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Abstract. Under a well-known scaling, supercritical Galton–Watson processes Z converge to a non-degenerate non-negative ran-
dom limit variable W . We are dealing with the left tail (i.e. close to the origin) asymptotics of its law. In the Böttcher case (i.e. if
always at least two offspring are born), we describe the precise asymptotics exposing oscillations (Theorem 1). Under a reasonable
additional assumption, the oscillations disappear (Corollary 2). Also in the Böttcher case, we improve a recent lower deviation
probability result by describing the precise asymptotics under a logarithmic scaling (Theorem 7). Under additional assumptions,
we even get the fine (i.e. without log-scaling) asymptotics (Theorem 8).

Résumé. Par un changement d’échelle bien connu, on obtient que les processus de Galton–Watson supercritiques sur Z conver-
gent vers une variable aléatoire non-degénerée W . Nous considérons les estimées asymptotiques à gauche (près de l’origine) de
la distribution. Dans le cas Böttcher (quand il y a au moins deux progénitures en chaque point), nous obtenons l’asymptotique
exacte présentant un comportement oscillatoire (Théorème 1). Sous une autre hypothèse raisonnable, les oscillations s’annulent
(Corollaire 2). Pour le cas Böttcher, nous présentons un résultat sur la probabilité des grandes déviations, amélioré en exprimant
l’asymptotique exacte sous un scaling logarithmique (Théorème 7). En imposant d’autres conditions, nous obtenons des asympto-
tiques plus raffinées (Théorème 8), c’est-à-dire sans log-scaling.
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1. Introduction and statement of results

1.1. Motivation and sketch of results

Let Z = (Zn)n≥0 denote a Galton–Watson process with Z0 = 1 and offspring generating function

f (s) =
∞∑

j=0

pj s
j , 0 ≤ s ≤ 1. (1)

We restrict our attention to the supercritical case, i.e. EZ1 = f ′(1) =: m ∈ (1,∞). Clearly, we exclude the trivial
case that Z1 is degenerate. As is well known, one can find constants cn > 0 converging to infinity such that c−1

n Zn
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converges almost surely to a non-degenerate random variable W ≥ 0. In particular, we have the following convergence
in terms of the iterated offspring generating functions fn:

fn

(
e−u/cn

)−→
n↑∞ Ee−uW =: ϕ(u), u ≥ 0. (2)

Moreover, the variable W restricted to (0,∞) has a (strictly) positive continuous density function denoted by w,
and W equals zero with (extinction) probability q , where q ∈ [0,1) is the smallest non-negative root of the equation
f (s) = s. Furthermore, the Laplace transform ϕ of W satisfies the Poincaré functional equation

ϕ(mu) = f
(
ϕ(u)

)
, u ≥ 0. (3)

Up to a scaling factor, this equation has a unique (strictly) decreasing, convex solution with ϕ(0) = 1. In other words,
(3) determines the distribution of W up to a constant factor. But only in very special cases one can solve (3) explicitly
(some examples of explicit solutions can be found in Hambly [13] and Harris [14]).

However, the left tail asymptotics of the distribution of W , that is the asymptotics close to the origin, can be studied
under quite general conditions on the offspring law. This problem was the objective of interest of many researchers.
But the precise (without any log-scaling) asymptotics of w(x) and P(W < x) as x ↓ 0 remained unknown in the
so-called Böttcher case, that is if p0 + p1 = 0. We fill this gap, see Theorem 1. This involves some multiplicatively
periodic functions producing oscillations. Moreover, we give a necessary and sufficient condition implying that these
multiplicatively periodic functions can be replaced by constants, consequently that the oscillations disappear, i.e.
degenerate (see Corollary 2). One of the reasons we are interested in the asymptotics of the law of W near 0 in the
Böttcher case is that it is closely related to the behavior of Brownian motions on fractals (see, for example, Barlow
and Perkins [1] and [13]).

Besides the x ↓ 0 asymptotics of the distribution of W , we investigate a more delicate problem: so-called lower
deviation probabilities of Z, i.e. the asymptotic behavior of P(Zn = kn) when kn/cn → 0. The main reason for study-
ing these probabilities comes from statistical inference. Our recent paper [12] is just devoted to this lower deviation
problem of supercritical Galton–Watson processes, but our result in the Böttcher case is not very satisfactory: we ob-
tained only asymptotic bounds and this in fact only under some log-scaling. In the present note we first of all sharpen
the asymptotic bounds to asymptotic limits (see Theorem 7). Furthermore, under two different additional assumptions
on the tail of the offspring law, we find the fine asymptotics for lower deviation probabilities, that is without any
log-scaling (see Theorem 8).

1.2. Dichotomy for supercritical processes

For convenience, we recall here some basic facts on supercritical Galton–Watson processes. Under our supercriticality
assumption, the generating function f has two fixed points: q ∈ [0,1) and 1. The behavior of its iterations fn in the
vicinity of 1 is described by the convergence statement (2) and the Poincaré functional equation (3). Concerning the
behavior of iterations in the vicinity of q , two cases are possible (see, e.g. [12], Section 1.3):

(a) (Schröder case). Here we have by definition p0 + p1 > 0, or equivalently f ′(q) =: γ > 0. Then

fn(s) − q

(f ′(q))n
−→
n↑∞ some S(s), 0 ≤ s ≤ 1, (4)

and S satisfies the Schröder functional equation

S
(
f (s)

) = γ S(s), 0 ≤ s ≤ 1. (5)

(b) (Böttcher case). Here p0 + p1 = 0, that is f ′(q) = 0. In this case, μ := min{k: pk > 0} ≥ 2, and one has the
convergence

(
fn(s)

)(μ−n) −→
n↑∞ some B(s), 0 ≤ s ≤ 1. (6)

B is continuous, positive, and satisfies the Böttcher functional equation

B
(
f (s)

) = (
B(s)

)μ
, 0 ≤ s ≤ 1. (7)
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1.3. Left tail asymptotics for w and the law of W

First we describe the more studied Schröder case. Here the Schröder constant α ∈ (0,∞) is defined by the requirement
f ′(q) = m−α . Biggins and Bingham [4] have shown that there exists a continuous, multiplicatively periodic function
V : (0,∞) → (0,∞) with period m (that is, V (mx) = V (x) for all x > 0), such that

x1−αw(x) = V (x) + o(1) as x ↓ 0. (8)

Dubuc [9] has proven that the function V can be replaced by a constant V0 > 0 if and only if

S
(
ϕ(u)

) = K0u
−α, u ≥ 0, (9)

for some constant K0 > 0.
Now we come to the Böttcher case. Since here f ′(q) = 0, we would have α = ∞. But now one can introduce the

Böttcher constant β ∈ (0,1) by the requirement μ = mβ . It is shown in [4] that there exists an analytic, multiplicatively
periodic function M : (0,∞) → (0,∞), with period m1−β , such that

− log P(W < x) = x−β/(1−β)M(x) + o
(
x−β/(1−β)

)
as x ↓ 0. (10)

Bingham [6] observed that under the condition − logϕ(u) ∼ κuβ as u ↑ ∞ for some constant κ > 0, the function
M can be replaced by a constant M0 > 0. Since P(W < x) decreases exponentially as x ↓ 0, one can expect that the
density function w has the same rate of decrease. In fact, by Remark 7 in [12],

−M < lim inf
x↓0

xβ/(1−β) logw(x) ≤ lim sup
x↓0

xβ/(1−β) logw(x) < −M (11)

for some positive constants M and M .
The first theorem, our main result, improves the statements (10) and (11). Recall that we are in the Böttcher case.

Theorem 1 (Precise left tail asymptotics for w and the law of W ). There are positive functions M , M1 and M2,
multiplicatively periodic with period m1−β , such that as x ↓ 0,

w(x) = M1(x)x(β−2)/2(1−β) exp
{−M(x)x−β/(1−β)

}(
1 + O

(
xβ/2(1−β) log3 x

))
(12)

and

P(W < x) = M2(x)xβ/2(1−β) exp
{−M(x)x−β/(1−β)

}(
1 + O

(
xβ/2(1−β) log3 x

))
. (13)

The multiplicatively periodic functions in (12) and (13) produce oscillations of w(x) and P(W < x). Now the
question arises of when these oscillations disappear, i.e. in which cases these functions are actually constants. Hambly
[13] has given an example (of a class of supercritical processes in the Böttcher case), for which it is possible to
calculate the density function w explicitly and for which there are indeed no oscillations. In our proof of Theorem 1
(in Section 3) we will express the functions M , M1 and M2 via the Legendre transform of the function

K(u) := −u−β log B
(
ϕ(u)

)
, u > 0 (14)

(with B from (6)). Analyzing these expressions in the case when the function K degenerates to a constant, we will see
that there are actually no oscillations. Moreover, this statement can be reversed:

Corollary 2 (No oscillations). If K(u) ≡ κ > 0, then

M(x) ≡ (κβ)1/(1−β)
(
β−1 − 1

)
, (15)

M1(x) ≡ p−1/(μ−1)
μ

(
(κβ)1/(1−β)

2π(1 − β)

)1/2

(16)



204 K. Fleischmann and V. Wachtel

and

M2(x) ≡ p−1/(μ−1)
μ

(
1

2π(1 − β)(κβ)1/(1−β)

)1/2

. (17)

Conversely, M(x) ≡ const implies the existence of limu↑∞ u−β logϕ(u), yielding K(u) ≡ const.

