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Abstract. Let (X,Y ) be a random couple in S × T with unknown distribution P. Let (X1, Y1), . . . , (Xn,Yn) be i.i.d. copies
of (X,Y ), Pn being their empirical distribution. Let h1, . . . , hN :S �→ [−1,1] be a dictionary consisting of N functions.
For λ ∈ R

N, denote fλ := ∑N
j=1 λjhj . Let � :T × R �→ R be a given loss function, which is convex with respect to the

second variable. Denote (� • f )(x, y) := �(y;f (x)). We study the following penalized empirical risk minimization prob-
lem

λ̂ε := argmin
λ∈RN

[
Pn(� • fλ) + ε‖λ‖p

�p

]
,

which is an empirical version of the problem

λε := argmin
λ∈RN

[
P(� • fλ) + ε‖λ‖p

�p

]

(here ε ≥ 0 is a regularization parameter; λ0 corresponds to ε = 0). A number of regression and classification prob-
lems fit this general framework. We are interested in the case when p ≥ 1, but it is close enough to 1 (so that p − 1
is of the order 1

logN
, or smaller). We show that the “sparsity” of λε implies the “sparsity” of λ̂ε and study the im-

pact of “sparsity” on bounding the excess risk P(� • f
λ̂ε ) − P(� • fλ0) of solutions of empirical risk minimization prob-

lems.

Résumé. Soit (X,Y ) un couple aléatoire à valeurs dans S × T et de loi P inconnue. Soient (X1, Y1), . . . , (Xn,Yn) des ré-
pliques i.i.d. de (X,Y ), de loi empirique associée Pn. Soit h1, . . . , hN :S �→ [−1,1] un dictionnaire composé de N fonctions.
Pour tout λ ∈ R

N, on note fλ := ∑N
j=1 λjhj . Soit � :T × R �→ R fonction de perte donnée que l’on suppose convexe en la

seconde variable. On note (� • f )(x, y) := �(y;f (x)). On étudie le problème de minimisation du risque empirique pénalisé sui-
vant

λ̂ε := argmin
λ∈RN

[
Pn(� • fλ) + ε‖λ‖p

�p

]
,

qui correspond à la version empirique du problème

λε := argmin
λ∈RN

[
P(� • fλ) + ε‖λ‖p

�p

]

(ici ε ≥ 0 est un paramètre de régularisation; λ0 correspond au cas ε = 0). Ce cadre général englobe un certain nombre de pro-
blèmes de régression et de classification. On s’intéresse au cas où p ≥ 1, mais reste proche de 1 (de sorte que p − 1 soit de l’ordre

1
logN

, ou inférieur). On montre que la “sparsité” de λε implique la “sparsité” de λ̂ε . En outre, on étudie les conséquences de la
“sparsité” en termes de bornes supérieures sur l’excès de risque P(� • f

λ̂ε ) − P(� • fλ0 ) des solutions obtenues pour les différents

problèmes de minimisation du risque empirique.
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1. Introduction

Let (X,Y ) be a random couple in S ×T , where S and T are measurable spaces with σ -algebras S and T , respectively.
The distribution P of (X,Y ) is unknown, but the training data (X1, Y1), . . . , (Xn,Yn) consisting of n i.i.d. copies of
(X,Y ) is available. The distribution of X will be denoted by Π.

Let � :T × R �→ R+ be a loss function. We will assume in what follows that, for all y ∈ T , �(y, ·) is convex. For
a function f :S �→ R, denote (� • f )(x, y) := �(y,f (x)). Let F be a convex class of measurable functions on S.

Consider the following convex risk minimization problem:

E�
(
Y,f (X)

) = P(� • f ) −→ min, f ∈ F . (1.1)

Since the distribution P is not known, the �-risk P(�•f ) is estimated by its empirical version (the empirical �-risk)
defined as

n−1
n∑

j=1

�
(
Yj , f (Xj )

) = Pn(� • f ),

where Pn is the empirical distribution based on the sample (X1, Y1), . . . , (Xn,Yn), which leads to the following
empirical version of problem (1.1):

Pn(� • f ) −→ min, f ∈ F . (1.2)

In many applications, the random variable X represents an observable instance whereas Y is not observable and is
to be predicted based on the observation of X. Binary classification, in which T = {−1,1}, is a particular example of
this problem. In this case, the loss function is often defined as �(y,u) = φ(yu) with a decreasing convex function φ

satisfying the condition φ(u) ≥ I(−∞,0](u). This choice is typical in so called large margin classification methods such
as boosting and kernel machines. If f∗ denotes the function that minimizes the �-risk over the set of all measurable
functions f, then under very mild assumptions sign(f∗) is a classifier that minimizes the generalization error over
the set of all binary classifiers (called the Bayes classifier). Another example is regression with random design. In
this case, T := R and one can use, for instance, �(y,u) := (y − u)2 (L2-regression or the least squares method), or
�(y,u) := |y − u| (L1-regression or the least absolute deviations method).

In the case of very large function classes, the empirical risk minimization can easily lead to overfitting and to avoid
this various techniques of penalization for complexity of function f have been suggested.

Let H := {h1, . . . , hN } be a given set of functions from S into [−1,1] called a dictionary. Given λ ∈ R
N, denote

fλ :=
N∑

j=1

λjhj .

The set

l.s.(H) := {
fλ: λ ∈ R

N
}

is the linear span of H. Our main interest is in the case when the cardinality N of the dictionary H is very large
(larger or much larger than the sample size n), and direct minimization of the empirical �-risk over l.s.(H) can result
in overfitting. Because of this, one can consider instead the following penalized empirical risk minimization problem:

λ̂ε := argmin
λ∈RN

[
Pn(� • fλ) + ε‖λ‖p

�p

]
, (1.3)
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where p > 0,

‖λ‖p
�p

:=
N∑

j=1

|λj |p,

and ε > 0 is a regularization parameter.
Consider the following distribution dependent version of the problem (1.3):

λε := argmin
λ∈RN

[
P(� • fλ) + ε‖λ‖p

�p

]
. (1.4)

In particular,

λ0 := argmin
λ∈RN

P (� • fλ),

and we assume in what follows that λ0 exists. It is easy to see that for all ε ≥ 0 ‖λε‖�p ≤ ‖λ0‖�p , and it will be shown

(under some assumptions on the loss �) that the norm of the empirical solution λ̂ε is dominated (up to a constant) by
the norm of λ0. This essentially means that true and empirical solutions are in an �p-ball of certain radius which will
be involved as a parameter in some of our bounds.

For a given λ ∈ R
N, the excess risk of fλ will be defined as

E (fλ) := P(� • fλ) − P(� • fλ0)

= P(� • fλ) − inf
u∈RN

P (� • fu).

In the cases when the true solution λ0 is sparse in the sense that most of the coefficients λ0
j are equal to zero, or

at least approximately sparse in the sense that the majority of the coefficients are very small and insignificant, the
approach based on penalized empirical risk minimization (1.3) often leads to a satisfactory estimation of λ0 or fλ0 .

The most straightforward choice of p, that provides very strong direct penalization for nonsparsity of the solution, is
the limit case p = 0. In this case the complexity penalty formally becomes

‖λ‖p

�p
:=

N∑
j=1

|λj |0 =
N∑

j=1

I
(|λj | > 0

)
,

which is just the number of nonzero coefficients. Equivalently, one can consider 2N models corresponding to various
choices of a subset J ⊂ {1, . . . ,N} and such that λj = 0, j /∈ J. For each of the models, the empirical risk mini-
mization is performed over the linear span of functions {hj , j ∈ J } and then one of the models is selected based on
minimization of penalized empirical risk with complexity penalty depending on the dimension of the model

d(J ) := #(J ).

It is not hard to analyze the performance of this method in sparse problems using general theory of excess risk bounds
and model selection in empirical risk minimization (see, e.g., [1,16,19,20]). However, if N is very large, solving
2N empirical risk minimization problems becomes computationally intractable (even when each of the problems is
convex due to the choice of the loss function �). This difficulty is well known in various model selection problems in
statistics (for instance, variable selection in regression models). As an alternative, other values of p have been tried,
the value p = 1 being by far the most popular. This is related to the fact that it is the smallest value of p that makes
the optimization problem (1.3) convex and hence computationally feasible (we are not discussing here any specific
algorithms of solving the convex optimization problem (1.3); as a general reference, see [3]). On the other hand, the
�p-norms with small values of p penalize more for nonsparsity, which is the goal here. Also, the solution of (1.3) is
inevitably in an �p-ball of a finite radius. When the dimension N is large and p > 1, the �p-balls are becoming very
large while for p = 1 the balls are smaller and the empirical processes indexed by such sets are more manageable.
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In statistics, the choice p = 1 leads to LASSO penalties in regression and is related to soft thresholding in non-
parametric statistics (see, e.g., [25]). It possesses a number of attractive properties such as shrinkage of coefficients
and “automatic” variable selection. Moreover, recently there has been intensive study of the problem of sparse signal
recovery via �1-norm minimization and a number of interesting results, with some relationship to what is discussed
below, have been proved (see [6–8,10–13,21,24]), and further references therein). A typical problem considered in
these papers can be formulated (in our notations) as follows. Suppose that for some λ0 := �λ0 ∈ R

N

Yj = fλ0(Xj ), j = 1, . . . , n.

This can be rewritten as a linear system �y = A�λ0, where �y is a vector-column of dimension n with entries Yj and A is
an n×N matrix with entries hi(Xj ). If N > n, the system is underdetermined. However, if it has a “sufficiently sparse
solution,” it was shown that this solution can be found by minimizing the �1-norm of λ := �λ subject to constraints
�y = A�λ (which is a linear programming problem). Moreover, this result has been extended in various directions to
allow the noise in the measurements Yj (see [6] and references therein).

This problem can be also viewed as a version of optimal linear aggregation of given functions h1, . . . , hN (that
can be statistical estimates based on an independent data set, for instance, pre-trained base classifiers in classification
setting). Aggregation techniques, especially in the case of L2-regression, have been introduced in [23] and [28] and
studied extensively in [4,5,9,26,29] among others. Bunea, Tsybakov and Wegkamp [4,5], Koltchinskii [15] and van
de Geer [14] also use �1-type penalization and study the role of sparsity in this type of problems.

We will consider in what follows the values of p > 1, but close enough to 1. To be specific, suppose that p > 1
and q > 1 are conjugate numbers in the sense that p−1 + q−1 = 1. We define qN such that N1/qN = e. As a result,
qN = logN and its conjugate

pN = 1 + (logN − 1)−1.

We will use p ∈ [1,pN ]. Note that with this choice of p (by Hölder’s inequality)

‖λ‖�p ≤ ‖λ‖�1 ≤ N1/q‖λ‖�p = e‖λ‖�p , (1.5)

so, essentially, �p-penalization is equivalent to �1-penalization. However, we will see that the fact that for p > 1 the
penalty is a strictly convex smooth function of λ gives some advantages in the analysis of the problem. Some of the
results below apply to all the values of p ∈ [1,pN ], but others are true only for p such that p − 1 � 1/ logN. It is
easy to see that under very mild continuity assumption on the loss function the solution λ̂ε,p of (1.3) converges as
p → 1 (for fixed ε,N ) to λ̂ε,1, which is the LASSO-estimator. However, if p − 1 � 1/ logN (which is of special
interest in this paper), then the difference p − 1 can be substantial even for large enough values of N. Hence, λ̂ε,p can
significantly deviate from the LASSO-estimator if N is large, but logN is not.

Our main goal is to give precise meaning to the following claim: the “sparsity” of λε implies the “sparsity” of λ̂ε.

We also would like to explore how the sparsity of the problem influences the excess risk of f
λ̂ε

E (f
λ̂ε ) = P(� • f

λ̂ε ) − P(� • fλ0),

and also the L2-errors of estimation of fλ0 and fλε by f
λ̂ε and the �1-errors of estimation of λ0 or λε by λ̂ε.

It is not hard to imagine situations in which the solution λε of the “true” problem is sparse. For instance, suppose
there exists only a small subset J ⊂ {1,2, . . . ,N} of “relevant features” for prediction of Y (the rest of the features
being “irrelevant”) such that

EJ chj (X) = 0, j ∈ J c,

where EJ c denotes the conditional expectation given Y,hj (X), j ∈ J. In particular, this assumption holds if the sets
of random variables

{
Y,hj (X), j ∈ J

}
and

{
hj (X), j /∈ J

}
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are independent and Ehj (X) = 0, j /∈ J. Then, using Jensen’s inequality, we get

E�
(
Y,fλ(X)

) + ε‖λ‖p
�p

= EEJ c�
(
Y,fλ(X)

) + ε‖λ‖p
�p

≥ E�
(
Y,EJ cfλ(X)

) + ε‖λ‖p
�p

= E�

(
Y,

∑
j∈J

λjhj (X) + EJ c

∑
j∈J c

λjhj (X)

)
+ ε

N∑
j=1

|λj |p

≥ E�

(
Y,

∑
j∈J

λjhj (X)

)
+ ε

∑
j∈J

|λj |p,

and since the last inequality is strict if λj = 0 for some j ∈ J c, it follows that for all ε > 0, λε
j = 0, j /∈ J (so, λε is

“sparse”).
Now we introduce the definition of a “sparsity function” of vector λ ∈ R

N : for d = 0,1, . . . ,N, define

γd(λ) := min

{∑
j /∈J

|λj | : #(J ) = d,J ⊂ {1,2, . . . ,N}
}

=
N∑

j=d+1

|λ[j ]|,

where

|λ[1]| ≥ |λ[2]| ≥ · · · ≥ |λ[N ]|
is a nonincreasing rearrangement of the coefficients. Obviously, γd(λ) is a nonincreasing function of d. If γd(λ) = 0,

then there are at most d nonzero coordinates of vector λ ∈ R
N and the corresponding subset {hj : j ∈ J } of the

dictionary consists of “relevant” functions (“features”). In general, the “sparsity” of λ is characterized by the rate of
decay of γd(λ) as d increases and if γd(λ) becomes small for not too large value of d (or, equivalently, if there exists
J ⊂ {1, . . . ,N} with #(J ) = d such that

∑
j /∈J |λj | is “small”), it makes sense to call λ “approximately sparse” and

still consider sets {hj : j ∈ J } of functions (“features”) that correspond to the d largest values of |λj | and thus are
“relevant” for representation of fλ. Such quantities as γd(λ) have been used before (along with some other, more
sophisticated, approaches to measuring the complexities of linear or convex combinations) in so-called margin type
bounds on generalization error in classification, see [17].

In Section 2, we provide a brief description of the main results of the paper before formulating and proving them
in subsequent sections. In Section 3, it is shown that the empirical solution λ̂ε belongs to a ball of radius comparable
to ‖λ0‖�1 with a high probability and, based on this fact, preliminary bounds on the excess risk of f

λ̂ε are established.
In Section 4, oracle inequalities for the excess risk with rather strong dependence on the “well posedness” of the
dictionary are presented. In Sections 5 and 6, we develop new bounds on excess risk, L2(Π)-error and sparsity of the
empirical solution with much weaker dependence on the properties of the dictionary. Several technical facts needed
in the proofs (primarily, bounds on Rademacher processes) are given in the Appendix.

2. A brief description and discussion of the main results

2.1. Global and local characteristics of linear independence

The analysis of the role of sparsity in this type of problem usually requires the assumption of linear independence in
L2(Π) of the “relevant” functions {hj : j ∈ J } and, moreover, even certain conditions about “weakness” of correla-
tions between the “relevant” functions {hj : j ∈ J } and “irrelevant” functions {hj : j /∈ J } in the dictionary (at least in
some form). Various versions of such assumptions have been used in recent papers on sparse function reconstruction
(see, for instance, “uniform uncertainty principle” or “restricted isometry” conditions in [6], which are assumptions
on the n×N matrix A = (hj (Xi))i=1,n;j=1,N )), on aggregation of regression estimates [4,5], on aggregation in sparse
classification with convex loss [15], or on analysis of LASSO penalization in other risk minimization problems [14].
Obviously, the linear independence assumption (at least of the “relevant” part of the dictionary) is of importance if
the vector λ0 is to be estimated by λ̂ε: otherwise, λ0 is not even well defined, so, the problem becomes unidentifiable.
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Moreover, in this case, it is necessary to deal with some quantitative measures of identifiability (linear independence)
to ensure reasonable accuracy of the solution. However, when the goal is not to recover the vector λ0, but rather to
estimate the function fλ0 in L2(Π)-norm, or to ensure that the excess risk of f

λ̂ε is small, the role of the assumptions
of this type is more questionable and we will see that some interesting results can be obtained without them.

We describe below several quantitative measures of linear independence that will be used in what follows. First,
define for any J ⊂ {1, . . . ,N}

Γ (J ) := inf

{∥∥∥∥∑
j∈J

αjhj

∥∥∥∥
L2(Π)

:
∑
j∈J

|αj | = 1

}
,

which is strictly positive iff {hj : j ∈ J } are linearly independent in L2(Π).

Secondly, we will use

Γ2(J ) := inf

{∥∥∥∥∑
j∈J

αjhj

∥∥∥∥
L2(Π)

:
∑
j∈J

|αj |2 = 1

}
.

Clearly, κ(J ) := Γ 2
2 (J ) is equal to the smallest eigenvalue of the nonnegatively definite Gram matrix (〈hi,

hj 〉L2(Π))i,j∈J .

We will also use a modification of Γ (J ) that will be denoted Γ̃ (J ) and is defined as

Γ̃ (J ) := inf

{∥∥∥∥∥
N∑

j=1

αjhj

∥∥∥∥∥
L2(Π)

:
∑
j∈J

|αj | = 1

}
.

Note that Γ̃ (J ) depends on the whole dictionary, not just on {hj : j ∈ J }, as Γ (J ) does. Because of this, one can call
Γ̃ (J ) a global characteristic of the dictionary whereas Γ (J ) and Γ2(J ) are its local characteristics.

