
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2009, Vol. 45, No. 1, 58–69
DOI: 10.1214/07-AIHP149
© Association des Publications de l’Institut Henri Poincaré, 2009

Spectral gap and convex concentration inequalities for
birth–death processes

Wei Liua and Yutao Mab,1

aDepartment of Mathematics and Statistics, Wuhan University, 430072-Hubei, China and Laboratoire de Mathématiques Appliquées,
Université Blaise Pascal, France

bSchool of Mathematical Sciences, Beijing Normal University, China. E-mail: mayt@bnu.edu.cn

Received 21 December 2006; revised 13 June 2007; accepted 27 September 2007

Abstract. In this paper, we consider a birth–death process with generator L and reversible invariant probability π. Given an
increasing function ρ and the associated Lipschitz norm ‖ · ‖Lip(ρ), we find an explicit formula for ‖(−L)−1‖Lip(ρ). As a typical

application, with spectral theory, we revisit one variational formula of M. F. Chen for the spectral gap of L in L2(π). Moreover,
by Lyons–Zheng’s forward-backward martingale decomposition theorem, we get convex concentration inequalities for additive
functionals of birth–death processes.

Résumé. Dans ce travail, nous considérons un processus de naissance et de mort de générateur L et de probabilité invariante réver-
sible π. Étant données une fonction strictement croissante ρ, et la norme lipschitzienne ‖ · ‖Lip(ρ) par rapport à ρ, nous trouvons

une représentation explicite de ‖(−L)−1‖Lip(ρ). En guise d’une application typique, nous retrouvons une formule variationnelle

de M. F. Chen pour le trou spectral de L dans L2(π). De plus, par la décomposition des martingales progressive-rétrogrades de
Lyons–Zheng, nous obtenons des inégalités de concentration convexe pour des fonctionnelles additives de processus de naissance
et de mort.
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1. Introduction

Consider a birth–death process (Xt )t≥0 on N = {0,1,2, . . .} with birth rates (bi)i∈N and death rates (ai)i∈N, i.e., its
generator L is given for any real function f on N by,

Lf (i) = bi

(
f (i + 1) − f (i)

) + ai

(
f (i − 1) − f (i)

)
, (1.1)

where bi and ai are positive for any i ≥ 1, with furthermore b0 > 0 and a0 = 0. For any real function f,f (−1) is
supposed to be zero to simplify the notations. Throughout this paper, we assume that the process is positive recurrent,
i.e.,

∑
n≥0

μn

∑
i≥n

(μibi)
−1 = ∞ and C :=

+∞∑
n=0

μn < +∞,
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where μ given by

μ0 = 1, μn = b0b1 · · ·bn−1

a1a2 · · ·an

, n ≥ 1,

is an invariant measure of the process. Define the normalized probability π of μ by πn = μn

C
for any n ≥ 0, which is

actually the reversible invariant probability of the process.
Our first problem of this paper is related with the spectral gap λ1 of L in L2(π), i.e., the infimum of the spectrum

of −L in L2(π). Let (Pt )t≥0 be the corresponding semigroup of the process. Then λ1 is the optimal constant ε in the
inequality∥∥Ptf − π(f )

∥∥
L2(π)

≤ e−εt
∥∥f − π(f )

∥∥
L2(π)

,

which characterizes the exponential decay of (Pt )t≥0 to π. On the other hand, λ1 is the best constant c in the following
Poincaré inequality,

c Varπ (f ) ≤ Eπ (f ),

where Varπ (f ) := ∑
i≥0 πi(f (i) − π(f ))2 and Eπ (f ) := ∑

i≥0 πibi(f (i + 1) − f (i))2 are respectively the variance
and Dirichlet form of f with respect to π.

Since Chen and Wang in their paper [8] (1993) used the coupling method to obtain the first eigenvalue on manifold,
they and their working group obtained fruitful results (the reader is referred to [6,7] for an account of art). The work
of Chen ([2], 1996) was the original one to prove two exact variational formulas of the spectral gap for birth–death
processes by coupling method (the diffusion case is due to Chen and Wang ([9], 1997)). For both birth–death processes
and diffusion processes, a simple analytic proof of those variational formulas was given by Chen ([3], 1999). Miclo
([17], 1999) extended the Muckenhoupt’s generalized Hardy inequality from R to N and so derived upper and lower
bounds on λ1 which are different only by a factor 4, generalizing the previous work of Bobkov–Götze ([1], 1999) for
one dimensional diffusion processes. Chen ([4], 2000) showed that the results of Bobkov–Götze and Miclo could be
derived from his variational formulas. See [5–7] for further results and references on this well developed subject.