In the example of [13] mentioned above, pμ = 21−μ, β = 1/2 and K(u) ≡ √
2. Thus, we can apply Corollary 2 to

obtain, M(x) ≡ 1/2 and M1(x) ≡ 2/
√

2π. Then (12) gives

w(x) ∼ 2√
2π

x−3/2 exp
{−(2x)−1} as x ↓ 0. (18)

This of course also follows from the exact formula for w in Hambly’s example.
A classical example of non-trivial oscillations in the left tail of W is the process Z with offspring generating

function f (s) = s2/(4 − 3s) considered by Barlow and Perkins [1]. They have shown that

lim inf
u↑∞ u−β logϕ(u) < lim sup

u↑∞
u−β logϕ(u). (19)

Consequently, in this example the function M is not a constant by Corollary 2. But their calculations show also that
here the variation of K is very small. That is, K∗ ≤ K(u) ≤ K∗, u > 0, with K∗ − K∗ small. On the other hand,
Biggins and Bingham [3] have obtained some bounds for the variation of K under the restriction that the offspring
law is shifted infinitely divisible, that is, f (s) = srh(s) with h an infinitely divisible probability generating function
and r ≥ 2 a natural number. Moreover, Bingham [6] has shown that K∗ ≤ K(u) ≤ K∗, u > 0, implies

(K∗β)1/(1−β)
(
β−1 − 1

) ≤ M(x) ≤ (
K∗β

)1/(1−β)(
β−1 − 1

)
, x > 0. (20)

That is, a small variation of L implies a small variation of M giving tiny oscillations in (12) and (13).
We finish this section with some further remarks.

Remark 3 (Right tail asymptotics). In the case when our supercritical offspring generating function f is a polynomial
one can easily adopt our methods to find the exact asymptotics of w(x) and P(W > x) as x ↑ ∞. Indeed, there exist
multiplicatively periodic functions N , N1 and N2 such that

w(x) ∼ N1(x)x(2−γ )/2(γ−1) exp
{−N(x)x−γ /(γ−1)

}
(21)

and

P(W > x) ∼ N2(x)x−γ /2(γ−1) exp
{−N(x)x−γ /(γ−1)

}
(22)

as x ↑ ∞, where γ > 1 is defined by the relation mγ = max{k: pk > 0}.

Remark 4 (Multi-type case). A very interesting question is to investigate the tail behavior of the limit of multi-type
Galton–Watson processes. Some first results in this direction can be found in Jones [16]. For some related limit theory
for iterations of generating functions see Biggins [2] and Jones [15].

Remark 5 (Continuous state case). Bingham [5] has investigated the asymptotic behavior of the limit law of a super-
critical continuous-state branching process. In the situation analogous to the Böttcher case he has obtained a version
of (10) with a slowly varying function M , see Theorems 5.4 and 5.6 in [5]. The non-oscillating behavior of M can be
understood by the smoother behavior of continuous-state branching compared to the Galton–Watson case.

Remark 6 (Diffusions on fractals). It would be interesting to understand whether our results allow one to obtain
more precise probability bounds for diffusions on finitely ramified fractals (recall e.g. [1] and [13]).
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1.4. Lower deviation probabilities of Z

Here we state our results on lower deviation probabilities of Z. Recalling that μ = min{k: pk > 0} and that the
offspring generating function f is said to be of type (d,μ), if d ≥ 1 denotes the greatest common divisor of the set
{j − l: j �= l, pjpl > 0}, we use from now on the symbol d (and μ) in this sense.

For the Schröder case, we can simply specialize Theorem 4 of [12]. In fact, for kn ≡ μ(modd) with kn → ∞ but
kn = o(cn) we have

P(Zn = kn) = d

mn−ancan

w

(
kn

mn−ancan

)(
1 + o(1)

)
as n ↑ ∞, (23)

where an := min{j ≥ 1: cj ≥ kn}. Clearly, if additionally EZ1 logZ1 < ∞ holds, then one can choose cn = mn, and
(23) simplifies to

P(Zn = kn) = dm−nw

(
kn

mn

)(
1 + o(1)

)
as n ↑ ∞. (24)

Now we turn to the Böttcher case. In [12], Theorem 6, we have found bounds for log[cnP(Zn = kn)], which can be
rewritten, after some elementary calculations, as follows: for all large enough n,

C1 logw

(
kn

cjnm
n−jn

)
≤ log

[
cnP(Zn = kn)

] ≤ C2 logw

(
kn

cjnm
n−jn

)
(25)

for some positive constants C1 and C2 . Now we are able to be more precise.

Theorem 7 (Precise logarithmic asymptotics of lower deviations). Let kn ≡ μn(modd) with kn/μ
n → ∞ but

kn = o(cn) as n ↑ ∞. Then

log
[
cnP(Zn = kn)

] ∼ logw

(
kn

cjnm
n−jn

)
as n ↑ ∞, (26)

where jn := max{l ≥ 1: clμ
n−l ≤ kn}.

Of course, under the condition EZ1 logZ1 < ∞, relation (26) simplifies to

log
[
mnP(Zn = kn)

] ∼ logw

(
kn

mn

)
. (27)

This reminds one of (24) except for the additional log-scaling. However, without logarithmic scaling, the behavior of
lower deviation probabilities turns out to depend heavily on the tail of the offspring law:

Theorem 8 (Fine asymptotics of lower deviations). Assume that kn ≡ μn(mod d) with kn/μ
n → ∞ but kn = o(mn)

as n ↑ ∞. If EZ2
1 < ∞, then there exists a positive, multiplicatively periodic function V2 such that

mnP(Zn = kn)

dw(kn/mn)
= exp

{
−V2

(
kn

mn

)(
m2nβ

k
β+1
n

)1/(1−β)(
1 + o(1)

)}
as n ↑ ∞. (28)

If instead only

P(Z1 ≥ x) = x−r�(x), x > 0, (29)

for some r ∈ (1,2) and some function �, slowly varying at infinity, then there exists a positive, multiplicatively periodic
function Vr such that as n ↑ ∞,

mnP(Zn = kn)

dw(kn/mn)
= exp

{
−Vr

(
kn

mn

)(
mnrβ

k
r+β−1
n

)1/(1−β)

�

((
kn

mβn

)1/(1−β))(
1 + o(1)

)}
. (30)
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It should be noted that from Theorem 8 we obtain fine asymptotic statements only under additional restrictions
on kn. If, for example, EZ2

1 is finite, then for kn > εm2nβ/(1+β) with an arbitrary ε > 0, we get from (28) the relation

P(Zn = kn) ∼ dw(kn/mn)

mn
exp

{
−V2

(
kn

mn

)(
m2nβ

k
β+1
n

)1/(1−β)}
. (31)

But since the asymptotic behavior of w(x) is known, this yields the fine asymptotics for P(Zn = kn). However, in the
case kn = o(m2nβ/(1+β)), formula (28) says only that

log
[
mnP(Zn = kn)

] − logw

(
kn

mn

)
∼ −V2

(
kn

mn

)(
m2nβ

k
β+1
n

)1/(1−β)

as n ↑ ∞.

This is more precise than the statement of Theorem 7 but not sufficient for a fine asymptotics.
However, we believe that the statements of Theorem 8 are optimal in the sense that it is impossible to obtain more

information on lower deviation probabilities without an additional assumption on the offspring distribution. More
precisely, we conjecture that the form of the o(1) in (28) depends on higher moments of Z1.

In our Theorems 7 and 8 we assumed kn/μ
n → ∞. Thus, it remains to consider the lower deviation problem for

kn in the case that kn/μ
n is bounded.