Denote the linear span of {hi : i ∈ J } by LJ . We will need the following quantity which characterizes the “cor-
relation” (or the angle) between the subspaces LJ and LJc (compare with the definition of canonical correlations in
multivariate statistical analysis):

ρ(J ) := sup
f ∈LJ ,g∈LJc ,f,g =0

∣∣∣∣ 〈f,g〉L2(Π)

‖f ‖L2(Π)‖g‖L2(Π)

∣∣∣∣.
Finally, we will use one more quantity defined as follows. Given J ⊂ {1, . . . ,N}, let PJ be the orthogonal projector

(in the Hilbert space L2(Π)) on LJ . For j = 1, . . . ,N, let h′
j := PJ hj and

U(J ) := max
{∥∥hj − h′

j

∥∥∞: 1 ≤ j ≤ N
}

(essentially, U(J ) is the maximal L∞-error of L2-optimal linear predictors of hj , j = 1, . . . ,N, based on
{hj : j ∈ J }).

The following simple proposition describes some relationships between these quantities used below (its proof is
given in the Appendix).

Proposition 1. For all nonempty J ⊂ {1, . . . ,N},
(i) Γ (J ) ≤ 1√

d(J )
;

(ii) Γ (J ) ≥ Γ2(J )√
d(J )

=
√

κ(J )
d(J )

;
(iii) 1 ≥ Γ (J ) ≥ Γ̃ (J ) ≥ Γ (J )

√
1 − ρ2(J );

(iv) for κ = κ({1, . . . ,N}), Γ̃ (J ) ≥
√

κ
d(J )

;
(v) U(J ) ≤ 1

Γ (J )
+ 1 ≤

√
d(J )

Γ2(J )
+ 1 =

√
d(J )
κ(J )

+ 1;
(vi) If hj , j = 1, . . . ,N , are orthogonal, then U(J ) ≤ 1.
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Note that despite the fact that U(J ) is a global characteristic of the dictionary, it is bounded from above by local
characteristics (see bound (v) in Proposition 1).

2.2. Oracle inequalities

It has become common in Nonparametric Statistics to express optimality properties of statistical estimators in the form
of so-called oracle inequalities. In the context of this paper, the �p penalization with p ≥ 1 is being used as a “convex
relaxation” of �0-penalization that is the most suitable penalization to recover sparse solutions of the problem, but it
is computationally intractable. Therefore, it is desirable to prove oracle inequalities showing that the solution λ̂ε (for
p = 1 or for p > 1, but close to 1) “mimicks” the �0-oracle. This is the approach taken by Bunea, Tsybakov and
Wegkamp [4,5] in the case of L2-regression and by van de Geer [14] in the case of other loss functions. We describe
some of the results of this type in Section 4. In particular, we show (see Theorem 2) that for p ∈ [1,pN ] and for all
ε > 0

E (fλε ) ≤ inf
λ∈RN

[
3E (fλ) +

2p2‖λ‖2(p−1)
�p

τ (‖λ‖�1 ∨ e‖λ0‖�1)Γ̃
2(Jλ)

ε2
]

=: O(�0; ε),

where

Jλ := supp(λ) = {j : λj = 0}
and τ is defined in (3.1) (the dependence of τ on ‖λ‖�1 ∨ e‖λ0‖�1 is related to the fact that this quantity provides an
upper bound on uniform norms of the functions fλε , fλ). Moreover, if λ̄ denotes the value of λ for which the infimum
in the expression for O(�0; ε) is attained, then

ε
∑
j /∈Jλ̄

∣∣λε
j

∣∣p ≤ O(�0; ε)

(which means “approximate sparsity” of λε provided that O(�0; ε) is small and the cardinality of Jλ̄ is not very large).
Since (see Proposition 1, (ii) and (iii))

1

Γ̃ 2(Jλ)
≤ d(Jλ)

κ(Jλ)(1 − ρ2(Jλ))
,

this result can be interpreted as follows. Suppose there exists a vector λ ∈ R
N such that

(a) λ is sparse, i.e. d(Jλ) is small;
(b) κ(Jλ) is not very small, i.e. functions {hj : j ∈ Jλ} have a “good” degree of linear independence;
(c) ρ2(Jλ) is bounded away from 1, i.e. subspaces LJλ and LJc

λ
are not “too correlated”;

(d) the excess risk E (fλ) is small.

Then O(�0; ε) is small and the solution λε obtained via �p-penalization has small excess risk and is approximately
sparse.

Theorem 3 shows that roughly the same is true, under the assumption that ε ≥ D

√
A logN

n
and with probability at

least 1 − N−A, for the solution λ̂ε of the empirical risk minimization problem (1.3) with �p-penalty, p ∈ [1,pN ],
which provides an oracle inequality on the excess risk of empirical solution. In addition, Corollary 2 gives an upper
bound on �1-distance from the empirical solution to the “oracle” solution.

However, the major drawback of these results is that O(�0; ε) cannot be, strictly speaking, viewed as an �0-oracle
since the error term depends on 1

Γ̃ 2(Jλ)
, or in a more apparent version on d(Jλ)

κ(Jλ)(1−ρ2(Jλ))
, and not just on the �0-norm

of λ that is equal to d(Jλ). Note that in the case of �0-penalization the error term in the corresponding oracle inequality
would be of the order d(Jλ)

n
(up to a logarithmic factor) which is known to be optimal (see, e.g., [26] for minimax

lower bounds in the case of L2-regression). On the other hand, the oracle of Theorem 3 favors solutions that are not
necessarily sparse provided that they are “well posed” in the sense that κ(Jλ) is not too small and ρ2(Jλ) is not too
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close to 1. It is not clear (at least to the author and at least at the moment) to which extent this “well posedness” is really
needed and to which extent it is related to the existing methods of the proof of oracle inequalities. Such quantities
as Γ̃ (J ), κ(J ), ρ(J ) heavily depend on the unknown distribution P which makes the performance of the method
unpredictable unless one tries to estimate these quantities based on the data. But even if one does it and discovers that
the oracle inequalities do not guarantee that the excess risk is small, the question remains whether it means that the
�1-penalization yields a bad solution, or the oracle inequalities available so far are not good enough.

2.3. Excess risk bounds with weak dependence on the dictionary

In Sections 5 and 6 (which are the main part of the paper), we explore another approach to the problem based on
analyzing separately two parts of the excess risk of f

λ̂ε : the random error P(�•f
λ̂ε )−P(�•fλε ) and the approximation

error P(� • fλε ) − P(� • fλ0). It happens that the analysis of the random error relies much less on such characteristics
as Γ̃ (J ), κ(J ), ρ(J ), etc. and it is possible to bound this error by a quantity of optimal order. However, the analysis
becomes more complicated and is based on extracting some information about the sparsity of empirical solution λ̂ε

from necessary conditions of extrema in optimization problems (1.3) and (1.4) defining λ̂ε and λε, respectively. So
far, we have been able to complete this analysis only for p ∈ (1,pN ], excluding a very important case of p = 1 (and in
some of the statements it is actually required that p − 1 � (logN − 1)−1). It remains to be understood whether these
restrictions are really needed and there is some advantage in using the �p-penalties with p > 1, or it is only related to
our method of proof (the current version of the method definitely does not work for p = 1).

More specifically, for all p ∈ (1,pN ], we prove (see Theorem 5) that, for d = d(J ) and for

ε ≥ D
(
1 + L

∥∥λ0
∥∥

�1

)(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))
, (2.1)

the assumption λε
j = 0, j /∈ J implies that with probability at least 1 − N−A

∣∣E (f
λ̂ε ) − E (fλε )

∣∣ ≤ K2 d + A logN

n
+ K

√
E (fλε )

τ (e‖λ0‖�1)

√
d + A logN

n
(2.2)

(here D,L are constants depending only on �, L = 0 if �′
u(y,u) is uniformly bounded, and K is a constant depending

on � and on ‖λ0‖�1 ). The only dependence of this bound on the “well-posedness” of the dictionary is through the
quantity U(J ) involved in the expressions for the threshold of ε in (2.1). Moreover, for large enough ε, namely, for

ε ≥ D
(
1 + L

∥∥λ0
∥∥

�1

)(√
A logN

n
∨

√
d

n

)
,

there is no dependence on the well-posedness of the dictionary whatsoever. Also, for all

ε ≥ D
(
1 + L

∥∥λ0
∥∥

�1

)√
A logN

n
,

the assumption U(J ) ≤
√

An
logN

implies condition (2.1). Since U(J ) ≤
√

d(J )
κ(J )

+ 1, this is the case, for instance, if

κ(J ) ≥ d logN

n

(
1 −

√
logN

n

)−1

,

so things can get really bad only if κ(J ) is really small. Note also that there is no dependence at all on the “irrelevant
part” of the dictionary {hj : j /∈ J } (which is the case in Theorem 3 because of the presence of global characteristics,
such as Γ̃ (J ) or ρ(J ), in the bounds).

Essentially, these results show that, in the case of �p-penalization with p > 1, the possibility to achieve the optimal
size of the error in sparse problems ( d

n
up to logarithmic factors) is related only to the behavior of the approximation

error E (fλε ) (if it behaves nicely, so does the excess risk of the empirical solution).
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Combining this with simple bounds on approximation error (see Lemma 1) yields the following excess risk bound
(see also Corollary 4)

E (f
λ̂ε ) ≤ K2p d(J )

κ(J )

A logN

n
,

that holds with probability at least 1 − N−A for

ε = D
(
1 + L

∥∥λ0
∥∥

�1

)√
A logN

n

under the assumption that λε
j = λ0

j = 0, j /∈ J.

The assumption that λε
j = 0, j /∈ J means sparsity of λε (provided that the set J is small). It is more realistic,

however, to expect that λε is only “approximately sparse.” This situation is analyzed in Section 6. In particular,
Theorem 7 provides, for p = pN, the bound

∣∣E (f
λ̂ε ) − E (fλε )

∣∣ ≤ Ω2 + Ω

√
E (fλε )

τ (e‖λ0‖�1)
,

where

Ω2 := K2 d + A logN

n
∨ K

∑
j /∈J

∣∣λε
j

∣∣(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))
,

that holds with probability at least 1 − N−A for arbitrary A ≥ 1 and for all

ε ≥ D
(
1 + L

∥∥λ0
∥∥

�1

)
logN

(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))
(2.3)

(as before, d = d(J )). Note that in (2.3) the threshold of ε is now multiplied by an extra factor of the order logN. It
can be seen from the proofs that this logN is, in fact, q − 1, where q is such that 1

p
+ 1

q
= 1. This is what prevented

us from extending the result to the values of p closer to 1: when p → 1, the factor q − 1 and, thus, the threshold
tend to infinity. This factor is annoying since increasing the value of ε might also increase the approximation error
P(�•fλε )−P(�•fλ0), which could lead to an extra log-factor in the overall excess risk bound. However, eliminating
this factor seems to be beyond the scope of our method. It is not even clear whether it can be eliminated without
imposing some “well-posedness” assumptions on the dictionary, something we are trying to avoid here.

The above bound can be combined with the approximation error bound of Theorem 2 to give an oracle inequality
close to the one of Theorem 3 (see Corollary 6). However, Theorem 7 does contain more information than this.
Essentially, it tells us that if the true solution λε (a) has small excess risk and (b) is “approximately” sparse, then
the empirical solution λ̂ε also possesses these properties, and this basic fact is true with almost no need to assume
“well-posedness” of the dictionary. From this point of view, Theorem 2 provides just one possible way to quantify
properties (a) and (b) of λε (and this particular way does require some (rather strong) form of “well-posedness” of the
dictionary).

The key ingredients of the proofs of these results are general bounds on γd(λ̂ε) in terms of γd(λε) and vice versa,
and also the bounds on the L2-error ‖f

λ̂ε − fλε‖L2(Π). In particular, we show (Theorem 4) that for p ∈ (1,pN ], for
all A ≥ 1, for d = d(J ), and for all ε satisfying the condition (2.1), the assumption λε

j = 0, j /∈ J , implies that with

probability at least 1 − N−A

γd

(
λ̂ε

) ≤
∑
j /∈J

∣∣λ̂ε
j

∣∣ ≤ K
(
1 + L

∥∥λ0
∥∥

�1

)d + A logN

nε

and

‖f
λ̂ε − fλε‖L2(Π) ≤ K

√
d + A logN

n
.
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For p = pN, we extend these “sparsity bounds” to the case when λε is “approximately sparse” (see Theorem 6).
At the end of Section 5, we provide some bounds on the �1-error of empirical solution. However, a serious study

of this problem is beyond the scope of this paper. The problem of estimation of the vector of coefficients λ0 is not
the same as estimation of the function fλ0 (one can expect much stronger dependence on the “well-posedness” of the
dictionary in the first problem).

In addition, it is possible to prove that for somewhat larger values of ε with a very high probability the condition
λε

j = 0 implies that λ̂ε
j is of the order N−B, where B can be arbitrarily large, and that the coefficients of λ̂ε and of λε,

in some sense, follow the same pattern (see Corollaries 3 and 5).
The methods used in the proofs of the main results are based on Talagrand’s concentration inequalities and on the

properties of empirical and Rademacher processes, as it has become common in learning theory literature (see, e.g.,
[2,16]).

Remark. It is worth mentioning that the form of the inequalities proved in the paper is related to the assumption
that the functions in the dictionary are uniformly bounded by 1. It is possible to take into account the size of the
L2(Π)-norm of these functions in the bounds and their L2(Πn)-norms in the definition of the penalty, but we are not
pursuing it for the sake of simplicity. More interestingly, it is possible (using moment inequalities for Rademacher
sums) to replace the logarithmic term A logN involved in the bounds by the following expression

A(q − 1)

(
N∑

j=1

‖hj‖q

Lq(Π)

)2/q

,

where q = p
p−1 . Note that if the functions hj are bounded by 1 and p = pN, then this expression is dominated by

e2A logN. If the sum
∑N

j=1 ‖hj‖q

Lq(Π) is of the order N, one is forced to use in the penalty the values of p ≤ pN

since for large values of p

(
N∑

j=1

‖hj‖q

Lq(Π)

)2/q

becomes of the order N2/q, which is prohibitively large. However, in the case when
∑N

j=1 ‖hj‖q

Lq(Π) is much smaller
than N (for instance, because many functions in the dictionary have small enough Lq(Π)-norms) it becomes possible
to use in the penalty the values of p that are significantly larger than 1 and still control the sparsity of the solution. In
principle, this opens a possibility of using the empirical Lq(Πn)-norms in order to choose the right value of p in the
penalty. The analysis of this circle of problems is beyond the scope of the paper.

3. Preliminary bounds

In what follows, we assume the following properties of the loss function �: for all y ∈ T , �(y, ·) is twice differentiable,
�′′
u is a uniformly bounded function in T × R,

sup
y∈T

�(y;0) < +∞, sup
y∈T

∣∣�′
u(y;0)

∣∣ < +∞

and

τ(R) := 1

2
inf
y∈T

inf|u|≤R
�′′
u(y,u) > 0, R > 0. (3.1)

Without loss of generality, we assume that, for all R, τ(R) ≤ 1 (otherwise, it can be replaced by a lower bound). In
particular, these assumptions imply that∣∣�′

u(y,u)
∣∣ ≤ L1 + L|u|, y ∈ T ,u ∈ R,
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with some constants L1,L ≥ 0, the fact frequently used in what follows. If �′
u is uniformly bounded, one can set

L = 0.

One of the consequences of these assumptions is that with some constant C > 0 depending only on �

τ
(‖λ‖�1 ∨ ∥∥λ0

∥∥
�1

)‖fλ − fλ0‖2
L2(Π) ≤ E (fλ) ≤ C‖fλ − fλ0‖2

L2(Π),

which is also used in the future. There are many important examples of loss functions satisfying these assumptions,
most notably, the quadratic loss �(y,u) := (y − u)2 in the case when T ⊂ R is a bounded set. In this case, τ(R) = 1
for all R. In regression problems with a bounded response variable, one can also consider more general loss functions
of the form �(y,u) := φ(y − u), where φ is an even nonnegative convex twice continuously differentiable function
with φ′′ uniformly bounded in R, φ(0) = 0 and φ′′(u) > 0, u ∈ R. In classification setting, one can choose the loss
�(y,u) = φ(yu) with φ being a nonnegative decreasing convex twice continuously differentiable function such that,
again, φ′′ is uniformly bounded in R and φ′′(u) > 0, u ∈ R. The loss function φ(u) = log2(1 + e−u), often called the
logit loss, is a typical example.

Many of the results below (for instance, the excess risk bounds of Section 4) are also true in a more general
situation, when the minimum of P(� • fλ) is not attained in R

N and the excess risk is defined as

E (fλ) = P(� • fλ) − P(� • f∗),

where f∗ is the minimum of the risk function f �→ P(� • f ) over all measurable real valued functions f, as it is
common in learning theory literature (see, e.g., [16]). In this case the analysis goes through with some additional
work (see [14] where this approach to the �1-penalization problem is taken).

Finally, it will be assumed throughout the paper that, for some γ > 0, N ≥ nγ and also that logN ≤ n (the last
assumption is related only to the fact that in the error terms of the bounds given in the paper the fraction logN

n
is often

involved). Some of the constants below might depend on γ (we do not always mention this further). Without these
assumptions, the results are still true with some extra terms. Since we are interested in the case of large N, we prefer
to impose the condition on N rather than to deal with these minor complications.

Warning. Throughout the paper, C usually is a constant depending on � and, sometimes, on γ (such that N ≥ nγ )
whose value might change from line to line without further notice.

We start with several simple observations.

1. For all ε2 ≥ ε1 ≥ 0,∥∥λε2
∥∥

�p
≤ ∥∥λε1

∥∥
�p

.