The coupling strategy of [2,8,9] etc. consists in finding some appropriate increasing function ρ so that
‖Ptf ‖Lip(ρ) ≤ e−εt‖f ‖Lip(ρ) with ε > 0 as large as possible, and it is shown therein that the supremum of such
ε = ε(ρ) is exactly λ1. Our approach here is different: for convex concentration inequalities (our other aim), we must
control the norm in the space of Lipschitz functions w.r.t. ρ of the Poisson operator (−L)−1. We are inspired by
the work of Djellout and Wu ([10], 2007) who calculated explicitly ‖(−L)−1‖Lip(ρ) for one dimensional diffusion
processes (so yielding another proof of Chen–Wang’s variational formula of λ1), and applied that formula to give a
bound of log-Sobolev constant for Gibbs measure. As in [10] we obtain an exact expression of ‖(−L)−1‖Lip(ρ), but
now for birth–death processes.

Our second aim is about convex concentration inequality. Two random variables F and G satisfy a convex concen-
tration inequality if

E
[
φ(F )

] ≤ E
[
φ(G)

]
(1.2)

for all convex functions φ : R �→ R such that the inequality takes sense. This concept was firstly introduced by Ho-
effding ([12], 1963) and was realized for general martingales by Klein et al. ([14], 2006). By a classical argument, the
application of (1.2) to φ(x) = exp(λx), λ > 0, entails the deviation bound: for any x > 0,

P(F ≥ x) ≤ inf
λ>0

E
[
eλ(F−x)1{F≥x}

] ≤ inf
λ>0

E
[
eλ(F−x)

] ≤ inf
λ>0

E
[
eλ(G−x)

]
. (1.3)

Hence the deviation probabilities for F can be estimated via the Laplace transform of G and that is why lots of jobs
have been done on this subject.

Given g a function on N, we consider functionals St = ∫ t

0 g(Xs)ds. We will prove concentration convex inequali-
ties for (St )t≥0 and then some deviation inequalities for (t−1St )t>0. This kind of deviation inequality will characterize
the speed of the decay of the empirical measure (Lt := t−1

∫ t

0 δXs ds)t>0 to π.
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The remainder of the paper will be organized as follows. In Section 2 we concentrate on the representation of
‖(−L)−1‖Lip(ρ) and in Section 3 we give another proof of Chen’s variational formula of the spectral gap λ1 for
L in L2(π). The last section is devoted to convex concentration inequalities for additive functionals of birth–death
processes.

2. Representation of ‖(−L)−1‖Lip(ρ)

Given an increasing function ρ : N �→ R, define dρ(i, j) = |ρ(i) − ρ(j)| a metric on N with respect to ρ. We call a
function f on N Lipschitz with respect to ρ (or ρ-Lipschitz) if

‖f ‖Lip(ρ) := sup
i 	=j

|f (j) − f (i)|
|ρ(j) − ρ(i)| < +∞, (2.1)

which is equivalent to

‖f ‖Lip(ρ) = sup
i≥0

|f (i + 1) − f (i)|
ρ(i + 1) − ρ(i)

< +∞.

The space of all ρ-Lipschitz functions is denoted by CLip(ρ). Throughout this paper, we assume that ρ ∈ L1(π) and
denote by (C0

Lip(ρ),‖ · ‖Lip(ρ)) the space of all ρ-Lipschitz functions with π(f ) := ∫
f dπ = 0. In addition, ‖ · ‖Lip(ρ)

is a norm restricted to C0
Lip(ρ).

By the equality (1.1), the equation Lf = 0 admits constant solutions and so identically zero solution when
π(f ) = 0 is required. Then for any function g ∈ C0

Lip(ρ), there exists an unique solution f on N with π(f ) = 0
to the Poisson equation

−Lf = g.

Thereby (−L)−1 is well defined on C0
Lip(ρ). By definition, L has a spectral gap in C0

Lip(ρ) if 0 is an isolated eigenvalue

of −L in C0
Lip(ρ), or equivalently (−L)−1 :C0

Lip(ρ) �→ C0
Lip(ρ) is bounded.

