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1. Introduction

This survey concerns recent results on the structure of 2D and 3D unit-length vector

fields of vanishing divergence and applications to micromagnetics. It contains two

parts:

(I) We start by analyzing the regularizing effect, rigidity and approximation results

of 2D unit-length divergence-free vector fields. This amounts to the study of the 2D

eikonal equation which can be viewed as a scalar conservation law. A key tool in

the analysis is the notion of entropy, classical in the theory of scalar conservation

laws, which is adapted here to the framework of S1-valued maps. Our first aim is

to characterize the structure of singularities such as point-singularities (vortices)

under the hypothesis of Sobolev regularity W
1
p ,p of these vector fields. A second

issue concerns the study of line-energies concentrated on singularities of codimen-

sion 1 of S1-valued BV vector fields of vanishing divergence. More precisely, for

vector fields m ∈ BV (Ω, S1) with ∇ · m = 0 in Ω ⊂ R2, we consider energy

functionals

If (m) :=

∫

J(m)

f(|m+ −m−|)dH1

concentrated on the jump “lines” J(m) of m that depend only on the jump size

|m+−m−| via the cost function f : [0, 2] → R+. Using the concept of entropies, we

characterize the cost functions f that generate lower semicontinuous line-energies

If for a relevant topology. We also deduce existence of minimizers under certain

boundary conditions. In particular, we characterize the situations where the viscos-

ity solution is a minimizing configuration. Finally, we discuss the case of 3D unit-

length vector fields satisfying a divergence constraint; typically, for vector fields
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m : ω = Ω × (0, h) → S2 with m = m(x1, x2) (i.e. invariant in x3-direction) and

∇ · m = 0 in ω ⊂ R3, we analyze the Γ-convergence of the singularly perturbed

functionals Gε (as ε→ 0):

Gε(mε) = ε

∫

ω

|∇m|2 + 1

ε

∫

ω

g(m),

for certain potential g : S2 → R+. For that, we focus on the concept of generalized

entropy defined on R2 or S2. On the one hand, these generalized entropies are used

for proving compactness of uniformly bounded energy configurations Gε(mε) ≤ C

as ε → 0. On the other hand, they are the main tool in showing (optimal) lower

bounds for Gε as ε → 0. We highlight the fact that this strategy works for poten-

tials g generating one-dimensional transition layers (e.g. the Aviles–Giga and Bloch

wall models) but also in the case where 2D microstructure appears instead of one-

dimensional transition layers (e.g. the cross-tie wall and the zigzag pattern models).

(II) The second part focuses on micromagnetics, more precisely, on the analysis of

pattern formation of the magnetization. In certain asymptotic regimes, the magne-

tization is described (at the mesoscopic level) by a 3D vector field m of vanishing

divergence and taking values into S2. Thus, there is a close link with the first

part of this survey, our aim consisting in characterizing the singularities of the

magnetization. These singular phenomena correspond (at the microscopic level) to

domain walls (i.e. either one-dimensional transition layers, or 2D–3D microstruc-

tures) and topological defects of vortex type. We will discuss the general context

of micromagnetics, in particular, a classification of the domain walls in the thin-

film regime: symmetric Néel walls, asymmetric Néel walls, asymmetric Bloch walls

together with interior vortices (Bloch lines) and boundary vortices.

We start our analysis by dealing with the predominant domain wall in thin

ferromagnetic films, the (symmetric) Néel wall: it is a one-dimensional transition

layer corresponding to an in-plane rotation between two directions of angle −θ and

θ of the magnetization. We prove the asymptotic behavior of Néel walls through the

method of Γ-convergence. The entropy method is not adapted in this case since the

energetic cost of Néel wall is quartic in θ; we use instead a duality argument and

failing Gagliardo–Nirenberg interpolation embedding with logarithmic rate. Second,

we investigate the behavior of a vortex defect induced by a 360◦ Néel wall. The

particularity of this vortex structure consists in carrying a zero topological degree at

the microscopic level which is completely different from the well-known Ginzburg–

Landau vortices. The analysis is closely related to the structure of 2D unit-length

divergence-free vector fields, in particular, this model provides the optimal topology

of the approximation result of W
1
p ,p vector fields in Theorem 3.

Next, we deal with a common pattern in thin-films, the Landau state, corre-

sponding to the global minimizer of the micromagnetic energy. It involves formation

of Néel walls and Ginzburg–Landau type vortices, called Bloch lines in the micro-

magnetic jargon. Our main result concerns the compactness of magnetization of
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energy close to the Landau state in the regime where a vortex is energetically

more expensive than a Néel wall. The method uses techniques developed for the

Ginzburg–Landau type problems for the concentration of energy on vortex balls,

together with an approximation argument of S2-vector fields by S1-vector fields

away from the vortex balls.