Theorem 9 (Fine asymptotics for extreme lower deviations). Assume that kn ≡ μn(mod d) and fix some 1 < λ1 <

λ2 < ∞. Then, uniformly in kn ∈ [λ1μ
n,λ2μ

n],

P(Zn = kn) = rp
−1/(μ−1)
μ

μ−n/2
√

2π(r2b′′(r) + rb′(r))
exp

{
μn

(
b(r) − rb′(r) log r

)}(
1 + O

(
μ−n/2)), (32)

where

b(s) := log s +
∞∑

j=0

μ−j−1 log
fj+1(s)

f
μ
j (s)

, s ∈ (0,1), (33)

and r is the unique solution of

rb′(r) = kn

μn
. (34)

Let G(s) = ∑J
j=0 gj s

j with gj ≥ 0,
∑J

j=0 gj > 0 and J > 1. Define the sequence of polynomials Gn(s) =∑
j≥0 gn,j s

j by the recurrence relation

Gn+1(s) = G
(
Gn(s)

)
, n ≥ 0,G0(s) = s, s ≥ 0. (35)

Flajolet and Odlyzko [11] studied the asymptotic behavior of the gn,j as n ↑ ∞. (Actually, they studied the more
general case Gn+1(s) = G(s,Gn(s)) with G(s, y) := ∑J

j=0 gj (s)y
j .) Their method relies on the combination of the

saddle point approximation and the following property of the sequence Gn (see Lemma 2.5 in [11]):

(
Gn(s)

)(J−n) −→
n↑∞ some g(s) (36)

for all s > ρ := inf{s > 0: Gn(s) → ∞ as n ↑ ∞}. Moreover, the limit g satisfies the Böttcher equation

g
(
G(s)

) = (
g(s)

)J
, s ∈ (ρ,∞). (37)

Our problem concerning lower deviation probabilities in the Böttcher case is similar to the problem considered in
[11]. Indeed, local probabilities P(Zn = k) are coefficients of the iterations fn, and, furthermore, the convergence (6)
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is analogous to (36). In view of this similarity we will use, following Flajolet and Odlyzko, the saddle point method
in proving our Theorems 7–9. To this aim we need to adopt some technical results from [11] to our setting. This will
be done in Section 2.1. After these preparations, the proof of Theorem 9 follows the pattern of the proof of Theorem 1
of [11], and we leave this to the reader.

In the case kn � μn as in Theorems 7 and 8, the Böttcher convergence (6) turns out not to be sufficient for finding
the asymptotics of P(Zn = kn). But besides (6), which describes the behavior of fn in the vicinity of the attractive
fixed point s = 0 (for the mapping s �→ f (s)), we have available (2) governing the behavior of fn near the repulsive
fixed point s = 1. The existence of the second fixed point makes our setting different from that in [11] (there the
sequence Gn is assumed to have only the single fixed point s = ∞), and this enables us to study the behavior of
P(Zn = kn) also in the case kn � μn and to find this way the left tail asymptotics concerning W .

2. Various auxiliary results

As in our theorems, we always assume from now on to be in the Böttcher case.

2.1. On a convergence of iterated offspring generating functions

Clearly, we may extend the domain of definition of f and fn to complex variables z with |z| ≤ 1. Set (at this stage at
least formally)

b(z) := log z +
∞∑

j=0

μ−j−1 log
fj+1(z)

f
μ
j (z)

, 0 < |z| ≤ 1, (38)

and

D(δ, θ) := {
z: 0 < |z| ≤ 1 − δ, | arg z| ≤ θ

}
, δ ∈ [0,1), θ ∈ (0,π). (39)

In (38) and in what follows we take the principal value of the logarithm.

Lemma 10 (On analyticity and convergence). For every δ ∈ (0,1) there exists a constant θ = θ(δ) ∈ (0,π) such
that b is analytic on D(δ, θ). Furthermore,

fn(z) = p−1/(μ−1)
μ exp

{
μnb(z)

}(
1 + o

(
e−δμn))

as n ↑ ∞, (40)

uniformly in z ∈ D(δ, θ), for these δ and θ .

Proof. If fk(z) �= 0, then

fk+1(z)

pμf
μ
k (z)

= 1 +
∞∑

j=1

pμ+j

pμ

f
j
k (z). (41)

Hence,∣∣∣∣ fk+1(z)

pμf
μ
k (z)

− 1

∣∣∣∣ ≤ 1 − pμ

pμ

fk

(|z|) ≤ C|z|(μk) (42)

and ∣∣fk+1(z)
∣∣ > pμ

∣∣fk(z)
∣∣μ(

1 − C|z|(μk)
)

(43)

for some (positive) constant C, since in the Böttcher case

fk(s) ≤ s(μk), k ≥ 0, s ∈ (0,1). (44)
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From (43) follows that there exists k0 = k0(δ) such that, if fk0(z) �= 0 and |z| ≤ 1 − δ, then fk(z) �= 0 for all k > k0.
Furthermore, since the zeros of fk are separated points, there exists θ = θ(k0) such that fk(z) �= 0 for all k ≤ k0 and
z ∈ D(0, θ). Summarizing, for every δ > 0 there exists θ > 0 such that fk(z) �= 0 for all k ≥ 0 and z ∈ D(δ, θ). Thus,
for every k ≥ 0 the function z �→ log(fk+1(z)/pμf

μ
k (z)) is analytic on D(δ, θ).

It is known that log(1 + z) is analytic at z = 0 and, moreover, log(1 + z) = ∑∞
j=1(−1)j−1j−1zj for all |z| < 1.

Consequently,

∣∣log(1 + z)
∣∣ ≤ |z|

1 − |z| ≤ 2|z| if |z| ≤ 1

2
. (45)

Combining this inequality with (42), we conclude that for all large enough k∣∣∣∣log
fk+1(z)

pμf
μ
k (z)

∣∣∣∣ ≤ C|z|(μk). (46)

Clearly, for 0 < δ < 1 fixed, |z| ≤ 1 − δ implies |z| ≤ e−δ . Hence, for z ∈ D(θ, δ),∣∣∣∣log
fk+1(z)

pμf
μ
k (z)

∣∣∣∣ ≤ C|z|(μk) ≤ Ce−δμk ≤ C. (47)

Consequently,

n−1∑
k=0

μ−k−1 log
fk+1(z)

pμf
μ
k (z)

−→
n↑∞

∞∑
k=0

μ−k−1 log
fk+1(z)

pμf
μ
k (z)

, (48)

uniformly in z ∈ D(δ, θ). Moreover, as the uniform limit of analytic functions, the right-hand side function in (48) is
analytic on D(δ, θ). Noting that

b(z) = log z + 1

μ − 1
logpμ +

∞∑
k=0

μ−k−1 log
fk+1(z)

pμf
μ
k (z)

, (49)

we see that b is analytic on D(δ, θ) as well.
We now turn to the proof of (40). It can easily be seen that

μ−n logfn(z) = b(z) −
∞∑

k=n

μ−k−1 log
fk+1(z)

f
μ
k (z)

, z ∈ D(0, θ), (50)

for all n ≥ 0. Note also that for z ∈ D(0, θ),

∞∑
k=n

μ−k−1 log
fk+1(z)

f
μ
k (z)

= μ−n

μ − 1
logpμ +

∞∑
k=n

μ−k−1 log
fk+1(z)

pμf
μ
k (z)

. (51)

From these identities and (47) we get

logfn(z) = μnb(z) − 1

μ − 1
logpμ + O

(
e−δμn)

as n ↑ ∞, (52)

implying (40), uniformly in z ∈ D(δ, θ). This completes the proof. �

Remark 11 (On the relation between b and B). From (40) one can easily deduce that (f (s))(μ
−n) → eb(s) as n ↑ ∞.

Thus, comparing this convergence with (6), we see that b(s) = log B(s). Hence, using (7), we have

b
(
f (s)

) = μb(s), 0 < s < 1. (53)
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Remark 12 (Analyticity of b on (0,1)). It follows from Lemma 10 that b is analytic at every point s ∈ (0,1).

Lemma 13 (An upper bound of fn). For all s ∈ (0,1) and n ≥ 1,

fn(s) < p−1/(μ−1)
μ exp

{
μnb(s)

}
. (54)

Proof. Combining (50) and (51) gives

μ−n logfn(s) = b(s) − μ−n

μ − 1
logpμ −

∞∑
k=n

μ−k−1 log
fk+1(s)

pμf
μ
k (s)

. (55)

Since fk+1(s) > pμf
μ
k (s) for all k ≥ 1 and s ∈ (0,1), the sum at the right-hand side of (55) is positive. This means

that

μ−n logfn(s) < b(s) − μ−n

μ − 1
logpμ, (56)

giving (54). This finishes the proof. �

Lemma 14 (Further properties of b). We have

sb′′(s) + b′(s) = (
sb′(s)

)′
> 0, s ∈ (0,1). (57)

Furthermore,

lim
s↑1

sb′(s) = ∞ and lim
s↓0

sb′(s) = 1. (58)

Proof. We first note that in view of Lemma 10,

(
sb′(s)

)′ = lim
n↑∞μ−n

(
s
(
logfn(s)

)′)′ = lim
n↑∞μ−n

(
sf ′

n(s)

fn(s)

)′
. (59)

It was shown in [11], formula (2.37), that if g(s) = g1(s) + g2(s), where g1(s) and g2(s) are power series with
non-negative coefficients, then for all s ∈ (0,1),