Recall the usual Lipschitz norm of (−L)−1 on C0
Lip(ρ):

∥∥(−L)−1
∥∥

Lip(ρ)

�= sup
‖g‖Lip(ρ)≤1

∥∥(−L)−1g
∥∥

Lip(ρ)
= sup

‖g‖Lip(ρ)=1

∥∥(−L)−1g
∥∥

Lip(ρ)
.

The main result of this section is

Theorem 2.1. Let L, ρ,‖ · ‖Lip(ρ) be fixed as before and assume that ρ ∈ L1(π). We have

∥∥(−L)−1
∥∥

Lip(ρ)
= sup

i≥1

∑∞
k=i πk(ρ(k) − π(ρ))

πiai(ρ(i) − ρ(i − 1))
=: I (ρ). (2.2)

Remarks 2.2. The parameter I (ρ) defined in (2.2) is not surely finite. Indeed, if I (ρ) is finite, the operator (−L)−1

maps the space C0
Lip(ρ) to C0

Lip(ρ) itself. Otherwise, there exists at least one function g ∈ C0
Lip(ρ) such that (−L)−1g is

not ρ-Lipschitz.

Our approach to this theorem is similar to that of Djellout and Wu [10] while working for one dimensional diffusion
processes. We begin the proof with two lemmas.

Lemma 2.3. Given a function g on N with π(g) = 0, consider the Poisson equation

−Lf = g. (2.3)
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For any i ≥ 0, the solution of the above Eq. (2.3) satisfies the following relation:

f (i + 1) − f (i) = −
∑i

j=0 πjg(j)

πi+1ai+1
. (2.4)

Proof. This lemma, to some extent, is known in the sense that one only needs an obvious change in the proof of Lemma
4.1 in [2]. But we still state it for the convenience of the reader. Indeed, the formula (2.4) follows from

−
i∑

j=0

πjg(j) =
i∑

j=0

πj Lf (j) =
i∑

j=0

[
πjaj

(
f (j − 1) − f (j)

) + πjbj

(
f (j + 1) − f (j)

)]

=
i∑

j=0

[−πjaj

(
f (j) − f (j − 1)

) + πj+1aj+1
(
f (j + 1) − f (j)

)]

= πi+1ai+1
(
f (i + 1) − f (i)

)
. �

Now we prove the crucial point of this section:

Lemma 2.4. Provided that ‖g‖Lip(ρ) = 1 and π(g) = 0, we have for any k ≥ 0,∑
i≥k

πig(i) ≤
∑
i≥k

πi

(
ρ(i) − π(ρ)

)
. (2.5)

Proof. Set

F(k) =
+∞∑
i=k

πig(i) −
+∞∑
i=k

πi

(
ρ(i) − π(ρ)

)
,

which satisfies that F(0) = 0 and limk→∞ F(k) = 0. It suffices to show either F ≡ 0 or there exists some K ∈ N,

such that F(k) is nonincreasing for k ≤ K and F(k) is nondecreasing for k > K . Below we suppose that F is not
identically zero.

Simple calculus gives us

F(k + 1) − F(k) = −πkg(k) + πk

(
ρ(k) − π(ρ)

) = πk

(
ρ(k) − g(k) − π(ρ)

)
.

Define

G(k) := F(k + 1) − F(k)

πk

= ρ(k) − g(k) − π(ρ).

Since ‖g‖Lip(ρ) = 1, we have

G(k + 1) − G(k) = ρ(k + 1) − ρ(k) − (
g(k + 1) − g(k)

) ≥ 0.

If G(0) > 0, then G(k) > 0 for any k ≥ 0, which implies that F is increasing. We have

0 = lim
k→∞F(k) ≥ F(1) = π0G(0) > 0,

a contradiction. Thus G(0) ≤ 0.

Since G is nondecreasing, there is at most one time to change its sign. If G does not change its sign, it means
G(k) ≤ 0 for any k ≥ 0, then F is nonincreasing. For any N ∈ N,

0 = lim
k→∞F(k) ≤ F(N) ≤ · · · ≤ F(0) = 0,
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which shows F ≡ 0, it is not our case. Hence G changes its sign, i.e., there exists some K ≥ 0, such that

G(k) > 0, k > K and G(k) ≤ 0, k ≤ K.

