := 2 ess sup
x∈I

√
a(x)s′(x)m(I)μ

(
I+
x

)
μ

(
I−
x

)
, (2.13)

where I+
x , I−

x are given in Theorem 2.1; and the inequality (2.11) becomes: for every μ-probability density f ∈ A C(I )

∫
I

|f − 1|dμ ≤ cδ

∫
I

√
Γ (f,f )dμ ≤ 2cδ

√
I (f μ|μ). (2.14)

It was proved by Guillin et al. [15], Theorem 3.1, that if the Poincaré inequality holds, then∫
I

|f − 1|dμ ≤ √
2cGI (ν|μ)

with the best constant cG ≤ 2cP (the index G is referred to the equivalent Gaussian concentration inequality); and
conversely if the last inequality holds, then cP ≤ 2cG.

Remark 2.9. Gozlan [13] has established some connections between Talagrand’s transportation–entropy inequalities
and weighted Poincaré inequalities, see also [23].

The concentration inequalities (2.9) and (2.12) do not contain the asymptotic variance of g:

σ 2(g) := lim
t→∞

1

t
VarPμ

(∫ t

0
g(Xs)ds

)

which plays a fundamental role in the central limit theorem (then in statistical applications). This is provided in the
following Bernstein’s type concentration inequality.

Corollary 2.10. Assume (A1)–(A4). Suppose that the constant cδ in (2.13) is finite.
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(i) If the constant cρ in (2.7) is finite, then for every ρ-Lipschitzian function g with ‖g‖Lip(ρ) ≤ 1, we have for any
initial measure ν � μ and t, x > 0,

Pν

(
1

t

∫ t

0
g(Xs)ds > μ(g) +

√(
2σ 2(g) + 4c2

ρ min
{
1, cδ

√
x
})

x

)
≤

∥∥∥∥ dν

dμ

∥∥∥∥
L2(I,μ)

e−tx .

(ii) If the constant c(ϕ,ρ0) in (2.3) is finite, then for every measurable function g such that |g(x) − g(y)| ≤ ϕ(x) +
ϕ(y), the inequality in (i) holds with cρ replaced by c(ϕ,ρ0).

Proof. Our proof below follows [16].

(i) We may and will assume that ‖g‖Lip(ρ) ≤ 1. Let G be the solution of −LG = g − μ(g). Notice that σ 2(g) =
2〈G,g〉μ = 2E (G,G).

We have for ν = h2μ with I (ν|μ) < +∞,

∫
I

g d(ν − μ) = 2
∫

I

aG′hh′ dμ(x) ≤ 2

√∫
I

aG′2h2 dμ · I (ν|μ).

Since 0 ≤ aG′2 ≤ ‖G‖2
Lip(ρ0)

≤ c2
ρ by Theorem 2.1(i), using the fact that

∫
I
F d(ν −μ) ≤ 1

2‖ν −μ‖TV for F verifying
|F(x) − F(y)| ≤ 1, we have by (2.14),

∫
I

aG′2h2 dμ ≤
∫

I

aG′2 dμ + c2
ρ

2

∫
I

∣∣h2 − 1
∣∣dμ ≤ σ 2(g)

2
+ c2

ρ min
{
1, cδ

√
I (ν|μ)

}
.

Plugging it into the previous inequality (for ±g), we obtain

(∫
I

g d(ν − μ)

)2

≤ (
2σ 2(g) + 4c2

ρ min
{
1, cδ

√
I (ν|μ)

})
I (ν|μ) ∀ν.

This is equivalent to the desired concentration inequality by [15], Theorem 2.4.
(ii) The same argument as above (but using part (ii) of Theorem 2.1 instead of part (i)), we have ∀g such that

|g| ≤ ϕ

(∫
I

g d(ν − μ)

)2

≤ (
2σ 2(g) + 4c(ϕ,ρ0)

2 min
{
1, cδ

√
I (ν|μ)

})
I (ν|μ) ∀ν.

