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Abstract. This paper presents different approaches, based on functional inequalities, to study the speed of convergence in total
variation distance of ergodic diffusion processes with initial law satisfying a given integrability condition. To this end, we give a
general upper bound “à la Pinsker” enabling us to study our problem firstly via usual functional inequalities (Poincaré inequality,
weak Poincaré, . . .) and truncation procedure, and secondly through the introduction of new functional inequalities Iψ . These
Iψ -inequalities are characterized through measure-capacity conditions and F -Sobolev inequalities. A direct study of the decay of
Hellinger distance is also proposed. Finally we show how a dynamic approach based on reversing the role of the semi-group and
the invariant measure can lead to interesting bounds.

Résumé. Nous étudions ici la vitesse de convergence, pour la distance en variation totale, de diffusions ergodiques dont la loi
initiale satisfait une intégrabilité donnée. Nous présentons différentes approches basées sur l’utilisation d’inégalités fonctionnelles.
La première étape consiste à donner une borne générale à la Pinsker. Cette borne permet alors d’utiliser, en les combinant à une
procedure de troncature, des inégalités usuelles (telles Poincaré ou Poincaré faibles, . . .). Dans un deuxième temps nous introdui-
sons de nouvelles inégalités appelées Iψ que nous caractérisons à l’aide de condition de type capacité-mesure et d’inégalités de
type F -Sobolev. Une étude directe de la distance de Hellinger est également proposée. Pour conclure, une approche dynamique
basée sur le renversement du rôle du semigroupe de diffusion et de la mesure invariante permet d’obtenir de nouvelles bornes
intéressantes.
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1. Introduction, framework and first results

We shall consider a dynamics given by a time continuous Markov process (Xt ,Px) admitting an (unique) ergodic
invariant measure μ. We denote by L the infinitesimal generator (and D(L) the extended domain of the generator),
by Pt(x, ·) the Px law of Xt and by Pt (resp. P ∗

t ) the associated semi-group (resp. the adjoint or dual semi-group), so
that in particular for any density of probability h w.r.t. μ,

∫
Pt (x, ·)h(x)μ(dx) = P ∗

t hdμ is the law of Xt with initial
distribution hdμ. By abuse of notation we shall denote by P ∗

t ν the law of Xt with initial distribution ν.
Our goal is to describe the rate of convergence of P ∗

t ν to μ in total variation distance. Indeed, the total variation
distance is one of the natural distance between probability measures. If dν = hdμ, this convergence reduces to the
L1(μ) convergence.

Trends to equilibrium is one of the most studied problems in various areas of Mathematics and Physics. For the
problem we are interested in, two families of methods have been developed during the last thirty years.
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The first one is based on Markov chains recurrence conditions (like the Doeblin condition) and consists in finding
some Lyapunov function. We refer to the works by Meyn and Tweedie [20,26,27] and the more recent [19,21,30]. In
a very recent work with Bakry [3], we have studied the relationship between this approach and the second one.

The second family of methods is using functional inequalities. It is this approach that we shall follow here, pushing
forward the method to cover the largest possible framework. This approach relies mainly on the differentiation (with
respect to time) of a quantity like variance or entropy along the semigroup and a functional inequality enables then
to use Gronwall’s inequality to get the decay of the differentiated quantity. However, due to the non differentiability
of the total variation distance, this direct method is not possible. Let us then first give general upper bound on total
variation which will lead us to the relevant functional inequalities for our study.

1.1. A general method for studying the total variation distance

The starting point is the following elementary extension of the so called Pinsker inequality.

Lemma 1.1. Let ψ be a C2 convex function defined on R+. Assume that ψ is uniformly convex on [0,A] for each
A > 0, that ψ(1) = 0 and that limu→+∞(ψ(u)/u) = +∞. Then there exists some cψ > 0 such that for all pairs
(P,Q) of probability measures,

‖P − Q‖TV ≤ cψ

√
Iψ(Q|P), where Iψ(Q|P) =

∫
ψ

(
dQ

dP

)
dP

if Q is absolutely continuous w.r.t. P, and Iψ(Q|P) = +∞ otherwise.

Proof. For 0 ≤ u ≤ A it holds

ψ(u) − ψ(1) − ψ ′(1)(u − 1) ≥ 1

2

(
inf

0≤v≤A
ψ ′′(v)

)
(u − 1)2.

Thanks to convexity the left hand side in the previous inequality is everywhere positive. Since limu→+∞(ψ(u)/u) =
+∞, it easily follows that there exists some constant c such that for all 0 ≤ u,

(u − 1)2 ≤ c(1 + u)
(
ψ(u) − ψ(1) − ψ ′(1)(u − 1)

)
.

Take the square root of this inequality, apply it with u = h(x) = (dQ/dP)(x), integrate w.r.t. P and use the Cauchy–
Schwarz inequality. It yields

(∫
|h − 1|dP

)2

≤ c

(∫
(1 + h)dP

)(∫ (
ψ(h) − ψ(1) − ψ ′(1)(h − 1)

)
dP

)
.

Since h is a density of probability the result follows with cψ = √
2c. �

Remark 1.2. Note that we may replace the assumption ψ(u)/u → ∞ by lim infu→+∞(ψ(u)/u) − ψ ′(1) = d > 0.
For instance we may choose ψ(u) = u − 3

2 + 1
u+1 .

The main idea now is to study the behavior of

t 
→ Iψ(t, h) = Iψ

(
P ∗

t hdμ|dμ
) =

∫
ψ

(
P ∗

t h
)

dμ (1.1)

as t → ∞. Notice that with our assumptions Iψ(h) = Iψ(0, h) ≥ 0 thanks to the Jensen inequality. To this end we shall
make the following additional assumptions. The main additional hypothesis we shall make is the existence of a “carré
du champ,” that is we assume that there is an algebra of uniformly continuous and bounded functions (containing
constant functions) which is a core for the generator and such that for f and g in this algebra

L(fg) = f Lg + gLf + Γ (f,g). (1.2)
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We also replace Γ (f,f ) by Γ (f ). Notice that with our choice there is a factor 2 which differs from many references,
indeed if our generator is 1

2Δ, Γ (f ) = |∇f |2 which corresponds to L = Δ in many references. The correspondence
is of course immediate changing our t into 2t .

We shall also assume that Γ comes from a derivation, i.e. for f , h and g as before

Γ (fg,h) = f Γ (g,h) + gΓ (f,h). (1.3)

The meaning of these assumptions in terms of the underlying stochastic process is explained in the introduction of
[10], to which the reader is referred for more details (also see [2] for the corresponding analytic considerations). Note
that we may replace L by L∗ without changing Γ .

Applying Ito’s formula, we then get that for all smooth Ψ , and f as before,

LΨ (f ) = ∂Ψ

∂x
(f )Lf + 1

2

∂2Ψ

∂x2
(f )Γ (f ),

Γ
(
Ψ (f )

) = (
Ψ ′(f )

)2
Γ (f ). (1.4)

Under these hypotheses, we immediately obtain

d

dt
Iψ(t, h) = −

∫
1

2
ψ ′′(P ∗

t h
)
Γ

(
P ∗

t h
)

dμ. (1.5)

It follows

Proposition 1.3. There is an equivalence between

• for all density of probability h such that
∫

ψ(h)dμ < +∞,

Iψ(t, h) ≤ e−t/2Cψ Iψ(h),

• for all nice density of probability h,∫
ψ(h)dμ ≤ Cψ

∫
ψ ′′(h)Γ (h)dμ. (1.6)

In this case the total variation distance∥∥P ∗
t (hμ) − μ

∥∥
TV ≤ Mψ e−t/4Cψ

√
Iψ(h),

goes to 0 with an exponential rate.

When there exists Cψ such that for all nice h, (1.6) holds for μ, we will say that μ verifies an Iψ -inequality. Note
that the proof of this last proposition is standard, the direct part is obtained by looking at Iψ(t, h) − Iψ(h) when t

goes to 0, while the converse part is a direct consequence of the Gronwall lemma.
Slower decay can be obtained by weakening (1.6). Indeed replace (1.6) by∫

ψ(h)dμ ≤ βψ(s)

∫
ψ ′′(h)Γ (h)dμ + sG(h), (1.7)

supposed to be satisfied for all s > 0 for some non-increasing βψ , and some real valued functional G such that
G(P ∗

t h) ≤ G(h). An application of Gronwall’s lemma implies that

Iψ(t, h) ≤ ξ(t)
(
Iψ(h) + G(h)

)
with ξ(t) = inf{s > 0, 2βψ(s) log(1/s) ≤ t}. Following Röckner–Wang [29], such an inequality may be called a weak
Iψ -inequality. They consider the variance case, namely ψ(u) = (u − 1)2, when the entropy case, namely ψ(u) =
u logu, is treated in [12]. The only known converse statement is in the variance case.
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In this work we shall push forward this approach in order to give some rate of convergence for all h ∈ L1(μ). The
key is the following trick (see [12], Section 5.2): if h ∈ L1(μ) and non-negative, for K > 0∫ ∣∣P ∗

t h − 1
∣∣dμ ≤

∫ ∣∣P ∗
t (h ∧ K) − P ∗

t h
∣∣dμ +

∫ ∣∣∣∣P ∗
t (h ∧ K) −

∫
(h ∧ K)dμ

∣∣∣∣dμ +
∣∣∣∣
∫

(h ∧ K)dμ − 1

∣∣∣∣
≤

∫ ∣∣∣∣P ∗
t (h ∧ K) −

∫
(h ∧ K)dμ

∣∣∣∣dμ + 2
∫

(h − K)1h≥K dμ (1.8)

where we have used the fact that P ∗
t is a contraction in L1. The second term in the right-hand sum is going to 0 when

K goes to +∞, while the first term can be controlled by
√

Iψ(t, h ∧ K) according to Lemma 1.1. More precisely,
according to the De La Vallée–Poussin theorem,∫

hϕ(h)dμ < +∞

for some non-negative function ϕ growing to infinity. So∫
h1h≥K dμ ≤ 1

ϕ(K)

(∫
hϕ(h)dμ

)
,

and we get, provided (1.7) is satisfied∫ ∣∣P ∗
t h − 1

∣∣dμ ≤ cψ

√
ξ(t)

(
Iψ(h ∧ K) + G(h ∧ K)

) + 2
1

ϕ(K)

(∫
hϕ(h)dμ

)
. (1.9)

1.2. About this paper

Functional inequalities like (1.6) have a long story. When ψ(u) behaves like u2 (resp. u log(u)) at infinity, they
are equivalent to the Poincaré inequality (resp. the Gross logarithmic Sobolev inequality). We refer to [1] for an
introduction to this topic. Much progress in the understanding of such inequalities has been made recently. We refer to
[5,9,12,29] for their weak versions and to [6,7,28,31,34] for the so called F -Sobolev inequalities. All these inequalities
will be recalled and discussed later. Links with long time behavior have been partly discussed in [3,12,13]. Note that
in the recent [28], the authors study the decay of Ptf for f belonging to smaller spaces than L2.