In particular, for all ε ≥ 0, ‖λε‖�p ≤ ‖λ0‖�p .

Indeed, according to the definitions,

P(� • fλε2 ) + ε2
∥∥λε2

∥∥p

�p
≤ P(� • fλε1 ) + ε2

∥∥λε1
∥∥p

�p

= P(� • fλε1 ) + ε1
∥∥λε1

∥∥p

�p
+ (ε2 − ε1)

∥∥λε1
∥∥p

�p

≤ P(� • fλε2 ) + ε1
∥∥λε2

∥∥p

�p
+ (ε2 − ε1)

∥∥λε1
∥∥p

�p
,

which immediately implies the bound.
2. For all ε2 ≥ ε1 ≥ 0

P(� • fλε2 ) − P(� • fλε1 ) ≤ ε2
(∥∥λε1

∥∥p

�p
− ∥∥λε2

∥∥p

�p

) ≤ ε2
∥∥λε1

∥∥p

�p
.

In particular, for all ε ≥ 0

E (fλε ) = P(� • fλε ) − P(� • fλ0) ≤ ε
∥∥λ0

∥∥p

�p
.
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The proof immediately follows from the previous bounds (note that statements 1 and 2 are also true for λ̂ε with
exactly the same proofs). Under sparsity of λε,λ0, the last bound can be improved.

Lemma 1. Suppose that for some ε > 0, some p ∈ [1,pN ] and for some J ⊂ {1, . . . ,N}
λε

j = λ0
j = 0, j /∈ J.

Then

∑
j∈J

∣∣λε
j − λ0

j

∣∣ ≤ p
‖λ0‖p−1

�p

τ (e‖λ0‖�1)Γ
2(J )

ε, (3.2)

E (fλε ) = P(� • fλε ) − P(� • fλ0) ≤ p2
‖λ0‖2(p−1)

�p

τ (e‖λ0‖�1)Γ
2(J )

ε2, (3.3)

and

‖fλε − fλ0‖L2(Π) ≤ p
‖λ0‖p−1

�p

τ (e‖λ0‖�1)Γ (J )
ε, (3.4)

where the function τ is defined in condition (3.1).

Proof. Indeed,

P(� • fλε ) − P(� • fλ0) ≤ ε
(∥∥λ0

∥∥p

�p
− ∥∥λε

∥∥p

�p

) ≤ ε
∑
j∈J

(∣∣λ0
j

∣∣p − ∣∣λε
j

∣∣p)

≤ εp
∑
j∈J

∣∣λ0
j

∣∣p−1∣∣λε
j − λ0

j

∣∣ ≤ εp
∥∥λ0

∥∥p−1
�p

∑
j∈J

∣∣λε
j − λ0

j

∣∣.
Note that for all λ ∈ R

N,

∣∣fλ(x)
∣∣ ≤

N∑
j=1

|λj |
∣∣hj (x)

∣∣ ≤ ‖λ‖�1 ≤ e‖λ‖�p

(we used that, for all j, ‖hj‖∞ ≤ 1). Since λ0 is the minimal point of λ �→ P(� • fλ), we have

P
(
�′ • fλ0

)
hk = 0, k = 1, . . . ,N,

and the second-order Taylor expansion and condition (3.1) imply that

P(� • fλε ) − P(� • fλ0) ≥ τ
(
e
∥∥λ0

∥∥
�1

)‖fλε − fλ0‖2
L2(Π)

(where we also used that ‖λε‖�p ≤ ‖λ0‖�p ). By the definition of Γ (J ),

‖fλε − fλ0‖L2(Π) ≥ Γ (J )
∑
j∈J

∣∣λε
j − λ0

j

∣∣.
Combining these bounds gives

εp
∥∥λ0

∥∥p−1
�p

∑
j∈J

∣∣λε
j − λ0

j

∣∣ ≥ P(� • fλε ) − P(� • fλ0) ≥ τ
(
e
∥∥λ0

∥∥
�1

)
Γ 2(J )

(∑
j∈J

∣∣λε
j − λ0

j

∣∣)2

,

which immediately implies (3.2)–(3.4). �
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Remarks. 1. Assuming only sparsity of λ0, i.e., that λ0
j = 0, j /∈ J, it is easy to get the following bounds:

E (fλε ) = P(� • fλε ) − P(� • fλ0) ≤ p2
‖λ0‖2(p−1)

�p

τ (e‖λ0‖�1)Γ̃
2(J )

ε2,

‖fλε − fλ0‖L2(Π) ≤ p
‖λ0‖p−1

�p

τ (e‖λ0‖�1)Γ̃ (J )
ε

and

∥∥λε − λ0
∥∥

�1
≤ C

‖λ0‖2(p−1)

�p
∨ ‖λ0‖2(1−1/p)

�p

τ (e‖λ0‖�1)Γ̃
2(J )

ε

with some constant C.

2. In the case when λε,λ0 are only “approximately sparse” the following version of the statements of Lemma 1
(with a slight modification of the proof) will be of interest. Suppose that J ⊂ {1, . . . ,N} is such that∑

j /∈J

∣∣λε
j

∣∣ ≤ ε and
∑
j /∈J

∣∣λ0
j

∣∣ ≤ ε.

Let d = d(J ). Then

∥∥λε − λ0
∥∥

�1
≤ 6

[ p‖λ0‖p−1
�p

τ (e‖λ0‖�1)Γ
2(J )

∨
( p‖λ0‖p−1

�p

τ (e‖λ0‖�1)Γ
2(J )

)1/2

∨ 1

Γ (J )
+ 2

]
ε, (3.5)

P(� • fλε ) − P(� • fλ0) ≤ 6p
∥∥λ0

∥∥p−1
�p

[ p‖λ0‖p−1
�p

τ (e‖λ0‖�1)Γ
2(J )

∨
( p‖λ0‖p−1

�p

τ (e‖λ0‖�1)Γ
2(J )

)1/2

∨ 1

Γ (J )
+ 2

]
ε2 (3.6)

and

∥∥fλε − fλ0

∥∥
L2(Π)

≤

√√√√6p‖λ0‖p−1
�p

τ (e‖λ0‖�1)

[ p‖λ0‖p−1
�p

τ (e‖λ0‖�1)Γ
2(J )

∨
( p‖λ0‖p−1

�p

τ (e‖λ0‖�1)Γ
2(J )

)1/2

∨ 1

Γ (J )
+ 2

]1/2

ε. (3.7)

Our next goal is to derive bounds on ‖λ̂ε‖�1 (which in view of (1.5) is the same as to bound ‖λ̂ε‖�p ) and to provide
our first bounds on the excess risk that are of the order O(ε).

Theorem 1. There exist constant D,L > 0 depending only on � such that, for all p ∈ [1,pN ], for all A ≥ 1 and for
all

ε ≥ D
(
1 + L

∥∥λ0
∥∥

�1

)√
A logN

n
,

the following bound holds

R
{∥∥λ̂ε

∥∥
�p

≥ 31/p
∥∥λ0

∥∥
�p

} ≤ N−A. (3.8)

Moreover, for some c depending only on � and for all

ε ≥ D
(
1 + L

∥∥λε/c
∥∥

�1

)√
A logN

n
,

the following bounds hold

P
{∥∥λ̂ε

∥∥
�p

≥ 31/p
∥∥λε/c

∥∥
�p

} ≤ N−A (3.9)
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and

R
{∥∥λ̂ε

∥∥
�p

≤ 3−1/p
∥∥λcε

∥∥
�p

} ≤ N−A. (3.10)

As a consequence, with some C depending only on �

P
{

E (f
λ̂ε ) ≥ C

(
1 + L

∥∥λ0
∥∥

�1

)∥∥λ0
∥∥

�1
ε
} ≤ N−A,

and a similar bound also holds for P(� • f
λ̂ε ) − P(� • fλε ).

Remarks. 1. If the loss function � has a bounded derivative with respect to the second variable, one can take L = 0.

2. It easily follows from the proof that in the condition on ε, needed for (3.8) to hold, one can replace the factor
1 + L‖λ0‖�1 by the uniform norm ‖�′ • fλ0‖∞ (or even by some Orlicz norms of the same function such as ψ1-norm).
For instance, in the case of L2-loss in regression problems with bounded noise, this would result in the following
condition on ε:

ε ≥ D
(
1 + ‖fλ0 − f∗‖∞

)√
A logN

n
,

where f∗ is the regression function. The difference might be of importance in statistical problems, but we ignore it
here and in what follows to simplify the formulation of the results.

Proof of Theorem 1. It follows from the definition of λ̂ε that

Pn(� • f
λ̂ε ) + ε

∥∥λ̂ε
∥∥p

�p
≤ Pn(� • fλ) + ε‖λ‖p

�p
, λ ∈ R

N.

By convexity of the function λ �→ Pn(� • fλ),

Pn(� • f
λ̂ε ) − Pn(� • fλ) ≥ Pn

(
�′ • fλ

)
(f

λ̂ε − fλ).

Therefore,

ε
∥∥λ̂ε

∥∥p

�p
≤ ε‖λ‖p

�p
+ Pn

(
�′ • fλ

)
(fλ − f

λ̂ε )

≤ ε‖λ‖p

�p
+ max

1≤k≤N

∣∣Pn

(
�′ • fλ

)
hk

∣∣∥∥λ̂ε − λ
∥∥

�1
,

which implies(
ε − max

1≤k≤N

∣∣Pn

(
�′ • fλ

)
hk

∣∣)∥∥λ̂ε
∥∥p

�p
≤

(
ε + max

1≤k≤N

∣∣Pn

(
�′ • fλ

)
hk

∣∣)‖λ‖p

�p
.

Under the assumption

ε > max
1≤k≤N

∣∣Pn

(
�′ • fλ

)
hk

∣∣,
we get

∥∥λ̂ε
∥∥p

�p
≤ ε + max1≤k≤N |Pn(�

′ • fλ)hk|
ε − max1≤k≤N |Pn(�′ • fλ)hk| ‖λ‖p

�p
. (3.11)

Let us set λ := λ0 in (3.11). It follows from the necessary conditions of the minimum of λ �→ P(� •fλ) at the point
λ0 that

P
(
�′ • fλ0

)
hk = 0, k = 1, . . . ,N.
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Therefore,

max
1≤k≤N

∣∣Pn

(
�′ • fλ0

)
hk

∣∣ = max
1≤k≤N

∣∣(Pn − P)
(
�′ • fλ0

)
hk

∣∣,
which, using Bernstein’s inequality, can be bounded further by

C
(
1 + L

∥∥λ0
∥∥

�1

)(√
A logN

n
∨ A logN

n

)

with probability at least 1 − N−A. (Recall that under the assumptions on the loss∣∣�′(y;u)
∣∣ ≤ L1 + L|u|

with constants L1,L depending only on � and, hence, the functions (�′ •fλ0)hk, k = 1, . . . ,N , are uniformly bounded
by L1 + L‖λ0‖�1 .)

As soon as

ε ≥ 2C
(
1 + L

∥∥λ0
∥∥

�1

)(√
A logN

n
∨ A logN

n

)
,

the above bounds yield that with probability at least 1 − N−A

∥∥λ̂ε
∥∥p

�p
≤ ε + ε/2

ε − ε/2

∥∥λ0
∥∥p

�p
= 3

∥∥λ0
∥∥p

�p
.

Alternatively, we can use in (3.11) λ := λε/c. Then, by the necessary conditions of extremum in the definition of
λε/c,

∣∣P (
�′ • fλε/c

)
hk

∣∣ ≤ p
∥∥λε/c

∥∥p−1
�1

ε

c
, k = 1, . . . ,N,

which implies

max
1≤k≤N

∣∣Pn

(
�′ • fλε/c

)
hk

∣∣ ≤ max
1≤k≤N

∣∣(Pn − P)
(
�′ • fλε/c

)
hk

∣∣ + p
∥∥λε/c

∥∥p−1
�1

ε

c
.

Applying Bernstein’s inequality to the first term in the right-hand side, we get with probability at least 1 − N−A

max
1≤k≤N

∣∣Pn

(
�′ • fλε/c

)
hk

∣∣ ≤ C
(
1 + L

∥∥λε/c
∥∥

�1

)(√
A logN

n
∨ A logN

n

)
+ p

∥∥λε/c
∥∥p−1

�1

ε

c
.

Next

P(� • fλε ) + ε
∥∥λε

∥∥p

�p
≤ E�(Yj ,0) ≤ sup

y
�(y,0) =: c1

(since E�(Yj ,0) is the value of the penalized risk at λ = 0). Therefore

∥∥λε
∥∥

�p
≤

(
c1

ε

)1/p

. (3.12)

Since p ≤ pN, ε ≥ n−1/2 and N ≥ nγ , we get

p
∥∥λε/c

∥∥p−1
�1

ε

c
≤ p

(
epc1c

ε

)(p−1)/p
ε

c
≤ p

(
epc1cn

1/2)1/ logN ε

c
≤ ε

4
,
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provided that c is a large enough constant (depending only on � and γ ). As soon as

ε ≥ 4C
(
1 + L

∥∥λε/c
∥∥

�1

)(√
A logN

n
∨ A logN

n

)
,

this yields

max
1≤k≤N

∣∣Pn

(
�′ • fλε/c

)
hk

∣∣ ≤ ε

2
,

and we can conclude from (3.11) that with probability at least 1 − N−A

∥∥λ̂ε
∥∥p

�p
≤ 3

∥∥λε/c
∥∥p

�p
. (3.13)

Finally, by the definition of λcε

P (� • fλcε ) + cε
∥∥λcε

∥∥p

�p
≤ P(� • f

λ̂ε ) + cε
∥∥λ̂ε

∥∥p

�p
.

By convexity of the function λ �→ P(� • fλ),

P (� • fλcε ) − P(� • f
λ̂ε ) ≥ P

(
�′ • f

λ̂ε

)
(fλcε − f

λ̂ε ).

It follows that

cε
∥∥λcε

∥∥p

�p
≤ cε

∥∥λ̂ε
∥∥p

�p
+ P

(
�′ • f

λ̂ε

)
(f

λ̂ε − fλcε ) ≤ cε
∥∥λ̂ε

∥∥p

�p
+ max

1≤k≤N

∣∣P (
�′ • f

λ̂ε

)
hk

∣∣∥∥λ̂ε − λcε
∥∥

�1
,

which implies(
cε − max

1≤k≤N

∣∣P (
�′ • f

λ̂ε

)
hk

∣∣)∥∥λcε
∥∥p

�p
≤

(
cε + max

1≤k≤N

∣∣P (
�′ • f

λ̂ε

)
hk

∣∣)∥∥λ̂ε
∥∥p

�p
.

If

cε > max
1≤k≤N

∣∣P (
�′ • f

λ̂ε

)
hk

∣∣,
then

∥∥λcε
∥∥p

�p
≤ cε + max1≤k≤N |P(�′ • f

λ̂ε )hk|
cε − max1≤k≤N |P(�′ • f

λ̂ε )hk|
∥∥λ̂ε

∥∥p

�p
. (3.14)

Next

max
1≤k≤N

∣∣P (
�′ • f

λ̂ε

)
hk

∣∣ ≤ max
1≤k≤N

∣∣Pn

(
�′ • f

λ̂ε

)
hk

∣∣ + max
1≤k≤N

∣∣(Pn − P)
(
�′ • f

λ̂ε

)
hk

∣∣.
To bound the first term, note that similarly to (3.12) we have

∥∥λ̂ε
∥∥

�p
≤

(
c1

ε

)1/p

(3.15)

(with c1 depending only on �) and repeat the argument already used to bound

max
1≤k≤N

∣∣P (
�′ • fλε/c

)
hk

∣∣.
This gives

max
1≤k≤N

∣∣Pn

(
�′ • f

λ̂ε

)
hk

∣∣ ≤ c
ε

2
,
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with a properly chosen constant c (depending only on � and on γ ). To bound the second term, use Lemma 2 from
the Appendix and bound (3.13). This gives (with a proper adjustment of the constants) that with probability at least
1 − N−A

max
1≤k≤N

∣∣(Pn − P)
(
�′ • f

λ̂ε

)
hk

∣∣ ≤ C
(
1 + L

∥∥λε/c
∥∥

�1

)√
A logN

n
.

If

cε ≥ 4C
(
1 + L

∥∥λε/c
∥∥

�1

)√
A logN

n
,

we are getting

cε > 2 max
1≤k≤N

∣∣P (
�′ • f

λ̂ε

)
hk

∣∣,
and hence (3.14) implies that with probability at least 1 − N−A

∥∥λcε
∥∥p

�p
≤ 3

∥∥λ̂ε
∥∥p

�p
.