This leads to the desired concentration inequality again by [15], Theorem 2.4.
�

2.3. L1-Poincaré inequality and Cheeger’s isoperimetric inequality

The Poincaré inequality has a L1 counterpart related to Cheeger’s isoperimetric inequality. Namely, let cP,1 be the
best constant such that the following L1-Poincaré inequality holds: for any f ∈ A C(I ) ∩ L1(I,μ)∫

I

∣∣f − μ(f )
∣∣dμ ≤ cP,1

∫
I

√
a(x)

∣∣f ′∣∣dμ, (2.15)

where A C(I ) is the space of all absolutely continuous functions on I . Theorem 2.1 allows us to identify the best
constant cP,1 in the L1-Poincaré inequality (2.15).

Theorem 2.11. Assume (A1)–(A4). The best constant cP,1 in the L1-Poincaré inequality (2.15) is finite if and only if
cδ given in (2.13) is finite. In this case cP,1 = cδ .
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Proof. At first cP,1 ≤ cδ , by (2.14) (the passage from μ-density f to general f in (2.15) is easy). For the converse
inequality, we may assume that cP,1 < +∞. In that case for any g ∈ bB such that |g| ≤ 1, G = (−L2)

−1(g − μ(g))

exists (because the Poincaré inequality holds by Cheeger’s inequality). We have for any μ-probability density f ∈
A C(I ),∫

I

a(x)G′(x)f ′(x)dμ(x) = 〈−L2G,f 〉μ = 〈g,f − 1〉μ

≤
∫

I

|f − 1|dμ ≤ cP,1

∫
I

√
a(x)

∣∣f ′(x)
∣∣dμ(x).

That implies ‖G‖Lip(ρ0) = ess supx∈I

√
a(x)|G′(x)| ≤ cP,1 (however this elementary fact do no longer work in the

multi-dimensional case). Hence cδ ≤ cP,1 by Theorem 2.1(ii). �

Let us discuss now some connections between (2.15) and isoperimetric inequalities. Consider the intrinsic metric
dρ0 associated with the diffusion where ρ0(x) = ∫ x

c
1√
a(y)

dy, and the corresponding isoperimetric function

Iμ(p) := inf
{
μ∂(∂A);μ(A) = p

}
, p ∈ (0,1).

Here ∂A is the boundary of A and the surface measure μs of A is defined by μs(∂A) = lim infε→0+
μ(Aε)−μ(A)

ε
and

Aε = {x ∈ I, such that dρ0(x,A) ≤ ε}, the ε-neighborhood of A.

Remark 2.12. Let ccheeger be Cheeger’s isoperimetric constant of μ w.r.t. the intrinsic metric dρ0 , i.e. the best constant
in the following Cheeger isoperimetric inequality

min
(
μ(A),1 − μ(A)

) ≤ ccheegerμs(∂A)

for all measurable subsets A ⊂ I , or equivalently Iμ(p) ≥ 1
ccheeger

min{p,1 − p}. It is well known (cf. [4,20]) that

ccheeger is also the best constant in the functional version of Cheeger’s isoperimetric inequality below: for any f ∈
A C(I ) ∩ L1(I,μ)∫

I

∣∣f − mμ(f )
∣∣dμ ≤ ccheeger

∫
I

√
a(x)

∣∣f ′∣∣dμ, (2.16)

where mμ(f ) is a median of f w.r.t. μ (via Co-Area formula). Since

1

2
μ

(∣∣f − μ(f )
∣∣) ≤ μ

(∣∣f − mμ(f )
∣∣) ≤ μ

(∣∣f − μ(f )
∣∣)

we have

1

2
cP,1 ≤ ccheeger ≤ cP,1. (2.17)

The two inequalities above are both sharp as seen for the examples later. An important result of Bobkov–Houdré [5],
Theorem 1.3, says that

ccheeger = ess sup
x∈I

m(I)min{μ(I+
x ),μ(I−

x )}
m′(x)

√
a(x)

= ess sup
x∈I

m(I)
√

a(x)s′(x)min
{
μ

(
I+
x

)
,μ

(
I−
x

)}
(2.18)

or say roughly, the extreme set for ccheeger is a semi-interval I+
x . In recent years, the best constant ccheeger (in multi-

dimensional case) has been extensively investigated, see [1,5,7,20,22,26] and relevant references therein.
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Remark 2.13 (Proposed by the referee). By Bobkov–Houdré [4], Theorem 1.2, the L1-Poincaré inequality (2.15) is
equivalent to the following isoperimetric inequality associated with dρ0 :

2μ(A)μ
(
Ac

) ≤ cP,1μs(∂A) (2.19)

for any measurable subset A of I , or equivalently Iμ(p) ≥ 2
cP,1

p(1 − p), p ∈ (0,1). That equivalence holds on a
general metric space.