Our aim here is to give the most complete description of the decay to 0 in total variation distance using these
inequalities, i.e. we want to give a general answer to the following question: if a density of probability h satisfies∫

ψ(h)dμ < +∞ for some ψ convex at infinity, what can be expected for the decay to equilibrium in terms of a
functional inequality satisfied by μ?

To better see what we mean, let us describe the contents of the paper.
In Section 2 we recall old and recent results connected with Poincaré’s like inequalities and logarithmic Sobolev-

like inequalities. Recall that log-Sobolev is always stronger than Poincaré. For the short Poincaré (resp. log-Sobolev)
inequality ensures an exponential decay for densities such that

∫
h2 dμ < +∞ (resp.

∫
h loghdμ < +∞). Actually

we shall see in the examples of Section 2 that these integrability conditions can be replaced by
∫

hp dμ < +∞ for

some p > 1 (resp.
∫

h logβ
+ hdμ < +∞ for some β0) with still an exponential decay. For less integrable densities,

weak forms of Poincaré and log-Sobolev inequalities furnish an explicit (but less than exponential) decay.
The questions are then:

• if p > 2 and
∫ |h|p dμ if finite, can we obtain some exponential decay with a weaker functional inequality;

• if u log(u) � ψ(u) � u2, is it possible to characterize Iψ -inequality, thus ensuring an exponential decay of I (t,ψ);
• if ψ(u) � u log(u) what can be said?

The first question has a negative answer, at least in the reversible case, according to an argument in [29] (see Re-
mark 3.7).

The answer to the second question is the aim of Section 3. It is shown that for each such ψ one can find a (minimal)
F such that exponential decay is ensured by the corresponding F -Sobolev inequality (see (3.3) for the definition), and
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conversely (see Theorems 3.1, 3.4 and Remark 3.5). These inequalities have been studied in [6,7,28,31,34]. A key tool
here is the use of capacity-measure inequalities introduced in [8] and developed in [5–7,12]. Hence for exponential
decay we know how to interpolate between Poincaré and log-Sobolev inequalities.

The third question is briefly discussed in Section 4. This section contains essentially negative results which will
not be detailed. The reader is referred to the more complete version of this paper on Math ArXiv for details and proofs
(see [15]). A particular case is the ultracontractive situation, i.e. when Pth ∈ L2(μ) for all h ∈ L1(μ) and all t > 0.
Indeed if a weak Poincaré inequality is satisfied, the true Poincaré inequality is also satisfied in this case, yielding a
uniform exponential decay in total variation distance. In Section 4 we shortly explain why a direct study of the total
variation distance, or of the almost equivalent Hellinger distance, furnishes bad results i.e. uniform (not necessarily
exponential) decays are obtained under conditions implying ultracontractivity.

The next Section 5 contains a discussion inspired by the final section of [17], namely, what happens if instead of
looking at the density P ∗

t h with respect to μ, one looks at the density 1/P ∗
t h with respect to P ∗

t hdμ, that is we look
at dμ/dνt , where νt is the law at time t . A direct study leads to new functional inequalities (one of them however is a
weak version of the Moser–Trudinger inequality) which imply a strong form of ultracontractivity (namely the capacity
of all non-empty sets is bounded from below by a positive constant). However, we also show that one can replace the
integrability condition on h by a geometric condition (hμ satisfies some weak Poincaré inequality) provided the
Bakry–Emery condition is satisfied (see Theorem 5.3). This yields apparently better results than the one obtained in
Section 2 under the log-Sobolev inequality (which is satisfied with the Bakry–Emery condition).

Finally, let us mention that in [35], Wang gives some conditions for the convergence of P ∗
t to the identity in operator

norm (L1 in L1). Here we do not study this kind of uniform convergence since we consider initial densities in various
integration spaces.

Note that in the whole paper, h will denote a density of probability, and ϕ is an increasing real valued function such
that u 
→ uϕ(u) is convex (as in the discussion yielding (1.9)).

2. Examples using classical functional inequalities

In this section we shall show how to apply the general method in some classical cases.

2.1. Using Poincaré inequalities

If we choose ψ(u) = (u − 1)2, (1.6) reduces to the renowned Poincaré inequality. In this case Lemma 1.1 reduces to
the Cauchy–Schwarz inequality. Recall the well-known

Theorem 2.1. The following two statements are equivalent for some positive constant CP :
Exponential decay in L2. For all f ∈ L2(μ),

∥∥∥∥Ptf −
∫

f dμ

∥∥∥∥
2

2
≤ e−t/CP

∥∥∥∥f −
∫

f dμ

∥∥∥∥
2

2
.

Poincaré inequality. For all f ∈ D2(L) (the domain of the Friedrichs extension of L) ,

Varμ(f ) :=
∥∥∥∥f −

∫
f dμ

∥∥∥∥
2

2
≤ CP

∫
Γ (f )dμ.

Hence if a Poincaré inequality holds, for ν = hμ with h ∈ L2(μ),

∥∥P ∗
t ν − μ

∥∥
TV = ∥∥P ∗

t h − 1
∥∥

L1(μ)
≤ e−t/2CP ‖h − 1‖L2(μ).

If h is less integrable we obtain
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Corollary 2.2. Let α(u) = √
uϕ(u) and α−1 its inverse (recall that ϕ is increasing, hence α too). If a Poincaré

inequality holds, then

∥∥P ∗
t h − 1

∥∥
L1(μ)

≤ e−t/2CP

√
α−1

(
2et/2CP

∫
hϕ(h)dμ

)
. (2.1)

If in addition u 
→ ϕ(u)/u is non-increasing, then defining γ (u) = uϕ(u), the following better inequality holds

∥∥P ∗
t h − 1

∥∥
L1(μ)

≤ e−t/CP γ −1
(

4et/CP

∫
hϕ(h)dμ

)
. (2.2)

Proof. First remark that

Varμ(h ∧ K) ≤
∫

(h ∧ K)2 dμ ≤ K

∫
(h ∧ K)dμ ≤ K.

We may now use the Cauchy–Schwarz inequality to control
∫ |P ∗

t (h ∧ K) − ∫
(h ∧ K)dμ|dμ by the square root of

the Variance in (1.8). The result then follows by an easy optimization in K . More precisely we may choose K in such
a way that both terms in the right-hand side of (1.8) are equal, yielding (2.1).

Equation (2.2) is obtained following a suggestion of the referee. Indeed if h ≥ K , and as ϕ is increasing, then

(h ∧ K)2 ≤ hK ≤ hK
ϕ(h)

ϕ(K)
.

If h ≤ K we have

(h ∧ K)2 ≤ h2 ≤ h2 ϕ(h)

ϕ(K)

K

h
≤ hK

ϕ(h)

ϕ(K)

since u 
→ ϕ(u)/u is non-increasing. Hence under the former assumption

Varμ(h ∧ K) ≤
∫

(h ∧ K)2 dμ ≤ K

ϕ(K)

∫
hϕ(h)dμ.

Thus, according to (1.8), defining I = ∫
hϕ(h)dμ,∫ ∣∣P ∗

t h − 1
∣∣dμ ≤

√
Varμ

(
P ∗

t (h ∧ K)
) + 2/ϕ(K)

∫
hϕ(h)dμ

≤ e−t/2CP

√
KI

ϕ(K)
+ 2I

ϕ(K)
.

Again we choose K in such a way that both terms are equal, i.e. K = γ −1(4Iet/CP ), yielding the result. �

Example 2.3. Assume that h ∈ Lq(μ) for some 1 < q < 2. If a Poincaré inequality holds, (2.1) yields after some
elementary calculation,

∥∥P ∗
t h − 1

∥∥
L1(μ)

≤ 4q/(2q−1)

(∫
hq dμ

)1/(2q−1)

e−(q−1)t/((2q−1)CP ). (2.3)

Note that for q = 2 we do not recover the good rate e−t/2CP but e−t/3CP . But if instead we use (2.2) (as we shall since
ϕ(u) = uq−1), we get

∥∥P ∗
t h − 1

∥∥
L1(μ)

≤
(

4
∫

hq dμ

)1/q

e−(q−1)t/(qCP ), (2.4)
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and this time recover the good exponent for q = 2. Note that, up to the constants, a similar result already appeared in
[33]. Indeed if a Poincaré inequality holds then for 1 ≤ p < 2,

∫
f 2 dμ −

(∫
f p dμ

)2/p

≤ CP

∫
Γ (f )dμ

which is a Beckner type inequality, called (Ip) in [33]. According to Proposition 4.1 in [33] (recall the extra factor 2
therein),∫ (

P ∗
t h

)2/p dμ − 1 ≤ e−(2−p)t/CP

(∫
h2/p dμ − 1

)
,

so that, taking p = 2/q and applying Lemma 1.1 with ψ(u) = uq − 1 in the left-hand side of the previous inequality
we recover the same exponential rate of decay as in (2.4).

Remark that in the derivation of the corollary we only used Poincaré’s inequality for bounded functions. Hence we
may replace it by its weak form introduced in [9,29], that is, we take for G the square of the Oscillation of h in (1.7).
It yields

Theorem 2.4 ([29] Theorem 2.1). Assume that there exists some non-increasing function βWP defined on (0,+∞)

such that for all s > 0 and all bounded f ∈ D2(L) the following inequality holds

Weak Poincaré inequality. Varμ(f ) ≤ βWP(s)

∫
Γ (f )dμ + s Osc2(f ).

Then we get the following decay

Varμ
(
P ∗

t f
) ≤ 2ξWP(t)Osc2(f ), where ξWP(t) = inf

{
s > 0, βWP(s) log

(
1

s

)
≤ t

}
.

Hence

Corollary 2.5. If a weak Poincaré inequality holds,

∥∥P ∗
t h − 1

∥∥
L1(μ)

≤ √
8ξWP(t)θ−1

(√
2
∫

hϕ(h)dμ√
ξWP(t)

)
,

where θ(u) = uϕ(u).

The proof of the corollary is similar to the proof of (2.1).

Remark 2.6. Since we are interested in functions such that
∫

hϕ(h)dμ < +∞, instead of using the truncation argu-
ment we may directly try to obtain a weak inequality with G(h) = ‖h − mh‖ζ , where ‖ · ‖ζ denotes the Orlicz norm
associated to ζ(u) = uϕ(u), and mh is a median of h. Actually as shown in [36] Theorem 29, provided ϕ(h) ≥ h, such
an inequality is equivalent to the weak Poincaré inequality replacing βWP(s) by

βζ (s) = 6βWP

(
1

4
ζ̄

(
s

2

))
, where ζ̄ (u) = 1

γ ∗(1/u)
with γ (u) = ζ

(√
u
)
, (2.5)

and γ ∗ is the Legendre conjugate of γ (assumed to be a Young function here). Since for a density of probability mh ≤ 2
and since there exists a constant c such that

‖g‖ζ ≤ c

(
1 +

∫
gϕ(g)dμ

)
,
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at least if ζ is moderate, we immediately get a decay result

∥∥P ∗
t h − 1

∥∥
L1(μ)

≤ C
√

ξζ (t)

∫
hϕ(h)dμ, (2.6)

with

ξζ (t) = inf

{
s;βζ (s) log

(
1

s

)
≤ t

}
.