That is to say, for any 1 ≤ k ≤ K,F(k) ≤ F(k − 1) and F(k − 1) ≤ F(k) when k > K, which completes the
proof. �

Remarks 2.5. Applying (2.5) to −g, we get∣∣∣∣∑
i≥k

πjg(j)

∣∣∣∣ ≤
∑
i≥k

πi

(
ρ(i) − π(ρ)

)
. (2.6)

Proof of Theorem 2.1. By Eq. (2.3), for any function g ∈ C0
Lip(ρ) with ‖g‖Lip(ρ) = 1, we have

(−L)−1g = f. (2.7)

Therefore with the definition of ‖ · ‖Lip(ρ) and Lemma 2.3, we have

‖f ‖Lip(ρ) = sup
i≥0

|f (i + 1) − f (i)|
ρ(i + 1) − ρ(i)

= sup
i≥0

|∑+∞
j=i+1 πjg(j)|

(ρ(i + 1) − ρ(i))πi+1ai+1
.

Then

∥∥(−L)−1
∥∥

Lip(ρ)
= sup

‖g‖Lip(ρ)=1
sup
i≥0

|∑+∞
j=i+1 πj (g(j) − π(g))|

(ρ(i + 1) − ρ(i))πi+1ai+1

= sup
i≥0

1

πi+1ai+1(ρ(i + 1) − ρ(i))
sup

‖g‖Lip(ρ)=1

∣∣∣∣∣
+∞∑

j=i+1

πj

(
g(j) − π(g)

)∣∣∣∣∣
≤ sup

i≥1

∑∞
j=i πj (ρ(j) − π(ρ))

πiai(ρ(i) − ρ(i − 1))
, (2.8)

where the last inequality follows from (2.6). On the other hand, ‖ρ − π(ρ)‖Lip(ρ) = 1, then

∥∥(−L)−1
∥∥

Lip(ρ)
≥ sup

i≥1

∑∞
j=i πj (ρ(j) − π(ρ))

πiai(ρ(i) − ρ(i − 1))
. (2.9)

Combining (2.8) and (2.9), we have

∥∥(−L)−1
∥∥

Lip(ρ)
= sup

i≥1

∑∞
j=i πj (ρj − π(ρ))

πiai(ρ(i) − ρ(i − 1))
,

the desired result. �

3. Application to spectral gap on L2(π)

Let A be the set of all real increasing functions ρ on N such that ρ ∈ L1(π). As an application of Theorem 2.1, we
revisit one of the variational formulas of the spectral gap λ1 for birth–death processes, due to M. F. Chen [2]:
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Theorem 3.1. Let λ1 be the spectral gap of L in L2(π), then we have

λ1 = sup
ρ∈A

I (ρ)−1, (3.1)

where I (ρ) is the same as in Theorem 2.1.

Proof of Theorem 3.1 (Following [19,21]). We prove at first the “≥” of the formula (3.1). Taking any ρ ∈ A, let

D = L∞(π) ∩ C0
Lip(ρ),

a dense subset of L2
0(π), where 0 represents zero mean under π . We may assume that I (ρ) is finite (trivial otherwise).

The operator L is self-adjoint and negative definite, so it admits a spectral decomposition on L2
0(π) (see [22]),

−L =
∫

(0,+∞)

λdEλ, (3.2)

then

(−L)−1 =
∫

(0,+∞)

λ−1 dEλ. (3.3)

We prove now the following assertion:

given λ0 ∈ (
0, I (ρ)−1), Eλ0f = 0 for any f ∈ D. (3.4)

For any function g with ‖g‖Lip(ρ) = 1 and π(g) = 0, we have

‖g‖1 :=
∞∑

k=0

∣∣g(k)
∣∣πk ≤

∞∑
k=0

(
ρ(k) − ρ(0)

)
πk + ∣∣g(0)

∣∣

= π(ρ) − ρ(0) + |∑∞
k=1 πkg(k)|

π0

≤ π(ρ) − π(0) +
∑∞

k=1 πk(ρ(k) − π(ρ))

π0

= 2
(
π(ρ) − ρ(0)

)
, (3.5)

where the last but one inequality is ensured by the inequality (2.6) and π(ρ)−ρ(0) is positive because ρ is increasing.
Theorem 2.1 and the finiteness of I (ρ) guarantee that for any n ≥ 1, (−L)−nf is in C0

Lip(ρ) once f belongs to C0
Lip(ρ).