Notice that if a(x) is continuous and positive, cδ is just the best constant in (2.19) (in place of cP,1) for A varying
over I+

x , x ∈ I .
When a(x) = 1 and μ is log-concave (i.e., μ = f dx with logf concave), Bobkov–Houdré [4], Corollary 13.8,

showed that the optimal set for Iμ(p) is I+
x with μ(I+

x ) = p for every p ∈ (0,1), and then cP,1 = cδ .
The referee indicates another approach for Theorem 2.11 even for general μ not necessarily log-concave, when

a(x) = 1. The idea goes as follows. At first notice that p(1 − p) is the isoperimetric function Iν(p) of the logistic
distribution ν: ν(−∞, x] = (1 + e−x)−1. Following the proof of Bobkov–Houdré [5], proof of Theorem 1.3, if cδ <

+∞, the increasing mapping U : R → I pushing forward ν to μ must be Lipschitzian and ‖U‖Lip = 2cδ . Then one
sees that the best constant cP,1 in (2.19) for μ is just ‖U‖Lip/2 = cδ .

Let us remark finally that the L1-Poincaré inequality (2.15) is equivalent to the following concentration inequality
([4], Theorem 2.1, pp. 20–21):

μ(Aε) ≥ p

p + (1 − p) exp(−2ε/cP,1)
, μ(A) = p ∈ (0,1), ε > 0.

2.4. A qualitative description for the boundedness of the Poisson operator

For g ∈ L2
0(I,μ), the solution G with μ(G) = 0 of the Poisson equation −L2G = g, if exists, will be denoted by

(−L)−1g. One may think naturally that when ϕ is bounded but tends to zero at the boundary ∂I , the Lipschitzian
norm c(ϕ,ρ0) may be finite even if cδ = +∞. The same picture might appear in one’s mind for cLip(ρ,ρ0) when ρ′
tends to 0 at the boundary ∂I . However this is not the case.

Proposition 2.14. Assume (A1)–(A4). Let ρ,ϕ be as in Theorem 2.1, but moreover bounded and ϕ > 0. Let ρ0(x) =∫ x

c
1√
a(y)

dy. Consider the following properties:

(i) cρ = cLip(ρ,ρ0) = ‖(−L2)
−1‖CLip(ρ),0→CLip(ρ0),0 < +∞.

(ii) c(ϕ,ρ0) = supg:|g|≤ϕ ‖(−L2)
−1(g − μ(g))‖Lip(ρ0) < +∞.

(iii) cδ = sup|g|≤1 ‖(−L2)
−1(g − μ(g))‖Lip(ρ0) < +∞.

(iv) The L1-Poincaré inequality (2.15) holds, i.e., cP,1 < +∞.

(v) The transportation–information inequality below holds: there is some finite best constant cG > 0 such that for
all ν = f μ ∈ M1(I ),∫

I

|f − 1|dμ ≤ √
2cGI (ν|μ).

(vi) The Poincaré inequality (1.5) holds, i.e., cP < +∞.

Then

(a) the properties (i)–(iv) are equivalent.
(b) (iv) ⇒ (v) ⇔ (vi).
(c) If a(x) = 1 and b′ ≤ K (i.e., the Bakry–Emery curvature is bounded from below by −K), (vi) ⇒ (iv) and then

(i)–(vi) are all equivalent.