If ϕ(u) = up−1 for some p > 1, Corollary 2.5 yields a rate of decay (ξWP(t))(p−1)/(2p).
Similarly, but if p > 2, up to the constants, γ (u) = up/2, γ ∗(u) = up/(p−2) hence ζ̄ (u) = up/(p−2) so that we get

ξζ (t) = (ξWP(pt/(p − 2)))(p−2)/p hence a worse rate of decay.

Of course our approach based on truncation extends to many other situations, in particular if we assume that∫
h loghdμ < +∞, a Poincaré inequality yields a polynomial behavior

∥∥P ∗
t h − 1

∥∥
L1(μ)

≤ C

(∫
h loghdμ

)(
CP

t

)
.

It was shown in [14] that a Poincaré inequality is equivalent to a restricted logarithmic Sobolev inequality (restricted
to bounded functions). The truncation approach together with this restricted inequality do not furnish a better result.
However with some extra conditions, which are natural for diffusion processes on Rn, one can prove sub-exponential
decay. We refer to [12] Sections 4 and 5 for a detailed discussion.

2.2. Using a logarithmic Sobolev inequality

In the previous subsection we have seen (Example 2.3) that a Poincaré inequality implies an exponential decay for the
total variation distance, as soon as ν = hμ for h ∈ Lq(μ) for some q > 1. In this section we shall see that a similar
result holds if

∫
h logβ

+ hdμ < +∞ for some β > 0, as soon as a logarithmic Sobolev inequality holds. First of all we
recall the following, see [1] for example, (corresponding to ψ(u) = u logu in the Introduction)

Theorem 2.7. The following two statements are equivalent for some positive constant CLS
Exponential decay for the entropy. For all density of probability h∫

P ∗
t h log

(
P ∗

t h
)

dμ ≤ e−2t/CLS

∫
h loghdμ.

Logarithmic Sobolev inequality. For all f ∈ D2(L),

Entμ(f 2) :=
∫

f 2 log

(
f 2∫
f 2 dμ

)
dμ ≤ CLS

∫
Γ (f )dμ.

Hence if a logarithmic Sobolev inequality holds, for ν = hμ with Entμ(h) < +∞,∥∥P ∗
t ν − μ

∥∥
TV = ∥∥P ∗

t h − 1
∥∥

L1(μ)
≤ e−t/CLS

√
2 Entμ(h).

Corollary 2.8. Define ϕ̄(u) = ϕ(u)
√

logu for u ≥ 1. Then if a logarithmic Sobolev inequality holds,

∥∥P ∗
t h − 1

∥∥
L1(μ)

≤ 4

(
log◦ ϕ̄−1

((∫
hϕ(h)dμ

)
et/CLS

))1/2

e−t/CLS . (2.7)

If in addition u 
→ ϕ(u)/ log(u) is non-increasing, we get the better

∥∥P ∗
t h − 1

∥∥
L1(μ)

≤ 4

(
log◦ θ−1

((∫
hϕ(h)dμ

)
e2t/CLS

))
e−2t/CLS , (2.8)
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where θ(u) = ϕ(u) log(u).

Proof. The proof of (2.7) is similar to the one of Corollary (2.1), replacing the Variance by the Entropy, the Cauchy–
Schwarz inequality by the Pinsker inequality and using the elementary

Entμ(h ∧ K) ≤
∫

(h ∧ K) log(h ∧ K)dμ + 1

e
≤ logK + 1

e
.

We may then assume that K > e1/e and make an optimization in K .
For (2.8) we can show as for the proof of (2.2) that

(h ∧ K) log(h ∧ K) ≤ hϕ(h)
log(K)

ϕ(K)

provided u 
→ ϕ(u)/ log(u) is non-increasing, yielding the result. �

Example 2.9. Assume that
∫

h logβ
+ hdμ < +∞ for some 0 < β ≤ 1. Equation (2.7) yields, provided a logarithmic

Sobolev inequality holds,

∥∥P ∗
t h − 1

∥∥
L1(μ)

≤ 4

(∫
h logβ

+ hdμ

)1/(2β+1)

e−2βt/(2β+1)CLS . (2.9)

Equation (2.8) yields (since u 
→ ϕ(u)/ log(u) is non-increasing in our example)

∥∥P ∗
t h − 1

∥∥
L1(μ)

≤ 4

(∫
h logβ

+ hdμ

)1/(β+1)

e−2βt/(β+1)CLS . (2.10)

Hence here again we get an exponential decay provided some “β-entropy” is finite, and (2.10) is optimal (up to the
constants) for β = 1.

Actually, as in Example 2.3, a similar result can be obtained, provided a log-Sobolev inequality holds, using the
more adapted

Iψ(t, h) ≤ e−Cβt Iψ(h)

with ψ(u) = u(logβ(2 + u) − logβ(3)) = uF(u). It will be the purpose of the next section. In fact, in this example,
we will even show that the assumption of a logarithmic Sobolev inequality to hold is not necessary, a well adapted
F -Sobolev inequality will be sufficient.

Remark 2.10. It is well known that a logarithmic Sobolev inequality implies a Poincaré inequality. Hence we may
ask whether some stronger inequality than the log-Sobolev inequality furnishes some exponential decay under weaker
integrability conditions. But here we have to face a new problem: indeed classical stronger inequalities usually imply
that Pt is ultracontractive (i.e. maps continuously L1(μ) into L∞(μ)). Hence in this case we get an exponential decay
for the L1(μ) norm, combining ultracontractivity and the Poincaré inequality for instance. We shall give some new
insights on this in one of the next sections. Examples of ultracontractive semi-groups can be found in [16,22].

Remark 2.11. Since a logarithmic Sobolev inequality is stronger than a Poincaré inequality, it is interesting to inter-
polate between both inequalities. Several possible interpolations have been proposed in the literature, starting with
[23]. In [6] a systematic study of this kind of F -Sobolev inequalities is done. Note that a homogeneous F -Sobolev
inequality is written as

∫
f 2F

(
f 2∫
f 2 dμ

)
dμ ≤

∫
Γ (f )dμ
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hence does not correspond to (1.6). That is why such inequalities are well suited for studying the convergence of Ptf

(see [28]), while we are interested here in the convergence of Pt (f
2). Moreover their convergence is stated in the

Orlicz norm (clearly adapted to F -Sobolev), whereas ours is in more usual integral form.
The case of F = log corresponding to the log-Sobolev (or Gross) inequality appears as a very peculiar one since

it is the only one for which the F -Sobolev inequality corresponds exactly to (1.6). It is thus natural to expect that
the weak logarithmic Sobolev inequalities are well suited to furnish a good interpolation scale between Poincaré and
Gross inequalities. This point of view is developed in [12]. We shall recall and extend some of these results below.

Here again we may replace the logarithmic Sobolev inequality by a weak logarithmic Sobolev inequality.

Theorem 2.12 ([12] Proposition 4.1). Assume that there exists some non-increasing function βWLS defined on
(0,+∞) such that for all s > 0 and all bounded f ∈ D2(L) the following inequality holds

Weak log-Sobolev inequality. Entμ(f 2) ≤ βWLS(s)

∫
Γ (f )dμ + s Osc2(f ).

Then for all ε > 0, Entμ(P ∗
t h) ≤ ( 1

e + ε)ξWLS(ε, t)Osc2(
√

h), where ξWLS(ε, t) = inf{s > 0, βWLS(s) log(ε/s) ≤ 2t}.

Hence if a weak log-Sobolev inequality holds,

∥∥P ∗
t h − 1

∥∥
L1(μ)

≤ 4
∫

hϕ(h)dμ

(ϕ ◦ ϕ̃−1)(
√

2 (
∫

hϕ(h)dμ)/(1/e + ε)
√

ξWLS(ε, t))
,

where ϕ̃(u) = √
uϕ(u). The proof is analogue to the variance case.

But it is shown in [12] that:

• if the Poincaré inequality does not hold, but a weak Poincaré inequality holds, a weak log-Sobolev inequality also
holds (see [12] Proposition 3.1 for the exact relationship between βWP and βWLS) but yields a worse result for the
decay in total variation distance, i.e. in this situation Theorem 2.12 is not as good as Theorem 2.4,

• if a Poincaré inequality holds, one can reinforce the weak log-Sobolev inequality into a restricted log-Sobolev
inequality.

We shall thus describe this reinforcement.

Theorem 2.13. Assume that μ satisfies a Poincaré inequality with constant CP and a weak logarithmic Sobolev
inequality with function βWLS, and define γWLS(u) = βWLS(u)/u. Then for all t > 0 and all bounded density of
probability h, it holds

Entμ
(
P ∗

t h
) ≤ e−t/2γ −1

WLS(
√

3CP ‖h‖∞) Entμ(h).

Hence if
∫

hϕ(h)dμ < +∞,

• if ϕ(u) ≥ c log(u) at infinity for some c > 0, there exists a constant c(ϕ) such that

∥∥P ∗
t h − 1

∥∥
L1(μ)

≤ c(ϕ)
∫

hϕ(h)dμ

ϕ ◦ ζ−1
WLS(t)

,

where ζWLS(u) = 2 log(ϕ(u))γ −1
WLS(

√
3CP u),

• if ϕ(u) ≤ c log(u) at infinity for all c > 0, there exists a constant c(ϕ) such that

∥∥P ∗
t h − 1

∥∥
L1(μ)

≤ c(ϕ)(1 + ∫
hϕ(h)dμ)

ϕ ◦ θ−1
WLS(t)

,

where θWLS(u) = 2 log(ϕ(u) log(u))γ −1
WLS(

√
3CP u).
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Proof. The first result is mainly [12] Proposition 4.2. We here give the explicit expression of γWLS. Using (1.8)
and this result give the result if we add two remarks: in the first case we may find Cϕ such that Entμ(h ∧ K) ≤
Cϕ(

∫
hϕ(h)dμ) for all K > e, so that the result follows with cϕ = 2 + Cϕ ; in the second case we use Entμ(h ∧ K) ≤

log(K). �

2.3. The example of diffusion processes

In the previous sections, we introduce a bench of inequalities, the Poincaré inequality or its weak version and the
logarithmic Sobolev inequality and also its weak version, for which necessary and sufficient conditions exist in di-
mension 1, and for which sufficient conditions are known in the multidimensional case. Results in dimension 1 rely
mainly on explicit translation of capacity measure criterion established in [5,6,8,12], and we refer to their works for
further discussion. However, capacity measure conditions are (up to the knowledge of the authors) of no use in the
multidimensional setting. Let us consider the following (simplified) case: assume that dμ = e−2V dx for some regu-
lar V . A sufficient well-known condition for a Poincaré inequality to hold (see [1] for example) is that there exists c

such that

|∇V |2 − ΔV ≥ c > 0

for large x’s. The associated generator is L = 1
2Δ−∇V·∇ . For general reversible diffusion the following (nearly suffi-

cient for exponential decay) drift condition (see [3] Theorem 2.1 or for explicit expressions of constant Theorem 3.6):
∃u ≥ 1, α,b > 0 and a set C such that

Lu(x) ≤ −αu(x) + b1C(x)

which are easy to deal with conditions which moreover extend to the weak Poincaré setting [3], Theorem 3.10 and
Corollary 3.12: ∃u ≥ 1, α,b > 0, a positive function ψ and a set C such that

Lu(x) ≤ −ψ
(
u(x)

) + b1C(x).