To prove the last bound, note that

P(� • f
λ̂ε ) − P(� • fλ0)

≤ Pn(� • f
λ̂ε ) + ε

∥∥λ̂ε
∥∥p

�p
− Pn(� • fλ0) − ε

∥∥λ0
∥∥p

�p
+ ε

∥∥λ0
∥∥p

�p
+ 2ξn

(∥∥λ̂ε
∥∥

�p
∨ ∥∥λ0

∥∥
�p

)
≤ ε

∥∥λ0
∥∥p

�1
+ 2ξn

(∥∥λ̂ε
∥∥

�p
∨ ∥∥λ0

∥∥
�p

)
,

where

ξn(R) := sup
‖λ‖�p ≤R

∣∣(Pn − P)(� • fλ − � • f0)
∣∣

(here f0 is fλ for λ = 0). Combining the bound of Lemma 2 on ξn(R) with the bound ‖λ̂ε‖�1 ≤ 31/p‖λ0‖ and adjusting
the constants, we get that, with probability at least 1 − N−A, the excess risk is dominated by

C
(
1 + L

∥∥λ0
∥∥

�1

)∥∥λ0
∥∥

�1
ε + C

(
1 + L

∥∥λ0
∥∥

�1

)∥∥λ0
∥∥

�1

√
A logN

n
≤ 2C

(
1 + L

∥∥λ0
∥∥

�1

)∥∥λ0
∥∥

�1
ε,

implying the result. (More details: if ‖λ0‖p
�1

≤ C‖λ0‖�1, the result is immediate. Otherwise, ‖λ0‖�1 ≥ Cq−1 ≥
N logC/C. It easily follows that, for large enough C, ‖λ0‖�1ε ≥ CN. On the other hand, under the conditions on
the loss function �

E (f
λ̂ε ) ≤ P(� • f

λ̂ε ) ≤ E�(Y ;0) + (
L1 + L

∥∥λ̂ε
∥∥

�1

)‖λ̂ε‖�1,

which is smaller than CN in view of (3.15) and conditions on ε.) �

4. Oracle inequalities

Throughout the section, it is assumed that p ∈ [1,pN ]. We start with a bound on the approximation error

E (fλε ) := P(� • fλε ) − P(� • fλ0)
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(Theorem 2) showing that the �p-penalization, in some sense, mimics another penalty whose main term is

1

Γ̃ 2(Jλ)
ε2 ≤ d(Jλ)

κ(Jλ)(1 − ρ2(Jλ))
ε2,

which is closely related to the �0-penalty, but, at the same time, it heavily depends on the “well-posedness” of the
dictionary. After this, we will prove a similar bound on the excess risk of f

λ̂ε (Theorem 3) establishing an oracle
inequality in statistical sense. The approximation error bound of Theorem 2 can be viewed as a limit version of the
oracle inequality of Theorem 3 when n → ∞ and the empirical solution λ̂ε becomes λε (however, the constants in
Theorem 2 are better). In addition, the theorem shows that the regularized solution λε is “approximately sparse.”

Recall that

Jλ := supp(λ) = {j : λj = 0}.

Theorem 2. For all ε > 0,

E (fλε ) ≤ inf
λ∈RN

[
3E (fλ) +

2p2‖λ‖2(p−1)

�p

τ (‖λ‖�1 ∨ e‖λ0‖�1)Γ̃
2(Jλ)

ε2
]
.

Moreover, if λ̄ denotes the value of λ for which the infimum in the right-hand side is attained, then

ε
∑
j /∈Jλ̄

∣∣λε
j

∣∣p ≤ 1

2
inf

λ∈RN

[
3E (fλ) +

2p2‖λ‖2(p−1)
�p

τ (‖λ‖�1 ∨ e‖λ0‖�1)Γ̃
2(Jλ)

ε2
]
.

Proof. By the definition of λε, for all λ ∈ R
N,

P (� • fλε ) + ε
∥∥λε

∥∥p

�p
≤ P(� • fλ) + ε‖λ‖p

�p
,

which implies

E (fλε ) + ε
∑
j /∈Jλ

∣∣λε
j

∣∣p ≤ E (fλ) + ε
∑
j∈Jλ

(|λj |p − ∣∣λε
j

∣∣p)

≤ E (fλ) + pε‖λ‖p−1
�p

∑
j∈Jλ

∣∣λj − λε
j

∣∣.
Then, using the bounds

∑
j∈Jλ

∣∣λj − λε
j

∣∣ ≤ 1

Γ̃ (Jλ)
‖fλ − fλε‖L2(Π) ≤ 1

Γ̃ (J )

(‖fλ − fλ0‖L2(Π) + ‖fλε − fλ0‖L2(Π)

)

and (see the proof of Lemma 1)

E (fλ) ≥ τ‖fλ − fλ0‖2, E (fλε ) ≥ τ‖fλε − fλ0‖2,

where

τ := τ
(‖λ‖�1 ∨ e

∥∥λ0
∥∥

�1

)
,

we get

E (fλε ) + ε
∑
j /∈Jλ

∣∣λε
j

∣∣p ≤ E (fλ) +
p‖λ‖p−1

�p

Γ̃ (Jλ)
ε

(√
E (fλ)

τ
+

√
E (fλε )

τ

)
.
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Using the inequality ab ≤ a2/2 + b2/2, we get

p‖λ‖p−1
�p√

τ Γ̃ (Jλ)
ε
√

E (fλ) ≤ E (fλ)

2
+

p2‖λ‖2(p−1)
�p

2τ Γ̃ 2(Jλ)
ε2

and, similarly,

p‖λ‖p−1
�p√

τ Γ̃ (Jλ)
ε
√

E (fλε ) ≤ E (fλε )

2
+

p2‖λ‖2(p−1)

�p

2τ Γ̃ 2(Jλ)
ε2.

As a consequence,

E (fλε ) + ε
∑
j /∈Jλ

∣∣λε
j

∣∣p ≤ E (fλ) + E (fλε )

2
+

p2‖λ‖2(p−1)
�p

2τ Γ̃ 2(Jλ)
ε2 + E (fλ)

2
+

p2‖λ‖2(p−1)
�p

2τ Γ̃ 2(Jλ)
ε2,

which implies

E (fλε ) + 2ε
∑
j /∈Jλ

∣∣λε
j

∣∣p ≤ 3E (fλ) +
2p2‖λ‖2(p−1)

�p

τ Γ̃ 2(Jλ)
ε2.

Since it holds for all λ ∈ R
N, we get

E (fλε ) ≤ inf
λ∈RN

[
3E (fλ) +

2p2‖λ‖2(p−1)
�p

τ Γ̃ 2(Jλ)
ε2

]

and also

ε
∑
j /∈Jλ̄

∣∣λε
j

∣∣p ≤ 1

2
inf

λ∈RN

[
3E (fλ) +

2p2‖λ‖2(p−1)
�p

τ Γ̃ 2(Jλ)
ε2

]
,

which implies the result. �

Remark. It easily follows from the second bound of Theorem 2 that with some constant c

ε
∑
j /∈Jλ̄

∣∣λε
j

∣∣ ≤ c inf
λ∈RN

[
3E (fλ) + 2p2(‖λ‖�p ∨ 1)2(p−1)

τ (‖λ‖�1 ∨ e‖λ0‖�1)Γ̃
2(Jλ)

ε2
]
. (4.1)

Indeed, assuming that the infimum in the right-hand side is attained at λ̃, we get

∑
j /∈Jλ̄

∣∣λε
j

∣∣ ≤ N1/q

(∑
j /∈Jλ̄

∣∣λε
j

∣∣p)1/p

≤ e

21/p

[
3E (fλ̃) + 2p2(‖λ̃‖�p ∨ 1)2(p−1)

τ (‖λ̃‖�1 ∨ e‖λ0‖�1)Γ̃
2(Jλ̃)

ε2
]1/p

.

Since

τ
(‖λ̃‖�1 ∨ e

∥∥λ0
∥∥

�1

)
Γ̃ 2(Jλ̃) ≤ 1,

the term in brackets is larger than (2p2‖λ̃‖�p ∨ 1)2(p−1)ε2. Therefore

∑
j /∈Jλ̄

∣∣λε
j

∣∣ ≤ e

21/p

(
2p2(‖λ̃‖�p ∨ 1

)2(p−1)
ε2)1/p−1

[
3E (fλ̃) + 2p2(‖λ̃‖�p ∨ 1)2(p−1)

τ (‖λ̃‖�1 ∨ e‖λ0‖�1)Γ̃
2(Jλ̃)

ε2
]
.
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It is easily seen that under the assumptions on n,N,p, ε

e

21/p

(
2p2(‖λ̃‖�p ∨ 1

)2(p−1)
ε2)1/p−1 ≤ c

with some constant c, which implies the claim. The following corollary is now immediate:

Corollary 1. For all ε > 0 and for λ̄ for which the infimum in the right-hand side of (4.2) is attained,

ε
∥∥λε − λ̄

∥∥
�1

≤ C inf
λ∈RN

[
3E (fλ) + 2p2(‖λ‖�p ∨ 1)2(p−1)

τ (‖λ‖�1 ∨ e‖λ0‖�1)Γ̃
2(Jλ)

ε2
]

(4.2)

with some constant C > 0.

Proof. It is enough to write

∑
j∈Jλ̄

∣∣λ̄j − λε
j

∣∣ ≤ 1

Γ̃ (Jλ̄)
‖fλ̄ − fλε‖L2(Π) ≤ 1

Γ̃ (Jλ̄)

(‖fλ̄ − fλ0‖L2(Π) + ‖fλε − fλ0‖L2(Π)

)

and to bound it further as in the proof of Theorem 2 to get

∑
j∈Jλ̄

∣∣λ̄j − λε
j

∣∣ ≤ 1

2

( E (fλ̄)

ε
+ ε

τ Γ̃ 2(Jλ̄)
+ E (fλε )

ε
+ ε

τ Γ̃ 2(Jλ̄)

)
,

where

τ := τ
(‖λ̄‖�1 ∨ e

∥∥λ0
∥∥

�1

)
.

It remains to use the first inequality of Theorem 2, to combine it with (4.1) and to choose the constant C properly. �

Next we extend the bounds of Theorem 2 to the empirical solution λ̂ε. For sufficiently large values of ε,

ε ≥ D
(
1 + L

∥∥λ0
∥∥

�1

)√
A logN

n

(with constants D,L depending only on � and L = 0 in the case of the loss with bounded derivative), this provides an
oracle inequality in the spirit of [4,5] and [14] (the current version is especially close to the one of [14]), and also the
bound showing the “approximate sparsity” of λ̂ε. In Section 6, a different approach to this type of result is discussed.

Theorem 3. Let p ∈ [1,pN ]. There exist constants D,C,L > 0, depending only on �, such that for all A ≥ 1 and for
all

ε ≥ D
(
1 + L

∥∥λ0
∥∥

�1

)√
A logN

n
,

the following bound holds with probability at least 1 − N−A :

E (f
λ̂ε ) ≤ inf

λ∈RN

[
3E (fλ) + U (λ,λ0,C)

Γ̃ 2(Jλ)
ε2

]
, (4.3)

where

U
(
λ,λ0,C

) :=
2(p‖λ‖pN−1

�p
+ C(1 + L‖λ‖�1/(1 + L‖λ0‖�1)))

2

τ(‖λ‖�1 ∨ e‖λ0‖�1)
.
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Moreover, if λ̄ denotes the value of λ for which the infimum in the right-hand side is attained, then with the same
probability

ε
∑
j /∈Jλ̄

∣∣λ̂ε
j

∣∣ ≤ C inf
λ∈RN

[
3E (fλ) + U (λ,λ0,C)

Γ 2(Jλ)
ε2

]
.

Proof. By the definition of λ̂ε, for all λ ∈ R
N,

Pn(� • f
λ̂ε ) + ε

∥∥λ̂ε
∥∥p

�p
≤ Pn(� • fλ) + ε‖λ‖p

�p
,

which implies

E (f
λ̂ε ) + ε

∑
j /∈Jλ

∣∣λ̂ε
j

∣∣p ≤ E (fλ) + ε
∑
j∈Jλ

(|λj |p − ∣∣λ̂ε
j

∣∣p) + ∣∣(Pn − P)(� • f
λ̂ε − � • fλ)

∣∣
≤ E (fλ) + pε‖λ‖p−1

�p

∑
j∈Jλ

∣∣λj − λ̂ε
j

∣∣ + ∣∣(Pn − P)(� • f
λ̂ε − � • fλ)

∣∣.
We will apply this bound to λ = λ̄. By Lemma 3, we have with probability at least 1 − N−A

∣∣(Pn − P)(� • f
λ̂ε − � • fλ̄)

∣∣ ≤ C
(
1 + L

(∥∥λ0
∥∥

�1
∨ ‖λ̄‖�1

))(∑
j∈Jλ̄

∣∣λ̂ε
j − λ̄ε

j

∣∣ ∨ e−N

)√
A logN

n

+ C
(
1 + L

∥∥λ0
∥∥

�1

)(∑
j /∈Jλ̄

∣∣λ̂ε
j

∣∣ ∨ e−N

)√
A logN

n
,

provided that∥∥λ̂ε − λ̄
∥∥

�1
≤ eN .

If the constant D in the condition on ε is large enough, then, under the assumptions on N,n and ε the right-hand side
is dominated by

ε

C

∑
j /∈Jλ̄

∣∣λ̂ε
j

∣∣ + C

(
1 + L‖λ̄‖�1

(1 + L‖λ0‖�1)

)
ε

∑
j∈Jλ̄

∣∣λ̂ε
j − λ̄ε

j

∣∣ + Cε2

with some constant C.

Therefore, we have

E (f
λ̂ε ) + ε

∑
j /∈Jλ̄

∣∣λ̂ε
j

∣∣p ≤ E (fλ̄) +
(

p‖λ̄‖p−1
�p

+ C

(
1 + L‖λ̄‖�1

1 + L‖λ0‖�1

))
ε

∑
j∈Jλ̄

∣∣λ̄j − λ̂ε
j

∣∣ + ε

C

∑
j /∈Jλ̄

∣∣λ̂ε
j

∣∣ + Cε2,

which implies

E (f
λ̂ε ) + ε

∑
j /∈Jλ̄

(∣∣λ̂ε
j

∣∣p − 1

C

∣∣λ̂ε
j

∣∣)

≤ E (fλ̄) +
(

p‖λ̄‖p−1
�p

+ C

(
1 + L‖λ̄‖�1

1 + L‖λ0‖�1

))
ε

∑
j∈Jλ̄

∣∣λ̄j − λ̂ε
j

∣∣ + Cε2.
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Note that

∑
j /∈Jλ̄

(∣∣λ̂ε
j

∣∣p − 1

C

∣∣λ̂ε
j

∣∣) ≥
∑

j /∈Jλ̄,|λ̂ε
j |≥N−B

(∣∣λ̂ε
j

∣∣p − 1

C

∣∣λ̂ε
j

∣∣) − 1

C
N−B+1

≥
∑

j /∈Jλ̄,|λ̂ε
j |≥N−B

(
N−B(p−1) − C−1)∣∣λ̂ε

j

∣∣ − 1

C
N−B+1

≥ (
e−B(logN)/(logN−1) − C−1) ∑

j /∈Jλ̄,
∣∣λ̂ε

j

∣∣≥N−B

∣∣λ̂ε
j

∣∣ − 2

C
N−B+1

≥ 1

C

∑
j /∈Jλ̄

∣∣λ̂ε
j

∣∣ − 2

C
N−B+1,

with a proper choice of large enough constants B,C such that

e−B(logN)/(logN−1) − C−1 ≥ C−1.

Therefore,

E (f
λ̂ε ) + ε

C

∑
j /∈Jλ̄

∣∣λ̂ε
j

∣∣ ≤ E (fλ̄) +
(

p‖λ̄‖p−1
�p

+ C

(
1 + L‖λ̄‖�1

(1 + L‖λ0‖�1)

))
ε

∑
j∈Jλ̄

∣∣λ̄j − λ̂ε
j

∣∣ + Cε2.

It remains to repeat the argument of Theorem 2 with minor modifications of the constants. In the case when∥∥λ̂ε − λ̄
∥∥

�1
> eN,

we have

‖λ̄‖�1 > eN − ∥∥λ̂ε
∥∥

�1

and since (see bound (3.15) in the proof of Theorem 1)

∥∥λ̂ε
∥∥

�1
≤ e

(
c1

ε

)1/p

,

we easily get under the conditions on ε,n,N (in particular, under the assumption that N ≥ nγ ) that

‖λ̄‖�1 >
eN

c

(with a proper choice of c). Then a simple computation shows that under the conditions on the loss function �

E (f
λ̂ε ) ≤ P(� • f

λ̂ε ) ≤ E�(Y ;0) + C
(
1 + L

∥∥λ̂ε
∥∥

�1

)∥∥λ̂ε
∥∥

�1
,

which, again by the bound (3.15) and the conditions on ε is bounded by an expression of the form C1 + C2n
1/p. It is

now easy to show that this is smaller than

U (λ̄, λ0,C)

Γ̃ 2(Jλ̄)
ε2.

Indeed, since

τ
(‖λ̄‖�1 ∨ e

∥∥λ0
∥∥

�1

) ≤ 1, Γ̃ 2(Jλ̄) ≤ 1, ε2 ≥ n−1
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and since N ≥ nγ , we have

U (λ̄, λ0,C)

Γ̃ 2(Jλ̄)
ε2 ≥ ‖λ̄‖2(pN−1)

�p
n−1 ≥ exp

{
2N

(logN − 1)

}
c−2(pN−1)n−1 ≥ C1 + C2n

1/p

with a proper choice of constants in the above bounds. This implies that (4.3) also holds when ‖λ̂ε − λ̄‖�1 > eN. The
last inequality is trivial in this case. �

Corollary 2. Under the assumptions of Theorem 3, with probability at least 1 − N−A

ε
∥∥λ̂ε − λ̄

∥∥
�1

≤ C inf
λ∈RN

[
3E (fλ) + U (λ,λ0,C)

Γ̃ 2(Jλ)
ε2

]
(4.4)

with some constant C > 0 and with λ̄ that minimizes the infimum in the right-hand side of (4.4).

Proof. See the proof of Corollary 1. Use Theorem 3 instead of Theorem 2. �

5. Sparsity and excess risk bounds

In this section, we derive the bounds on P(� • f
λ̂ε ) − P(� • fλε ) and on ‖f

λ̂ε − fλε‖L2(Π) under the assumption that
λε is sparse, i.e. there exists a “small” set J ⊂ {1, . . . ,N} such that λε

j = 0, j /∈ J. It will be assumed throughout the
section that p ∈ (1,pN ] (so, the results do not apply to the case of p = 1). Our first goal is to provide bounds on∑

j /∈J |λ̂ε
j | and on ‖f

λ̂ε − fλε‖L2(Π).