Proof. (a) Equivalence between (i), (ii) and (iii). It is enough to regard the behavior at the boundary of the functions
appearing in the definitions of cρ = cLip(ρ,ρ0), cδ and c(ϕ,ρ0). For instance, if y0 /∈ I , for x close to y0, say x ≥ z > c,
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we have

(
ρ(z) − μ(ρ)

)
μ

(
I+
x

) ≤
∫ y0

x

(
ρ(y) − μ(ρ)

)
dμ(y) ≤ (

ρ(y0) − μ(ρ)
)
μ

(
I+
x

)
,

μ
(
I−
z

)
μ

(
I+
x

) ≤ μ
(
I+
x

)
μ

(
I−
x

) ≤ μ
(
I+
x

)
,

μ(1I−
z
ϕ)μ

(
I+
x

) ≤ μ
(
I+
x

)
μ(1I−

x
ϕ) + μ

(
I−
x

)
μ(1I+

x
ϕ) ≤ 2‖ϕ‖∞μ

(
I+
x

)
.

Hence the supremums over [c, y0) of the functions appearing in the definitions of cρ , cδ and c(ϕ,ρ0) are simultane-
ously finite or infinite. The same argument works when x0 /∈ I . That completes the proof of the equivalence between
(i), (ii) and (iii).

(iii) ⇔ (iv). That is contained in Theorem 2.11: cδ = cP,1.
(b) (iv) ⇒ (v). Since

∫
I

√
a(x)|f ′|dμ ≤ 2

√
I (f μ|μ), we have cG ≤ 2c2

P,1.
(v) ⇔ (vi). This is noticed in Remark 2.8: cP /2 ≤ cG ≤ 2cP .
(c) (vi) ⇒ (iv). This converse of the Cheeger’s inequality is known in the actual lower bounded Bakry–Emery’s

curvature case see Buser [7] and Ledoux [21], Theorem 5.2 (otherwise there are counter-examples). �

2.5. Several examples

Example 2.15 (Gaussian measure). Let I = R, a(x) = 1 and b(x) = −x/σ 2 where σ > 0. Then m′(x) = e−x2/2σ 2

and μ = N (0, σ 2), the centered Gaussian law with variance σ 2. For ρ0(x) = x, we see that

cLip(ρ0, ρ0) = cρ0 = sup
x∈R

ex2/2σ 2
∫ ∞

x

ye−y2/2σ 2
dy = σ 2.

By Remark 2.2, cP ≤ cρ0 = σ 2 which is in reality an equality as well known [20]. The transportation inequality (2.8)
becomes equality for ν = N (m,σ 2).

By calculus we identify the constant cδ in (2.13) as

cδ = 2 sup
x∈R

ex2/2σ 2√
2πσμ

([x,+∞)
)
μ

(
(−∞, x)

) =
√

π

2
σ.

On the other side, ccheeger ≥
√

π
2 σ as seen for A = R

+. Then by (2.17) and Theorem 2.11, ccheeger = cδ = cP,1.

Example 2.16 (Uniform distribution). Let I = [−D/2,D/2] where D > 0, a(x) = 1 and b(x) = 0. The unique
invariant probability measure μ is the uniform measure on I . Since m′(x) = 1 = s′(x), we have

cρ0 = cLip(ρ0,ρ0) = sup
x∈[−D/2,D/2]

∫ D/2

x

y dy = D2

8

and the constant cδ = c(ϕ,ρ0) with ϕ = 1 is given by

cδ = sup
x∈[−D/2,D/2]

2Dμ
([−D/2, x])μ([x,D/2]) = D

2
.

As ccheeger ≥ D/2 (as seen for A = [0,D/2]), we have ccheeger = D/2 = cδ = cP,1 by (2.17) and Theorem 2.11.

Example 2.17 (Exponential measure on R
+). Let I = R

+ = [0,+∞), a(x) = 1 and b(x) = −λ where λ > 0. Then
m′(x) = e−λx = 1/s′(x), ρ0(x) = x and μ is the exponential distribution with parameter λ. It is easy to see that cρ0 =
cLip(ρ0,ρ0) = +∞: no spectral gap in the ρ0-Lipschitzian norm. In fact the transportation–information inequality (2.8)
is false for ρ = ρ0. By Theorem 2.11

cP,1 = cδ = 2 sup
x≥0

1

λ
eλxμ(0, x)μ(x,+∞) = 2 sup

x≥0

1

λ
μ(0, x) = 2

λ
.
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However ccheeger = 1
λ

by Bobkov–Houdré [5], which together with the Gaussian measure above shows that the two
inequalities in (2.17) are both sharp (as promised). We have also the transportation–information inequality (2.14),
which is read as

‖ν − μ‖TV ≤ 4

λ

√
I (ν|μ) ∀ν.