As a more precise example, consider the diffusion process

dXt = b(Xt )dt + σ(Xt )dWt,

where the diffusion matrix σ has bounded smooth entries and is uniformly elliptic and assume

∃0 < p < 1,M, r > 0 such that ∀|x| > M, x·b(x) ≤ −r|x|1−p.

Then the invariant measure satisfies a weak Poincaré inequality with βW(s) = dp log(2/s)2p/(1+p) and Theorem 2.4
implies for 0 < q < 1

∥∥P ∗
t h − 1

∥∥
L1(μ)

≤ Cp,q

(∫
h1+q dμ

)1/(1+q)

e−Dp,q t(1−p)/(1+p)

.

There are also well-known conditions for logarithmic Sobolev inequalities. Among them the most popular is the
Bakry–Emery condition: assume that V (x) = v(x) + w(x), where w is bounded and v satisfies Hess(v) ≥ ρId for
some positive ρ then a logarithmic Sobolev inequality holds with constant eosc(w)/ρ. One may also cite Wang [32] and
Cattiaux [11] for conditions in the lower bounded (possibly negative) curvature case plus integrability assumptions
or on drift-like conditions. Both are however non quantitative and are thus not interesting for our study. Concerning
weak logarithmic Sobolev inequalities, in the regime between Poincaré and logarithmic Sobolev inequalities, the only
multidimensional conditions known can be obtained through a F -Sobolev inequality we shall describe further in the
next section.
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3. Some general results on Iψ -inequalities

In this section we shall give some general results on Iψ -inequalities, i.e. there exists Cψ > 0 such that for all nice
functions h∫

ψ(h)dμ ≤ Cψ

∫
ψ ′′(h)Γ (h)dμ.

First, we use the usual way to derive a Poincaré inequality from a logarithmic Sobolev inequality i.e. we write
h = 1 + εg for some bounded g such that

∫
g dμ = 0. For ε going to 0 (note that h is non-negative for ε small

enough), we see that if ψ satisfies ψ ′′(1) > 0, an Iψ -inequality implies a Poincaré inequality

Varμ(g) ≤ 2Cψ

∫
Γ (g)dμ,

i.e. with a Poincaré constant CP = 2Cψ .
Next, for our purpose, what is important is to control some moment of h. Hence what really matters is the asymp-

totic behavior of ψ . In particular if η is a function which is convex at infinity (i.e. η′′(u) > 0 for u ≥ b) and such that
η(u)/u goes to infinity at infinity, we may build some ad-hoc ψ as follows.

For a > 2 ∧ b, we define

ψ ′′(u) = η′′(u)

η′′(a)
if u ≥ a, ψ ′′(u) = 1 otherwise, (3.1)

ψ ′(u) =
∫ u

1/2
ψ ′′(v)dv and ψ(u) =

∫ u

1
ψ ′(v)dv.

It is easily shown that ψ(u) = 1
2 (u2 − u) for u ≤ a, while one can find some constants β and γ such that ψ(u) =

(η(u)/η′′(a)) + β u + γ for u ≥ a, so that there is a constant c such that ψ(u) ≤ cη(u) for u ≥ a (recall that η(u)/u

goes to infinity at infinity) and ψ(u) ≥ 1
2η′′(a)

η(u) for u large enough.

The choice of 1
2 in the definition of the derivative ensures that ψ is non-positive for u ≤ 1.

The function ψ fulfills the assumptions in Lemma 1.1. Of particular interest will be the associated inequality (1.6)
which, as we already remarked implies a Poincaré inequality with CP = 2Cψ . We may look at sufficient conditions
for an Iψ -inequality to be satisfied.

3.1. A capacity measure condition for an Iψ -inequality

Let us first reduce the study of an Iψ -inequality to the large value case via the use of a Poincaré inequality. In-
deed, as previously pointed out, it is a natural assumption to suppose that μ satisfies some Poincaré inequality with
constant CP . To prove that μ satisfies (1.6) it is enough to find a constant C such that∫

h≤a

(h2 − h)dμ ≤ C

∫
h≤a

Γ (h)dμ and

∫
h>a

η(h)dμ ≤ C

(∫
h≤a

Γ (h)dμ +
∫

h>a

η′′(h)Γ (h)dμ

)
.

Indeed, up to the constants, the sum of the left-hand sides is greater than
∫

ψ(h)dμ, while the sum of the right-hand
sides is smaller than

∫
ψ ′′(h)Γ (h)dμ.

For the first inequality, let h be a nice density of probability (h belongs to the domain D(Γ ) of the Dirichlet form
E (h) = ∫

Γ (h)dμ). Remember that
∫
(h ∧ a)dμ ≤ 1. Hence

∫
h≤a

(h2 − h)dμ ≤
∫ (

(h ∧ a)2 − (h ∧ a)
)

dμ ≤
∫

(h ∧ a)2 dμ −
(∫

h ∧ a dμ

)2

≤ CP

∫
Γ (h ∧ a)dμ = CP

∫
h≤a

Γ (h)dμ
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applying the Poincaré inequality with h ∧ a which belongs to D(Γ ). For the latter equality we use the second part of
(1.4) for a sequence Ψn approximating u 
→ u ∧ a and use the Lebesgue-bounded convergence theorem.

To manage the remaining term, we introduce some capacity-measure condition, whose origin can be traced back
to Mazja [25]. Following [6,8], for A ⊂ Ω with μ(Ω) ≤ 1/2, we define

Capμ(A,Ω) := inf

{∫
Γ (f )dμ;1A ≤ f ≤ 1Ω

}
,

where the infimum is taken over all functions in the domain of the Dirichlet form. By convention this infimum is +∞
if the set of corresponding functions is empty.

If μ(A) < 1/2 we define

Capμ(A) := inf

{
Capμ(A,Ω);A ⊂ Ω,μ(Ω) ≤ 1

2

}
.

A capacity measure condition is usually stated as the existence of some function γ such that γ (μ(A)) ≤ C Capμ(A).
Such an inequality, and depending on the form of γ , is (qualitatively) equivalent to nearly all usual functional in-
equalities: (weak) Poincaré inequality, (weak) logarithmic Sobolev inequality, F -Sobolev inequality or generalized
Beckner inequality. It is then a precious tool to compare those inequalities, translating then properties of one to the
other or using known conditions for one to the other. It has moreover the good taste to be explicit in dimension 1. It is
then natural to look at some capacity-measure condition for an Iψ -inequality. Our first result (similar to Theorem 20
in [6]) is the following

Theorem 3.1. Assume that μ satisfies a Poincaré inequality with constant CP . Suppose

(Hη): let η be a C2 non-negative function defined on R+ such that:
– limu→+∞ η(u)/u = +∞,
– there exists b > 0 such that η′′(u) > 0 for u > b,
– η is non-decreasing on [b,+∞) and η′′ is non-increasing on [b,+∞).

(HF ): there exist ρ > 1 and a non-decreasing function F such that:
– for all A with 0 < μ(A) < 1/2, μ(A)F(1/μ(A)) ≤ Capμ(A),
– there exists a constant Ccap such that for all u > a,

η(ρu)

u2η′′(u)F (u)
≤ Ccap.

Then μ satisfies an Iψ -inequality for ψ defined in (3.1), hence Iψ(t, h) ≤ e−t/2Cψ Iψ(h). In particular there exist
constants Mη and Cη such that

∥∥P ∗
t (h)μ − μ

∥∥
TV ≤ Mηe−t/4Cη

(
1 +

∫
η(h)dμ

)
.

Proof. According to the previous discussion, it remains to control
∫
h>a

η(h)dμ. Define Ω = {h > a}. By the Markov
inequality μ(Ω) ≤ 1/a ≤ 1/2 since a > 2.

For k ≥ 0, define Ωk = {h > aρk} for ρ > 1 previously defined. Again μ(Ωk) ≤ 1/(aρk) and∫
h>a

η(h)dμ ≤
∑
k≥0

∫
Ωk\Ωk+1

η(h)dμ ≤
∑
k≥0

η
(
aρk+1)μ(Ωk),

since η is non-decreasing on [a,+∞). But thanks to our hypothesis,

μ(Ωk) ≤ Capμ(Ωk)

F (1/μ(Ωk))
≤ Capμ(Ωk)

F (aρk)
,
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since F is non-decreasing, provided μ(Ωk) �= 0. Since Ωk ⊇ Ωk+1 the previous sum has thus to be taken for k < k0,
where k0 is the first integer such that μ(Ωk0) = 0 if such an integer exists. So from now on we assume that μ(Ωk) �= 0.

Consider now, for k ≥ 1 the function

fk := min

(
1,

(
h − aρk−1

aρk − aρk−1

)
+

)
.

Since μ(Ωk−1) < 1/2 and fk vanishes on Ωc
k−1, fk vanishes with probability at least 1/2. Hence

Capμ(Ωk) ≤
∫

Γ (fk)dμ ≤
∫
Ωk−1\Ωk

Γ (h)dμ

a2ρ2(k−1)(ρ − 1)2
≤

∫
Ωk−1\Ωk

η′′(h)Γ (h)dμ

a2ρ2(k−1)(ρ − 1)2η′′(aρk)
,

since η′′ is non-increasing.
Summing up all these estimates (for k ≥ 1 remember) we obtain∫

h>ρa

η(h)dμ ≤
∑
k≥1

(
η(aρk+1)

a2ρ2(k−1)(ρ − 1)2η′′(aρk)F (aρk)

)∫
Ωk−1\Ωk

η′′(h)Γ (h)dμ

≤ ρ2Ccap

(ρ − 1)2

∫
h>a

η′′(h)Γ (h)dμ, (3.2)

according to our hypothesis.
It remains to control

∫
a<h≤ρa

η(h)dμ. But on {a < h ≤ ρa}, η(h) ≤ c(h2 − h) for some c > 0, and as before

∫
h<aρ

(h2 − h)dμ ≤
∫

h<aρ

Γ (h)dμ ≤ C′
(∫

h≤a

Γ (h)dμ +
∫

h>a

η′′(h)Γ (h)dμ

)

for some C′ since η′′ is bounded from below on [a, aρ]. The proof is completed. �

Remark 3.2 (Remarks and examples).

(1) If η(u) = u2 we may choose F(u) = c for all u and conversely. The capacity-measure inequality μ(A) ≤
(1/c)Capμ(A) is known to be equivalent (up to the constants) to the Poincaré inequality. We thus recover (see

below for more precise results) the usual L2 theory. Note that as we suppose F to be non-decreasing, so that (HF )

already implies a Poincaré inequality, but with no precision on the constant.
Similarly if η(u) = u log(u) we may choose F(u) = C log(cu) for some well chosen c, C and conversely.

Again the capacity-measure inequality μ(A) log(c/μ(A)) ≤ (1/C)Capμ(A) is known to be equivalent (up to the
constants) to the logarithmic Sobolev inequality, and we recover the usual entropic theory.