(
sg′(s)
g(s)

)′
≥ g1(s)

g(s)

(
sg′

1(s)

g1(s)

)′
. (60)

Using this inequality with g1(s) = pμf
μ
n (s) and g2(s) = fn+1(s) − pμf

μ
n (s), we get for every n ≥ 0,

(
sf ′

n+1(s)

fn+1(s)

)′
≥ μ

pμf
μ
n (s)

fn+1(s)

(
sf ′

n(s)

fn(s)

)′
. (61)

Then after n − 1 iterations we arrive at

μ−n

(
sf ′

n(s)

fn(s)

)′
≥ μ−1

(
sf ′(s)
f (s)

)′ n−1∏
j=1

pμf
μ
j (s)

fj+1(s)
. (62)

It is easily seen that

(
sf ′(s)
f (s)

)′
= VarX(s), (63)
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where the law of the random variable X(s) is defined by P(X(s) = k) = pks
k/f (s). Since Z1 is non-degenerate,

VarX(s) > 0 for every s ∈ (0,1). Consequently,

(
sf ′(s)
f (s)

)′
> 0, s ∈ (0,1). (64)

Obviously,

n−1∏
j=1

pμf
μ
j (s)

fj+1(s)
= exp

{
−

n−1∑
j=1

log

(
pμf

μ
j (s)

fj+1(s)

)}
. (65)

Then, in view of (48),

lim
n↑∞

n−1∑
j=1

log

(
pμf

μ
j (s)

fj+1(s)

)
=

∞∑
j=1

log

(
pμf

μ
j (s)

fj+1(s)

)
∈ (0,∞), (66)

hence,

lim
n↑∞

n−1∏
j=1

pμf
μ
j (s)

fj+1(s)
=

∞∏
j=1

pμf
μ
j (s)

fj+1(s)
∈ (0,1). (67)

Combining (59), (62), (64) and (67), we obtain (57).
Next we prove the first statement in (58). Since s �→ sb′(s) is increasing, it is enough to show that

sj b
′(sj ) → ∞ for some sequence sj ↑ 1 as j ↑ ∞. (68)

Fix any s0 ∈ (0,1) and define recursively sj+1 by f (sj+1) = sj , j ≥ 0. Note that sj increases to some s∞ as j ↑ ∞,
satisfying f (s∞) = s∞, giving s∞ = 1. Then, in view of (53), b′(sj+1) = b′(sj )f ′(sj+1)/μ. As limj↑∞ f ′(sj+1) =
m > μ, we see that b′(sj ) grows exponentially, and (68) follows.

From (41) and (49) we get

b′(s) = 1

s
+

∞∑
k=0

μ−k−1
p−1

μ

∑∞
j=1 jpμ+j f

j−1
k (s)

1 + p−1
μ

∑∞
j=1 pμ+j f

j
k (s)

f ′
k(s)

≤ 1

s
+ m

pμ

∞∑
k=0

μ−k−1[f ′(s)
]k

, (69)

where in the second step we used the elementary bounds f ′
k(s) ≤ [f ′(s)]k and

∑∞
j=1 jpμ+j f

j−1
k (s) < m. Conse-

quently, if s is so small that f ′(s) < μ/2, then

b′(s) <
1

s
+ 2m

μpμ

. (70)

This implies the second statement in (58), and the proof is finished. �

2.2. Some statements involving the Laplace transform of W

First we extend the definition of ϕ in (2) by setting ϕ(z) := Ee−zW , �z := �(z) ≥ 0. Note that the Poincaré functional
equation (3) remains valid under this extension. Recall notation D(δ, θ) from (39).
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Lemma 15 (An estimate on ϕ). Fix u0 > 0. Then there is a constant C = C(u0) such that for all θ ∈ (0,C],

ϕ(u − it) ∈ D
(

ϕ(u0),
θ

C

)
, u ≥ u0 and |t | ≤ θ. (71)

Proof. By the mean value theorem,

ϕ(u − it) − ϕ(u) = itϕ′(u − iτ) for some τ ∈ (0, t). (72)

This implies∣∣�ϕ(u − it)
∣∣ ≥ ϕ(u) − |t |∣∣ϕ′(u − iτ)

∣∣ and
∣∣�ϕ(u − it)

∣∣ ≤ |t |∣∣ϕ′(u − iτ)
∣∣. (73)

Noting that |ϕ′(u − iτ)| ≤ |ϕ′(u)|, and using the obvious inequality | arg z| ≤ |�z|/|�z|, we get

∣∣argϕ(u − it)
∣∣ ≤ 2|t ||ϕ′(u)|

ϕ(u)
, |t | ≤ ϕ(u)

2|ϕ′(u)| . (74)

As ϕ is the Laplace transform of a non-degenerate random variable, from the Cauchy–Schwarz inequality we get

(
ϕ′(u)

ϕ(u)

)′
= ϕ′′(u)

ϕ(u)
−

[
ϕ′(u)

ϕ(u)

]2

> 0 for all u > 0. (75)

Thus, ϕ′/ϕ is increasing, implying that

|ϕ′(u)|
ϕ(u)

≤ |ϕ′(u0)|
ϕ(u0)

, u ≥ u0. (76)

Combining this with (74) gives

∣∣argϕ(u − it)
∣∣ ≤ |t |

C
, u ≥ u0, |t | ≤ C (77)

with C := ϕ(u0)
2 |ϕ′(u0)| . Finally, |ϕ(u − it)| ≤ |ϕ(u)| ≤ |ϕ(u0)| for u ≥ u0 implies the claim. �

Lemma 16 (On uniform integrability). We have

sup
u≥0

∫ ∞

−∞
∣∣ϕ(u − it)

∣∣dt < ∞. (78)

Proof. It follows from the Poincaré functional equation that for every j ≥ 0,

∫ mj+1

mj

∣∣ϕ(u − it)
∣∣dt =

∫ mj+1

mj

∣∣∣∣fj

(
ϕ

(
(u − it)

mj

))∣∣∣∣dt

≤ mj

∫ m

1
fj

(∣∣ϕ(
um−j − it

)∣∣)dt. (79)

Since for v ≥ 0 fixed, t �→ ϕ(v − it)/ϕ(v) is the characteristic function of some absolutely continuous law (Cramér
transform), we deduce that for all v ≥ 0 and θ > 0 there exists η = η(v, θ) ∈ (0,1) such that∣∣ϕ(v − it)

∣∣ < (1 − η)ϕ(v) < 1 for all v ≥ 0, |t | > θ. (80)

From this inequality and the continuity of the mapping (v, t) �→ ϕ(v − it) we conclude that

sup
v≥0, t∈[1,m]

∣∣ϕ(v − it)
∣∣ =: s0 < 1. (81)
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Together with inequality (79) and (44) we get

sup
u≥0

∫ mj+1

mj

∣∣ϕ(u − it)
∣∣dt ≤ mj+1s

(μj )
0 , j ≥ 0. (82)

Therefore,

sup
u≥0

∫ ∞

1

∣∣ϕ(u − it)
∣∣dt ≤

∑
j≥0

mj+1s
(μj )
0 < ∞. (83)

Analogously,

sup
u≥0

∫ −1

−∞
∣∣ϕ(u − it)

∣∣dt ≤
∑
j≥0

mj+1s
(μj )
0 < ∞. (84)

Both statements imply the claim in the lemma. �

Recall notation b from (38).

Lemma 17 (Miscellaneous). Set ψ(u) := b(ϕ(u)), u ≥ 0. Then ψ is a decreasing analytic function on (0,∞).
Moreover,

(a) ψ ′(u) → −∞ as u ↓ 0,
(b) ψ ′(u) → 0 as u ↑ ∞,
(c) ψ ′′(u) > 0 for all u > 0.

Proof. As ϕ is analytic on (0,∞) and b (by Lemma 10) analytic on (0,1), we see that ψ is analytic on (0,∞). We
know that b increases and ϕ decreases. Then ψ decreases, i.e. ψ ′(u) < 0 for all u ≥ 0.