The following relationships, that are based on necessary conditions of minima in minimization problems defining
λε and λ̂ε, will be crucial in our derivation of sparsity bounds in this and in the next sections:

P
(
�′ • fλε

)
(f

λ̂ε − fλε ) + pε

N∑
j=1

∣∣λε
j

∣∣p−1 sign
(
λε

j

)(
λ̂ε

j − λε
j

) = 0 (5.1)

and

Pn

(
�′ • f

λ̂ε

)
(f

λ̂ε − fλε ) + pε

N∑
j=1

∣∣λ̂ε
j

∣∣p−1 sign
(
λ̂ε

j

)(
λ̂ε

j − λε
j

) = 0. (5.2)

They imply that

D
(
λ̂ε;λε

) := P
((

�′ • f
λ̂ε

) − (
�′ • fλε

))
(f

λ̂ε − fλε ) + pε

N∑
j=1

(∣∣λ̂ε
j

∣∣p−1 sign
(
λ̂ε

j

) − ∣∣λε
j

∣∣p−1 sign
(
λε

j

))(
λ̂ε

j − λε
j

)

= (P − Pn)
(
�′ • f

λ̂ε

)
(f

λ̂ε − fλε ). (5.3)

Note that D(λ̂ε;λε) ≥ 0 since �′(y; ·) is nondecreasing (by convexity of �(y, ·)) and λ �→ p|λ|p−1 sign(λ) is also
nondecreasing (by convexity of λ �→ |λ|p for p > 1).

Quite similarly,

0 ≤ Ď
(
λ̂ε;λε

) := Pn

((
�′ • f

λ̂ε

) − (
�′ • fλε

))
(f

λ̂ε − fλε )

+ pε

N∑
j=1

(∣∣λ̂ε
j

∣∣p−1 sign
(
λ̂ε

j

) − ∣∣λε
j

∣∣p−1 sign
(
λε

j

))(
λ̂ε

j − λε
j

)

= (Pn − P)
(
�′ • fλε

)
(f

λ̂ε − fλε ). (5.4)
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We will have to analyze more carefully the expression for D(λ̂ε;λε) and for Ď(λ̂ε;λε) since this is where the
information about the sparsity of λ̂ε is contained.

First note that ‖λε‖�1 ≤ e‖λε‖�p ≤ e‖λ0‖�p ≤ e‖λ0‖�1 . Therefore, |fλε (x)| ≤ e‖λ0‖�1 (recall that hj are bounded

by 1). Similarly, if ‖λ̂ε‖�1 ≤ C‖λ0‖�1 (which by Theorem 1 holds with probability ≥ 1 − N−A), we have |f
λ̂ε (x)| ≤

C‖λ0‖�1 . Using condition (3.1) on the loss �, this allows us to show that

P
((

�′ • f
λ̂ε

) − (
�′ • fλε

))
(f

λ̂ε − fλε ) ≥ b‖f
λ̂ε − fλε‖2

L2(Π)

and

Pn

((
�′ • f

λ̂ε

) − (
�′ • fλε

))
(f

λ̂ε − fλε ) ≥ b‖f
λ̂ε − fλε‖2

L2(Πn)

with b = 2τ(C‖λ0‖�1) (see condition (3.1)).
Next, if λ̂ε

j λ
ε
j ≤ 0, then

(∣∣λ̂ε
j

∣∣p−1 sign
(
λ̂ε

j

) − ∣∣λε
j

∣∣p−1 sign
(
λε

j

))(
λ̂ε

j − λε
j

) = (∣∣λ̂ε
j

∣∣p−1 + ∣∣λε
j

∣∣p−1)(∣∣λ̂ε
j

∣∣ + ∣∣λε
j

∣∣) ≥ ∣∣λ̂ε
j

∣∣p + ∣∣λε
j

∣∣p.

On the other hand, if λ̂ε
j λ

ε
j > 0 and |λ̂ε

j | ≥ 2|λε
j |, we have

(∣∣λ̂ε
j

∣∣p−1 sign
(
λ̂ε

j

) − ∣∣λε
j

∣∣p−1 sign
(
λε

j

))(
λ̂ε

j − λε
j

) ≥ 1 − 2−(p−1)

2

∣∣λ̂ε
j

∣∣p ≥ (p − 1) log 2

4

∣∣λ̂ε
j

∣∣p.

Therefore,

D
(
λ̂ε;λε

) ≥ b‖f
λ̂ε − fλε‖2

L2(Π) + pε

N∑
j=1

(∣∣λ̂ε
j

∣∣p + ∣∣λε
j

∣∣p)
I

(
λ̂ε

j λ
ε
j ≤ 0

)

+ p(p − 1) log 2

4
ε

N∑
j=1

∣∣λ̂ε
j

∣∣pI
(
λ̂ε

j λ
ε
j > 0,

∣∣λ̂ε
j

∣∣ ≥ 2
∣∣λε

j

∣∣)

+ p(p − 1) log 2

4
ε

N∑
j=1

∣∣λε
j

∣∣pI
(
λ̂ε

j λ
ε
j > 0,

∣∣λε
j

∣∣ ≥ 2
∣∣λ̂ε

j

∣∣). (5.5)

A similar bound holds for Ď(λ̂ε;λε) with ‖ · ‖L2(Π) replaced by ‖ · ‖L2(Πn):

Ď
(
λ̂ε;λε

) ≥ b‖f
λ̂ε − fλε‖2

L2(Πn) + pε

N∑
j=1

(∣∣λ̂ε
j

∣∣p + ∣∣λε
j

∣∣p)
I

(
λ̂ε

j λ
ε
j ≤ 0

)

+ p(p − 1) log 2

4
ε

N∑
j=1

∣∣λ̂ε
j

∣∣pI
(
λ̂ε

j λ
ε
j > 0,

∣∣λ̂ε
j

∣∣ ≥ 2
∣∣λε

j

∣∣)

+ p(p − 1) log 2

4
ε

N∑
j=1

∣∣λε
j

∣∣pI
(
λ̂ε

j λ
ε
j > 0,

∣∣λε
j

∣∣ ≥ 2
∣∣λ̂ε

j

∣∣). (5.6)

Theorem 4. Let p ∈ (1,pN ]. There exist constants D > 0,L > 0 and C > 0, depending only on �, such that, for all
J ⊂ {1, . . . ,N} with d := d(J ), for all A ≥ 1 and for all

ε ≥ D
(
1 + L

∥∥λ0
∥∥

�1

)(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))
,
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the assumption λε
j = 0, j /∈ J , implies that with probability at least 1 − N−A

γd

(
λ̂ε

) ≤
∑
j /∈J

∣∣λ̂ε
j

∣∣ ≤ K
(
1 + L

∥∥λ0
∥∥

�1

)d + A logN

nε

and

‖f
λ̂ε − fλε‖L2(Π) ≤ K

√
d + A logN

n
,

where

K := K
(
C;∥∥λ0

∥∥
�1

) := C(1 + ‖λ0‖�1)

τ (C‖λ0‖�1)
. (5.7)

Remark. The values of ε in Theorem 4 are supposed to be above the threshold that depends on U(J ). If one drops
the term depending on U(J ) and assumes just that

ε ≥ D
(
1 + L

∥∥λ0
∥∥

�1

)(√
A logN

n
∨

√
d

n

)
,

then, for such ε’s we get the bounds

P

{
γd

(
λ̂ε

) ≥ K
(
1 + L

∥∥λ0
∥∥

�1

)√
d + A logN

n

}
≤ N−A

and

P

{
‖f

λ̂ε − fλε‖L2(Π) ≥ K

√
d + A logN

n

}
≤ N−A.

However, unless U(J ) is very large, namely,

U(J ) ≥
√

nd

logN
,

the U(J )-term provides the bounds for a broader range of values of ε. Since U(J ) ≤
√

d
κ

+ 1, where κ = κ(J ) =
Γ 2

2 (J ) (see Section 1), this means that as soon as

κ ≥ (logN)2

n
,

there is an advantage in a more complicated form of the threshold.

Remark. In the definition of constant K, K = K(C; ‖λ0‖�1) (see (5.7)), one can replace ‖λ0‖�1 by ‖λε/c‖�1 .

Remark. If the first derivative of the loss function �′
u(y,u) is uniformly bounded, then the constant L in the bounds

of the theorem can be chosen as L = 0.

Proof of Theorem 4. Assume that J is a subset of {1, . . . ,N} with #(J ) = d and such that λε
j = 0, j /∈ J. Since

γd

(
λ̂ε

) ≤
∑
j /∈J

∣∣λ̂ε
j

∣∣,
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it will be enough to bound
∑

j /∈J |λ̂ε
j |. Denote

Λ(δ;Δ) := ΛJ (δ;Δ) :=
{
λ ∈ R

N : ‖λ‖�1 ≤ C
∥∥λε/c

∥∥
�1

,‖fλ − fλε‖L2(Π) ≤ δ,
∑
j /∈J

|λj |p ≤ Δp

}
,

αn(δ;Δ) := sup
{∣∣(Pn − P)

((
�′ • fλ

)
(fλ − fλε )

)∣∣: λ ∈ Λ(δ;Δ)
}

and

α̌n(δ;Δ) := sup
{∣∣(Pn − P)

((
�′ • fλε

)
(fλ − fλε )

)∣∣: λ ∈ Λ(δ;Δ)
}

(αn and α̌n depend on J that at the moment is fixed). It follows from Theorem 1 that with probability at least 1−N−A

∥∥λ̂ε
∥∥

�1
≤ C

∥∥λε/c
∥∥

�1
.

Together with (5.3)–(5.6) this implies that with probability at least 1 − N−A

b‖f
λ̂ε − fλε‖2

L2(Π) + pε
∑
j /∈J

∣∣λ̂ε
j

∣∣p ≤ D
(
λ̂ε;λε

) ≤ αn

(
‖f

λ̂ε − fλε‖L2(Π);
(∑

j /∈J

∣∣λ̂ε
j

∣∣p)1/p)

and

b‖f
λ̂ε − fλε‖2

L2(Πn) + pε
∑
j /∈J

∣∣λ̂ε
j

∣∣p ≤ Ď
(
λ̂ε;λε

) ≤ α̌n

(
‖f

λ̂ε − fλε‖L2(Π);
(∑

j /∈J

∣∣λ̂ε
j

∣∣p)1/p)

(recall that here b = 2τ(C‖λ0‖).
The idea of the proof is to construct nonrandom upper bounds βn(δ;Δ) and β̌n(δ;Δ) on αn(δ;Δ) and α̌n(δ;Δ),

respectively, that hold uniformly in all δ,Δ satisfying conditions (A.1) with a high probability. The bounds are given
in Lemma 4 (see Appendix). If now we take

δ = ‖f
λ̂ε − fλε‖L2(Π), Δ =

(∑
j /∈J

∣∣λ̂ε
j

∣∣p)1/p

and assume that they satisfy conditions (A.1), then, with the same probability,

b‖f
λ̂ε − fλε‖2

L2(Π) ≤ βn

(
‖f

λ̂ε − fλε‖L2(Π);
(∑

j /∈J

∣∣λ̂ε
j

∣∣p)1/p)
(5.8)

and

pε
∑
j /∈J

∣∣λ̂ε
j

∣∣p ≤ β̌n

(
‖f

λ̂ε − fλε‖L2(Π);
(∑

j /∈J

∣∣λ̂ε
j

∣∣p)1/p)
, (5.9)

which will provide upper bounds on ‖f
λ̂ε − fλε‖L2(Π) and on (

∑
j /∈J |λ̂ε

j |p)1/p just by bounding the solutions of the
inequalities

pεΔp ≤ β̌n(δ;Δ), bδ2 ≤ βn(δ;Δ). (5.10)

Note that the upper bounds on δ and Δ of conditions (A.1) can be safely assumed in view of Theorem 1.
If (

∑
j /∈J |λ̂ε

j |p)1/p ≤ n−1/2 and ‖f
λ̂ε − fλε‖L2(Π) ≤ n−1/2, then the bounds of the theorem hold trivially. If

(
∑

j /∈J |λ̂ε
j |p)1/p > n−1/2, but ‖f

λ̂ε − fλε‖L2(Π) ≤ n−1/2, or another way around, then the quantity that is smaller
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than n−1/2 can be replaced in the right-hand sides of inequalities (5.8) and (5.9) by the upper bound n−1/2, leading to
the same outcome as below, but in a simpler way.

Thus, we can and do assume that δ and Δ satisfy conditions (A.1) and to complete the proof it is enough to bound
the solutions of inequalities (5.10). Bounding the values of Δ satisfying the first of the inequalities (5.10),

pεΔp ≤ β̌n(δ;Δ),

reduces to solving separately the following three inequalities

pεΔp ≤ C
(
1 + L

∥∥λ0
∥∥

�1

)
δ

√
d + A logN

n
,

pεΔp ≤ C
(
1 + L

∥∥λ0
∥∥

�1

)‖λ0‖�1

A logN

n

and

pεΔp ≤ C
(
1 + L

∥∥λ0
∥∥

�1

)
Δ

(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))

with respect to Δ (δ being fixed) and then taking the maximum of the solutions. The first inequality gives an upper
bound on Δ(

C
(
1 + L

∥∥λ0
∥∥

�1

) δ

pε

√
d + A logN

n

)1/p

,

which for our choice of p ≤ pN can be bounded from above by

C
(
1 + L

∥∥λ0
∥∥

�1

)δ

ε

√
d + A logN

n

(reminder: C is a constant that depends only on �; its value may be different in different places!). Similarly, the second
inequality yields the bound

C(1 + L‖λ0‖�1)‖λ0‖�1

ε

A logN

n
.

The third inequality gives the bound

Δ1/(q−1) = Δp−1 ≤ C(1 + L‖λ0‖�1)

ε

(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))
,

implying, under our condition on ε,

Δ ≤
(

C(1 + L‖λ0‖�1)

ε

(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

)))q−1

≤
(

C

D

)logN−1

≤ eγ1N−γ1 ≤ eγ1n−1

(where γ1 := log D
C

≥ 1
γ

(γ is such that N ≥ nγ ) is a sufficiently large positive constant for a proper choice of D). As
a result, under the assumptions on n,N,

Δ ≤ C
(
1 + L

∥∥λ0
∥∥

�1

)δ

ε

√
d + A logN

n
∨ C

(
1 + L

∥∥λ0
∥∥

�1

)∥∥λ0
∥∥

�1

‖λ0‖�1 + 1

ε

A logN

n
=: Δ(δ). (5.11)
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It remains now to plug in this bound on Δ to the inequality

bδ2 ≤ αn(δ;Δ) ≤ βn(δ;Δ),

which holds with probability at least 1 − 2N−A, to get

bδ2 ≤ C
(
1 + ∥∥λ0

∥∥
�1

)[
δ

√
d + A logN

n
∨ Δ(δ)

(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))]

∨ C
(
1 + L

∥∥λ0
∥∥

�1

)∥∥λ0
∥∥

�1

A logN

n
.

Here again b = 2τ(C‖λ0‖�1). This easily implies that with K = K(C; ‖λ0‖�1) defined in (5.7) and under the assump-
tion on ε

δ ≤ K

√
d + A logN

n
,

which yields the second bound of the theorem. Finally, we can plug in this bound on δ back to the right hand side of
the bound (5.11) on Δ, which implies

Δ ≤ K
(
1 + L

∥∥λ0
∥∥

�1

)d + A logN

nε
,

where again K = K(C; ‖λ0‖�1) with some constant C depending on �. Inequality (5.9) now implies that with proba-
bility at least 1 − N−A

∑
j /∈J

∣∣λ̂ε
j

∣∣ ≤ e

(∑
j /∈J

∣∣λ̂ε
j

∣∣p)1/p

≤ K
(
1 + L

∥∥λ0
∥∥

�1

)d + A logN

nε
,

and the result readily follows. �

The first bound of Theorem 4 essentially means that the empirical solution λ̂ε preserves “the sparsity pattern” of
the true solution λε. The next corollary shows that for a little bit larger values of ε the sum

∑
j /∈J |λ̂ε

j | is much smaller
than the bound of Theorem 4 suggests: in fact, it can be made as small as an arbitrary negative power of N.

Corollary 3. Suppose the assumptions and notations of Theorem 4 hold, in particular, that p ∈ (1,pN ]. Let q :=
p/(p−1), let B ≥ 1 and let J be a subset of {1, . . . ,N} such that d(J ) = d. There exist constants C,D ≥ 1 depending
only on � such that, for ε satisfying the condition

ε ≥ DeBK

√
d + A logN

n

and for K = K(C; ‖λ0‖�1) given by (5.7), the assumption

λε
j = 0, j /∈ J,

implies that with probability at least 1 − N−A

max
j /∈J

∣∣λ̂ε
j

∣∣ ≤ e−B(q−1) ≤ N−B.

Moreover, for any β > 0, the constant D can be chosen in such a way that for all

ε ≥ DeB(q − 1)K

√
d + A logN

n
,
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we have with probability at least 1 − N−A for all j = 1, . . . ,N∣∣λ̂ε
j

∣∣ ≤ eδ
(∣∣λε

j

∣∣ ∨ N−β
)

and ∣∣λε
j

∣∣ ≤ eδ
(∣∣λ̂ε

j

∣∣ ∨ N−β
)
,

where δ = e−B.

Proof. By the necessary conditions of extrema, we have

P
(
�′ • fλε

)
hj = −εp

∣∣λε
j

∣∣p−1
sign

(
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j

)
and

Pn

(
�′ • f

λ̂ε

)
hj = −εp

∣∣λ̂ε
j

∣∣p−1 sign
(
λ̂ε

j

)
.

For j /∈ J, this yields

εp
∣∣λ̂ε

j

∣∣p−1 = ∣∣Pn

(
�′ • f

λ̂ε

)
hj

∣∣
≤ ∣∣(Pn − P)

(
�′ • f

λ̂ε

)
hj

∣∣ + ∣∣P (
�′ • f

λ̂ε

)
hj − P

(
�′ • fλε

)
hj

∣∣.
In view of Theorem 1, the first term in the right-hand side can be bounded with probability at least 1 − N−A by

sup
{∣∣(Pn − P)

(
�′ • fλ

)
hj

∣∣: ‖λ‖�1 ≤ C
∥∥λε/c

∥∥
�1

}
.