(2) Since we know now what hypotheses on η are required we may follow more accurately the constants. Indeed since
η′′ is non-increasing, ψ ′′ ≤ 1 for u > a. It is thus not difficult to check that ψ(u) ≤ (1 + (ρ − 1)2)(u2 − u) on
[a,ρa] (using a > 2). So it easily follows that

Cη = Cψ ≤ max

(
η′′(a)(1 + (ρ − 1)2)CP

η′′(ρa)
,

ρ2Ccap

(ρ − 1)2

)
.

(3) Now choose η(u) = up for some 2 ≥ p > 1 (recall that η′′ is non-increasing). Again the best choice of F is a
constant. More precisely choose F = 3CP . It is known (see the lower bound of Theorem 14 in [6]) that μ(A) ≤
F Capμ(A). Hence we have Ccap = (a2ρ2p/p(p − 1)). Then a rough estimate is

Cη ≤ CP max

(
ρ2−p

(
1 + (ρ − 1)2), ρ2+p

p(p − 1)(ρ − 1)2

)
.

Hence we obtain

∥∥P ∗
t (h)μ − μ

∥∥
TV ≤ Mηe−cpt/CP

(
1 +

∫
η(h)dμ

)
,
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for some constant cp .
If p is close to one, it is easily seen that cp ≥ (p − 1)c for some universal constant c. So, Theorem 3.1 explains

why the results in Example 2.3 are not so surprising.
A similar study is possible for η(u) = u logβ

+(u) for β > 0. In this case indeed, it is easily seen that one may
choose

F(u) = log(u) and Ccap = C(a,ρ)
1 ∧ 2β−1

β
,

at least for u small enough. Such a capacity-measure is known to be equivalent to a logarithmic Sobolev inequality,
and as before for 0 < β ≤ 1 we recover the results in Example 2.9 (with the linear dependence in β for β close
to 0).

Interesting here is also the case β > 1. Indeed one could expect that the exponential decay of such a β-entropy
would require a weaker inequality than the log-Sobolev inequality. It seems that this is not the case, even if, as we
said, we cannot claim that the F obtained in Theorem 3.1 furnishes the best capacity-measure inequality.

(4) One may be surprised of the intervention of a new function F , in (HF ), rather than an usual capacity-measure
condition. In fact, it enables us to relax the assumptions on η. In particular, if there exists a and ρ > 1 such that
for u > a, η(ρu)/(u2ρ′′(u)) is non-decreasing then instead of (HF ) one may use the capacity-measure condition:
there exists Cc such that

η′′(1/μ(A))

μ(A)η(ρ/μ(A))
≤ Cc Capμ(A).

Remark 3.3. Theorem 3.1 allows to cover the class of F -Sobolev inequalities. Indeed combining the results in Sec-
tion 5 of [6] and Lemma 17 in [7], if μ satisfies a Poincaré inequality and the F -Sobolev inequality

∫
f 2F

(
f 2∫
f 2 dμ

)
dμ ≤ C

∫
Γ (f )dμ (3.3)

for all nice f , then the capacity-measure inequality in Theorem 3.1 is satisfied, provided u 
→ F(u)/u is non-
increasing and F(λu) ≤ (λ/4)F (u) for some λ > 4 and all u large enough (Theorem 22 and Remark 23 in [6]).

Conversely, Theorem 20 in [6] tells us that the capacity-measure inequality in Theorem 3.1 implies the F̃ -Sobolev
inequality with F̃ (u) = (F (u/ρ) − F(2))+ for ρ > 1. With the previous hypotheses on F , and up to the constants, we
may replace F̃ by F+.

For instance if, for 1 ≤ α ≤ 2, we choose F(u) = log2(1−1/α)(1 + u) − log2(1−1/α)(2) the Boltzmann measure
μ(dx) = (1/Z)e−2U(x) dx with U(x) = |x|α for large x, satisfies a F -Sobolev inequality (see [6], Section 7). An
elementary calculation shows that we can choose

η(u) = u log2(1−1/α)(u)elog(2/α)−1(u),

for large u. We thus get an interpolation result between the Poincaré and Gross inequalities.

3.2. Links between Iψ -inequalities and F -Sobolev inequalities

In view of the previous remark it is natural to relate an Iψ -inequality and F -Sobolev inequalities. To this end define

H(u) =
∫ u

0

√
ψ ′′(s)ds (3.4)

which is a continuous increasing function, whose inverse function is denoted by H−1. We assume that H(u) →
+∞ as u → +∞ so that H−1 is everywhere defined on R+. Remark that the derivative of ψ ◦ H−1 is equal to
(ψ ′/

√
ψ ′′) ◦ H−1, so is non-decreasing if ψ ′′ is non-increasing, that is ψ ◦ H−1 is a convex function.
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For f ≥ 0, denote by

N(f ) = inf

{
λ > 0;

∫
H−1

(
f

λ

)
dμ ≤ 1

}
. (3.5)

Then an easy change of variables shows that an Iψ -inequality is equivalent to

N2(f )

∫
ψ

(
H−1

(
f

N(f )

))
dμ ≤ Cψ

∫
Γ (f )dμ, (3.6)

for all nice f ≥ 0. Equation (3.6) looks like a F -Sobolev inequality except that the normalization is not the L2 norm
but N . As before, up to the constants, both coincide if F = log explaining why entropy is particularly well suited.

We see that (3.6) is exactly

∫
f 2F

(
f 2

N2(f )

)
dμ ≤ Cψ

∫
Γ (f )dμ for F(u) = (

ψ ◦ H−1) (
√

u)

u
. (3.7)

We can thus get immediate comparison results, assuming that F is non-decreasing (we will see in the proof of the
next Theorem that one can always modify (3.7) for this property to hold). Indeed we have two interesting cases (at
least for large u and up to constants):

either H(u) ≥ √
u ⇐⇒ u2 ≥ H−1(u) ⇐⇒

∫
f 2 dμ ≥ N2(f ) (3.8)

or H(u) ≤ √
u ⇐⇒ u2 ≤ H−1(u) ⇐⇒

∫
f 2 dμ ≤ N2(f ) (3.9)

since H and H−1 are non-decreasing. In the first case, (3.7) implies the F -Sobolev inequality (3.3) while in the
second case the F -Sobolev inequality implies (3.7). Note that once again the limiting case H(u) = √

u corresponds
to log-Sobolev.

The first case gives some converse to Theorem 3.1. Note that ψ(v) = H 2(v)F (H 2(v)) ≥ H 2(v)F (v) since F

is non-decreasing, hence we get a F -Sobolev inequality for some F such that F(v) ≤ ψ(v)/H 2(v). With some
additional (but reasonable) assumptions we can improve this result. Indeed

Theorem 3.4. Let η and ψ be as in Theorem 3.1, and H defined in (3.4). We assume that H(+∞) = +∞. Assume
in addition that for u large

• u 
→ F̄ (u) = (ψ/H 2)(u) is non-decreasing and satisfies F̄ (λu) ≤ λF̄ (u)/4, for some λ > 4,
• u 
→ F̄ (u)/u is non-increasing.

If μ satisfies a Poincaré inequality with constant CP and an Iψ -inequality for some Cψ , then for μ(A) small enough,
the capacity-measure inequality

μ(A)F̄

(
1

μ(A)

)
≤ D Capμ(A)

is satisfied for some D > 0. Accordingly (see Remark 3.3) μ satisfies the F̄+-Sobolev inequality (with some con-
stant DF ).

Conversely if μ satisfies a Poincaré inequality with constant CP and the F̄ -Sobolev inequality, and if H(u) ≥ √
u

for large u, an Iψ -inequality is satisfied for some Cψ .

Proof. Note that limu→+∞ F̄ (u)/u exists by monotonicity. Denote it by m. We have F̄ (u)/4u ≥ F̄ (λu)/(λu) so that
letting u go to infinity we get m/4 ≥ m hence m = 0. In particular the capacity-measure inequality when μ(A) = 0
reduces to Capμ(A) ≥ 0 which is of course satisfied. We shall thus assume now that μ(A) > 0.
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First we write (3.7) in the form∫
f 2F

(
f

N(f )

)
dμ ≤ Cψ

∫
Γ (f )dμ for F(u) = (

ψ ◦ H−1) (u)

u2
. (3.10)

The first part of the proof is mimicking the proof of Lemma 17 in [7]. Note that the derivative of F (defined in
(3.10)) is given by

u 
→ uψ ′(H−1(u)) − 2(ψ
√

ψ ′′)(H−1(u))

u3
√

ψ ′′(H−1(u))

which is non-negative for u large enough since u 
→ (ψ/H 2)(u) is non-decreasing.
Choose some ρ > 1 large enough, such that F(2ρ) ≥ 0 and define F̃ (u) = F(u) − F(2ρ) which is thus non-

negative for and non-decreasing on [2ρ,+∞) if ρ is large enough. We thus have

∫
f 2F̃+

(
f

N(f )

)
dμ ≤ Cψ

∫
Γ (f )dμ + M

∫
f 2 dμ,

with M = sup0≤u≤2ρ |F(u)|.
Now we can follow [7] with some slight modifications. We give the details for the sake of completeness. Let χ

defined on R+ as follows: χ(u) = 0 if u ≤ 2, χ(u) = u if u ≥ 2ρ and χ(u) = 2ρ(u − 2)/((2ρ) − 2) if 2 ≤ u ≤ 2ρ.
Since χ(f ) ≤ f , N(χ(f )) ≤ N(f ) so that since F̃+ is non-decreasing,

∫
f 2F̃+

(
f

N(f )

)
dμ =

∫
χ2(f )F̃+

(
χ(f )

N(f )

)
dμ

≤
∫

χ2(f )F̃+
(

χ(f )

N(χ(f ))

)
dμ

≤ BCψ

∫
Γ (f )dμ + M

∫
χ2(f )dμ

≤ BCψ

∫
Γ (f )dμ + M

∫
f 2≥2

∫
f 2 dμ

f 2 dμ,

where B = (ρ/ρ − 1)2. But as shown in [6],
∫
f 2≥2

∫
f 2 dμ

f 2 dμ ≤ 12CP

∫
Γ (f )dμ so that we finally obtain the

existence of Dψ such that

∫
f 2F̃+

(
f

N(f )

)
dμ ≤ Dψ

∫
Γ (f )dμ. (3.11)

The second part of the proof is mimicking the one of Theorem 22 in [6]. Let μ(A) < 1/2 and 1A ≤ f ≤ 1Ω with
μ(Ω) ≤ 1/2. For k ∈ N we define Ωk = {f ≥ 2kN(f )} and

fk = min
((

g − 2kN(f )
)
+;2kN(f )

)
.

Note that fk is equal to 0 on Ωc
k and to 2k N(f ) on Ωk+1.

In addition, since H−1(0) = 0,∫
H−1

(
fkH(1/μ(Ωk))

2kN(f )

)
dμ =

∫
Ωk

H−1
(

fk H(1/μ(Ωk))

2k N(f )

)
dμ

≤
∫

Ωk

H−1
(

H

(
1

μ(Ωk)

))
dμ = 1
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so that N(fk) ≤ 2kN(f )/H(1/μ(Ωk)). Therefore, applying (3.11) (we need here a non-negative F )

Dψ

∫
Γ (f )dμ ≥ Dψ

∫
Γ (fk)dμ ≥

∫
Ωk+1

f 2
k F̃+

(
fk

N(fk)

)
dμ

≥ μ(Ωk+1)2
2kN2(f )F̃+

(
H

(
1

μ(Ωk)

))
.