It is sharp. Indeed let ν be the exponential law with parameter λ̃ ∈ (0, λ). We have I (ν|μ) = (λ− λ̃)2/4, and the right-
hand side above is given by 2(1 − x) where x = λ̃/λ. The left-hand side above is given by 2(xx/(1−x) − x1/(1−x)).
Then the inequality above for such ν says

xx/(1−x) − x1/(1−x) ≤ 1 − x, 0 < x < 1,

which is sharp as x → 0.
For this model it is well known that cP = 4/λ2 [20]. The inequality above is same as provided by [15], Theorem 3.1

(from the Poincaré inequality).

Example 2.18 (Log-concave measure on R). Let I = R, a(x) = 1 and b(x) = −V ′(x) where V is C2, strictly
convex on R such that V (0) = 0 and

∫
R

e−V dx < +∞. Then m′(x) = e−V (x) and s′(x) = eV (x) and ρ0(x) = x. Let
ρ(x) = V ′(x), which is μ-integrable and μ(ρ) = 0. We have

cρ = cLip(ρ,ρ0) = sup
x∈R

eV (x)

∫ +∞

x

V ′(y)e−V (y) dy = sup
x≥0

eV (x)e−V (x) = 1.

Thus assuming
∫

V ′2e−V dx < +∞, we have the transportation–information inequality (2.8) and the Gaussian con-
centration inequality (2.9). For instance, for any g ∈ C1(R) such that |g′| ≤ V ′′ we have for any initial measure ν � μ

and t, r > 0,

Pν

(
1

t

∫ t

0
g(Xs)ds > μ(g) + r

)
≤

∥∥∥∥ dν

dμ

∥∥∥∥
L2(I,μ)

exp

(
− tr2

4

)
. (2.20)

Furthermore, for any nonnegative ϕ ≤ M(1 + |V ′|), it is easy to see that c(ϕ,ρ0) < +∞, then the transportation–
information inequality (2.11) holds.

In comparison recall the Lyapunov function criterion in [15], Theorem 5.1, for (2.11): for some 0 ≤ U ∈ C2,
−U ′′ + V ′U ′ + |U ′|2 ≥ cϕ2 − K for some two positive constants c,K (which does not require the convexity of V ).

It will be very interesting to generalize it to log-concave measures on multi-dimensional spaces R
d . See Bobkov–

Ledoux [6] for some results in this direction.

Example 2.19 (Jacobi diffusion). Let I =]0,1[, a(x) = x(1−x) and b(x) = −x+1/2, then μ(x) = 1/(π
√

x(1 − x))

[10]. For ρ0(x) = π
2 + Arcsin(2x − 1), we see that

cLip(ρ0, ρ0) = cρ0 = sup
x∈]0,1[

(
π2

8
− 1

2
Arcsin2(2x − 1)

)
= π2

8
.

By calculus we identify the constant cδ in (2.13) as

cδ = 2

π
sup

x∈]0,1[

(
π2

4
− Arcsin2(2x − 1)

)
= π

2
.

Using (2.18), see Bobkov–Houdré [5], we obtain ccheeger = π
2 , so we have ccheeger = cP,1 = cδ = π

2 by Theorem 2.11.
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Example 2.20 (Continuous branching process). Let I =]0,+∞[, a(x) = 2x and b(x) = −2x + 1, then μ(x) =
1√
π

e−x√
x

. This process arise as diffusion limits of discrete space branching process, see [19]. For ρ0(x) = √
2x, we see

that

cLip(ρ0, ρ0) = cρ0 = sup
x∈R+

(
1 − ex

√
π

∫ ∞

x

e−y

√
y

dy

)
= 1.

Example 2.21. See Example 1.4.2 in [24]. Let I = R
+, a(x) = (1+x)α with α > 1, and b(x) = 0, then μ(x) = α−1

(1+x)α
.