Precisely for any f ∈ D,∥∥(−L)−nf
∥∥

Lip(ρ)
≤ I (ρ)n‖f ‖Lip(ρ). (3.6)

Thus with (3.5), we have〈
f, (−L)−nf

〉
π

≤ ‖f ‖∞
∥∥(−L)−nf

∥∥
1 ≤ 2

(
π(ρ) − ρ(0)

)‖f ‖∞
∥∥(−L)−nf

∥∥
Lip(ρ)

≤ 2
(
π(ρ) − ρ(0)

)‖f ‖∞‖f ‖Lip(ρ)I (ρ)n.

On the other hand, in [0,+∞] we always have

〈
f, (−L)−nf

〉
π

=
∫

(0,+∞)

λ−n d〈Eλf,f 〉π

≥ λ−n
0 〈Eλ0f,f 〉π .
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Combining those two inequalities, we get

〈Eλ0f,f 〉π ≤ C(f )
(
λ0I (ρ)

)n
, (3.7)

where C(f ) = 2(π(ρ) − ρ(0))‖f ‖∞‖f ‖Lip(ρ) is a finite constant independent of n. Then the assertion (3.4) follows
from (3.7) by letting n → +∞. Since D is dense in L2

0(π) and Eλ0 is bounded, then Eλ0f = 0 for any f ∈ L2(π),

which means Eλ0 = 0. Equivalently

λ1 ≥ I (ρ)−1

and so immediately

λ1 ≥ sup
ρ∈A

I (ρ)−1.

Now take ρ̄ the eigenfunction of L corresponding to λ1 in weak sense, i.e.,

Lρ̄ = −λ1ρ̄ pointwise.

It is known that ρ̄ is an increasing function on N in L1(π) (see Lemma 4.2 in [2] for details) and then belongs to A.

As showed in the proof of Theorem 2.1, the parameter

I (ρ̄) := ∥∥(−L)−1
∥∥

Lip(ρ̄)
= sup

‖g‖Lip(ρ̄)=1

∥∥(−L)−1(g − π(g)
)∥∥

attains the supremum at ρ̄, then equals to 1/λ1. The proof is complete now. �

Remarks 3.2. In his paper [2], Chen established the variational formula (3.1). Then in [3–5], he reproved it by
different methods. And furthermore with this variational formula, Chen in [4] derived explicit bounds on the spectral
gap, which recovered the lower and upper bounds, differing up to a factor 4, obtained originally by Miclo in [17] via
generalized Hardy’s inequality.

Now we are in position to state convex concentration inequalities.

4. Convex concentration inequalities for additional functionals: The method of Lyons–Zheng forward–back-
ward martingale decomposition

4.1. A general result

In this section, (Nt )t≥0 is always supposed to be a standard Poisson process independent of (Xt )t≥0 and ρ is an
increasing function in L1(π). Let

Cc := {
φ : R �→ R, φ is convex and φ′′ is nondecreasing

}
.

In the sequel, we will add the notation of the probability to be precise with respect to which the expectation is
considered. Firstly, we recall one result for pure jump martingales (see [14,16] for details):

Theorem 4.1. Let (Mt)t≥0 be a pure jump martingale on some probability space (E, E ,P) satisfying for all t ≥ 0,

|ΔMt | ≤ K and
∥∥〈M〉t

∥∥∞ < +∞,

where ‖〈M〉t‖∞ := ess supω∈E |〈M〉t (ω)|. Then for any function φ ∈ Cc and any t ≥ 0, we have

EP

[
φ
(
Mt − EP[Mt ]

)] ≤ E

[
φ

(
KN‖〈M〉t‖∞/K2 − ‖〈M〉t‖∞

K

)]
. (4.1)

Moreover, (4.1) still holds if ‖〈M〉t‖∞ is replaced by some deterministic function bounding above such a quantity.
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Now we return to the birth–death process (Xt )t≥0. Recall the operator Γ of birth–death processes with respect
to L, which is defined for any functions f and g on N as,

Γ (f,g) = 1

2

[
L(fg) − Lfg − f Lg

]
.