We are thus in the situation of the proof of Theorem 22 in [6] replacing μ(g2) therein by N2(f ) and F therein by
F̃+ ◦ H . We may conclude since for u large, (F̃+ ◦ H)(u) ≥ cψ(u)/H 2(u) and for μ(A) small enough according to
Remark 23 in [6].

The direct part being proven let us briefly indicate how to prove the converse part. Again we may modify F̄ into
a non-negative G thanks to the Poincaré inequality (this is exactly Lemma 17 in [7]). The properties of G ensure
that we may apply Theorem 22 in [6], i.e. the G-Sobolev inequality implies a capacity-measure inequality (with the
same G). Next just remark that the proof of Theorem 20 in [6] applies to any homogeneous inequality (i.e. we may
replace

∫
f 2 dμ therein by N2(f ) for example). We thus get that (3.7) holds with G in place of F . But as we remarked

F ≤ F̄ for large u, and with our hypotheses F̄ ≤ cG at infinity. We may thus replace (changing the constants) G by
F for large u, small values of u can be controlled again (if necessary) by using the Poincaré inequality. �

Remark 3.5. At least if H(u) ≥ √
u (up to a constant actually), we have two results saying that some F -Sobolev

inequality implies an Iψ -inequality: the first one with F(u) ≥ Cη(ρu)/u2η′′(u) at infinity, the second one with F̄ (u) =
η(u)/H 2(u). It seems not easy to compare them in full generality. However one can use some asymptotic estimates.

First recall that ψ ′′ (hence
√

ψ ′′ := g) is supposed to be non-increasing at infinity. Since we have assumed that
H(+∞) = +∞ it implies that g′(u)/g(u) = (1/2)(ψ ′′′(u)/ψ ′′(u)) ≥ −1/u near infinity. Now write the elementary∫ u

m

(
g(s) + sg′(s)

)
ds = ug(u) − mg(m).

It immediately follows that

if
uψ ′′′(u)

ψ ′′(u)
→ 0 as u → +∞, then H(u) ∼u→+∞ u

√
ψ ′′(u), (3.12)

while

if lim inf
u→+∞

uψ ′′′(u)

2ψ ′′(u)
= −d, for some d < 1, then H(u) ≤u→+∞

1

1 − d
u
√

ψ ′′(u). (3.13)

Hence we always get that

F̄ (u) ≥ c
ψ(u)

u2ψ ′′(u)
, (3.14)

that is in general the same condition in both theorems. This is very satisfactory but of course we have made additional
assumptions on F̄ in Theorem 3.4.

One of the very interesting features of F -Sobolev inequalities is that they are linked to contraction properties for
the semi-group. We now recall these general results taken from [32].

According to Wang’s beautiful results ([32], Chapter 3.3), a F -Sobolev inequality is equivalent to a super-Poincaré
inequality, i.e. for all nice f and all s ≥ 1,

∫
f 2 dμ ≤ βSP(s)

∫
Γ (f )dμ + s

(∫
|f |dμ

)2

. (3.15)

If the F -Sobolev inequality holds, (3.15) holds with βSP(s) = c/F (s) for s large enough ([32], Theorem 3.3.1). For a
somewhat intricate converse see [32], Theorem 3.3.3.
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Assume that the F -Sobolev inequality holds. The associated super-Poincaré inequality implies some boundedness
for the associated semi-group. Of particular interest here are Theorem 3.3.13 (2) and Theorem 3.3.14 in [32]. The
first one tells us that Pt is super-bounded (i.e. is bounded from L2(μ) in Lp(μ) for all p > 2 and all t > 0) as soon
as F(u)/ log(u) → +∞ as u → ∞ (some converse statement is also true), while the second one tells us that Pt is
ultracontractive (or ultrabounded in Wang’s terminology) as soon as

∫ +∞ 1

uF(u)
du < +∞.

Let us come back to the second situation in (3.8). Roughly speaking this case is the one of stronger inequalities than
the log-Sobolev inequality, for which with the mild additional previous assumptions, we know that the semi-group
is ultracontractive. However we can give another interesting example, and will continue the discussion in the next
section.

Example 3.6. For F(u) = log(u) log(log(u)) at infinity, Wang’s results show that the semi-group P ∗
t is super-bounded

but not ultracontractive. An elementary calculation shows that we can choose η(u) = u log(log(u)) in this case.

The study of weak inequalities should be interesting. The two extreme cases, weak Poincaré and weak logarithmic
Sobolev inequalities have already been studied. As remarked in [12] the main interest of weak log-Sobolev inequalities
is to describe some interpolation between Poincaré and Gross (if a Poincaré inequality does not hold, the weak log-
Sobolev inequality furnishes worse results than the corresponding weak Poincaré inequality). So the potential weak
inequalities should give better results than the weak log-Sobolev inequality (recall Theorem 2.13). However, the
technical intricacies are certainly too much for a potential reader since we do not have (yet) any convincing application.

Remark 3.7. Finally we may ask whether it is possible to get some exponential decay using a weaker inequality than
the Poincaré inequality but for η’s larger than u 
→ u2 at infinity.

Assume for instance that for all density of probability h bounded by M ≥ 2 we have for some function ξ decaying
to 0, ∫ ∣∣P ∗

t h − 1
∣∣dμ ≤ ξ(t).

Let f be in L2(μ) such that
∫

f dμ = 0 and ‖f ‖∞ ≤ 1. Then h = (f + 2)/2 is a density of probability, bounded by
3/2 hence

Varμ
(
P ∗

t f
) ≤ 2

∫ ∣∣P ∗
t h − 1

∣∣dμ ≤ 2ξ(t) ≤ 2ξ(t)Osc2(f )

and the previous inequality extends to all f in L2(μ) by homogeneity.
In the symmetric case (Pt = P ∗

t ) this result implies a weak Poincaré inequality (see [29], Theorem 2.3). In par-
ticular if ξ(t) = ce−λt for some λ > 0 the same theorem shows that μ satisfies a Poincaré inequality. Hence in the
symmetric case we cannot obtain any exponential decay for the total variation distance even for bounded densities
without assuming that a Poincaré inequality is satisfied. If it is not we have to use the results of the previous section.

Remark 3.8. An aficionado of functional inequalities may have remarked that we have not discussed usual properties
introduced when dealing with a new functional inequality like Iψ : tensorization and concentration of measure. In fact,
concentration is not at all our purpose here and in fact it may be directly deduced from the capacity measure condition
imposed in Theorem 3.1 or inherited by Theorem 3.4. Concerning tensorization, it is more relevant for applications
concerning diffusion to deal directly in multidimensional space rather than the limiting setting of tensorization and
perturbation argument. Note also that by the equivalence obtained via Theorem 3.4, of an Iψ inequality and an
F -Sobolev inequality, we get all the tensorization property (and concentration) via F -Sobolev inequalities, see [6,7]
for details.
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3.3. Further examples

The major difference between Theorems 3.1 and 3.4 is that in the first one we do not explicitly suppose an F -Sobolev
inequality. Therefore we may put less stringent assumptions on F , and still have an explicit condition in dimension 1:
namely (HF ) can be translated in

(H ′
F ): there exist ρ > 1 and a non-decreasing function F such that

– let m be a median of μ, and denoting μc the density of the absolutely continuous part of μ w.r.t. the Lebesgue
measure, if

sup
x>m

μ
([x,∞[)F(

1

μ([x,∞[)
)∫ x

m

μ−1
c (t)dt < ∞,

sup
x<m

μ
(]−∞, x])F(

1

μ(]−∞, x])
)∫ m

x

μ−1
c (t)dt < ∞,

– there exists a constant Ccap such that for all u > a,

η(ρu)

u2η′′(u)F (u)
≤ Ccap.

However this measure capacity condition is no more tractable in the multidimensional case whereas we have known
conditions in the multidimensional case for F -Sobolev inequalities. Indeed, by [7], Theorem 21, assume that dμ =
e−2V dx with V a C2 potential such that Hess(V ) ≥ R for some real R and let F be C1 on ]0,∞[ such that

• F(x) → ∞ as x → ∞, F(x) ≤ c log+ x, F(xy) ≤ ĉ + F(x) + F(y) and xF ′(x) ≤ c̃ for some positive c, c̃ and
real ĉ;

• the following drift-like condition is verified: F(e2V ) + C(LV − |∇V |2) ≤ K for some positive C and K

then μ verifies a (F -B)-Sobolev inequality for some positive B . Using then Theorem 3.1 via [7], Theorem 18, for the
implied capacity-measure condition (HF ) we get an Iψ -inequality, hence an exponential decay for the total variation
distance using Lemma 1.1.

Consider for example, for 1 < α < 2, V (x) = |x|α + log(1 +|x| sin2(x)), then μ satisfies a Poincaré inequality and
the previous conditions with F(u) = log(1 + u)2(1−1/α) − log(2)2(1−1/α), so that we get for some c1, c2 > 0

∥∥P ∗
t h − 1

∥∥
L1(μ)

≤ c1e−c2t

(∫
h log2(1−1/α)(h)elog(2/α)−1(h) dμ

)1/2

.

4. Is a direct study of the total variation distance possible?

A natural question is of course: is it possible to directly study the possible decay of the total variation distance, instead
of looking at larger quantities like the variance or the relative entropy? Due to the non-smoothness of u 
→ |u − 1| the
answer is no, but one can try to replace the total variation distance by almost equivalent quantities.

Before we do this, let us mention the results by Mao [24], concerned with strong convergence i.e. uniform with
respect to the starting Dirac measure (thus not dealing with the same quantity as ours), and Wang [35] who gave
some example of a diffusion process for which a logarithmic Sobolev does not hold, while uniform (hence exponen-
tial) convergence holds in L1. So we cannot expect to find some functional inequality equivalent to the exponential
convergence in total variation distance.

Let us briefly gives some more hints (we refer to [15] for the details).

4.1. The linear case

In the preceding section we only looked at functions ψ such that ψ(u)/u → ∞ at infinity. However Remark 1.2 shows
that it is possible to consider cases where ψ is almost linear at infinity.
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Consider (at least for large u) η(u) = u + θ(u) where θ is a convex function such that θ(u)/u → 0 as u → ∞.
Necessarily θ ′(u) ≤ 0 for large u and goes to 0 as u → ∞. If η′′ is non-increasing, so is θ ′′, and according to the
previous property θ ′′(u) → 0 at infinity.

Define ψ as in (3.1). Then for u > a, ψ(u) = −θ ′(a)
θ ′′(a)

u + ν(u) where ν(u)/u → 0 at infinity. In order to apply
Remark 1.2 it is thus enough to have 2θ ′(a) + θ ′′(a) < 0 (since ψ ′(1) = 1/2).