For α > 2 and ρ0(x) = 2
α−2 (1 − (1 + x)−(α−2)/2), we see that

cLip(ρ0, ρ0) = cρ0 = 4

(α − 2)(3α − 4)
sup

x∈R+
(1 + x)−(α−2)/2(1 − (1 + x)−(α−2)/2) = 1

(α − 2)(3α − 4)
.

By calculus we identify the constant cδ in (2.13) as

cδ = 2

α − 1
sup

x∈R+
(1 + x)−(α−2)/2(1 − (1 + x)−(α−1)

) = 4

3α − 4

(
α − 2

3α − 4

)(α−2)/(2(α−1))

.

By Theorem 2.11, we have cP,1 = cδ . However, using (2.18), we obtain ccheeger = 1
α−1 ( 1

2 )(α−2)/(2(α−1)).

3. Proof of Theorem 2.1

3.1. Several lemmas

Let L∗ be the adjoint operator of (L, D) in L2(I,m), more precisely a function f in L2(I,m) belongs to the domain
of definition D2(L∗) of L∗ if there is g ∈ L2(I,m) such that 〈f, Lh〉m = 〈g,h〉m for all h ∈ D, in such case L∗f = g.
Here 〈·, ·〉m is the inner product on L2(I,m).

We want to understand the Poisson equation (1.3) as an ordinary differential equation. That is the purpose of the
following lemma.

Lemma 3.1. Assume (A1) and (A2). For a given f ∈ L2(I,m), f ∈ D2(L∗) if and only if

(i) f admits a dx-version f̃ such that f̃ ∈ C1(I ), f̃ ′|∂I = 0, and f̃ ′ ∈ AC(I);
(ii) af̃ ′′ + bf̃ ′ ∈ L2(I,m).

In that case L∗f = af̃ ′′ + bf̃ ′.

Proof. This follows by integration by parts argument and the distribution theory, as in [12], Appendix C, Theorem 2.7,
or [27], Lemma 4.5. So we omit the details. �

Since L2 is an extension of (L, D), then L∗ is an extension of L∗
2 = L2 (because the generator of a symmetric

strongly continuous semigroup is always self-adjoint). Of course under (A4), L∗ = L2. Then in our framework (i.e.,
(A1)–(A4) are satisfied), solving the Poisson equation (1.3) is equivalent to check G ∈ C1(I ) ∩ L2

0(I,μ) such that
G′ ∈ A C(I ) and G′|∂I = 0 and

−(
aG′′ + bG′) = g. (3.1)

This is a first-order differential equation for G′. It can be easily solved as

G′(x) = s′(x)

[
C +

∫ y0

x

g(y)m′(y)dy

]
(3.2)

for some constant C (to be determined).
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Lemma 3.2. Let ρ be as in Theorem 2.1 and g : I → R be ρ-Lipschitzian with μ(g) = 0. Then for all x ∈ I ,∫ y0

x

g(t)m′(t)dt ≤ ‖g‖Lip(ρ)

∫ y0

x

[
ρ(t) − μ(ρ)

]
m′(t)dt.

Proof. Without loss of generality, we may suppose that ‖g‖Lip(ρ) = 1 and m(I) = 1 and μ(ρ) = 0. Letting m(x) :=∫ x

x0
m′(t)dt and g̃ = g ◦ m−1, ρ̃ = ρ ◦ m−1, we have

∫ y0

x

g(t)m′(t)dt =
∫ 1

m(x)

g̃(u)du and
∫ y0

x

ρ(t)m′(t)dt =
∫ 1

m(x)

ρ̃(u)du.

As ‖g̃‖Lip(ρ̃) = ‖g‖Lip(ρ), we have only to prove that for all x ∈ [0,1]

h(x) =
∫ 1

x

ρ̃(s)ds −
∫ 1

x

g̃(s)ds ≥ 0.

Since h(0) = h(1) = 0 and h′ is absolutely continuous on [0,1] and for dx-a.s. x ∈ [0,1]

h′′(x) = −ρ̃′(x) + g̃′(x) ≤ ‖g̃‖Lip(ρ̃)ρ̃
′(x) − ρ̃′(x) ≤ 0.