Using the second inequality of Lemma 2, one can show that again with probability at least 1 − N−A

∣∣(Pn − P)
(
�′ • f

λ̂ε

)
hj

∣∣ ≤ C
(
1 + L

∥∥λε/c
∥∥

�1

)√
A logN

n
.

On the other hand, for the second term, using the Lipschitz condition on �′, we get∣∣P (
�′ • f

λ̂ε

)
hj − P

(
�′ • fλε

)
hj

∣∣ ≤ C‖f
λ̂ε − fλε‖L2(Π),

and we can use now the second bound of Theorem 4 (which also dominates the first term). This gives

εp
∣∣λ̂ε

j

∣∣p−1 ≤ K

√
d + A logN

n

with probability at least 1 − N−A (and with K = K(C; ‖λ0‖�1) defined by (5.7), C being a constant depending only
on �). Moreover, by using the union bound and changing the value of C it is easy to show that the last inequality holds
with probability at least 1 − N−A for all j /∈ J simultaneously. Using the condition on ε, we get

∣∣λ̂ε
j

∣∣p−1 ≤ 1

DeB
.

For p ≤ pN, q − 1 = (p − 1)−1 ≥ logN − 1 and for D > 1, this implies

∣∣λ̂ε
j

∣∣ ≤
(

1

DeB

)q−1

≤ e−B(q−1) ≤ N−B.
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To prove the second statement, the above derivation is modified as follows. First note that for all j

εp
∣∣λ̂ε

j

∣∣p−1 = ∣∣Pn

(
�′ • f

λ̂ε

)
hj

∣∣
≤ ∣∣(Pn − P)

(
�′ • f

λ̂ε

)
hj

∣∣ + ∣∣P (
�′ • f

λ̂ε

)
hj − P

(
�′ • fλε

)
hj

∣∣ + ∣∣P (
�′ • fλε

)
hj

∣∣
≤ εp

∣∣λε
j

∣∣p−1 + K

√
d + A logN

n
.

Therefore, we have with probability at least 1 − N−A for all j

( |λ̂ε
j |

|λε
j | ∨ N−β

)p−1

≤ 1 + K

pεN−β(p−1)

√
d + A logN

n
.

Since 1 ≥ N−β(p−1) ≥ cβ, where cβ is a constant depending only on β, it is easy to choose D such that, under the
assumption on ε,

( |λ̂ε
j |

|λε
j | ∨ N−β

)p−1

≤ 1 + e−B

q − 1
= 1 + δ

q − 1
.

This implies that

|λ̂ε
j |

|λε
j | ∨ N−β

≤
(

1 + δ

q − 1

)q−1

≤ eδ.

The proof of the remaining bound is similar. �

Now we provide general bounds on the quantity∣∣P(� • f
λ̂ε ) − P(� • fλε )

∣∣ = ∣∣E (f
λ̂ε ) − E (fλε )

∣∣,
which plays the role of random error in the penalized empirical risk minimization problem.

Denote P̄J the orthogonal projector on the subspace generated by the functions hj , j ∈ J , in the space L2(P ).

Theorem 5. Let p ∈ (1,pN ]. There exist constants D > 0,L > 0 and C > 0, depending only on �, such that, for all
J ⊂ {1, . . . ,N} with d := d(J ) ≥ 1, for arbitrary A ≥ 1 and for all

ε ≥ D
(
1 + L

∥∥λ0
∥∥

�1

)(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))
,

the assumption

λε
j = 0, j /∈ J,

implies that with probability at least 1 − N−A the following bounds hold:

∣∣E (f
λ̂ε ) − E (fλε )

∣∣ ≤ K2 d + A logN

n
+ K

∥∥P̄J

(
�′ • fλε

)∥∥
L2(P )

√
d + A logN

n
,

∣∣E (f
λ̂ε ) − E (fλε )

∣∣ ≤ K2 d + A logN

n
+ K‖fλε − fλ0‖L2(Π)

√
d + A logN

n
,

∣∣E (f
λ̂ε ) − E (fλε )

∣∣ ≤ K2 d + A logN

n
+ K

√
E (fλε )

τ (e‖λ0‖�1)

√
d + A logN

n
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and

∣∣E (f
λ̂ε ) − E (fλε )

∣∣ ≤ K2 d + A logN

n
+ K

Γ (J )
ε

√
d + A logN

n
,

where K = K(C; ‖λ0‖�1) (see (5.7)).

Proof. We use the Taylor expansion and the boundedness of the second derivative of � to get

�
(
y;f

λ̂ε (x)
) − �

(
y;fλε (x)

) = �′
u

(
y;fλε (x)

)(
f

λ̂ε (x) − fλε (x)
) + R,

with the remainder R satisfying

|R| ≤ C
(
f

λ̂ε (x) − fλε (x)
)2

with C depending only on �. Integrating the Taylor expansion with respect to P yields∣∣P(� • f
λ̂ε ) − P(� • fλε ) − P

(
�′ • fλε

)
(f

λ̂ε − fλε )
∣∣ ≤ C‖f

λ̂ε − fλε‖2
L2(Π).

By the necessary conditions of extremum in the optimization problem defining λε,

∣∣P (
�′ • fλε

)
hj

∣∣ = εp
∣∣λε

j

∣∣p−1
,

we have

P
(
�′ • fλε

)
hj = 0, j /∈ J.

Hence, the function �′ • fλε is orthogonal to hj , j /∈ J in the space L2(P ). Since also

f
λ̂ε − fλε ∈ l.s.

({h1, . . . , hN }),
we get∣∣P (

�′ • fλε

)
(f

λ̂ε − fλε )
∣∣ = ∣∣〈(�′ • fλε

)
, f

λ̂ε − fλε

〉
L2(P )

∣∣ = ∣∣〈P̄J

(
�′ • fλε

)
, f

λ̂ε − fλε

〉
L2(P )

∣∣
≤ ∥∥P̄J

(
�′ • fλε

)∥∥
L2(P )

‖f
λ̂ε − fλε‖L2(Π).

This gives the following bound∣∣P(� • f
λ̂ε ) − P(� • fλε )

∣∣ ≤ C‖f
λ̂ε − fλε‖2

L2(Π) + ∥∥P̄J

(
�′ • fλε

)∥∥
L2(P )

‖f
λ̂ε − fλε‖L2(Π)

that holds with some constant C depending only on �. The first bound of Theorem 5 now follows from the bound on
‖f

λ̂ε − fλε‖L2(Π) of Theorem 4.
To prove the second inequality, note that the function �′ • fλ0 is orthogonal to hj , j = 1, . . . ,N , since, by the

necessary conditions of minimum at λ0

〈(
�′ • fλ0

)
, hj

〉
L2(P )

= P
(
�′ • fλ0

)
hj = 0, j = 1, . . . ,N.

This implies that∥∥P̄J

(
�′ • fλε

)∥∥
L2(P )

= ∥∥P̄J

((
�′ • fλε

) − (
�′ • fλ0

))∥∥
L2(P )

≤ ∥∥(
�′ • fλε

) − (
�′ • fλ0

)∥∥
L2(P )

≤ C‖fλε − fλ0‖L2(Π)

since �′ satisfies the Lipschitz condition with a constant depending only on �.



38 V. Koltchinskii

The third inequality follows from the bound

‖fλε − fλ0‖L2(Π) ≤
√

E (fλε )

τ (e‖λ0‖�1)
,

which is obvious in view of the conditions on the loss.
To prove the last bound, recall again that (�′ • fλε ) is orthogonal to hj , j /∈ J , and

∣∣P (
�′ • fλε

)
hj

∣∣ ≤ pε
∥∥λε

∥∥p−1
�p

, j ∈ J.

Since ‖λε‖�p = O(ε−1), under the conditions on ε and p we can bound ‖λε‖p−1
�p

by a constant. Hence, we have

∣∣P (
�′ • fλε

)
hj

∣∣ ≤ Cε, j ∈ J.

Let ∑
j∈J

cjhj = PJ (f
λ̂ε − fλε ).

Then

∣∣P (
�′ • fλε

)
(f

λ̂ε − fλε )
∣∣ = ∣∣〈(�′ • fλε

)
, f

λ̂ε − fλε

〉
L2(P )

∣∣ = ∣∣〈(�′ • fλε

)
,PJ (f

λ̂ε − fλε )
〉
L2(P )

∣∣
=

∣∣∣∣
〈(

�′ • fλε

)
,
∑
j∈J

cjhj

〉
L2(P )

∣∣∣∣ ≤
N∑

j=1

∣∣P (
�′ • fλε

)
hj

∣∣|cj |

≤ Cε
∑
j∈J

|cj | ≤ Cε
1

Γ (J )

∥∥PJ (f
λ̂ε − fλε )

∥∥
L2(Π)

≤ Cε
1

Γ (J )
‖f

λ̂ε − fλε‖L2(Π),

which easily leads to the result. �

Corollary 4. Under the conditions and notations of Theorem 5, for

ε = D
(
1 + L

∥∥λ0
∥∥

�1

)√
A logN

n
,

the assumption

λε
j = λ0

j = 0, j /∈ J,

implies that with probability at least 1 − N−A

E (f
λ̂ε ) ≤ K2p

[
d + A logN

n
+ 1

Γ 2(J )

A logN

n

]
,

which can be further bounded by the expression of the form

K2p d

κ

A logN

n

with κ = κ(J ).
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Proof. Assume n ≥ 4 logN (otherwise, the bound holds trivially). First, consider the case when Γ (J ) ≥
√

logN√
n−√

logN

and, as a consequence,

U(J ) ≤ 1 + 1

Γ (J )
≤

√
n

logN
.

Then ε satisfies the assumptions of Theorem 5, and we use the third bound of this theorem to get

∣∣E (f
λ̂ε ) − E (fλε )

∣∣ ≤ K2 d + A logN

n
+ K

√
E (fλε )

τ (e‖λ0‖�1)

√
d + A logN

n

≤ 3K2 d + A logN

n
+ 2

E (fλε )

τ (e‖λ0‖�1)
,

which implies (since τ(e‖λ0‖�1) ≤ 1)

E (f
λ̂ε ) ≤ 3K2 d + A logN

n
+ 3

E (fλε )

τ (e‖λ0‖�1)
.

Next we use Lemma 1 to bound E (fλε ). It gives

E (f
λ̂ε ) ≤ 3K2 d + A logN

n
+ 3

p2‖λ0‖2(p−1)
�p

τ 2(e‖λ0‖�1)

ε2

Γ 2(J )

= 3K2 d + A logN

n
+ 3

D2p2‖λ0‖2(p−1)

�p
(1 + L‖λ0‖�1)

2

τ 2(e‖λ0‖�1)

1

Γ 2(J )

A logN

n
,

which can be easily bounded by an expression of the form

K2p

[
d + A logN

n
+ 1

Γ 2(J )

A logN

n

]

with a proper adjustment of constant C in the definition of K.

On the other hand, if Γ (J ) ≤
√

logN√
n−√

logN
, we can use the bound on

∣∣E (f
λ̂ε ) − E (fλε )

∣∣
of Theorem 1, which is of the order

C
(
1 + L

∥∥λε/c
∥∥

�1

)∥∥λε/c
∥∥

�1
ε

and since ‖λε/c‖�1 ≤ c1
ε
, we have

∣∣E (f
λ̂ε ) − E (fλε )

∣∣ ≤ C
(
1 + L

∥∥λ0
∥∥

�1

)
with some constant C depending only on �, which is clearly smaller than

K2p

Γ 2(J )

A logN

n
,

so the inequality of the theorem holds in this case, too. �
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Remark. Although we are not attempting to derive in this paper the bounds on the �1-norm ‖λ̂ε − λ0‖�1 with optimal
dependence on the parameters of the problem (such as d, κ, etc.), the following observations are straightforward.
Suppose the conditions of Theorem 4 hold. First, we have

∥∥λ̂ε − λε
∥∥

�1
=

N∑
j=1

∣∣λ̂ε
j − λε

j

∣∣ ≤
∑
j∈J

∣∣λ̂ε
j − λε

j

∣∣ +
∑
j /∈J

∣∣λ̂ε
j

∣∣.
On the other hand,

∑
j∈J

∣∣λ̂ε
j − λε

j

∣∣ ≤ 1

Γ (J )
‖f

λ̂ε,J
− fλε‖L2(Π)

≤ 1

Γ (J )

(‖f
λ̂ε − fλε‖L2(Π) + ‖f

λ̂ε,J
− f

λ̂ε‖L2(Π)

)

≤ 1

Γ (J )

(
‖f

λ̂ε − fλε‖L2(Π) +
∑
j /∈J

∣∣λ̂ε
j

∣∣). (5.12)

We can now use the bounds of Theorem 4 to show that, for

ε ≥ D
(
1 + L

∥∥λ0
∥∥

�1

)(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))
,

with probability at least 1 − N−A

∥∥λ̂ε − λε
∥∥

�1
≤ K

Γ (J )

√
d + A logN

n
+ K

(
1 + L

∥∥λ0
∥∥

�1

)(
1 + 1

Γ (J )

)
d + A logN

nε
.

This can be combined with Lemma 1 to get a bound on ‖λ̂ε −λ0‖�1 in terms of Γ (J ). Since 1
Γ (J )

≤
√

d
κ
, one can then

easily obtain for ε =
√

A logN
n

the bound of the order

(
d

κ
∨ (d)3/2

(κ)1/2

)√
logN

n
.

As an alternative, one can use Γ̃ (J ) instead of Γ (J ) leading to the following bound

∥∥λ̂ε − λε
∥∥

�1
≤ K

Γ̃ (J )

√
d + A logN

n
+ K

(
1 + L

∥∥λ0
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�1

)d + A logN

nε
.

If κ denotes the smallest eigenvalue of the whole matrix (〈hi, hj 〉L2(Π))i,j=1,N , this approach leads to the bound on

‖λ̂ε − λ0‖�1 of the order d
κ

√
logN

n
.

6. Approximate sparsity

Next we turn to bounding the sparsity function in the general case, when there is no knowledge about γd(λε) being
equal to 0 for some d. In this case, we need a more restrictive assumption on p, namely that p − 1 � (logN − 1)−1.

For simplicity, we just assume that p = pN. We also have to assume a little more about the regularization parameter ε,

namely, that

ε ≥ D
(
1 + L

∥∥λ0
∥∥

�1

)
logN

(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))
.
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The logN -factor in the right-hand side is, in fact, just q − 1, where

1

p
+ 1

q
= 1.

This explains why we cannot obtain this result for the values of p closer to 1: the factor q − 1 is becoming too large
to keep the value of ε reasonably small (note that, for large values of ε, λε does not provide a good approximation
of λ0).

Theorem 6. Assume that p = pN. There exist constants L > 0,D > 0 and C > 0 depending only on � (with L = 0 in
the case of loss function with bounded derivative) such that, for all J ⊂ {1, . . . ,N} with d := d(J ), for all A ≥ 1 and
for all

ε ≥ D
(
1 + L

∥∥λ0
∥∥

�1

)
logN

(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))
,

the following bounds hold with K = K(C; ‖λ0‖�1) defined in (5.7) and with probability at least 1 − N−A:

γd

(
λ̂ε

) ≤
∑
j /∈J

∣∣λ̂ε
j

∣∣ ≤ 9
∑
j /∈J

∣∣λε
j
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(
1 + L

∥∥λ0
∥∥

�1

)
logN

d + A logN

nε

and

‖f
λ̂ε − fλε‖L2(Π) ≤

[
K

√
d + A logN

n
∨ K1/2

(∑
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j

∣∣)1/2(√
A logN
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(
U(J )

logN

n
∧

√
d
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))1/2]
.

If, in addition, the set J is such that

γd

(
λε

) =
∑
j /∈J

∣∣λε
j

∣∣,
then with probability at least 1 − N−A

γd

(
λε

) ≤ 9γd

(
λ̂ε

) + K
(
1 + L

∥∥λ0
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�1

)
logN

d + A logN

nε
.

Proof. Let J denote a subset of {1, . . . ,N} such that #(J ) = d and the condition on ε holds. Recall the definitions of
Λ(δ;Δ) = ΛJ (δ;Δ) and of αn(δ;Δ), α̌n(δ;Δ).

We will first show that

P

{∑
j /∈J

∣∣λ̂ε
j

∣∣ ≥ 9
∑
j /∈J

∣∣λε
j
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(
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)
logN

d + A logN

nε

}
≤ N−A.

Obviously,∑
j /∈J

∣∣λ̂ε
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j

∣∣ > 2
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j

∣∣),
where

Λ :=
∑
j /∈J

∣∣λε
j

∣∣.
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Using bounds (5.5), (5.6), it is now easy to modify inequality (5.9) as follows:

p log 2

4
(p − 1)ε

∑
j /∈J

∣∣λ̂ε
j

∣∣p ≤ p log 2

4
(p − 1)ε(2Λ)p + β̌n

(
‖f

λ̂ε − fλε‖L2(Π);
(∑

j /∈J

∣∣λ̂ε
j

∣∣p)1/p)
. (6.1)

Here and in what follows β̌n and βn are the bounds of Lemma 5. As in the proof of Theorem 4, (5.8) and (6.1) provide
upper bounds on ‖f

λ̂ε − fλε‖L2(Π) and on (
∑

j /∈J |λ̂ε
j |p)1/p just by bounding the solutions of the inequalities

p log 2

4
(p − 1)εΔp ≤ p log 2

4
(p − 1)ε(2Λ)p + β̌n(δ;Δ), bδ2 ≤ βn(δ;Δ). (6.2)
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∣∣λ̂ε
j
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≤ 3Λ,
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∑
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j

∣∣p)1/p

≤ 9Λ,

and the result follows. So, it is enough to consider the case(∑
j /∈J

∣∣λ̂ε
j

∣∣p)1/p

> 3Λ,

and in this case the upper bound on Δ’s solving (6.2) must be larger than 3Λ. Denote

Δ̄ := Δ − 2Λ, ε̄ := log 2

4
(p − 1)ε.