We then analyze in details the topological defects of the magnetization. In par-

ticular, we study the asymptotic behavior of boundary vortices and their interaction

energy; the fundamental object is based on the notion of “boundary” Jacobian that

detects boundary vortices. The concentration of the micromagnetic energy around

boundary vortices is proved by a Γ-convergence type argument. We also deter-

mine the renormalized energy corresponding to the interaction between boundary

vortices and governing the localization of these defects.

Finally, we investigate a critical thin-film regime where a bifurcation phe-

nomenon occurs between symmetric and asymmetric domain walls. We prove that

for small transition angles θ, the optimal transition layer corresponds to the (sym-

metric) Néel wall. Then there exists a critical angle θ∗ where a symmetry breaking

occurs and an asymmetric domain wall (the asymmetric Néel wall) nucleates in the

core of the transition. We study the asymptotic behavior of this transition layer

and we prove the energy separation between the symmetric part (tails) and the

asymmetric part (core) of the transition layer. In order to determine the critical

angle θ∗, we compute the asymptotic expansion of the energy of the asymmetric

wall at order θ4. It amounts to study the minimization of Dirichlet energy over

divergence-free vector fields with values into S2 where a transition angle from −θ
to θ is imposed.

We highlight the close relation between the two parts of the survey: The con-

necting thread is given by the structure of unit-length vector fields of vanishing

divergence. On the one hand, the topic treated in the first part is often inspired

by questions related to micromagnetics. On the other hand, the pattern formation

of the magnetization (at the mesoscopic level) studied in the second part strongly

relies on the analysis of 3D divergence-free vector fields m taking values into S2.

Depending on the asymptotic regime or the ansatz, the vector field m is invariant in

one direction so that the divergence constraint only acts on two variables. Moreover,

certain restrictions imposed by the asymptotic regime enforce m to take in-plane

values, i.e. m ∈ S1. This justifies the study on 2D unit-legth divergence-free vector

fields developed at the beginning of the survey.

This survey is based on the “mémoire d’habilitation” of the author.a New parts

have been added, in particular a simplified proof of Proposition 2 in Sec. 6.1,

Lemma 1 and Remark 10 in Sec. 5.3, Theorem 9 in Sec. 5, Remark 6 in Sec. 4.2

and Remark 13 in Sec. 6.2.

aThe habilitation was defended at Université Paris-Sud 11 in December 2011 in front of the Jury
composed by F. Alouges, Y. Brenier, P. Gérard, F. Otto, B. Perthame and S. Serfaty and after
referee reports of F. Alouges, L. Ambrosio and B. Perthame.
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2. 2D Divergence-Free Unit-Length Vector Fields

Let Ω ⊂ R2 be an open bounded set. We will focus on measurable vector fields

m : Ω → R2 that satisfy

|m| = 1 a.e. in Ω and ∇ ·m = 0 in D′(Ω). (2.1)

One can equivalently consider measurable vector fields v : Ω → R2 such that

|v| = 1 a.e. in Ω and ∇× v = 0 in D′(Ω). (2.2)

[The passage from (2.1) to (2.2) is done via v = m⊥ = (−m2,m1). The nota-

tion m comes from micromagnetics and stands for the magnetization.] Locally, m

(respectively, v) can be written in terms of a stream function ψ, i.e. m = ∇⊥ψ
(respectively, v = −∇ψ) so that we get to the eikonal equation through ψ:

|∇ψ| = 1. (2.3)

Typically, one can construct such vector fields by considering stream functions of

the form ψ = dist(·,K) for some closed set K ⊂ R2; these vector fields are called

Landau states in micromagnetic jargon (see Fig. 1). However, not every stream

function can be written as a distance function (up to a sign ±1 and an additive

constant); for example, if ψ(x) = max{dist(x, P1), dist(x, P2)} for two different

points P1, P2 ∈ R2, then (2.3) holds even if ψ is not a distance function.

We denote

C∞
div(Ω, S

1) = {m ∈ C∞(Ω,R2) : m satisfies (2.1)}.
Idem,W s,p

div (Ω, S
1) stands for Sobolev spaces of order s > 0 and p ≥ 1 of divergence-

free unit-length vector fields, as well as BV div(Ω, S
1) for vector fields of bounded

total variation. For a vector field m ∈ BV div(Ω, S
1), we denote the jump set of m

by J(m) which is a H1-rectifiable set oriented by a unit vector field ν : J(m) → S1

and m± : J(m) → S1 stand for the traces of m on J(m) with respect to ν. Notice

that the divergence-free hypothesis on m ensures that the normal component m · ν
is continuous across the jump set J(m). So, for H1-almost every x ∈ J(m), we can

characterize the jump of m by a so-called “wall angle” θ(x) such that m±(x) =

cos θ(x)ν(x) ± sin θ(x)ν⊥(x) (see Fig. 2).