Assuming this condition, we may extend Theorem 3.1 to this η. This yields F(u) ≥ η(ρ u)/(u2 θ ′′(u)) and since
what is important is the behavior of F near infinity and η is moderate, the key is the behavior of u 
→ 1/(uθ ′′(u)) when
u goes to infinity. A capacity-measure inequality is interesting only if F(u)/u → 0 as u goes to infinity (otherwise we
already know that the semi-group is ultracontractive) so that the only interesting cases are those for which u2θ ′′(u) →
∞ as u → ∞.

The main question is: is it possible to build such θ ’s? The simplest way to do so is to write

θ(u) = −
∫ u

a

(
1

τ(s)

)
ds, θ ′(u) = −

(
1

τ(u)

)
, θ ′′(u) =

(
τ ′(u)

τ 2(u)

)
, (4.1)

where τ is a non-negative, non-decreasing function. Fix some F . In our situation what we have to do is to find some
τ such that

τ ′(u)

τ 2(u)
= 1

uF(u)
.

Since θ ′ = −1/τ goes to 0 at infinity, it implies Wang’s integrability condition, hence ultracontractivity.

4.2. Using the Hellinger distance

Another possibility to control the total variation distance is to use Hellinger distance, defined for ν = hμ by

dH (ν,μ) = 2
∫ (

1 − √
h
)

dμ. (4.2)

It is elementary to check that

dH (ν,μ) ≤ 2‖μ − ν‖TV ≤ 4
√

dH (ν,μ) (4.3)

hence both distances are “almost” equivalent. Using the concavity of u 
→ √
u it is also immediate that

dH

(
ν + μ

2
,μ

)
≤ 1

2
dH (ν,μ) ≤ ‖μ − ν‖TV = 2

∥∥∥∥μ − ν + μ

2

∥∥∥∥
TV

≤ 8

√
dH

(
ν + μ

2
,μ

)
(4.4)

so that (with some changes in the constants) we may assume that ν = hμ with h ≥ 1/2.
Introduce as usual I (t) = dH (P ∗

t hμ,μ) for some density of probability h, and differentiating w.r.t. t , we get

d

dt
I (t) = −1

4

∫ |∇P ∗
t h|2

(P ∗
t h)3/2

dμ. (4.5)

As in the preceding subsections we may state

Proposition 4.1. Assume that there exists some non-increasing function βH defined on (0,+∞) such that for all
s > 0 and all f belonging to D2(L) the following inequality holds

(∫
f 4 dμ

)1/2

−
∫

f 2 dμ ≤ βH (s)

∫
Γ (f )dμ + s Osc

(
f 2), (4.6)
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then for all ν = hμ, dH (P ∗
t hμ,μ) ≤ 3ξH (t)‖h‖1/2∞ with

ξH (t) = inf

{
s > 0, βH (s) log

(
1

s

)
≤ 4t

}
.

Hence, if η̃(u) = u1/4ϕ(u),

∥∥P ∗
t ν − μ

∥∥
TV ≤ 4

∫
hϕ(h)dμ

(ϕ ◦ η̃−1)(2
∫

hϕ(h)dμ/
√

3ξH (t))
.

Proof. Apply (4.6) with f = (P ∗
t h)1/4. It yields

d

dt
I (t) ≤ − 4

βH (s)
I (t) + 4s

βH (s)

∥∥P ∗
t h

∥∥∞

hence the result (because Osc(h1/2) ≤ ‖h‖1/2∞ and dH (ν,μ) ≤ 2). �

Note that (4.6) implies the following

Varμ(f 2) ≤ 2

(
βH (s)

∫
Γ (f )dμ + s Osc

(
f 2))(∫

f 4 dμ

)1/2

, (4.7)

just multiplying both sides in (4.6) by (
∫

f 4 dμ)1/2 + ∫
f 2 dμ and applying the Cauchy–Schwarz inequality. Con-

versely (4.7) implies (4.6) up to a factor 2 (majorizing (
∫

f 4 dμ)1/2 in the right-hand side by (
∫

f 4 dμ)1/2 + ∫
f 2 dμ

and then dividing both sides by this quantity).
We refer to [15], Section 4, for a detailed study of these inequalities. For our purpose, (4.6) is unfortunately not

convincing. Indeed it is shown in Corollary 4.10 of [15] that if βH (s) = c/s, (4.6) is equivalent to a Poincaré inequality,
and if βH (s) = c/s log(1/s) it is equivalent to a logarithmic Sobolev inequality. In the first case a direct application
of Proposition 4.1 for h such that

∫
h2 dμ < +∞, i.e. with ϕ(u) = u, yields a polynomial decay c/t2/5 which is

disastrous, since the Poincaré inequality yields an exponential decay.
Now, (4.6) with βH constant is equivalent to the exponential decay I (t) ≤ e−αt I (0) for some α > 0, which implies

according to (4.3), ‖P ∗
t h− 1‖L1(μ) ≤ 2

√
2e−αt/2. But, according again to Corollary 4.10 of [15], βH constant implies

a super Poincaré inequality with βSP = cs−1/2, hence again Pt is ultracontractive according to Wang’s result.
Hence, the direct study of the Hellinger distance furnishes no convincing results. However, in [18], where inequal-

ities in the spirit of (4.7) were introduced under the name of Lq -Poincaré inequalities, applications of those types
of inequalities concern large time behavior of nonlinear diffusions, namely porous media equation ∂tu = L(um) for
m ≥ 1. Formal calculations indicate that (4.7) could have the same role for other nonlinear diffusions. We leave this
for further research.

5. Other related inequalities, reversing the roles

One of the main features of the use of functional inequalities for studying the total variation distance is that symmetry
is broken. Indeed Iψ(Q|P) is in general not symmetric. If it seems natural to privilege the invariant measure μ by
looking at Iψ(P ∗

t ν|μ), one may ask what happens if we reverse the roles. This idea is not completely new since in
[17] the authors have studied the evolution of the total variation distance between P ∗

t ν and P ∗
t ν′ for any initial ν

and ν′, but under strong conditions on one of them.
In second place, since

∥∥P ∗
t h − 1

∥∥
L1(μ)

= 2

∥∥∥∥P ∗
t

(
h + 1

2

)
− 1

∥∥∥∥
L1(μ)

(5.1)



Trends to equilibrium in total variation distance 139

we may assume that h ≥ 1
2 , i.e. P ∗

t h ≥ 1
2 . Thus if ν = hμ

dμ

dP ∗
t ν

= 1

P ∗
t h

≤ 2.

We thus have, denoting P ∗
t ν = νt ,

∥∥P ∗
t ν − μ

∥∥
TV ≤

√
Varνt

(
1

P ∗
t h

)
,

∥∥P ∗
t ν − μ

∥∥
TV ≤

√
2 Entνt

(
1

P ∗
t h

)

so that we shall study

V (t) = Varνt

(
1

P ∗
t h

)
=

∫
1

P ∗
t h

dμ − 1 (5.2)

and

E(t) = Entνt

(
1

P ∗
t h

)
=

∫
log

(
1

P ∗
t h

)
dμ. (5.3)

Assuming first that h is also bounded from above (for the forthcoming calculation to be rigorous), we immediately
get using the chain rule

d

dt
V (t) = −

∫
1

(P ∗
t h)3

Γ
(
P ∗

t h
)

dμ and
d

dt
E(t) = −1

2

∫
1

(P ∗
t h)2

Γ
(
P ∗

t h
)

dμ. (5.4)

Remark now that the exponential decay

V (t) ≤ e−λtV (0)

is equivalent to

∫ (
1

P ∗
t h

)
dμ − 1 ≤

(
1

λ

)∫
1

(P ∗
t h)3

Γ
(
P ∗

t h
)

dμ (5.5)

for all t ≥ 0, and that the exponential decay

E(t) ≤ e−λtE(0)

is equivalent to

∫
log

(
1

P ∗
t h

)
dμ ≤

(
1

2
λ

)∫
1

(P ∗
t h)2

Γ
(
P ∗

t h
)

dμ (5.6)

for all t ≥ 0.
There are now two approaches which can be seen as static or dynamic: the static one is to consider Eqs (5.5)

and (5.6) as functional inequalities and as before look at capacity-measure conditions for these inequalities; the dy-
namic one starts from the assumption that hdμ satisfies some inequalities (say Poincaré for example) and study the
propagation along the semigroup of such an inequality which enables us to get a direct control of V (t).
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5.1. The static approach

Using (5.5) with u = √
1/P ∗

t h, such an exponential decay for all h (≥ 1/2) is equivalent to∫
u2 dμ − 1 ≤ CWE

∫
Γ (u)dμ (5.7)

for all u belonging to D2(L) such that 0 ≤ u ≤ √
2 and

∫
(1/u2)dμ = 1. The weak version∫

u2 dμ − 1 ≤ βWE(s)

∫
Γ (u)dμ + s, (5.8)

for some non-increasing function βWE defined on (0,+∞) and all s > 0 implies that for all ν = hμ,∥∥P ∗
t ν − μ

∥∥
TV ≤ √

V (t) ≤ C
√

ξWE(t), (5.9)

for some universal constant C where ξWE(t) = inf{s > 0, βWE(s) log(1/s) ≤ 4t}.
But, it is shown in details in [15] Section 5, that (5.8) (thus (5.7)) implies the very strong consequence: there exists

β > 0 such that for all A with μ(A) > 0 we have Capμ(A) ≥ β , which implies of course ultracontractivity.
A similar analysis can be done with (5.6). Here again we may state:
assume that there exists some non-increasing function βMT defined on (0,+∞) such that for all s > 0 and all v

belonging to D2(L) such that v ≥ − log 2 and
∫

v dμ = 0, the following inequality holds

log

(∫
ev dμ

)
≤ βMT(s)

∫
Γ (v)dμ + s Osc2(v), (5.10)

then for all ν = hμ,

∥∥P ∗
t ν − μ

∥∥
TV ≤ √

2ξMT(t)

√
log 2 + Osc2(logh),

for some universal constant C, where

ξMT(t) = inf

{
s > 0,2βMT(s) log

(
1

s

)
≤ t

}
.

Hence for all ν = hμ, for η(u) = ϕ(u) log(u),

∥∥P ∗
t ν − μ

∥∥
TV ≤ 4

∫
hϕ(h)dμ

(ϕ ◦ η−1)((
∫

hϕ(h)dμ)/
√

ξMT(t))
.

Indeed, if (5.10) holds, we may choose

vt = log
(
P ∗

t h
) −

∫
log

(
P ∗

t h
)

dμ,

and apply (5.4). We obtain

d

dt
E(t) ≤ −1

2βMT(s)
E(t) + s

2βMT(s)
Osc2(vt ).

Gronwall’s lemma immediately yields E(t) ≤ ξMT(t)(E(0) + Osc2(logh)) because Osc2(logP ∗
t h) ≤ Osc2(logh).

Since E(0) ≤ log 2 if h ≥ 1
2 the conclusion follows.

Inequality (5.10) is a weak version of the so called Moser–Trudinger inequality, i.e. for all nice v such that∫
v dμ = 0,

log

(∫
ev dμ

)
≤ CMT

∫
Γ (v)dμ,
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for some constant CMT, which appears as some limit case of Sobolev inequalities.
But, as Eq. (5.8) one can show again that the capacity of all sets (with positive measure) is uniformly bounded from

below (see [15], Section 5.1.2).