Then (6.2) implies

pε̄Δ̄p + pε̄(2Λ)p ≤ pε̄(2Λ)p + β̌n(δ; Δ̄ + 2Λ) (6.3)

and

bδ2 ≤ βn(δ; Δ̄ + 2Λ). (6.4)

Recall that we are interested only in solutions Δ̄ ≥ Λ. For such values of Δ̄, it is easy to see that
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with some value of constant C. We can use these upper bounds in inequalities (6.3) and (6.4) and (with a little abuse
of notations) we denote them βn(δ, Δ̄) and β̌n(δ, Δ̄). Since they are given by exactly the same expressions as βn and
β̌n in the proof of Theorem 4 and since

ε̄ ≥ D1
(
1 + L

∥∥λ0
∥∥

�1

)(√
A logN

n
∨

(
U(J )

logN
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∧
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(to see this recall that p − 1 is of the order 1
logN

and also recall the assumption on ε in the theorem) we can use the

argument of the last part of the proof of Theorem 4 to show that Δ̄’s solving inequalities (6.3) and (6.4) are bounded
from above by

K
(
1 + L

∥∥λ0
∥∥

�1

)d + A logN

nε̄
,

where K = K(C; ‖λ0‖�1) with some C. Hence,

Δ ≤ 3Λ + K
(
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)
logN
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,

implying that

∑
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∣∣λ̂ε
j

∣∣ ≤ e
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)
logN
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with probability at least 1 − N−A and with K = K(C; ‖λ0‖�1) for some C depending on �, which implies the first
bound.

To prove the remaining bounds, consider the set Ĵ ⊂ {1, . . . ,N} such that #(Ĵ ) = d and

γd

(
λ̂ε

) :=
∑
j /∈Ĵ

∣∣λ̂ε
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∣∣.
Similarly to (6.1), we have the following bound
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As it was proved earlier, with probability at least 1 − N−A
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with K = K(C; ‖λ0‖�1). This can be plugged in the expression for β̌n in the right-hand side of bound (6.5) yielding
with some C and under the assumption on ε

β̌n

(
δ;

(∑
j /∈J

∣∣λ̂ε
j

∣∣p)1/p)

≤ C
(
1 + L

∥∥λε
∥∥

�1

)[
δ

√
d + A logN

n
∨ Λ

(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))
∨ K

d + A logN

n

]

∨C
(
1 + L

∥∥λ0
∥∥

�1

)∥∥λ0
∥∥

�1

A logN

n
=: β̌1

n(δ).
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Similarly, we have

βn

(
δ;

(∑
j /∈J

∣∣λ̂ε
j

∣∣p)1/p)

≤ C
(
1 + ∥∥λ0

∥∥
�1

)[
δ

√
d + A logN

n
∨ Λ

(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))
∨ K

d + A logN

n

]

∨ C
(
1 + L

∥∥λ0
∥∥

�1

)∥∥λ0
∥∥

�1

A logN

n
=: β1

n(δ).

As before, we also must have (with b = 2τ(C‖λ0‖�1))

b‖f
λ̂ε − fλε‖2

L2(Π) ≤ β1
n

(‖f
λ̂ε − fλε‖L2(Π)

)
,

which, by solving the inequality, yields the bound

‖f
λ̂ε − fλε‖L2(Π) ≤

[
K

√
d + A logN

n
∨ K1/2Λ1/2

(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))1/2]
(6.6)

with K = K(C; ‖λ0‖�1), which is the second bound of the theorem. Finally, under the additional assumption that

Λ =
∑
j /∈J

∣∣λε
j

∣∣ = γd

(
λε

)
,

we plug this bound into β̌1
n(‖f

λ̂ε − fλε‖L2(Π)), which yields

β̌1
n

(‖f
λ̂ε − fλε‖L2(Π)

)
≤ K

(
1 + L

∥∥λ0
∥∥

�1

)d + A logN

n

∨ C
(
1 + L

∥∥λ0
∥∥

�1

)
γd

(
λε

)(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))
:= β̃.

To see this, note that the expression defining β̌1
n is the maximum of four terms. The third and the fourth terms are

dominated by

K
(
1 + L

∥∥λ0
∥∥

�1

)d + A logN

n

with a proper adjustment of the constants. Then we substitute δ = ‖f
λ̂ε − fλε‖L2(Π) in the first term and use bound

(6.6) and the inequality ab ≤ (a2 + b2)/2. This gives

δ

√
d + A logN

n
≤ K

d + A logN

n
+ Λ

(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))

(again, with an adjustment of constants). Finally, the second term in the definition of β̌1
n is of the same form as the

second term in the expression for β̃.

It is easy to see that with some numerical constant C1

(
β̃

(p − 1)ε

)1/p

≤ C1
β̃

(p − 1)ε
.
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Therefore, we can obtain from (6.5) the following bound (changing one more time the value of constant C):

γd

(
λε

) ≤
∑
j /∈Ĵ

∣∣λε
j

∣∣ ≤ e

(∑
j /∈Ĵ

∣∣λε
j

∣∣p)1/p

≤ 2eγd

(
λ̂ε

) + K(1 + L‖λ0‖�1)

(p − 1)ε

d + A logN

n

+ C(1 + L‖λ0‖�1)

(p − 1)ε
γd

(
λε

)(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))
,

which under the assumption on ε with a proper choice of constants D and C yields

γd

(
λε

) ≤ 3eγd

(
λ̂ε

) + K
(
1 + L

∥∥λ0
∥∥

�1

)
logN

d + A logN

nε
,

and which holds with probability at least 1 − N−A, implying the second bound of the theorem. �

The next statement shows that for larger values of ε the “pattern” of λ̂ε is even closer to the “pattern” of λε. The
proof is similar to Corollary 3.

Corollary 5. Suppose the assumptions and notations of Theorem 6 hold, in particular, that p = pN. Let q := p/(p −
1) = logN, let B ≥ 1 and let β > 0. There exists a constant D depending on � and β such that, for all ε satisfying the
condition (for some d)

ε ≥ DeB(q − 1)

[
K

√
d + A logN

n
∨ K1/2(

γd

(
λε

))1/2
(

d + logN

n

)1/4]
,

we have that with probability at least 1 − N−A for all j = 1, . . . ,N

∣∣λ̂ε
j

∣∣ ≤ eδ

(∣∣λε
j

∣∣ ∨ N−β

)

and ∣∣λε
j

∣∣ ≤ eδ
(∣∣λ̂ε

j

∣∣ ∨ N−β
)
,

where δ = e−B.

Remark. It is known that �1-penalized least square regression estimators (LASSO) can be used for variable selection
(see, e.g., [22,30] and references therein). It is not our goal here to provide a comprehensive analysis of this problem.
However, the following observations are obvious. Suppose that for some J ⊂ {1, . . . ,N} with #(J ) = d and for some
Δ > 0∣∣λ0

j

∣∣ ≥ Δ, j ∈ J and λ0
j = 0, j /∈ J.

Suppose also that∥∥λε − λ0
∥∥

�1
= O(ε), ε → 0

(see Lemma 1 for some conditions under which it is true). Finally, suppose that N = Nn ≥ nγ and take the regular-
ization parameter ε = εn → 0 as n → ∞ such that

(logNn)
5/2

n1/2
= o(εn) as n → ∞.
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Then

γd

(
λεn

) ≤ ∥∥λεn − λ0
∥∥

�1
= O(εn)

and the condition on ε of Corollary 5 is satisfied for large enough n. Therefore, for large enough n with probability
at least 1 − N−A

n

max
j /∈J

∣∣λ̂εn

j

∣∣ ≤ eδN−β
n = o(εn)

and

min
j∈J

∣∣λ̂εn

j

∣∣ ≥ e−δΔ ≥ εn

(recall that N = Nn ≥ nγ and assume that β > 1/(2γ )). Define

Ĵ := {
j :

∣∣λ̂εn

j

∣∣ ≥ εn

}
.

Then for large enough n

P{Ĵ = J } ≤ N−A
n → 0 as n → ∞,

showing consistency of variable selection. It is easy to extend this argument to the case of small Δ = Δn → 0 and
large d = dn → ∞ as n → ∞.

In the case of “approximate sparsity,” the following version of Theorem 5 holds (the proof is essentially the same
as before, with Theorem 6 used instead of Theorem 4). Denote by P̄1,N the orthogonal projector on the linear span of
{h1, . . . , hN } in the space L2(P ) and

gε := P̄1,N

(
�′ • fλε

)
.

Theorem 7. Let p = pN. There exist constants D > 0,L > 0 and C > 0, depending only on �, such that, for all
J ⊂ {1, . . . ,N} with d := d(J ) ≥ 1 for arbitrary A ≥ 1 and for all

ε ≥ D
(
1 + L

∥∥λ0
∥∥

�1

)
logN

(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))
,

the following bound holds with probability at least 1 − N−A

∣∣E (f
λ̂ε ) − E (fλε )

∣∣ ≤ Ω2 + ∥∥gε
∥∥

L2(P )
Ω,

where

Ω := K

√
d + A logN

n
∨ K1/2

(∑
j /∈J

∣∣λε
j

∣∣)1/2(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))1/2

and K = K(C; ‖λ0‖�1) (as defined in (5.7)). This also implies that with a properly chosen constant C∣∣E (f
λ̂ε ) − E (fλε )

∣∣ ≤ Ω2 + ‖fλε − fλ0‖L2(Π)Ω

and

∣∣E (f
λ̂ε ) − E (fλε )

∣∣ ≤ Ω2 +
√

E (fλε )

τ (e‖λ0‖�1)
Ω.
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Remarks.

1. If U(J ) ≤
√

n
logN

, then the bounds of Theorems 5 and 7 hold for all ε ≥ D(1 + L‖λ0‖�1)

√
A logN

n
and ε ≥

D(1 + L‖λ0‖�1) logN

√
A logN

n
, respectively. Note also that, by Theorem 1, for all ε > 0,

∣∣P(� • f
λ̂ε ) − P(� • fλε )

∣∣ ≤ C
(
1 + L

∥∥λ0
∥∥

�1

)∥∥λ0
∥∥

�1
ε,

which can be used when

U(J ) >

√
n

logN
,

as we did in the proof of Corollary 4.
2. The bound of Theorem 5 clearly holds for all

ε ≥ D
(
1 + L

∥∥λ0
∥∥

�1

)√
d + A logN

n

(and all p ∈ (1,pN ]) implying that under the assumption γd(λε) = 0 with probability at least 1 − N−A

P (� • f
λ̂ε ) − P(� • fλ0) ≤ C‖fλε − fλ0‖2

L2(Π) + K2 d + A logN

n
.

Similarly, for p = pN and

ε ≥ D
(
1 + L

∥∥λ0
∥∥

�1

)
logN

√
d + A logN

n
,

we have with the same probability (and with no assumption on γd(λε))

P(� • f
λ̂ε ) − P(� • fλ0) ≤ C‖fλε − fλ0‖2

L2(Π) +
(

K2 d + A logN

n
+ Kγd

(
λε

)√
d + logN

n

)
.

The derivation of these inequalities requires only the fact that

E (fλε ) ≤ C‖fλε − fλ0‖2
L2(Π),

which is true under the assumptions on the loss (with C depending only on �).
For λ ∈ R

N, recall the notation Jλ = supp(λ).

We now show how to obtain oracle inequalities of the same type as in Theorem 3 (with worse constants) as a
corollary of Theorem 7 and approximation error bound of Theorem 2.

Corollary 6. Under the assumptions and notations of Theorem 7, the following bound holds for all

ε ∈
[
D

(
1 + L

∥∥λ0
∥∥

�1

)
logN

√
A logN

n
,1

]

with probability at least 1 − N−A and with some C > 0:

E (f
λ̂ε ) ≤ K2 inf

λ∈RN

[
E (fλ) + (‖λ‖�p ∨ 1)2(p−1)

τ (‖λ‖�1 ∨ e‖λ0‖�1)

1

Γ̃ 2(Jλ)
ε2

]
,

where K = K(C; ‖λ0‖�1) (see (5.7)).
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Proof. It follows from Theorem 2 that

E (fλε ) ≤ inf
λ∈RN

[
3E (fλ) +

2p2‖λ‖2(p−1)

�p

τ (‖λ‖�1 ∨ e‖λ0‖�1)

1

Γ̃ 2(Jλ)
ε2

]
(6.7)

and for λ̄ defined in Theorem 2

ε
∑
j /∈Jλ̄

∣∣λε
j

∣∣ ≤ c inf
λ∈RN

[
3E (fλ) +

2p2‖λ‖2(p−1)

�p

τ (‖λ‖�1 ∨ e‖λ0‖�1)

1

Γ̃ 2(Jλ)
ε2

]
. (6.8)

We will use the set J := Jλ̄ in the bounds of Theorem 7. If

1

Γ̃ (J )
≤

√
n

logN
− 1,

then (see Proposition 1)

U(J ) ≤ 1

Γ (J )
+ 1 ≤

√
n

logN
.

Hence, the assumption

ε ≥ D
(
1 + L

∥∥λ0
∥∥

�1

)
logN

√
A logN

n

immediately implies the assumption on ε of Theorem 7. In this case, Theorem 7 implies that with probability at least
1 − N−A

∣∣E (f
λ̂ε ) − E (fλε )

∣∣ ≤ K2 d(λ̄) + A logN

n
+ Kε

∑
j /∈J

∣∣λε
j

∣∣

+
√

E (fλε )

τ (e‖λ0‖�1)

(
K

√
d(λ̄) + A logN

n
∨ K1/2ε1/2

(∑
j /∈J

∣∣λε
j

∣∣)1/2)
.

It remains to combine this bound with (6.7) and to use (6.8) to bound the expression

ε
∑
j /∈J

∣∣λε
j

∣∣
in order to complete the proof in the case

1

Γ̃ (J )
≤

√
n

logN
− 1.

It has to be also taken into account that

1

Γ̃ 2(Jλ̄)
ε2 ≥ ε2 ≥ A logN

n

(since 1
Γ (Jλ̄)

≥ 1) and (see Proposition 1, (i) and (iii))

1

Γ̃ 2(Jλ̄)
ε2 ≥ d(λ̄)

n
.
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If 1
Γ̃ (Jλ)

>
√

n
logN

− 1 the excess risk bound of Theorem 1 is even tighter than the bound of the current theorem, so

the result also holds. �

Appendix. Bounds on Rademacher processes and other auxiliary results

Proof of Proposition 1. (i) It follows from the definition of Γ (J ) that, for αj equal to +1 or −1,

Γ (J )d(J ) = Γ (J )
∑
j∈J

|αj | ≤
∥∥∥∥∑

j∈J

αjhj

∥∥∥∥
L2(Π)

.

Hence, for i.i.d. Rademacher r.v. εj ,

Γ (J )d(J ) ≤ min|αj |=1

∥∥∥∥∑
j∈J

αjhj

∥∥∥∥
L2(Π)

≤ E

∥∥∥∥∑
j∈J

εjhj

∥∥∥∥
L2(Π)

≤ E
1/2

∥∥∥∥∑
j∈J

εjhj

∥∥∥∥
2

L2(Π)

≤
(∑

j∈J

‖hj‖2
L2(Π)

)1/2

≤ √
d(J )

(since hj are bounded by 1).

(ii) It easily follows from Cauchy–Schwarz inequality.
(iii) The following inequality is obvious

∥∥∥∥∑
j∈J

λjhj

∥∥∥∥
L2(Π)

≤ (
1 − ρ2(J )

)−1/2

∥∥∥∥∥
N∑

j=1

λjhj

∥∥∥∥∥
L2(Π)

,

since for f = ∑
j∈J λjhj and g = ∑

j /∈J λjhj , we have

‖f + g‖2
L2(Π) = (

1 − cos2(α)
)‖f ‖2

L2(Π) + (‖f ‖L2(Π) cos(α) + ‖g‖L2(Π)

)2 ≥ (
1 − ρ2(J )

)‖f ‖2
L2(Π),

where α is the angle between f and g. This easily leads to the bound

∑
j∈J

|αj | ≤ 1

Γ (J )
√

1 − ρ2(J )

∥∥∥∥∥
N∑

j=1

αjhj

∥∥∥∥∥
L2(Π)

,

which implies that

Γ̃ (J ) ≥ Γ (J )

√
1 − ρ2(J ).

The inequality

1 ≥ Γ (J ) ≥ Γ̃ (J )

follows immediately from the definitions.
(iv) This is a straightforward application of the Cauchy–Schwarz inequality.
(v) and (vi) If IJ denotes the embedding operator from (LJ ; ‖ · ‖L2(Π)) into (LJ ; ‖ · ‖∞), then it is easy to see

that U(J ) is not greater than ‖IJ ‖ + 1. If hj , j = 1, . . . ,N , are orthogonal, then U(J ) ≤ 1. More generally, we have
(since ‖hj‖∞ ≤ 1)∥∥∥∥∑

j∈J

αjhj

∥∥∞ ≤
∑
j∈J

|αj | ≤ 1

Γ (J )

∥∥∥∥∑
j∈J

αjhj

∥∥∥∥
L2(Π)

,
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implying that

U(J ) ≤ ‖IJ ‖ + 1 ≤ 1

Γ (J )
+ 1 ≤

√
d

Γ2(J )
+ 1 =

√
d

κ(J )
+ 1. �

Below, we give several technical lemmas concerning Rademacher processes that are used in the proofs of the main
results of the paper. They are relatively standard and have similar proofs. We give only the proofs of Lemma 2 and
Lemma 4. We will frequently use the symmetrization inequality, contraction inequality and other standard facts about
Rademacher processes that can be found in [18,27] and, in the context close to this paper, in [16].