(c) It follows from the definition of ψ that

ψ ′′(u) = b′′(ϕ(u)
)[

ϕ′(u)
]2 + b′(ϕ(u)

)
ϕ′′(u). (85)

By Lemma 14, ϕ(u)b′(ϕ(u)) > 0. Combining this with (57), (85) and (75), we obtain (c).
(a) It was shown in [6] that

ψ(u) = −uβV (u), u ≥ 0, (86)

where V is a positive, multiplicatively periodic function with period m. Since ψ(mu) = mβψ(u), differentiation gives

ψ ′(mu) = mβ−1ψ ′(u). (87)

For 0 < u < 1, we set ka = ka(u) := min{j ≥ 1: umj ≥ 1}. By (87),

ψ ′(u) = mka(1−β)ψ ′(mkau
) ≤ mka(1−β) max

v∈[1,m]
ψ ′(v). (88)

Recalling that ψ ′ < 0 is continuous, we get (a), since ka = ka(u) ↑ ∞ as u ↓ 0.
(b) For u > m, put kb = kb(u) := max{j ≥ 1: u ≥ mj }. Using (87) once again, we have

∣∣ψ ′(u)
∣∣ = mkb(β−1)

∣∣∣∣ψ ′
(

u

mkb

)∣∣∣∣ ≤ m−kb(1−β) max
v∈[1,m]

∣∣ψ ′(v)
∣∣. (89)

From the continuity of ψ ′, part (b) follows, since kb = kb(u) ↑ ∞ as u ↑ ∞. �
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2.3. On some rates of convergence

Put

ϕj (u) := Ee−uZj /mj

, j ≥ 0, u ≥ 0. (90)

Note that by (2), ϕj → ϕ pointwise as j ↑ ∞, provided that EZ1 logZ1 < ∞.

Lemma 18 (Rate of convergence of ϕj ). Assume that EZ2
1 < ∞. Then for each fixed u ≥ 0,

ϕj (u) − ϕ(u) = �2

2
u2ϕ′(u)m−j

(
1 + o(1)

)
as j ↑ ∞, (91)

where we set �2 := VarW . If we only assume that (29) holds, then for u ≥ 0 fixed,

ϕj (u) − ϕ(u) = C(r,m)urϕ′(u)m−j (r−1)�
(
mj

)(
1 + o(1)

)
as j ↑ ∞, (92)

with constant C(r,m) := �(2−r)
(r−1)(mr−m)

(and the slowly varying function � from (29)). Moreover, both relations are
uniform in u on any compact subset of (0,∞).

Proof. In view of (3) and by notation (90),

ϕj (u) − ϕ(u) = fj

(
e−u/mj ) − fj

(
ϕ

(
u

mj

))
, j, u ≥ 0. (93)

Hence, by the mean value theorem,

ϕj (u) − ϕ(u) = f ′
j (θj )

(
e−u/mj − ϕ

(
u

mj

))
(94)

for some θj ∈ [e−u/mj
, ϕ(u/mj )]. Since EW = 1 under the Z1 logZ1-moment condition, we have

ϕ

(
u

mj

)
= 1 − u

mj
+ o

(
1

mj

)
as j ↑ ∞, (95)

which is uniform for bounded u ≥ 0. Thus,

θj = exp

{
−u + o(1)

mj

}
as j ↑ ∞, (96)

which is uniform for bounded u ≥ 0. Note that for j,u ≥ 0,

f ′
j

(
e−u/mj ) = mj eu/mj

Egu

(
Zj

mj

)
, (97)

where we set gu(x) := xe−ux . It is easy to verify that for 0 < a < A < ∞ fixed, G := {gu, u ∈ [a,A]} is a family of
uniformly bounded and equi-continuous functions. Then, by the limit theorem (2) for Z,

Egu

(
Zj

mj

)
−→
j↑∞ Egu(W) = −ϕ′(u), u ≥ 0, (98)

uniformly on G . From this and (96) we conclude that

f ′
j (θj ) = −mjϕ′(u)

(
1 + o(1)

)
as j ↑ ∞, (99)

uniformly in u on any compact subset of (0,∞).
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It is known (see, e.g., [7]) that condition EZ2
1 < ∞ implies EW 2 < ∞. This then means that

ϕ

(
u

mj

)
= 1 − u

mj
+ EW 2

2

u2

m2j
+ o

(
1

m2j

)
as j ↑ ∞, (100)

uniformly for bounded u ≥ 0. Therefore,

e−u/mj − ϕ

(
u

mj

)
= −�2

2

u2

m2j

(
1 + o(1)

)
as j ↑ ∞, (101)

uniformly in u on any compact subset of (0,∞). Applying (99) and (101) to the right-hand side of (94), we obtain
(91).

If (29) only holds, then (see [7])

P(W ≥ x) ∼ x−r�(x)

(mr − m)
as x ↑ ∞. (102)

Hence, by the Abelian theorem (see, for instance, [10], Chapter XIII, Section 5), as u ↓ 0,

ϕ(u) = 1 − u + �(2 − r)

(r − 1)(mr − m)
ur�

(
1

u

)(
1 + o(1)

)
, (103)

and, consequently, as j ↑ ∞,

e−u/mj − ϕ

(
u

mj

)
= − �(2 − r)

(r − 1)(mr − m)
urm−jr�

(
mj

)(
1 + o(1)

)
, (104)

uniformly in u on any compact subset of (0,∞). Combining now (94), (99) and (104) gives (92). Thus, the proof is
complete. �

Lemma 19 (Rate of convergence of ϕ′
j ). Assume that EZ2

1 is finite. Then for each fixed u ≥ 0,

ϕ′
j (u) − ϕ′(u) = �2

2
m−j

[
2uϕ′(u) − u2ϕ′′(u)

](
1 + o(1)

)
as j ↑ ∞. (105)

If only (29) holds, then for u ≥ 0 fixed,

ϕ′
j (u) − ϕ′(u) = C(r,m)

[
rur−1ϕ′(u) − urϕ′′(u)

]
m−j (r−1)�

(
mj

)(
1 + o(1)

)
(106)

as j ↑ ∞. Again, both relations are uniform in u on any compact subset of (0,∞).

Proof. Using (3) once again, we have

ϕ′(u) = m−j f ′
j

(
ϕ

(
u

mj

))
ϕ′

(
u

mj

)
. (107)

Therefore,

ϕ′
j (u) − ϕ′(u) = −m−j

(
e−u/mj

f ′
j

(
e−u/mj ) + f ′

j

(
ϕ

(
u

mj

))
ϕ′

(
u

mj

))

= −f ′
j (e

−u/mj
)

mj

[
e−u/mj + ϕ′

(
u

mj

)]
(108)

+ ϕ′(u/mj )

mj

[
f ′

j

(
e−u/mj ) − f ′

j

(
ϕ

(
u

mj

))]
. (109)
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If EZ2
1 is finite, then

ϕ′(u) = −1 + uEW 2 + o(u) as u ↓ 0. (110)

Combining this with (99) gives

−f ′
j (e

−u/mj
)

mj

[
e−u/mj + ϕ′

(
u

mj

)]
= ϕ′(u)u�2m−j

(
1 + o(1)

)
as j ↑ ∞, (111)

uniform in u on any compact subset of (0,∞).
Now we turn to (109). By the mean value theorem,

f ′
j

(
e−u/mj ) − f ′

j

(
ϕ

(
u

mj

))
= f ′′

j (θj )

(
e−u/mj − ϕ

(
u

mj

))
. (112)

Analogously to (99),

f ′′
j (θj ) = m2j ϕ′′(u)

(
1 + o(1)

)
. (113)

This together with (101) and (110) gives

ϕ′(u/mj )

mj

[
f ′

j

(
e−u/mj ) − f ′

j

(
ϕ

(
u

mj

))]
= −�2

2
u2ϕ′′(u)m−j

(
1 + o(1)

)
, (114)

uniform in u on any compact subset of (0,∞). Inserting now (111) into (108) and (114) into (109), we obtain (105).
In order to prove (106), only a single change is needed: Instead of (110) one has to use

ϕ′(u) = −1 + ur−1�

(
1

u

)
r�(2 − r)

r − 1

(
1 + o(1)

)
as u ↓ 0, (115)

which again follows from the Abelian theorem. This finishes the proof altogether. �

3. Precise left tail asymptotics: Proof of Theorem 1

For 0 < x ≤ μ/m, we define

r := r(x) := max

{
k ≥ 1:

μk

mk
≥ x

}
and y := y(x) := xmr(x)

μr(x)
. (116)

Evidently, 1 ≤ r(x) ↑ ∞ as x ↓ 0. On the other hand, the function x �→ y(x) is positive, multiplicatively periodic,
with period m/μ = m1−β , since r(xm/μ) = r(x) − 1. Also, μr+1/mr+1 < x ≤ μr/mr implies

μ

m
< y ≤ 1. (117)

3.1. Precise left tail asymptotics of the density function w

By the inversion formula,

w(x) = 1

2π

∫ ∞

−∞
e−iτxϕ(−iτ)dτ, x > 0. (118)

Since z �→ ezϕ(z) is analytic on {z: �z > 0} we can change the integration contour. In fact, for any a > 0 we can
integrate along the line {z: �z = a}, i.e.

w(x) = 1

2π

∫ ∞

−∞
e(a−iτ)xϕ(a − iτ)dτ. (119)
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Since ϕ satisfies the Poincaré functional equation, we have

ϕ(z) = fk

(
ϕ

(
z

mk

))
, �z ≥ 0, k ≥ 1. (120)