3. Entropies

In the study of vector fields (2.1), the main tool we use in the following is the concept

of entropies coming from scalar conservation laws. The starting point consists in

Fig. 1. Landau states in a rectangle and a disc.
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Fig. 2. Configuration m in BV div(Ω, S1).

regarding the structure (2.1) of our vector fields as a scalar conservation law. Indeed,

writing m = (u, h(u)) for the flux h(u) = ±
√
1− u2, the vanishing divergence

condition in m turns into the nonlinear transport equation

∂tu+ ∂s[h(u)] = 0, (3.1)

where (t, s) := (x1, x2) correspond to (time, space) variables. Let us recall some

definitions from the theory of scalar conservation laws. Since the flux h is nonlinear,

there is in general no smooth solution of the Cauchy problem associated to (3.1).

Therefore, the solutions of (3.1) are to be understood in the sense of distributions

and in general, there are infinitely many weak solutions for the Cauchy problem.

The concept of entropy solution has been formulated in order to have uniqueness

(see Kružkov [52]). To introduce this notion, the pair (entropy, entropy-flux) is

defined as a couple of scalar functions (η, q) such that dq
du = dh

du
dη
du which entails

that every smooth solution u of (3.1) has vanishing entropy production, i.e.

∂t[η(u)] + ∂s[q(u)] = 0.

A solution u of (3.1) (in the sense of distributions) is called entropy solution if for

every convex entropy η, the entropy production ∂t[η(u)] + ∂s[q(u)] ≤ 0 is a non-

positive measure. Moreover, such solutions u have the property that for every pair

(η, q), the entropy production is a (signed) measure that concentrates on lines (cor-

responding to “shocks” of u). It suggests the interest of using “global” quantities

(η, q) to detect “local” line-singularities of u. This idea has been used when deal-

ing with reduced models in micromagnetics, e.g. Jin–Kohn [50], Aviles–Giga [6],

DeSimone–Kohn–Müller–Otto [26], Ambrosio–DeLellis–Mantegazza [2], Alouges–

Riviere–Serfaty [1], Ignat–Merlet [42, 43], Ignat–Moser [44].

In the sequel we will always use the following notion of entropy introduced in [26]

(see also [50, 20, 43]). It corresponds to the pair (entropy, entropy-flux) from the

scalar conservation laws, but here the pair is defined in terms of the couple (u, h(u))

and not only on u.

Definition 1. (DKMO [26]) We will say that Φ ∈ C∞(S1,R2) is an entropy if

d

dθ
Φ(z) · z = 0, for every z = eiθ = (cos θ, sin θ) ∈ S1. (3.2)

1230001-6



2nd Reading

November 20, 2012 14:0 WSPC/S1793-7442 251-CM 1230001 7–80

Singularities of Unit-Length Divergence-Free Vector Fields

Here, d
dθΦ(z) := d

dθ [Φ(e
iθ)] stands for the angular derivative of Φ. The set of all

entropies is denoted by ENT.

We will often use a second characterization of entropies that provides a way to

construct entropies:

Proposition 1. (DKMO [26]) Let Φ ∈ C∞(S1,R2). Then Φ ∈ ENT if and only

if there exists a (unique) 2π-periodic ϕ ∈ C∞(R) such that for every z = eiθ ∈ S1,

Φ(z) = ϕ(θ)z +
dϕ

dθ
(θ)z⊥. (3.3)

In this case,

d

dθ
Φ(z) = λ(θ)z⊥, (3.4)

where λ ∈ C∞(R) is the 2π-periodic function defined by λ = −Λϕ := ϕ + d2

dθ2ϕ

in R.

Remark 1. There exists a unique extension of Λ : C∞(S1 ≈ R
2πZ ) → C∞(S1) as a

linear unbounded operator Λ : L2(S1) → L2(S1) with the domain D(Λ) = H2(S1).

Moreover, the kernel of Λ is given by kerΛ = R sin⊕R cos, the spectrum of Λ is

σ(Λ) = {k2 − 1 : k ∈ N∗} and the range of Λ is R(Λ) = (kerΛ)⊥. Consequently, for

every λ ∈ (kerΛ)⊥, there exists a unique ϕ ∈ L2(S1)
ker Λ such that −Λϕ = λ and the

corresponding entropy Φ given by (3.3) is uniquely defined by λ up to a constant.