Noting Γ (f,f ) := Γ (f ), we have for any k ≥ 0,

Γ (f )(k) = ak

(
f (k − 1) − f (k)

)2 + bk

(
f (k + 1) − f (k)

)2
.

For any t ≥ 0, define

Mt = f (Xt ) − f (X0) −
∫ t

0
Lf (Xs)ds.

Theorem 4.1 entails the following

Proposition 4.2. Let f be a function satisfying K = supk≥1 |f (k) − f (k − 1)| < ∞ and ‖Γ (f )‖∞ :=
supk≥0 Γ (f )(k) < ∞. Then for any function φ ∈ Cc and t ≥ 0,

E
[
φ(Mt)

] ≤ E

[
φ

(
KN‖Γ (f )‖∞t/K2 − ‖Γ (f )‖∞t

K

)]
. (4.2)

Proof. Given any T > 0, the process (Mt)0≤t≤T is a pure jump martingale. By definition, for any 0 ≤ t ≤ T , we have

|ΔMt | ≤ K, since |ΔMt | ≤ sup
k≥0

∣∣f (k + 1) − f (k)
∣∣.

On the other hand, for any 0 ≤ t ≤ T , by Ito’s formula, E[M2
t ] = E

∫ t

0 Γ (f )(Xs)ds, hence

‖〈M〉t‖∞ =
∥∥∥∥
∫ t

0
Γf (Xs)ds

∥∥∥∥∞
≤ ∥∥Γ (f )

∥∥∞t.

Then the inequality (4.2) is satisfied for any 0 ≤ t ≤ T and in particular holds for T . The arbitrariness of T completes
the proof. �

Remarks 4.3. Taking ρ as ρ(i) = i for all i ∈ N deriving the classical metric, suppose that f ∈ CLip(ρ) and
‖Γ (f )‖∞ < ∞. Thereby we have for any function φ ∈ Cc and t ≥ 0,

E
[
φ(Mt)

] ≤ E

[
φ

(
‖f ‖Lip(ρ)N‖Γ (f )‖∞t/‖f ‖2

Lip(ρ)
− ‖Γ (f )‖∞t

‖f ‖Lip(ρ)

)]
.

Now given g a function on N with π(g) = 0 for simplicity. Consider functionals St = ∫ t

0 g(Xs)ds, we want to give
convex concentration inequalities for (St )t≥0. Lyons–Zheng’s forward backward martingale decomposition theorem
(see [15,20]) inspires us for any t ≥ 0 to define

−→
Mt = f (Xt ) − f (X0) −

∫ t

0
Lf (Xs)ds

and

←−
Mt = f (X0) − f (Xt ) −

∫ t

0
Lf (Xs)ds,
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where f satisfies −Lf = g. Obviously St = 1
2 (

←−
Mt + −→

Mt) and moreover by the reversibility of ((Xt )t≥0,Pπ ),
−→
Mt and←−

Mt have the same distribution under Pπ . Therefore we have for any convex function φ,

Eπ

[
φ(St )

] = Eπ

[
φ

(←−
Mt + −→

Mt

2

)]
≤ Eπ [φ(

←−
Mt) + φ(

−→
Mt)]

2
= Eπ

[
φ(

−→
Mt)

]
.

If we impose some hypotheses on g such that the solution f to the Poisson equation −Lf = g verifies the conditions
of Proposition 4.2, we could derive convex concentration inequalities for (St )t≥0. The following essential hypotheses
appear here just for this aim.

• Hypothesis A:

K := sup
k≥1

|∑∞
i=k πig(i)|
πkak

< ∞,

• Hypothesis B:

sup
k≥0

{
ak

(∑∞
i=k πig(i)

πkak

)2

+ bk

(∑∞
i=k+1 πig(i)

πk+1ak+1

)2}
< ∞.

Remarks 4.4. By Lemma 2.3, we have K = supk≥1 |f (k) − f (k − 1)| and the Hypothesis B is equivalent to
‖Γ (f )‖∞ < ∞. Moreover if ρ − π(ρ) verifies the Hypotheses A and B, so does any g ∈ C0

Lip(ρ).