Using this with k = r = r(x) from (116) gives

w(x) = 1

2π

∫ ∞

−∞
e(a−iτ)xfr

(
ϕ

(
(a − iτ)

mr

))
dτ, 0 < x ≤ μ

m
. (121)

Choose now a = umr(x) for any fixed u > 0, substitute τ = tmr(x), and noting that xmr(x) = y(x)μr(x), by the
definition of y = y(x) in (116) we get

w(x) = mr

2π

∫ ∞

−∞
e(u−it)yμr

fr

(
ϕ(u − it)

)
dt, 0 < x ≤ μ

m
. (122)

Next we want to analyze different parts of this integral.
Noting that s �→ fr(s)/s is increasing in the present Böttcher case, and using (80), we get for all |t | ≥ θ ,

∣∣fr

(
ϕ(u − it)

)∣∣ ≤ fr

(∣∣ϕ(u − it)
∣∣) = ∣∣ϕ(u − it)

∣∣fr(|ϕ(u − it)|)
|ϕ(u − it)|

≤ ∣∣ϕ(u − it)
∣∣fr(ϕ(u)(1 − η))

ϕ(u)(1 − η)
(123)

with η = η(u, θ) ∈ (0,1). Consequently,

I (θ) :=
∣∣∣∣
∫

|t |≥θ

e(u−it)yμr

fr

(
ϕ(u − it)

)
dt

∣∣∣∣
≤ euyμr fr(ϕ(u)(1 − η))

ϕ(u)(1 − η)

∫ ∞

−∞
∣∣ϕ(u − it)

∣∣dt. (124)

According to Lemma 16 the integral in (124) is finite. Further, applying Lemma 13 to fr(x)(ϕ(u)(1 − η)), we obtain
from estimate (124),

I (θ) ≤ c(θ,u) exp
{
μr

[
uy + b

(
ϕ(u)(1 − η)

)]}
(125)

for some constant c(θ,u). Since from (41) it follows that b is increasing on (0,1], there exits ε = ε(η,u) > 0 such
that

b
(
ϕ(u)(1 − η)

) ≤ b
(
ϕ(u)

) − ε. (126)

Therefore, we have the tail estimate

I (θ) ≤ c(θ,u) exp
{
μr

[
uy + b

(
ϕ(u)

)] − εμr
}
. (127)

Fix u0 > 0. According to Lemma 15 there is a constant C = C(u0) such that for all θ ∈ (0,C],

ϕ(u − it) ∈ D
(

ϕ(u0),
θ

C

)
, u ≥ u0 and |t | ≤ θ. (128)

Furthermore, by Lemma 10, the function b is analytic on D(ϕ(u0), θ/C) for all small enough θ , say 0 < θ ≤ θ1. This

implies in particular, that ∂3

∂t3 b(ϕ(u − it)) is uniformly bounded on the set {u ≥ u0, |t | ≤ θ}. Hence, expanding in a
Taylor series in the variable t ,

b
(
ϕ(u − it)

) = b
(
ϕ(u)

) − b′(ϕ(u)
)
ϕ′(u)it − t2

2

∂2

∂u2
b
(
ϕ(u)

) + O
(∣∣t3

∣∣), (129)

uniformly in u ≥ u0.
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By (40), we have the following main part representation:∫ θ

−θ

e(u−it)yμr

fr

(
ϕ(u − it)

)
dt

= p−1/(μ−1)
μ

(
1 + O

(
e−ϕ(u0)μ

r ))∫ θ

−θ

exp
{
μr

[
b
(
ϕ(u − it)

) + (u − it)y
]}

dt (130)

as r = r(x) ↑ ∞, where the O-expression is uniform in u ≥ u0.
For the further analysis of the integral in (130) we want to apply now the saddle point approximation. For fixed

x ∈ (0,μ/m], let u∗ := u∗(x) > 0 denote the unique solution of the equation

b′(ϕ(u)
)
ϕ′(u) = −y(x). (131)

The existence and the uniqueness of u∗ follow from Lemma 17.
Since u �→ b′(ϕ(u))ϕ′(u) increases (by Lemma 17(c)), if x1, x2 are such that y(x1) ≤ y(x2), then u∗(x1) ≥ u∗(x2).

But recalling (74), we have y(x) ≤ 1 = y(μ/m). Therefore, u∗(x) ≥ u∗(μ/m) for all x ∈ (0,μ/m]. Using (129) with
u0 = u∗(μ/m) and u = u∗(x), we obtain for |t | ≤ θ ,

b
(
ϕ
(
u∗ − it

)) − ity = b
(
ϕ
(
u∗)) + b

(
ϕ
(
u∗ − it

)) − b
(
ϕ
(
u∗)) − ity

= b
(
ϕ
(
u∗)) − (

b′(ϕ(
u∗))ϕ′(u∗) + y

)
it − σ 2

2
t2 + O

(∣∣t3
∣∣)

= b
(
ϕ
(
u∗)) − σ 2

2
t2 + O

(∣∣t3
∣∣) (132)

as t → 0, where σ is defined by

σ 2 := σ 2(x) := d2

du2
b
(
ϕ(u)

)∣∣∣∣
u=u∗(x)

= ψ ′′(u∗) > 0. (133)

The latter positivity follows from Lemma 17(c). Recall that the O is uniform in x ∈ (0,μ/m].
From (132) we have

∫ rμ−r/2

−rμ−r/2
exp

{
μr

[
b
(
ϕ
(
u∗ − it

)) + (
u∗ − it

)
y
]}

dt

= exp
{
μr

[
b
(
ϕ
(
u∗)) + u∗y

]}∫ rμ−r/2

−rμ−r/2
exp

{
−μr σ 2

2
t2

}
dt

(
1 + O

(
r3μ−r/2)) (134)

as r = r(x) ↑ ∞ (with O uniform in x). By the substitution μr/2σ t =: τ we get

∫ rμ−r/2

−rμ−r/2
exp

{
−μr σ 2

2
t2

}
dt = 1

μr/2σ

∫ rσ

−rσ

e−τ 2/2 dτ

= 1

μr/2σ

(√
2π − 2

∫ ∞

rσ

e−τ 2/2 dτ

)
=

√
2π

μr/2σ

(
1 + o

(
r3μ−r/2)) (135)

as r = r(x) ↑ ∞. Inserting into (134) gives the following representation of the central part of the integral in (130)
(with u = u∗):

∫ rμ−r/2

−rμ−r/2
exp

{
μr

[
b
(
ϕ
(
u∗ − it

)) + (
u∗ − it

)
y
]}

dt

=
√

2π

σ 2
μ−r/2 exp

{
μr

[
b
(
ϕ
(
u∗)) + u∗y

]}(
1 + O

(
r3μ−r/2)) (136)
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as r = r(x) ↑ ∞.
On the other hand, since C|t3| ≤ σ 2

4 t2 for each fixed constant C and for all small enough |t |, relation (132) implies

�(
b
(
ϕ
(
u∗ − it

)) + (
u∗ − it

)
y
) ≤ b

(
ϕ
(
u∗)) + u∗y − σ 2

4
t2 (137)

for all |t | ≤ θ and for small enough θ , say θ ≤ θ2. Consequently, for all θ < θ2 and all small enough x, we obtain the
following estimate of an intermediate part of the integral in (130) (with u = u∗):∣∣∣∣

∫
|t |∈[rμ−r/2,θ]

exp
{
μr

[
b
(
ϕ
(
u∗ − it

)) + (
u∗ − it

)
y
]}

dt

∣∣∣∣
≤ 2θ exp

{
μr

[
b
(
ϕ
(
u∗)) + u∗y

]}
exp

{
−σ 2

4
r2

}
(138)

(with r = r(x) and u∗ = u∗(x)).
Putting u = u∗(x) in (130) and taking into account our partial results (136) and (138), instead of (130) we get, for

θ ≤ θ1 ∧ θ2,

∫ θ

−θ

e(u∗−it)yμr

fr

(
ϕ
(
u∗ − it

))
dt

= p−1/(μ−1)
μ

√
2π

σ 2
μ−r/2 exp

{
μr

[
b
(
ϕ
(
u∗)) + u∗y

]}(
1 + O

(
r3μ−r/2)) (139)

since e−σ 2r2/4 = o(1 + O(r3μ−r/2)) as r ↑ ∞.
Applying now (127) with u = u∗(x), and (139) to (122) with u = u∗(x), instead of (122) we have

w(x) = p
−1/(μ−1)
μ√

2πσ 2
mrμ−r/2 exp

{
μr

[
b
(
ϕ
(
u∗)) + u∗y

]}(
1 + O

(
r3μ−r/2)) (140)

as r = r(x) ↑ ∞.
It follows from the definition of u∗ = u∗(x) around (131), that

b
(
ϕ
(
u∗)) + u∗y = min

u≥0

{
b
(
ϕ(u)

) + uy
}
. (141)