This notion is coherent with the property that a smooth vector field m sat-

isfying (2.1) induces vanishing entropy production ∇ · [Φ(m)] = 0. In fact, it is

equivalentb to Definition 1 as stated in the following property:

Proposition 2. (Ignat [39]) Let Φ ∈ C∞(S1,R2). Then Φ is an entropy if and only

if for every m ∈ W
1
p ,p

div (Ω, S1), p ∈ [1, 2] (in particular, for every m ∈ C∞
div(Ω, S

1)),

the following identity holds :

∇ · [Φ(m)] = 0 in D′(Ω). (3.5)

As we explain later, the assumption m ∈ W
1
p ,p is a critical regularity to avoid

jump line-singularities. We conjecture that Proposition 2 should hold also for p > 2.

However, for m ∈ BV div(Ω, S
1), the entropy production

µΦ(m) := ∇ · [Φ(m)]

is a measure supported on the jump set of m.

Proposition 3. (Ignat–Merlet [43]) Let Φ ∈ ENT be an entropy and m ∈
BV div(Ω, S

1). Then we have

µΦ(m) = {Φ(m+)− Φ(m−)} · νH1�J(m), (3.6)

bIn fact, (3.2) can be deduced from (3.5) by choosing m to be an appropriate vortex configuration
(see [43]).
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where J(m) is the H1-rectifiable jump set of m oriented by ν and m± are the traces

of m on J(m).

Observe that for the orientation ν = eiβ (β ∈ R) and traces m± = ei(β±θ)

where θ ∈ [−π, π) is the “wall angle” of the jump of m at some point x ∈ J(m),

the entropy production density can be written as a convolution formula via (3.4):

[Φ(m+)− Φ(m−)] · ν = (λ  sinθ)(β), β ∈ R, (3.7)

where

sinθ(β) =

{
sgn(θ) sin β for |β| ≤ |θ|,
0 for |β| > |θ|.

Remark 2. The proofs of Propositions 2 and 3 in [39] and [43] strongly rely on the

structure of lifting of vector fields m ∈ BV (Ω, S1) (respectively, m ∈ W
1
p ,p(Ω, S1))

and an appropriate chain rule. More precisely, if m ∈ BV (Ω, S1), then there exists

a lifting Θ ∈ BV (Ω,R) such that m = eiΘ a.e. in Ω (see e.g. [30, 12, 18, 35]). While

if m ∈W
1
p ,p(Ω, S1) with p ≥ 1, then one can find a lifting Θ = Θ1 +Θ2 of m with

Θ1 ∈ W
1
p ,p, Θ2 ∈ SBV and eiΘ2 ∈ W

1
p ,p ∩ W 1,1 (see [11, 59, 58]). Recall that

SBV (Ω,Rd) is the subspace of vector fields m ∈ BV (Ω,Rd) whose differential Dm

has vanishing Cantor part Dcm (i.e. Dcm ≡ 0 as a measure in Ω). In Sec. 6.1, we

will present a new and easier proof of Proposition 2 that avoids the properties of

lifting of W
1
p ,p(Ω, S1) vector fields, but uses the concept of generalized entropy.

As shown in [43], these properties can be extended for nonsmooth entropies.

Moreover, there is a special class of BV entropies that play an important role in the

following: for each ξ ∈ S1, we call “elementary entropies” the maps Φξ : S1 → R2

given by

Φξ(z) :=

{
ξ for z · ξ > 0,

0 for z · ξ ≤ 0.
(3.8)

Although Φξ is not a smooth entropy (in fact, Φξ has a jump at the points ±ξ⊥ ∈
S1), the equality (3.2) trivially holds in D′(S1). Moreover, as shown in [26], there

exists a sequence of smooth entropies {Φk} ⊂ ENT such that {Φk} is uniformly

bounded and limk Φk(z) = Φξ(z) for every z ∈ S1 (this approximation result follows

via (3.3)).

4. The Space W
1
p ,p

div (Ω, S1). Vortices

The aim of this section consists in the study of vector fields (2.1) of critical regularity

m ∈ W
1
p ,p that insures avoidance of jump line-singularities. In this case, we expect

that such vector fields m present vortex singular points.
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Remark 3. Note that a vector field m ∈ W
1
p ,p(Ω ⊂ R2, S1) (not satisfying

the divergence-free constraint) may have line-singularities (that are not jump

line-singularities). For example, if p = 2, then the function ϕ : (− 1
2 ,

1
2 ) → R

defined as ϕ(x1) = log | log |x1| | for x1 �= 0 belongs to H
1
2 ((− 1

2 ,
1
2 )). So, setting

Ω = (− 1
2 ,

1
2 )

2 ⊂ R2, then the function m(x1, x2) := eiϕ(x1) belongs to H
1
2 (Ω, S1)

and obviously, L = {(0, x2) : x2 ∈ (− 1
2 ,

1
2 )} ⊂ Ω is a line-singularity of m.