So h is concave on [0,1]. Consequently h(x) ≥ 0 for all x ∈ [0,1]. �

Lemma 3.3. Let 0 ≤ ϕ ∈ L2(I,μ). Then for every x ∈ I ,

sup
g: |g|≤ϕ

∫ y0

x

[
g(t) − μ(g)

]
m′(t)dt = m(I)

(
μ

(
I+
x

)∫
I−
x

ϕ dμ + μ
(
I−
x

)∫
I+
x

ϕ dμ

)
,

where I+
x = [x, y0] ∩ I , I−

x = [x0, x) ∩ I . The supremum is attained for g = 1I+
x
ϕ − 1I−

x
ϕ.

Proof. We may assume that m(I) = 1 and then μ = m. Fix x ∈ I . The functional Φ(g) = ∫ y0
x

[g(t)−μ(g)]m′(t)dt =
Covμ(g,1I+

x
) (the covariance of g and 1I+

x
under μ) is a linear functional of g. Since the closed convex hull of

{1Aϕ,A ∈ B} (B is the Borel σ -field on I , and the closure is to be understood in L2(I,μ)) is {g; 0 ≤ g ≤ ϕ}, and
{g; |g| ≤ ϕ} = {h1 − h2;0 ≤ h1, h2 ≤ ϕ}, then

sup
g: |g|≤ϕ

Φ(g) = sup
h1: 0≤h1≤ϕ

Φ(h1) − inf
0≤h2≤ϕ

Φ(h2) = sup
A∈B

Covμ(1Aϕ,1I+
x
) + sup

A∈B
Covμ(−1Aϕ,1I+

x
).

We examine the first supremum at the right-hand side. Note that

Covμ(1Aϕ,1I+
x
) =

∫
A∩I+

x

ϕ dμ − μ
(
I+
x

)∫
A

ϕ dμ.

With A ∩ I+
x = B fixed, this functional of A attaint the maximum when A becomes the smallest B . Next for A = B

or equivalently A ⊂ I+
x , the right-hand side above equals to

∫
A

ϕ dμ
(
1 − μ

(
I+
x

))
which attaint the maximum if A = I+

x . So we have proven that

max
A∈B

Covμ(1Aϕ,1I+
x
) =

∫
I+
x

ϕ dμ
(
1 − μ

(
I+
x

)) = μ
(
I−
x

)∫
I+
x

ϕ dμ.
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Now we turn to the last supremum. Note Covμ(−1Aϕ,1I+
x
) = − ∫

A∩I+
x

ϕ dμ + μ(I+
x )

∫
A

ϕ dμ and

max
A∈B

(
−

∫
A∩I+

x

ϕ dμ + μ
(
I+
x

)∫
A

ϕ dμ

)
= max

B⊂I+
x

max
A: A∩I+

x =B

(
−

∫
A∩I+

x

ϕ dμ + μ
(
I+
x

)∫
A

ϕ dμ

)

= max
B⊂I+

x

(
−

∫
B

ϕ dμ + μ
(
I+
x

)∫
B∪I−

x

ϕ dμ

)

= max
B⊂I+

x

(
−μ

(
I−
x

)∫
B

ϕ dμ + μ
(
I+
x

)∫
I−
x

ϕ dμ

)
.

The last functional in B ⊂ I+
x attaints the maximum if B is the smallest empty set. Thus

max
A∈B

(
−

∫
A∩I+

x

ϕ dμ + μ
(
I+
x

)∫
A

ϕ dμ

)
= μ

(
I+
x

)∫
I−
x

ϕ dμ.