The functions f,g used together thereafter are supposed to satisfy the Poisson equation −Lf = g. We have

Theorem 4.5. For any function g verifying the Hypotheses A and B, we have for any φ ∈ Cc and t ≥ 0,

Eπ

[
φ

(∫ t

0
g(Xs)ds

)]
≤ E

[
φ

(
KN‖Γ (f )‖∞t/K2 − ‖Γ (f )‖∞t

K

)]
. (4.3)

Furthermore, the inequality (4.3) still holds for any g ∈ C0
Lip(ρ) if ρ − π(ρ) satisfies the Hypotheses A and B.

Remarks 4.6. Suppose that g − π(g) satisfies the Hypotheses A and B. As introduced before, the Laplace transform
of the right-hand side of (4.3) offers a deviation inequality for t−1

∫ t

0 g(Xs)ds, precisely for any x > 0 and t ≥ 0,

Pπ

(
t−1

∫ t

0
g(Xs)ds − π(g) ≥ x

)
≤ inf

λ>0
exp

{
−λtx + ∥∥Γ (f )

∥∥∞
eλK − λK − 1

K2

}

= exp

{
−‖Γ (f )‖∞t

K2
h

(
Kx

‖Γ (f )‖∞

)}
, (4.4)

where h(u) = (1 +u) log(1 +u)−u. Similarly, the inequality (4.4) is true for any g ∈ CLip(ρ) when ρ −π(ρ) satisfies
the Hypotheses A and B.

Remarks 4.7. Suppose that ν is a probability on N absolutely continuous with respect to π with dν
dπ

∈ L2(π) and
g − π(g) verifies the Hypotheses A and B. With the inequality (4.4) and Cauchy–Schwarz inequality, we could have
for any x > 0 and t ≥ 0,

Pν

(
t−1

∫ t

0
g(Xs)ds − π(g) ≥ x

)
≤

∥∥∥∥ dν

dπ

∥∥∥∥
L2(π)

exp

{
−‖Γ (f )‖∞t

2K2
h

(
Kx

‖Γ (f )‖∞

)}
.

Remarks 4.8. In [13], Joulin obtained also deviation inequalities, which are somewhat similar to (4.4), with respect to
the probability measure Px. His proof relied on Wasserstein’s curvature whose positivity is guaranteed by the discrete
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Bakry–Émery criterion. In fact, this criterion ensures that I (ρ) is finite and so when the space of Lipschitz functions
is considered, the second condition in his Lemma 5.4 is equivalent to our Hypothesis B. However our Hypothesis A
and the first condition in his Lemma 5.4 are not comparable.

Even though our hypotheses are quite natural with our method, they seem complicated to be verified. Next we give
two classical birth–death processes to show how such hypotheses are satisfied.

4.2. Two classical examples

The M/M/1 queueing process
The M/M/1 queueing process is a simple birth–death process whose generator is given for any function f on N by,

Lf (i) = λ
(
f (i + 1) − f (i)

) + ν1i 	=0
(
f (i − 1) − f (i)

)
, i ∈ N,

where the positive numbers λ and ν correspond respectively to the input rate and service rate of the queue: the
independent and identically distributed interarrival times and independent and identically distributed service times of
the customers follow an exponential law with respective parameters λ and ν. We assume here that σ := λ/ν < 1, then
the process is ergodic and its reversible invariant probability π is the geometric distribution with parameter σ , i.e.,

πk = (1 − σ)σ k, ∀k ≥ 0.

For this simple example, we have

Proposition 4.9. Let (Xt )t≥0 be the M/M/1 queueing process defined above. Suppose that π(g) = 0 and K :=
1

ν−λ
supk≥1 |∑∞

i=0 πig(i + k)| < ∞. Then for any function φ ∈ Cc and t ≥ 0, we have

Eπ

[
φ

(∫ t

0
g(Xs)ds

)]
≤ E

[
φ
(
KN(λ+ν)t − (λ + ν)Kt

)]
. (4.5)

Proof. By Theorem 4.5, it is sufficient to verify the Hypotheses A and B. We have

sup
k≥1

∣∣∣∣
∑∞

i=k πig(i)

πkak

∣∣∣∣ = sup
k≥1

∣∣∣∣∣1

ν

∞∑
i=k

σ ig(i)

σ k

∣∣∣∣∣ = 1

ν
sup
k≥1

∣∣∣∣∣
∞∑
i=0

σ ig(i + k)

∣∣∣∣∣
= 1

ν
(1 − σ)−1 sup

k≥1

∣∣∣∣∣
+∞∑
i=0

πig(i + k)

∣∣∣∣∣ = K < ∞.