The main feature of vector fields in W
1
p ,p

div (Ω, S1) relies on a kinetic formulation.

It comes via Propositions 2 and 3 when writing the entropy production for the

“elementary entropies” Φξ = ξχ̃ (see (3.8)). We succeed to prove in [38, 39] the

following kinetic formulation for W
1
p ,p

div (Ω, S1) with p ∈ [1, 2] and we conjecture

that it still holds for p > 2.

Proposition 4. (Kinetic formulation) Let m ∈ W
1
p ,p

div (Ω, S1) with p ∈ [1, 2]. For

every direction ξ ∈ S1, we define χ(·, ξ) : Ω → {0, 1} (respectively, χ̃(·, ξ) : S1 →
{0, 1}) by

χ(x, ξ) = χ̃(m(x), ξ) =

{
1 for m(x) · ξ > 0,

0 for m(x) · ξ ≤ 0.

Then the following kinetic equation holds for every ξ ∈ S1:

ξ · ∇χ(·, ξ) = 0 in D′(Ω). (4.1)

Here, χ corresponds to the concept of characteristic of a weak solution m sat-

isfying (2.1). Indeed, if m is smooth around a point x ∈ Ω, then the characteristic

of m at x (by means of the eikonal equation (2.3) with m = ∇⊥ψ around x) is

given by Ẋ(t, x) = m⊥(X(t, x)) with the initial condition X(0, x) = x; then the

orbit {X(t, x)}t is a straight line (i.e. X(t, x) = x + tm⊥(x) for t in some interval

around 0) along which m is perpendicular and constant. Therefore, in the direction

ξ := m⊥(x), either ∇χ(·, ξ) locally vanishes (if m is constant in a neighborhood of

x), or it concentrates on {X(t, x)}t and is oriented by ξ⊥ (see Fig. 3). The knowl-

edge of χ(·, ξ) in every direction ξ ∈ S1 determines completely the vector field m

due to the straightforward formula

m(x) =
1

2

∫

S1

ξχ(x, ξ)dξ for a.e. x ∈ Ω. (4.2)

Remark 4. Classical kinetic averaging lemma (see e.g. Golse–Lions–Perthame–

Sentis [32]) shows that a measurable vector-fieldm : Ω → S1 satisfying (4.1) belongs

to H
1
2

loc (due to (4.2)). This property can be read as the converse of Proposition 4

for the case m ∈ H
1
2 (Ω, S1).
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Fig. 3. Characteristics of m.

4.1. Regularity results

The first goal is to prove the following regularity result:

Theorem 1. (Ignat [39]) If m ∈ W
1
p ,p

div (Ω, S1) with p ∈ [1, 2], then m is locally

Lipschitz continuous inside Ω except at a locally finite number of singular points.

Moreover, every singular point P of m corresponds to a vortex singularity of degree

1 of m, i.e. there exists a sign α = ±1 such that

m(x) = α
(x − P )⊥

|x− P | for every x �= P in any convex neighborhood of P in Ω.

In particular, if m ∈ H1
div(Ω, S

1) then m is locally Lipschitz.

Remark 5. The above result was proved by Jabin–Otto–Perthame [47] in the

particular case of zero-energy states of a line-energy Ginzburg–Landau model. More

precisely, for ε > 0, one defines the functional Eε : H
1(Ω,R2) → R+ by

Eε(mε) = ε

∫

Ω

|∇mε|2dx+
1

ε

∫

Ω

(1− |mε|2)2dx

+
1

ε
‖∇ ·mε‖2H−1(Ω), mε ∈ H1(Ω,R2)

(we refer to [2, 6, 50, 26, 48, 68, 47] for the analysis of this model). A vector field

m : Ω ⊂ R2 → R2 is called zero-energy state if there exists a family {mε ∈
H1(Ω,R2)}ε→0 satisfying

mε → m in L1(Ω) and Eε(mε) → 0 as ε→ 0.

Thenm satisfies (2.1). Moreover, it is proved in [47] that a zero-energy state satisfies

the kinetic formulation (4.1) and furthermore,m shares the structure in Theorem 1.