Summarizing the conclusions in two cases, we obtain the desired result. �

3.2. Proof of Theorem 2.1(i)

We separate its proof into three cases: y0 ∈ I , x0 ∈ I or I = (x0, y0):
Case 1. y0 ∈ I . Let g be ρ1-Lipschitzian such that μ(g) = 0. By Lemma 3.1, if G is a solution of the Poisson

equation (1.3), G ∈ C1(I ),G′ ∈ A C(I ), and G′ is given by (3.2). Since G′(y0) = 0, the constant C there must be
zero. Now applying Lemma 3.2, we get

∣∣G′(x)
∣∣ ≤ ‖g‖Lip(ρ1)s

′(x)

∫ y0

x

[
ρ1(t) − μ(ρ1)

]
m′(t)dt ≤ ‖g‖Lip(ρ1)cLip(ρ1, ρ2)ρ

′
2(x)

for dx-a.e. x ∈ I . This yields to (2.2).
We turn to prove the existence of solution to the Poisson equation (1.3). Let G be a primitive of

G′(x) = s′(x)

∫ y0

x

g(y)m′(y)dy.

By what shown above, ‖G‖Lip(ρ2) ≤ cLip(ρ1, ρ2)‖g‖Lip(ρ1) < ∞, then G ∈ L2(I,μ) (for ρ2 ∈ L2(I,μ)). By
Lemma 3.1 and (A4), G ∈ D2(L∗) = D(L2). Hence G is a solution of (1.3).

Finally, for g = ρ1 − μ(ρ1), we see that G′(x) = s′(x)
∫ y0
x

[ρ1(y) − μ(ρ1)]m′(y)dy. Then (2.2) becomes equality
for that g.

Case 2. x0 ∈ I . Parallel to the case 1, for G′(x) is again given by (3.2) with C = 0.
Case 3. I = (x0, y0). By the proof in case 1, we have only to show that for any solution G of (1.3), G′ is given by

(3.2) with C = 0.
Assume in contrary that C �= 0 in (3.2). Let G0 be a fixed primitive of s′(x)

∫ y0
x

g(y)m′(y)dy. As shown above
‖G0‖Lip(ρ2) ≤ cLip(ρ1, ρ2)‖g‖Lip(ρ1) < +∞, then G0 ∈ L2(I,μ) (for ρ2 ∈ L2(I,μ)). Therefore for some constant K ,

G = Cs + G0 + K.

But s /∈ L2(I,μ) by (A4), then G /∈ L2(I,μ), contrary to the assumption that G ∈ D(L2) ⊂ L2(I,μ). Thus C = 0 as
desired.

3.3. Proof of Theorem 2.1(ii)

At first notice that by (3.2), if −L2G = g − μ(g), then G ∈ C1(I ),G′ ∈ A C(I ) and

G′(x) = s′(x)

[
C +

∫ y0

x

[
g(y) − μ(g)

]
m′(y)dy

]
. (3.3)
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We denote by G′
0 the function above when C = 0. We separate its proof into the three cases as in the proof of part (i):

Case 1. y0 ∈ I . Fix the measurable function g on I such that |g| ≤ ϕ. If G is a solution of −L2G = g − μ(g), as
G′(y0) = 0, C = 0 in (3.3), i.e., G′ = G′

0. By Lemma 3.3, we have for dx-a.e. x ∈ I ,

∣∣G′(x)
∣∣ = ∣∣G′

0(x)
∣∣ ≤ s′(x)m(I)

(
μ

(
I+
x

)∫
I−
x

ϕ dμ + μ
(
I−
x

)∫
I+
x

ϕ dμ

)
≤ c(ϕ,ρ)ρ′(x)

which gives us ‖G‖Lip(ρ) ≤ c(ϕ,ρ). Moreover, any primitive G0 of G′
0 satisfies ‖G0‖Lip(ρ) ≤ c(ϕ,ρ), then G0 ∈

L2(I,μ) (for ρ ∈ L2(I,μ)). By Lemma 3.1 and (A4), G0 is a solution of −L2G = g − μ(g).
Finally the supremum of ‖G‖Lip(ρ) over {g; |g| ≤ ϕ} equals to c(ϕ,ρ), by Lemma 3.3.
Case 2. x0 ∈ I . Same as the proof of case 1.
Case 3. x0, y0 /∈ I . As in the proof of case 3 in part (i), we have G′ is given by (3.3) with C = 0. Now one can

repeat the proof of case 1 to conclude.

Remark 3.4. For some partial extensions of the results here to multi-dimensional Riemannian manifolds case, see the
second named author [26].
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