Lemma 2. Let p ∈ [1,pN ]. There exist constants C,L depending only on � such that for all A ≥ 1 and for all R > 0
with probability at least 1 − N−A the following bound holds

sup
‖λ‖�p ≤R

∣∣(Pn − P)(� • fλ − � • f0)
∣∣ ≤ C(1 + LR)R

√
A logN

n
.

In addition, with the same probability

max
1≤k≤N

sup
‖λ‖�p ≤R

∣∣(Pn − P)
(
�′ • fλ

)
hk

∣∣ ≤ C(1 + LR)

√
A logN

n
.

Here f0 is fλ for λ = 0, so, f0 is identically equal to 0.

Proof. First, use the bounded difference inequality to show that with probability ≥ 1 − e−t

sup
‖λ‖�p ≤R

∣∣(Pn − P)(� • fλ − � • f0)
∣∣ ≤ E sup

‖λ‖�p ≤R

∣∣(Pn − P)(� • fλ − � • f0)
∣∣ + C(1 + LR)R

√
t√

n

(to apply the bounded difference inequality, note that, in view of the assumptions on �, for ‖λ‖�1 ≤ e‖λ‖�p ≤ eR,∣∣(� • fλ)(x, y) − (� • f0)(x, y)
∣∣ ≤ C(1 + LR)R

with constants C,L > 0 depending only on �; the bounded difference inequality is then applied to the supremum of
the empirical process on the class G := { �•fλ

C(1+LR)R
: ‖λ‖�p ≤ R}). Next we have to bound

E sup
‖λ‖�p ≤R

∣∣(Pn − P)(� • fλ − � • f0)
∣∣.

Denoting

Rn(g) :=
n∑

j=1

εjg(Xj )

the Rademacher process (εj being i.i.d. Rademacher random variables) and using the symmetrization inequality, we
get

E sup
‖λ‖�p ≤R

∣∣(Pn − P)(� • fλ − � • f0)
∣∣ ≤ 2E sup

‖λ‖�p ≤R

∣∣Rn(� • fλ − � • f0)
∣∣,

which using the contraction inequality for Rademacher processes can be bounded further by

C(1 + LR)E sup
‖λ‖�1 ≤eR

∣∣Rn(fλ)
∣∣.
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Well-known bounds for the expectation of the maximum of Rademacher processes over a finite set of functions now
yield

E sup
‖λ‖�1 ≤eR

∣∣Rn(fλ)
∣∣ = E sup

‖λ‖�1 ≤eR

∣∣∣∣∣Rn

(
n∑

i=1

λihi

)∣∣∣∣∣
≤ E sup

‖λ‖�1 ≤eR

‖λ‖�1 max
1≤i≤N

∣∣Rn(hi)
∣∣ ≤ CR

√
logN

n
.

As a result, for all R we have the following bound that holds with probability ≥ 1 − e−t and with some constants C,L

depending only on �:

sup
‖λ‖�p ≤R

∣∣(Pn − P)(� • fλ − � • f0)
∣∣ ≤ C(1 + LR)R

√
logN + t

n
.

It remains to plug in t = A logN and to adjust the constants one more time to complete the proof.
The proof of another inequality is quite similar. �

Lemma 3. There exist constants C,L > 0 that depends only on � such that for any λ̄ ∈ R
N with probability at least

1 − N−A for all λ ∈ R
N such that ‖λ − λ̄‖�1 ≤ eN

∣∣(Pn − P)(� • fλ − � • fλ̄)
∣∣

≤ C
(
1 + L

(‖λ‖�1 ∨ ‖λ̄‖�1

))(∑
j∈Jλ̄

|λj − λ̄j |
)√

A logN

n
+ C

(
1 + L‖λ‖�1

)(∑
j /∈Jλ̄

|λj |
)√

A logN

n
.

In the next lemma, we are assuming the conditions and using the notations of Theorem 4 and its proof (recall, in
particular, the definitions of αn(δ;Δ) and α̌n(δ;Δ)).

Lemma 4. Let C1 > 0. There exist constants L,C, c > 0 that depend only on � such that with probability at least
1 − N−A, for all

n−1/2 ≤ δ ≤ C1
∥∥λε/c

∥∥
�1

and n−1/2 ≤ Δ ≤ C1
∥∥λε/c

∥∥
�1

, (A.1)

the following bounds hold:

αn(δ;Δ) ≤ βn(δ;Δ)

:= C
(
1 + ∥∥λ0

∥∥
�1

)[
δ

√
d + A logN

n
∨ Δ

(√
logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))]

∨C
(
1 + L

∥∥λ0
∥∥

�1

)∥∥λ0
∥∥

�1

A logN

n
(A.2)

and

α̌n(δ;Δ) ≤ β̌n(δ;Δ)

:= C
(
1 + L

∥∥λε
∥∥

�1

)[
δ

√
d + A logN

n
∨ Δ

(√
logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))]

∨ C
(
1 + L

∥∥λ0
∥∥

�1

)∥∥λ0
∥∥

�1

A logN

n
. (A.3)
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Proof. First note that, by Talagrand’s concentration inequality, with probability at least 1 − e−t

αn(δ;Δ) ≤ 2

[
Eαn(δ;Δ) + Lδ

√
t

n
+ C(1 + L‖λ0‖�1)‖λ0‖�1 t

n

]
.

Next, by the symmetrization inequality,

Eαn(δ;Δ) ≤ 2E sup
{∣∣Rn

((
�′ • fλ

)
(fλ − fλε )

)∣∣: λ ∈ Λ(δ;Δ)
}
.

Now we write

�′(fλ(·)
)(

fλ(·) − fλε (·)) = �′(fλε (·) + u
)
u|u=fλ(·)−fλε (·)

and use the fact that the function

[−R,R] � u �→ �′(fλε (·) + u
)
u

is Lipschitz with constant C(1 + ‖λε‖�1 + R) to prove that by the Rademacher contraction inequality

Eαn(δ;Δ) ≤ C
(
1 + ∥∥λε/c

∥∥
�1

)
E sup

{∣∣Rn(fλ − fλε )
∣∣: λ ∈ Λ(δ;Δ)

}
.

To bound the last expectation, for λ ∈ R
N, denote

fλ,J :=
∑
j∈J

λjhj .

Then, for λ’s in the supremum,

‖fλ,J − fλε‖L2(Π) ≤ ‖fλ − fλ,J ‖L2(Π) + ‖fλ − fλε‖L2(Π) ≤ δ + eΔ,

where we used the fact that

‖fλ − fλ,J ‖ ≤
∑
j /∈J

|λj |‖hj‖∞ ≤ e

(∑
j /∈J

|λj |p
)1/p

≤ eΔ.

Now we get

E sup
{∣∣Rn(fλ − fλε )

∣∣: λ ∈ Λ(δ;Δ)
}

≤ E sup
{∣∣Rn(fλ,J − fλε )

∣∣: ‖fλ,J − fλε‖L2(Π) ≤ δ + eΔ
} + E sup

{∣∣Rn(fλ − fλ,J )
∣∣: ∑

j /∈J

|λj | ≤ Δ

}
.

In the first expectation, the supremum is over a set in a d-dimensional linear space of functions (the linear span of
{hj : j ∈ J }) with a bound on L2(Π)-norm. This yields (in a standard way, see, e.g., [16], Section 2, Example 1) that

E sup
{∣∣Rn(fλ,J − fλε )

∣∣: ‖fλ,J − fλε‖L2(Π) ≤ δ + eΔ
} ≤ C(δ + eΔ)

√
d

n

with some constant C > 0. The bound on the second expectation is also rather standard:

E sup

{∣∣Rn(fλ − fλ,J )
∣∣: ∑

j /∈J

|λj | ≤ Δ

}

≤ E sup

{∣∣∣∣Rn

(∑
j /∈J

λjhj

)∣∣∣∣: ∑
j /∈J

|λj | ≤ Δ

}
≤ ΔE max

j /∈J

∣∣Rn(hj )
∣∣ ≤ CΔ

√
logN

n
.
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Therefore

E sup
{∣∣Rn(fλ − fλε )

∣∣: λ ∈ Λ(δ;Δ)
} ≤ C(δ + eΔ)

√
d

n
+ CΔ

√
logN

n
.

It follows that with probability at least 1 − e−t

αn(δ;Δ) ≤ β̃n(δ;Δ; t)

:= C
(∥∥λε/c

∥∥
�1

+ 1
)[

δ

√
d

n
+ δ

√
t

n
+ Δ

√
d

n
+ Δ

√
logN

n

]

+ C
(
1 + L

∥∥λ0
∥∥

�1

)∥∥λ0
∥∥

�1

t

n

with a constant C > 0 that depends only on �.

To construct a bound that is uniform in δ,Δ satisfying (A.1), define

δj := C1
∥∥λε/c

∥∥
�1

2−j and Δj := C1
∥∥λε/c

∥∥
�1

2−j

and replace t by t + 2 log(j + 1) + 2 log(k + 1). Using the union bound, we get that with probability at least

1 −
∑

j,k≥0

exp
{−t − 2 log(j + 1) − 2 log(k + 1)

} = 1 −
(∑

j≥0

(j + 1)−2
)2

exp{−t} ≥ 1 − 4e−t

we have, for all δ and Δ satisfying (A.1), and for j, k such that

δ ∈ (δj+1, δj ] and Δ ∈ (Δk+1,Δk],

that

αn(δ;Δ) ≤ β̃n(δj ,Δj , t + 2 log j + 2 logk).

Note that

2 log j ≤ 2 log log2

(
C1‖λε/c‖�1

δj

)
≤ 2 log log2

(
2C1‖λε/c‖�1

δ

)

and

2 logk ≤ 2 log log2

(
2C1‖λε/c‖�1

Δ

)
.

Thus

β̃n(δj ,Δj , t + 2 log j + 2 logk)

≤ β̃n

(
2δ,2Δ, t + 2 log log2

(
2C1‖λε/c‖�1

δ

)
+ 2 log log2

(
2C1‖λε/c‖�1

Δ

))
=: β̄n(δ;Δ; t)

and we have with probability at least 1 − 4e−t , for all δ and Δ satisfying (A.1),

αn(δ;Δ) ≤ β̄n(δ;Δ; t).
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Take now t = A logN + log 4 (so that 4e−t = N−A). Clearly, with some constant C that depends only on � we have
(note that e‖λ0‖�1 is an upper bound on ‖λε/c‖�1 )

β̄n(δ;Δ; t) ≤ C
(
1 + ∥∥λ0

∥∥
�1

)[
δ

√
d

n
∨ δ

√
A logN

n
∨ δ

√
2 log log2(2C1‖λε/c‖�1/δ)

n

∨ δ

√
2 log log2(2C1‖λε/c‖�1/Δ)

n
∨ Δ

√
d

n
∨ Δ

√
logN

n

]
∨ C

(
1 + L

∥∥λ0
∥∥

�1

)∥∥λ0
∥∥

�1

A logN

n
.

Note that, for all δ and Δ satisfying (A.1),

δ

√
2 log log2(2C1‖λε/c‖�1/δ)

n
≤ Cδ

√
log logn

n

and

δ

√
2 log log2(2C1‖λε/c‖�1/Δ)

n
≤ Cδ

√
log logn

n

(where we used the fact that ‖λε/c‖�1 = O(ε−1)). Since A logN ≥ γ logn ≥ γ log logn, it follows that, for δ and Δ

satisfying (A.1),

β̄n(δ;Δ; t) ≤ C
(
1 + ∥∥λ0

∥∥
�1

)[
δ

√
d + A logN

n
∨ Δ

√
d + logN

n

]

∨C
(
1 + L

∥∥λ0
∥∥

�1

)∥∥λ0
∥∥

�1

A logN

n
.

Then, with probability at least 1 − 2N−A, for all δ and Δ satisfying (A.1),

αn(δ;Δ) ≤ C
(
1 + ∥∥λ0

∥∥
�1

)[
δ

√
d + A logN

n
∨ Δ

√
d + logN

n

]

∨ C
(
1 + L

∥∥λ0
∥∥

�1

)∥∥λ0
∥∥

�1

A logN

n

(the bound 2N−A is the sum of two probability bounds: one N−A comes from Theorem 1 and another one from
Talagrand’s inequality, which we used earlier in the proof).

Similarly, it is possible to prove that with probability at least 1 − 2N−A

α̌n(δ;Δ) ≤ C
(
1 + L

∥∥λε
∥∥

�1

)[
δ

√
d + A logN

n
∨ Δ

√
d + logN

n

]

∨ C
(
1 + L

∥∥λ0
∥∥

�1

)∥∥λ0
∥∥

�1

A logN

n
,

where C,L depend only on � (the main advantage of this bound is in the case when the first derivative of the loss
function is bounded and, as a consequence, L = 0). The only difference with the previous case is that since now the
Rademacher process is indexed by functions(

�′ • fλε

)
(fλ − fλε ), λ ∈ Λ(δ;Δ),

there is no need to use the contraction inequality. Instead, one can introduce the functions

h̃j := (
�′ • fλε

)
hj , j = 1, . . . ,N,
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that are bounded by C(1 + L‖λε‖�1), and use the fact that the Rademacher process is indexed by functions from
the linear span of h̃1, . . . , h̃N , which simplifies the derivation and allows one to get the bound above. Hence, both
inequalities hold simultaneously with probability at least 1 − 4N−A.

A relatively simple modification of the previous derivations also yields the following bounds

αn(δ;Δ) ≤ C
(
1 + ∥∥λ0

∥∥
�1

)[
δ

√
d + A logN

n
∨ Δ

√
logN

n
∨ ΔU(J )

logN

n

]

∨ C
(
1 + L

∥∥λ0
∥∥

�1

)∥∥λ0
∥∥

�1

A logN

n
(A.4)

and

α̌n(δ;Δ) ≤ C
(
1 + ∥∥λε

∥∥
�1

)[
δ

√
d + A logN

n
∨ Δ

√
logN

n
∨ ΔU(J )

logN

n

]

∨ C
(
1 + L

∥∥λ0
∥∥

�1

)∥∥λ0
∥∥

�1

A logN

n
(A.5)

that again hold with probability at least 1 − 4N−A. Indeed,

fλ − fλε = PJ (fλ − fλε ) +
∑
j /∈J

λj

(
hj − h′

j

)

and, for all λ ∈ Λ(δ,Δ),∥∥PJ (fλ − fλε )
∥∥

L2(Π)
≤ ‖fλ − fλε‖L2(Π) ≤ δ.

Therefore,

E sup
{∣∣Rn

(
PJ (fλ − fλε )

)∣∣: λ ∈ Λ(δ;Δ)
} ≤ Cδ

√
d

n
.

On the other hand,

E sup

{∣∣∣∣Rn

(∑
j /∈J

λj

(
hj − h′

j

))∣∣∣∣: λ ∈ Λ(δ;Δ)

}
≤ ΔE max

j /∈J

∣∣Rn

(
hj − h′

j

)∣∣.
Standard bounding of the sup-norm of Rademacher sums yields

E max
j /∈J

∣∣Rn

(
hj − h′

j

)∣∣ ≤ CE max
j /∈J

∥∥hj − h′
j

∥∥
L2(Πn)

√
logN

n

≤ C max
j /∈J

∥∥hj − h′
j

∥∥
L2(Π)

√
logN

n

+
√

E max
j /∈J

∣∣∥∥hj − h′
j

∥∥2
L2(Πn)

− ∥∥hj − h′
j

∥∥2
L2(Π)

∣∣√ logN

n
,

which by using the symmetrization inequality in combination with the Rademacher contraction inequality gives the
following bound (note that ‖hj − h′

j‖L2(Π) ≤ 1)

E max
j /∈J

∣∣Rn

(
hj − h′

j

)∣∣ ≤ C

[√
logN

n
+

√
max
j /∈J

∥∥hj − h′
j

∥∥∞E max
j /∈J

∣∣Rn

(
hj − h′

j

)∣∣√ logN

n

]
.



56 V. Koltchinskii

Solving this inequality for

E max
j /∈J

∣∣Rn

(
hj − h′

j

)∣∣
results in the bound

E max
j /∈J

∣∣Rn

(
hj − h′

j

)∣∣ ≤ C

[√
logN

n
+ U(J )

logN

n

]
,

which, by a repetition of the previous argument, implies (A.4) and (A.5).
Combining all these bounds, we show that (A.2) and (A.3) hold with probability at least 1 − 8N−A. The factor 8

can be easily removed by changing the value of the constant C, implying the statement of the lemma. �

In Lemma 5, the conditions and notations of Theorem 6 are used.

Lemma 5. Let C1 > 0. There exist constants L,C, c > 0 that depend only on � such that with probability at least
1 − N−A, for all

n−1/2 ≤ δ ≤ C1
∥∥λε/c

∥∥
�1

and n−1/2 ≤ Δ ≤ C1
∥∥λε/c

∥∥
�1

,

the following bounds hold:

αn(δ;Δ) ≤ βn(δ;Δ) := C
(
1 + ∥∥λ0

∥∥
�1

)[
δ

√
d + A logN

n
∨ Δ

(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))

∨γd

(
λε

)(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))]

∨C
(
1 + L

∥∥λ0
∥∥

�1

)∥∥λ0
∥∥

�1

A logN

n
(A.6)

and

α̌n(δ;Δ) ≤ β̌n(δ;Δ) := C
(
1 + L

∥∥λε
∥∥

�1

)[
δ

√
d + A logN

n
∨ Δ

(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))

∨ γd

(
λε

)(√
A logN

n
∨

(
U(J )

logN

n
∧

√
d

n

))]

∨ C
(
1 + L

∥∥λ0
∥∥

�1

)∥∥λ0
∥∥

�1

A logN

n
. (A.7)
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