Therefore, the proof of Theorem 1 strongly relies on [47] and Proposition 4 (via

Proposition 2).
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As a consequence of Theorem 1, one has for p ∈ [1, 2]:

{m ∈W
1
p ,p

loc (Ω,R2) : m satisfies (2.1)} = {m ∈ H
1
2

loc(Ω,R
2) : m satisfies (2.1)}.

Let us now discuss the optimality of the result in Theorem 1: Firstly, observe that

Lipschitz regularity cannot be improved.

Proposition 5. (Ignat [39]) There exist Lipschitz vector fields m : Ω → R2 that

satisfy (2.1) and are not C1 in Ω.

In general, a vector fieldm ∈ W
1
p ,p

div (Ω, S1) with p ∈ [1, 2] (without interior vortex

singularities) is only locally Lipschitz, and not necessary globally Lipschitz in Ω.

This is the case of a “boundary vortex” vector field, e.g. m(x) = (x−P )⊥

|x−P | for every

x ∈ Ω where P is some point on ∂Ω. If the domain Ω has a cusp in P ∈ ∂Ω, the

“boundary vortex” vector field could belong even to H1(Ω,R2); moreover, there

even exist convex domains Ω and m ∈ H1
div(Ω, S

1) such that m is not globally

Lipschitz in Ω.

The geometry of Ω influences the number of vortex singularities of W
1
p ,p-vector

fields satisfying (2.1). For example, if Ω is convex, then every vector field m ∈
W

1
p ,p

div (Ω, S1) with p ∈ [1, 2] is either a “vortex” vector field (i.e. m(x) = ± (x−P )⊥

|x−P |
for every x ∈ Ω where P is some point in Ω), or locally Lipschitz (i.e. no interior

vortex); therefore, convex domains do not allow for more than one interior vortex.

However, we prove that there are nonconvex domains where configurations with

arbitrary number of vortices do exist.

Proposition 6. (Ignat [39]) There exist an open simply-connected nonconvex piece-

wise Lipschitz domain Ω and a vector field m ∈ W 1,q
div (Ω, S

1) for every q ∈ [1, 2)

that has infinitely many vortices {P1, P2, . . .}.

Observe that W 1,q
loc (Ω, S

1) ⊂ W
1
p ,p

loc (Ω, S1) for q > 1 and p ≥ 1, and the embed-

ding fails for q = 1. Also notice that configurations with infinitely many (interior)

vortices can occur only in a non-Lipschitz domain Ω; indeed, if ∂Ω is Lipschitz,

then a configuration m ∈ W
1
p ,p

div (Ω, S1) with p ∈ [1, 2] has only a finite number of

interior vortex singularities.

We address the following open problem:

Open Problem 1. Does Theorem 1 hold in the case m ∈W
1
p ,p

div (Ω, S1) with p > 2?

A positive answer is equivalent to proving Proposition 2 for m ∈ W
1
p ,p

div (Ω, S1)

with p > 2 which would yield the kinetic formulation (4.1) for such m. However,

a duality issue prevents us from establishing (4.1) when p > 2 (see the proof of

Proposition 2 in Sec. 6.1). A natural question concerns higher dimensions d ≥ 3 in

the same context of the eikonal equation. We mention that the above techniques

seem to be typical for the two-dimensional case and do not adapt to the case

d ≥ 3. Indeed, if d = 3, the system of scalar conservation laws associated to (2.3)
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admits only the trivial entropies (see Remark 10). Moreover, the regularity result

in Theorem 1 is based on a certain order relation between the characteristics of m.

Obviously, such an order relation does not exist in higher dimensions. We conjecture

the following for dimension d = 3:

Open Problem 2. Let Ω ⊂ R3 be a bounded open set and v ∈ H1(Ω, S2) be a

gradient field, i.e. v = ∇ψ with (2.3). Is it true that v is locally Lipschitz con-

tinuous inside Ω except at a locally finite number of vortex singularities of v and

v(x) = α (x−P )
|x−P | in any convex neighborhood of a vortex point P in Ω with a sign

α = ±1?

A partial answer was recently given by Caffarelli–Crandall [14]: Under the

stronger hypothesis that the function ψ given in (2.3) is differentiable in a pointwise

sense except on a set of zero Hausdorff measure H1, then the conclusion of Open

Problem 2 holds true.