On the other hand, it is known (see Theorem 3 of [4]), that the function

M(v) := −vβ/(1−β) min
u≥0

{
b
(
ϕ(u)

) + uv
}
, v > 0, (142)

is analytic on (0,∞), positive, and multiplicatively periodic with period m1−β . Therefore,

b
(
ϕ
(
u∗)) + u∗y = −y−β/(1−β)M

(
ym−r(1−β)

)
. (143)

Recalling that μ = mβ , from definition (116) of r = r(x) and y = y(x) we have

ym−r(1−β) = ym−r

μ−r
= x and μr =

(
y

x

)β/(1−β)

. (144)

Applying these identities to the right-hand side of (143), we obtain

b
(
ϕ
(
u∗)) + u∗y = −μ−rx−β/(1−β)M(x). (145)
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Moreover, the second part of (144) yields

μ−r/2 =
(

x

y

)β/2(1−β)

and mrμ−r/2 =
(

y

x

)(2−β)/2(1−β)

. (146)

The first of these identities gives

r = r(x) = O(logx), hence r3μ−r/2 = O
(
xβ/2(1−β) log3 x

)
as x ↓ 0. (147)

Thus, inserting (145) and (146) into (140) we obtain (12) with

M1(x) := p
−1/(μ−1)
μ√

2πσ 2
y(2−β)/2(1−β). (148)

Since x �→ y(x) is multiplicatively periodic with period m1−β , the function x �→ u∗(x) is also multiplicatively periodic
with the same period, by definition (131) of u∗(x). Hence, by (133), x �→ σ 2(x) is multiplicatively periodic with
period m1−β , too. Therefore, x �→ M1(x) is also multiplicatively periodic with period m1−β . Thus, the proof of the
first part (12) of Theorem 1 is complete.

3.2. Precise left tail asymptotics for the law of W

By the inversion formula for distribution functions,

P(W < x) = 1

2π

∫ ∞

−∞
1 − e−iτx

iτ
ϕ(−iτ)dτ. (149)

Changing again the integration contour, we get for arbitrary a > 0,

P(W < x) = 1

2π

∫ ∞

−∞
1 − e(a−iτ)x

a − iτ
ϕ(a − iτ)dτ. (150)

After substituting a = umr , τ = tmr we have

P(W < x) = 1

2π

∫ ∞

−∞
eyμr (u−it) − 1

u − it
fr

(
ϕ(u − it)

)
dt (151)

(by using (116) and (120)). Evidently,∣∣∣∣
∫ ∞

−∞
1

u − it
fr

(
ϕ(u − it)

)
dt

∣∣∣∣ ≤ 1

u

∫ ∞

−∞
fr

(∣∣ϕ(u − it)
∣∣)dt ≤ fr(ϕ(u))

uϕ(u)

∫ ∞

−∞
∣∣ϕ(u − it)

∣∣dt, (152)

in the second step we applied the inequality |ϕ(u − it)| ≤ ϕ(u). Using Lemmas 16 and 13 gives∣∣∣∣
∫ ∞

−∞
1

u − it
fr

(
ϕ(u − it)

)
dt

∣∣∣∣ ≤ c(u)eμrb(ϕ(u)) (153)

for some constant c(u). Applying this bound to (151), we get

P(W < x) = 1

2π

∫ ∞

−∞
eyμr (u−it)

u − it
fr

(
ϕ(u − it)

)
dt + O

(
eμrb(ϕ(u))

)
(154)

as r = r(x) ↑ ∞. The completion of the proof of (13) follows the pattern of the proof of (12). At the end we have (13)
with

M2(x) := p
−1/(μ−1)
μ

u∗√2πσ 2
y−β/2(1−β). (155)

From (116), this function is multiplicatively periodic with period m1−β . Thus, the proof of Theorem 1 is complete.
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3.3. No oscillations: Proof of Corollary 2

Since b(s) = logB(s), condition K(u) ≡ κ means that b(ϕ(u)) = −κuβ . It can easily be seen that

u∗ =
(

κβ

y

)1/(1−β)

. (156)

Thus,

−κ
(
u∗)β + u∗y = y−β/(1−β)(κβ)1/(1−β)

(
β−1 − 1

)
. (157)

From this equality and definition (142) of M we conclude (15). Further, by (133) and (156),

σ 2 = κβ(1 − β)
(
u∗)β−2 = (κβ)−1/(1−β)(1 − β)y(2−β)/(1−β). (158)

Substituting (158) into (148) gives (16), and substituting additionally (156) into (155) yields (17).
Conversely, by a Tauberian theorem of de Bruijn (see Theorem 4.12.9 in [8]), the condition M(x) ≡ const implies

the existence of the limit limu↑∞ u−β logϕ(u) < 0. Furthermore, Bingham ([6], p. 219) has shown that

B(s) ∼ p−1/(μ−1)
μ s as s ↓ 0. (159)

From this we conclude that the limit limu↑∞ u−β logB(ϕ(u)) exists as well. But a multiplicatively periodic function
has a limit if and only if this function degenerates to a constant. Summarizing, the constancy of M yields the constancy
of K , finishing the proof.

4. Lower deviation probabilities: Proofs of Theorems 7 and 8

4.1. Intermediate formula

Fix any y ∈ (0,∞) and set k = k(y, j, �) := ycjμ
�, j, � ≥ 0. By the inversion formula, for all k ≡ μj+�(modd) and

a > 0,

P(Zj+� = k) = d

2π

∫ π/d

−π/d

fj+�

(
e−a+iτ )e(a−iτ)k dτ. (160)

Letting here a = u/cj and τ = t/cj , we get

P(Zj+� = k) = d

2πcj

∫ πcj /d

−πcj /d

f�

(
ϕj (u − it)

)
eμ�y(u−it) dt. (161)

Fix any 0 < θ < T < ∞. Since ϕj (u − it) → ϕ(u − it) uniformly in t ∈ [0, T ], from (80) we conclude that there
exists η = η(θ) > 0 such that∣∣ϕj (u − it)

∣∣ ≤ (1 − η)ϕ(u) (162)

for all t ∈ [θ,T ] and all large enough j . On the other hand, by Lemma 9 of [12] there exists ξ > 0 such that for all
u ≥ 0, j ≥ 1 and 1 ≤ l ≤ j ,

∣∣ϕj (u − it)
∣∣ ≤ e−ξμj−l+1

for all
πcj

dcl

≤ |t | ≤ πcj

dcl−1
. (163)

In particular, for every l ≤ j ,

∣∣ϕj (u − it)
∣∣ ≤ e−ξμl

for all
πcj

dcj−l

≤ |t | ≤ πcj

d
. (164)
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Choosing here l such that e−ξμl ≤ (1−η)ϕ(u) and putting T := πcj /dcj−l , we convince ourself that the bound (162)
holds for all |t | ∈ [θ,πcj /d] and all large enough j . Therefore,

∣∣∣∣
∫ −θ

−πcj /d

e(u−it)yμ�

f�

(
ϕj (u − it)

)
dt +

∫ πcj /d

θ

e(u−it)yμ�

fn−j

(
ϕj (u − it)

)
dt

∣∣∣∣
≤ euyμ� f�(ϕ(u)(1 − η))

ϕ(u)(1 − η)

∫ πcj /d

−πcj /d

∣∣ϕj (u − it)
∣∣dt. (165)

Using again (163), we see that

∫ πcj /d

−πcj /d

∣∣ϕj (u − it)
∣∣dt ≤ 2π

d

(
1 +

j∑
l=1

cj

cl−1
e−ξμj−l+1

)
. (166)

From the boundedness of this integral and Lemma 13 we have

∣∣∣∣
∫ −θ

−πcj /d

e(u−it)yμ�

f�

(
ϕj (u − it)

)
dt +

∫ πcj /d

θ

e(u−it)yμ�

f�

(
ϕj (u − it)

)
dt

∣∣∣∣
≤ c(θ,u) exp

{
μ�

[
uy + b

(
(1 − η)ϕ(u)

)]}
(167)

with some constant c(θ,u). In view of the monotonicity of b(s),

∣∣∣∣
∫ −θ

−πcj /d

e(u−it)yμ�

f�

(
ϕj (u − it)

)
dt +

∫ πcj /d

θ

e(u−it)yμ�

f�

(
ϕj (u − it)

)
dt

∣∣∣∣
≤ c(θ,u) exp

{
μ�

[
uy + b

(
ϕ(u)

)] − εμ�
}
. (168)

By Lemma 10, for all small enough θ , as � ↑ ∞,

∫ θ

−θ

e(u−it)yμ�

f�

(
ϕj (u − it)

)
dt

= p−1/(μ−1)
μ

(
1 + O

(
e−δ(u)μ�))∫ θ

−θ

exp
{
μ�

[
b
(
ϕj (u − it)

) + (u − it)y
]}

dt. (169)