5.2. The dynamic approach

As previously said, another direct approach of (5.5), close to [17], is the following.
Assume that νt = P ∗

t hμ satisfies a Poincaré inequality

Varνt (g) ≤ CP (t)

∫
Γ (g)dνt . (5.11)

Applying (5.11) with g = 1/P ∗
t h yields precisely (5.5) with λ = 1/CP (t) and consequently

V (t) ≤ e− ∫ t
0 (1/CP (s))dsV (0). (5.12)

Here we have to be much more accurate. Indeed in the derivation of (5.9) we may first establish (5.4) and (5.8) for nice
h’s bounded from below and from above, and then extend (5.9) to general h’s. Here, since we are using a Poincaré
inequality for νt , we need (5.4) for the h we are interested in. It is not difficult to see that h ∈ L2(μ) and h ≥ 1/2
are sufficient for all these derivations to be correct. Dealing with initial densities in L2(μ) is certainly disappointing,
however we shall see how to use approximations by such functions, but to this end we have to weaken our assumptions.

From now on we assume that 1/2 ≤ h ≤ K is a (nice) bounded density of probability such that ν = hμ satisfies a
weak Poincaré inequality with function βWP, we expect not depending on K . Equation (5.4) is thus satisfied, and we
want to study a possible weak Poincaré inequality for νt = P ∗

t hμ. It holds

Varνt (f ) =
∫

f 2P ∗
t hdμ −

(∫
f P ∗

t hdμ

)2

=
∫

Pt

(
f 2)hdμ −

(∫
Ptf hdμ

)2

=
∫

Pt

(
f 2)hdμ −

∫
(Ptf )2hdμ +

∫
(Ptf )2hdμ −

(∫
Ptf hdμ

)2

≤
(∫

Pt

(
f 2)hdμ −

∫
(Ptf )2hdμ

)
+ βWP(s)

∫
Γ (Ptf )hdμ + s Osc2(f ).

It remains to exchange Γ and Pt and to control the first term in the left-hand side. Both controls are known to be
equivalent to a curvature assumption introduced by Bakry and Emery. Recall some definitions (see e.g. [1], Section 5.3
and Proposition 5.4.1).

Proposition 5.1. Introduce Γ2(f, g) := (1/2)(LΓ (f,g) − Γ (Lf,g) − Γ (f,Lg)). We shall say that the curvature of
L is bounded from below by ρ ∈ R if for all nice f , Γ2(f ) := Γ2(f,f ) ≥ ρΓ (f ).

Then the following three assertions are equivalent:

• the curvature of L is bounded from below by ρ ∈ R,
• for all nice f and all t > 0, Γ (Ptf ) ≤ e−ρtPt (Γ (f )),
• for all nice f and all t > 0, Pt (f

2) − (Ptf )2 ≤ 1−e−ρt

ρ
Pt (Γ (f )) (for ρ = 0 replace the coefficient by t).

We immediately deduce

Corollary 5.2. If the curvature of L is bounded from below by ρ ∈ R, and ν = hμ satisfies a weak Poincaré inequality
with function βWP, then νt = P ∗

t hμ satisfies a weak Poincaré inequality with function

βWP(t, s) = 1 − e−ρt

ρ
+ e−ρtβWP(s).
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Plugging this estimate (with f = 1/P ∗
t h) in (5.4) yields (since Osc(f ) ≤ 2)

d

dt
V (t) ≤ − V (t)

βWP(t, s)
+ 4s

βWP(t, s)
.

Defining

r(t, s) =
∫ t

0

1

βWP(u, s)
du (5.13)

we obtain

V (t) ≤ e−r(t,s)V (0) +
∫ t

0

4s

βWP(u, s)
er(u,s)−r(t,s) du ≤ e−r(t,s)V (0) + 4s.

But an elementary calculation yields

r(t, s) = log

(
eρt + ρβWP(s) − 1

ρβWP(s)

)

so that finally

V (t) ≤ ρβWP(s)

eρt + ρβWP(s) − 1
+ 4s.

Of course this inequality has some interest only if r(t, s) → +∞ as t → +∞, hence if ρ ≥ 0. It also yields

∥∥P ∗
t hμ − μ

∥∥
TV ≤

(
inf
s>0

{
ρβWP(s)

eρt + ρβWP(s) − 1
+ 4s

})1/2

. (5.14)

This inequality is more tractable since it extends to any h (up to a factor 2, recall (5.1)), if we can approximate
(h + 1)/2 by a sequence of hn with n ≥ hn ≥ 1/2 such that each hnμ satisfies a weak Poincaré inequality with the
same βWP. As a consequence ((h + 1)/2)μ will satisfy the same inequality. We have thus shown

Theorem 5.3. Assume that the curvature of L is bounded from below by ρ ≥ 0. Assume that one can find a sequence
hn with n ≥ hn ≥ 1/2 such that each hnμ satisfies a weak Poincaré inequality with the same βWP, such that hn →
(1 + h)/2 in L1(μ) as n goes to infinity. Then (5.14) holds.

In particular if s 
→ βWP(s)/s is non-increasing (at least for small s), define θ(u) = inf{s; (βWP(s)/s) ≤ 4u/ρ}.
Then there exists a constant C such that∥∥P ∗

t hμ − μ
∥∥

TV ≤ Cθ1/2(eρt
)
.

In particular if βWP(s) ≤ cs−q for some q ≥ 0, ‖P ∗
t hμ − μ‖TV ≤ Ce−ρt/2(1+q).

Recall that ρ > 0 implies that μ satisfies a log-Sobolev inequality with CLS = 2/ρ. Thus, since hn is bounded
below (by 1/2) and above (say by n), hnμ satisfies a log-Sobolev inequality with a constant depending on n. Using
this constant and estimating ‖hμ − hnμ‖TV is similar (actually a little bit worse) to the truncation method we used in
Section 2.2.

Nevertheless, since μ satisfies a log-Sobolev inequality, we have to compare the result obtained in (5.14) and the
ones in Corollary 2.8, for densities h which are not in the space L log L (nor in any L logβ

+ L for β > 0 according
to (2.9) in Example 2.9). Since there is no general criterion for the weak Poincaré inequality, we shall make this
comparison on examples only.

Example 5.4. Let us assume that μ(dx) = e−V (x) dx is a probability measure on R, Lf = f ′′ − V ′f ′ so that μ is a
symmetric measure for L and Γ (f ) = 2(f ′)2. If V ′′(x) ≥ ρ > 0, then the curvature of L is bounded from below by ρ.
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Choose h = eV g, with g ≥ 0 and
∫

g dx = 1. For simplicity we assume that g is symmetric. Then it is known
(see [5], Theorem 2.3) that ν = hμ satisfies a weak Poincaré inequality with a function βWP(s) = C β(s), if β is a
non-increasing function, for 12B ≥ C ≥ (1/4)b where

b = sup
x>0

ν([x,+∞))

β(ν([x,+∞))/4)

∫ x

0

(
1

g

)
(y)dy and B = sup

x>0

ν([x,+∞))

β(ν([x,+∞)))

∫ x

0

(
1

g

)
(y)dy.

We immediately see that if g � e−V , ((1 + h)/2)μ will satisfy a weak Poincaré inequality with the same β and a
modified constant C, and that ((1 + h ∧ n)/2)μ will also satisfy a weak Poincaré inequality with the same β and a
constant D which can be chosen independent of n.

As in Remark 3.5 we may evaluate∫ x

0

(
1

g

)
(y)dy ∼ −1

g′(x)
and

∫ +∞

x

g(y)dy ∼ −g2(x)

g′(x)
,

provided g′ < 0 near infinity and limx→+∞(g(x)g′′(x)/(g′)2(x)) = 1 (see e.g. [1], Proposition 6.4.1).
We shall give some explicit examples

• If ν([x,+∞)) ∼ x−p for some p > 0, i.e. g behaves like x−(1+p) at infinity, ν satisfies a weak Poincaré inequality
with βWP(s) ∼ s−2/p , so that Theorem 5.3 furnishes an exponential decay e−ρpt/2(p+2). For such a result us-
ing Corollary 2.8 we need that h ∈ L logβ

+ L for some β > 0, that is we need
∫

V β(x)g(x)dx < +∞. Hence if
V (x) ∼ xk near infinity, we need β < p/k and obtain a decay slightly worse than e−ρpt/2(p+k). In all cases (since
k ≥ 2) this is a worse decay than e−ρpt/2(p+2).

If V ∼ ex at infinity, the situation is still worse since Corollary 2.8 does not furnish the exponential decay which
is still true according to Theorem 5.3.

• If g(x) ∼ (1/x log2(x)) at infinity, we get βWP(u) ∼ e2/
√

u. This yields a polynomial decay c/t for the total variation
distance. Now it is easily seen that, if V (x) = x2,

∫
h log1−ε+ (log+(h))dμ < +∞ for ε > 0 and infinite for ε = 0.

Corollary 2.8 furnishes a decay c/t(1−ε)/2, hence still a worse rate. Again for larger V ’s the result is unchanged
with Theorem 5.3 and is getting worse with Corollary 2.8.

It seems in the one dimensional case that Theorem 5.3 gives better results than Corollary 2.8, in particular because
it does not take into account the moments of h with respect to μ (this is not completely true since these moments have
an influence on βWP but we may change μ without changing nor ρ nor βWP).

A better understanding of general weak Poincaré inequalities is however necessary to claim that it has to be a
general fact. In addition, μ is supposed to satisfy a strong form of the log-Sobolev inequality (the Bakry–Emery
condition). Finally it is quite possible that for very oscillating densities (not satisfying the conditions for the tail
estimates to be true for instance) one can have finite entropy but a bad weak Poincaré function.

Remark 5.5. We have previously studied the propagation of weak Poincaré inequalities along the semi-group. It is
then natural to look at the propagation of Super-Poincaré inequalities. Indeed, assume that ν = hμ satisfies a Super-
Poincaré inequality (see [4] or [7] for explicit conditions on h and μ), i.e. there exists βSP defined on [1,∞[ such
that

Varν(f ) ≤ βSP(s)

∫
Γ (f )dν + s

(∫
|f |dν

)2

and if the curvature of L is bounded below by ρ, then, by the same proof as before νt = P ∗
t hμ satisfies a Super-

Poincaré inequality with βSP(t, s) = ρ−1(1 − e−ρt ) + e−ρtβSP(s). We can then as before (with the same precautions
on h as before) plug these estimates into (5.4) to get

∥∥P ∗
t hμ − μ

∥∥
TV ≤

(
inf
s>1

{
ρβWP(s)

eρt + ρ βWP(s) − 1
+ (s − 1)

})1/2

, (5.15)

which does not give better result than a Poincaré inequality.
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Remark 5.6. Concerning the same approach for entropy, let us point out the following remarks. First recall Proposi-
tion 5.4.5 in [1] which applies here since we are in the framework called “the diffusion case” therein. Hence under
the assumptions previously set we may replace the weak Poincaré inequality by a weak log-Sobolev inequality, and
(up to some constants) replace βWP by βWLS in (5.14). This is of course not very clever since βWLS is much bigger
than βWP.
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