4.2. Density results

The second goal of the section is to present approximation results for the class

of vector fields W
1
p ,p

div (Ω, S1) with p ∈ [1, 2]: Our subsets are formed either by

divergence-free vector fields that are smooth except at a finite number of points and

the approximation result holds in the W
1
p ,p-topology, or by everywhere smooth S1-

valued vector fields (not necessarily divergence-free) and the approximation result

holds in a weaker topology. We start by extending Bethuel–Zheng’s density result

(see [8]) for W 1,1(Ω, S1) vector fields, respectively Riviere’s density result (see [67])

for H
1
2 (Ω, S1) vector fields to the case of divergence-free vector fields:

Theorem 2. (Ignat [39]) Let Ω be a Lipschitz bounded simply-connected domain

and m ∈ W
1
p ,p

div (Ω, S1) with p ∈ [1, 2]. Then m has a finite number N ≥ 0 of

vortices {P1, . . . , PN} and m can be approximated in W 1,q
loc (Ω) (for any q ∈ [1, 2))

by divergence-free vector fields mk ∈ C∞(Ω\{P1,k, . . . , PN,k}, S1) that are smooth

except at the N vortex points of mk. In particular, if m ∈ H1
div(Ω, S

1), the sequence

{mk} can be chosen to be smooth everywhere in Ω and the approximation result

holds in H1
loc(Ω).

Remark 6. We highlight the fact that in general the vortices of the approximating

vector fields mk in Theorem 2 cannot coincide with the set of vortex points of m.

Let us consider the vector field m given in Fig. 4. More precisely, set f, g : R → R

with f(t) = |t| and

g(t) =





2(t+ 1) for t ≤ −1,

−1

2
(t+ 1) for t ≥ −1

and define the curves

γ+ = {(x1, f(x1)) : x1 ∈ [−2, 1]} and γ− = {(x1, g(x1)) : x1 ∈ [−2, 1]}.
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Fig. 4. Two vortex-point singularities of different orientation.

Fixing the vortex points P1 := (−2, 0) and P2 = (1, 0), we define the domain

Ω := (B(P1, 2) ∩ {x1 ≤ −2}) ∪ {(x1, x2) : x1 ∈ [−2, 1], g(x1) < x2 < f(x1)}
∪ (B(P2, 1) ∩ {x1 ≥ 1})

(see Fig. 4). We define m : Ω → S1 as follows:

m(x) =





(x− P1)
⊥

|x− P1|
in Ω1 := {x ∈ Ω : x1 ≤ −1 or (x1 ∈ (−1, 0) and x2 > 0)},

− (x− P2)
⊥

|x− P2|
in Ω2 := {x ∈ Ω : x1 ≥ 0 or (x1 ∈ (−1, 0) and x2 < 0)}.

Then m ∈ W
1
p ,p

div (Ω, S1) for any p ≥ 1 and is locally Lipschitz in Ω\{P1, P2} with

two vortex-point singularities P1 and P2 of degree 1. Now observe that any other

configuration m̃ ∈ W
1
p ,p

div (Ω, S1) (for some p ∈ [1, 2]) with the same vortex points

P1 and P2 satisfies the rigidity structure proved in Theorem 1, implying that m̃

is uniquely determined in Ω1 and Ω2. More precisely, the flow of characteristics

coming from the vortex points P1 and P2 constraints m̃ to coincide with m or −m.

Therefore, the characteristic [P1P2] represents a jump line-singularity of ∇m̃, i.e.

m̃ does not belong to C∞(Ω\{P1, P2}, S1). We conclude that the approximating

vector fields mk ∈ C∞(Ω\{P1,k, P2,k}, S1) of m (given in Theorem 2) must satisfy

{P1,k, P2,k} �= {P1, P2}.

In various applications (see e.g. Remark 7 below), we need to approximate vector

fields m (with the structure given in Theorem 1) by H1(Ω, S1) vector fields. But

H1(Ω, S1)-vector fields cannot allow for vortices. Therefore, an approximation result

by everywhere smooth S1-valued vector fields is needed in some weaker topology

than in Theorem 2. What is the optimal weak topology where such a density result

holds? The following result shows that L1-topology is too strong for having density

of smooth vector fields of vanishing divergence and values in S1.

Proposition 7. (Ignat [39]) Let m : B2 → S1 be the vortex configuration

m(x) = x⊥

|x| in the unit disc B2. Then there exists no sequence of vector fields

mk ∈ C∞
div(Ω, S

1) such that mk → m a.e. in B2 as k → ∞.

1230001-13



2nd Reading

November 20, 2012 14:0 WSPC/S1793-7442 251-CM 1230001 14–80

R. Ignat

We now generalize this property: The density result still fails if we relax the

divergence-free constraint on the approximated smooth vector fields, but we impose

this restriction on the limit in L1-topology (or H−s weak topology for some s ∈
[0, 12 )).