Since ϕj (u) converges to ϕ(u) uniformly on the compact subsets of (0,∞), for all large enough j the equation

b′(ϕj (u)
)
ϕ′

j (u) = −y (170)

has a unique solution, which will be denoted by u∗
j , and

σ 2
j := d2

du2
b
(
ϕj (u)

)∣∣∣∣
u=u∗

j

> 0. (171)

Repeating word for word the proof of (139), we have, as � ↑ ∞,

∫ θ

−θ

e(u−it)yμ�

f�

(
ϕj (u − it)

)
dt

= p−1/(μ−1)
μ

√
2π

σ 2
j

μ−�/2 exp
{
μ�

[
b
(
ϕj

(
u∗

j

)) + u∗
j y

]}(
1 + o(1)

)
. (172)



222 K. Fleischmann and V. Wachtel

Applying (172) and (168) with u∗
j to (161) with u∗

j , and noting that

lim
j↑∞

[
b
(
ϕj

(
u∗

j

)) + u∗
j y

] = [
b
(
ϕ
(
u∗)) + u∗y

]
(173)

and

lim
j↑∞σ 2

j = σ 2 (174)

with u∗ and σ 2 defined in (131) and (133), we have, as j, � ↑ ∞,

P(Zj+� = k) = dp
−1/(μ−1)
μ√
2πσ 2cj

μ−�/2 exp
{
μ�

[
b
(
ϕj

(
u∗

j

)) + u∗
j y

]}(
1 + o(1)

)
. (175)

4.2. Precise logarithmic asymptotics: Proof of Theorem 7

Choosing j = jn , � = n − jn and y = kn/cjnμ
n−jn in (175), we get, as n ↑ ∞,

P(Zn = kn) = dp
−1/(μ−1)
μ√
2πσ 2cjn

μ−(n−jn)/2 exp
{
μn−jn

[
b
(
ϕjn

(
u∗

jn

)) + u∗
jn

y
]}(

1 + o(1)
)
. (176)

Multiplying both parts of (176) by cn and taking logarithms, we have

log
[
cnP(Zn = kn)

] = μn−jn

([
b
(
ϕjn

(
u∗

jn

)) + u∗
jn

y
] + μ−(n−jn) log

(
cn

cjn

)
+ o(1)

)

= μn−jn
([

b
(
ϕ
(
u∗)) + u∗y

] + o(1)
)
, (177)

where in the second step we used (173) and the bound cn/cj ≤ mn−j = μ(n−j)/β .
Recall definition (116) of r = r(x). It is easy to see that if x = yμn−jn/mn−jn , then r(x) = n − jn. Hence, in view

of (140),

w

(
yμn−jn

mn−jn

)
= p

−1/(μ−1)
μ√

2πσ 2
mn−jnμ−(n−jn)/2 exp

{
μn−jn

[
b
(
ϕ
(
u∗)) + u∗y

]}(
1 + o(1)

)
. (178)

Taking logarithms, we have

logw

(
yμn−jn

mn−jn

)
= μn−jn

([
b
(
ϕ
(
u∗)) + u∗y

] + o(1)
)
. (179)

Comparing the right-hand sides of (177) and (179), we have

log
[
cnP(Zn = kn)

] ∼ logw

(
yμn−jn

mn−jn

)
. (180)

But by the definition of jn ,

yμn−jn

mn−jn
= kn

cjnm
n−jn

. (181)

Thus, the proof of Theorem 7 is finished.
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4.3. On the asymptotic behavior of u∗
j − u∗

By the definitions of u∗ and u∗
j ,

b′(ϕ(
u∗))ϕ′(u∗) = −y = b′(ϕj

(
u∗

j

))
ϕ′

j

(
u∗

j

)
.

Consequently,

b′(ϕ(
u∗))ϕ′(u∗) − b′(ϕ(

u∗
j

))
ϕ′(u∗

j

) = b′(ϕj

(
u∗

j

))
ϕ′

j

(
u∗

j

) − b′(ϕ(
u∗

j

))
ϕ′(u∗

j

)
. (182)

Using the Taylor expansion, we have for the left-hand side the equality

b′(ϕ(
u∗))ϕ′(u∗) − b′(ϕ(

u∗
j

))
ϕ′(u∗

j

) = −σ 2(u∗
j − u∗) + O

((
u∗

j − u∗)2) (183)

as j ↑ ∞. On the other hand,

b′(ϕj

(
u∗

j

)) − b′(ϕ(
u∗

j

)) = b′′(ϕ(
u∗

j

))(
ϕj

(
u∗

j

) − ϕ
(
u∗

j

)) + O
((

ϕj

(
u∗

j

) − ϕ
(
u∗

j

))2)
as j ↑ ∞. Hence, applying (91) and recalling that ϕ(u∗

j ) → ϕ(u∗), we get

b′(ϕj

(
u∗

j

)) − b′(ϕ(
u∗

j

)) = �2

2
b′′(ϕ(

u∗))ϕ′(u∗)(u∗)2
m−j

(
1 + o(1)

)
(184)

as j ↑ ∞, provided that EZ2
1 < ∞. From this equality and (105) we conclude that

b′(ϕj

(
u∗

j

))
ϕ′

j

(
u∗

j

) − b′(ϕ(
u∗

j

))
ϕ′(u∗

j

) = O
(
m−j

)
as j ↑ ∞. (185)

Combining (182), (183) and (185), we conclude that if EZ2
1 is finite then

u∗
j − u∗ = O

(
m−j

)
(186)

as j ↑ ∞. Moreover, if (29) holds, then, proceeding analogously to the case of finite variance, we have

u∗
j − u∗ = O

(
m−j (r−1)�

(
mj

))
. (187)

4.4. Fine asymptotics: Proof of Theorem 8

For convenience, set Q(u) := b(ϕ(u)) + yu and Qj(u) := b(ϕj (u)) + yu.
Once again, since EZ1 logZ1 < ∞ we can set cj = mj . Then from formula lines (176), (178) and (181) we get

mnP(Zn = kn)

w(kn/mn)
= exp

{
μn−jn

[
Qjn

(
u∗

jn

) − Q
(
u∗)]}(1 + o(1)

)
(188)

as n ↑ ∞. Evidently,

Qjn

(
u∗

jn

) − Q
(
u∗) = [

Qjn

(
u∗

jn

) − Q
(
u∗

jn

)] + [
Q

(
u∗

jn

) − Q
(
u∗)]. (189)

It follows from the definition of u∗ that Q′(u∗) = 0. Thus, as n ↑ ∞,

[
Q

(
u∗

jn

) − Q
(
u∗)] = 1

2
Q′′(u∗)(u∗

jn
− u∗)2(1 + o(1)

)
. (190)

On the other hand,[
Qjn

(
u∗

jn

) − Q
(
u∗

jn

)] = b
(
ϕjn

(
u∗

jn

)) − b
(
ϕ
(
u∗

jn

)) = b′(ϕ(
u∗))(ϕjn

(
u∗

jn

) − ϕ
(
u∗

jn

))(
1 + o(1)

)
. (191)
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If EZ2
1 < ∞, then applying (186) with j = jn to (190) and (91) to (191), and taking into account (189), we have

Qjn

(
u∗

jn

) − Q
(
u∗) = �2

2

(
u∗)2

b′(ϕ(
u∗))ϕ′(u∗)m−jn

(
1 + o(1)

)
. (192)

Substituting (192) into (188), and noting that

μn−jnm−jn = y(1+β)/(1−β)

(
m2βn

k
1+β
n

)1/(1−β)

, (193)

we get (28) with

V2(x) := −y(1+β)/(1−β) �
2

2

(
u∗)2

b′(ϕ(
u∗))ϕ′(u∗) = y2/(1−β) �

2

2

(
u∗)2

, (194)

where y = y(x) is defined as in (116).
In the case (29), using (187) and (92) instead of (186) and (91), we arrive at

Qjn

(
u∗

jn

) − Q
(
u∗) = �(2 − r)

(r − 1)(mr − m)

(
u∗)r

b′(ϕ(
u∗))ϕ′(u∗)m−jn(r−1)�

(
mjn

)(
1 + o(1)

)
(195)

as n ↑ ∞. Combining (195) and (188), and noting that

μn−jnm−jn(r−1) = y(r−1+β)/(1−β)

(
mrβn

k
r−1+β
n

)1/(1−β)

and mjn =
(

kn

ymβn

)1/(1−β)

,

we have (30) with

Vr(x) := −y(r−1+β)/(1−β) �(2 − r)

(r − 1)(mr − m)

(
u∗)r

b′(ϕ(
u∗))ϕ′(u∗)

= yr/(1−β) �(2 − r)

(r − 1)(mr − m)

(
u∗)r

. (196)

Note that the multiplicative periodicity of V2 and Vr follows from the multiplicative periodicity of u∗ and y. The
proof of Theorem 8 is finished.
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