Furthermore, the Hypothesis B is verified as the Hypothesis A since we obtain∥∥Γ (f )
∥∥∞ ≤ (λ + ν)K2 < +∞. �

Remarks 4.10. Suppose that ρ satisfies

C(ρ) := sup
k≥1

∞∑
i=0

πi

(
ρ(i + k) − ρ(i)

)
< ∞.

Then Proposition 4.9 is verified with K = C(ρ)(ν − λ) for any g ∈ C0
Lip(ρ).

The M/M/∞ queueing process
The M/M/∞ model is a particular birth–death process whose generator L is given for any functional f on N by,

Lf (i) = λ
(
f (i + 1) − f (i)

) + νi
(
f (i − 1) − f (i)

)
,

where λ, ν are two positive numbers. Then this process is ergodic with reversible invariant probability π, the Poisson
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measure on N with parameter σ := λ/ν, i.e.

πk = e−σ σ k

k! , k ∈ N.

For this model, we have

Proposition 4.11. Given a function g satisfying π(g) = 0 and

sup
k≥1

√
k
|∑+∞

i=k σ ig(i)/i!|
νkσ k/k! ≤ K, (4.6)

where K is a positive constant, we have for any φ ∈ Cc and t ≥ 0,

Eπ

[
φ

(∫ t

0
g(Xs)ds

)]
≤ E

[
φ
(
KN(λ+ν)t − (λ + ν)Kt

)]
. (4.7)

Proof. As for M/M/1 model, we verify the Hypotheses A and B. Indeed,

sup
k≥1

∣∣∣∣∣
+∞∑
i=k

πig(i)

πkak

∣∣∣∣∣ = sup
k≥1

∣∣∣∣∣
+∞∑
i=k

σ i

i! g(i)

∣∣∣∣∣ (k − 1)!
νσ k

≤ sup
k≥1

K√
k

= K,

which implies the Hypothesis A and moreover |f (k − 1) − f (k)| ≤ K√
k
. As a consequence,

∥∥Γ (f )
∥∥∞ ≤ (λ + ν)K2,

the Hypothesis B. �

Here we translate again the above proposition to Lipschitz space.

Corollary 4.12. Take ρ as ρ(i) = √
i for any i ≥ 0. Then the condition (4.6) is satisfied with K = eσ ‖g‖Lip(ρ)/ν for

any function g ∈ C0
Lip(ρ).

Proof. For any i ≥ 1, k ≥ 1, the following inequality holds(
k + i

k

)
:= (k + i)!

i!k! ≥
(

i + k

1

)
= i + k, (4.8)

where
(
k+i
k

)
is the combination function. Therefore we have

sup
k≥1

√
k
|∑+∞

i=k σ ig(i)/i!|
σkνk/k! ≤ sup

k≥1

∑+∞
i=k σ i(ρ(i) − π(ρ))/i!

σkν
√

k/k! ‖g‖Lip(ρ)

≤ sup
k≥1

1

ν

∞∑
i=0

σ ik!
(i + k)!

√
i + k√

k
‖g‖Lip(ρ)

≤ 1

ν

(
1 + sup

k≥1

∞∑
i=1

σ i
√

i + k

i!(i + k)
√

k

)
‖g‖Lip(ρ)

≤ 1

ν

(
1 +

∞∑
i=1

σ i

i!

)
‖g‖Lip(ρ) = eσ

ν
‖g‖Lip(ρ),

where the first inequality follows from Lemma 2.5, the positivity of π(ρ) guarantees the second one, and the third is
due to the inequality (4.8). The proof is now complete. �
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Remarks 4.13. In fact, such a function ρ of order 1/2 is optimal in the sense that Corollary 4.12 fails when ρ(k) =
ka, k ≥ 0 for any a > 1/2. Joulin [13] worked on this model with the metric d(i, j) = ∑j

k=i
1√
k

for any 1 ≤ i ≤ j.

Since for any i ≥ 1,

1

2
√

i + 1
≤ √

i + 1 − √
i ≤ 1

2
√

i
,

his metric is equivalent to ours. In addition, Guillin et al. in [11] studied this model with the same metric while they
obtained a Gaussian tail estimation via information inequality.
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