Proposition 8. (Ignat [39]) Let m : B2 → S1 be the vortex configuration m(x) =
x⊥

|x| in B2. Then there exists no sequence of vector fields mk ∈ C∞(Ω, S1) such that

mk → m a.e. in B2 as k → ∞ and one of the following two conditions holds :

(a) ∇ ·mk → 0 in L1(B2);

(b) ∇ ·mk ⇀ 0 weakly in H−s(B2) for some s ∈ [0, 12 ).

Finally, we prove an approximation result in L1-topology by smooth vector

fields with values in S1 (not necessary divergence-free), but the divergence-free

constraint holds in the limit in the H− 1
2 -topology. This topology is optimal (due

Proposition 8(b)).

Theorem 3. (Ignat [39]) Let Ω be a Lipschitz bounded simply-connected domain

and m ∈ W
1
p ,p

div (Ω, S1) with p ∈ [1, 2]. Then there exists a sequence of vector fields

mk ∈ C∞(Ω, S1) such that mk → m a.e. in Ω and (∇·mk)1Ω → 0 in Ḣ− 1
2 (R2) as

k → ∞.

Remark 7. The motivation of Theorem 3 comes from thin-film micromagnetics.

The following 2D energy (see [23]) is considered as an approximation of the 3D

micromagnetic model in a thin-film regime: For ε > 0, one defines the functional

Ẽε : H
1(Ω, S1) → R+ by

Ẽε(mε) = ε

∫

Ω

|∇mε|2dx+ ‖(∇ ·mε)1Ω‖2
Ḣ− 1

2 (R2)
, mε ∈ H1(Ω, S1).

This model was analyzed in [21, 45, 40]. In particular, it is proved in [40] that

a vortex configuration m(x) = x⊥

|x| in B2 is a zero-energy state, i.e. there exists a

family {mε} ⊂ H1(B2, S1) such that mε → m a.e. in B2 and Ẽε(mε) → 0 as ε→ 0.

The role of Theorem 3 is to generalize this approximation result for every vector

field m ∈W
1
p ,p (with p ∈ [1, 2]) satisfying (2.1).

5. The BV Case. Line-Energies

The topic of this section concerns vector fields m satisfying (2.1) that present jump

line-singularities. The context is the following: Let Ω ⊂ R2 be a bounded domain

with piecewise Lipschitz boundary that is oriented by the outer unit normal vector

n. We start by addressing the following conjecture concerning the regularity of

vector fields m ∈ BV div(Ω, S
1): The measure Dm does not concentrate on sets of

Hausdorff dimension d ∈ (1, 2).

Open Problem 3. Is it true that every m ∈ BV div(Ω, S
1) satisfies m ∈ SBV ?
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This question is related with a recent work of Bianchini–DeLellis–Robyr [9]:

They show that the viscosity solution ψ of a Hamilton–Jacobi equation H(∇ψ) = 0

in Ω (with a uniformly convex hamiltonianH) satisfies∇ψ ∈ SBV . Open Problem 3

asks whether for the particular case of the eikonal equation (2.3), the result in [9]

still holds when replacing the assumption of viscosity solution with the hypothesis

of a general solution ψ of (2.3) with ∇ψ ∈ BV .

In the following, we focus on line-energies, i.e. energy functionals that concen-

trate on the jump set of m ∈ BV div(Ω, S
1):

If (m) :=

∫

J(m)

f(|m+ −m−|)dH1.

We only consider energy densities that depend on the jump size |m+ − m−| via
a cost function f : [0, 2] → R+ which satisfies f(0) = 0 and is assumed to be

lower semicontinuous. Notice that if θ(x) is the “wall angle” of the jump of m at

x ∈ J(m), then |m+(x)−m−(x)| = 2|sin θ(x)|. Since m is of vanishing divergence,

the trace of the normal component m ·n is well-defined on ∂Ω and we will consider

the minimization problem in the subset

S0(Ω) = {m ∈ BV div(Ω, S
1) : m · n = 0 on ∂Ω}

(see Fig. 2).

Our problem can be equivalently interpreted in terms of the stream function

ψ : Ω → R associated to m = ∇⊥ψ ∈ S0(Ω). Then the above variational principle

turns in analyzing the following energy functional
∫

J(∇ψ)
f(|(∇ψ)+ − (∇ψ)−|)dH1 (5.1)

over the set of solutions of the Dirichlet problem associated to the eikonal equation

|∇ψ| = 1 in Ω and ψ = 0 on ∂Ω.

The method of characteristics shows that for a simply-connected bounded domain

there is no smooth solution of the eikonal equation |∇ψ| = 1 in Ω satisfying the

constaint ψ = 0 on ∂Ω. Typical singularities are jump discontinuities of ∇ψ (equiv-

alently of m) through line-singularities or vortices.

5.1. Motivation

Line-energy functionals If appear as natural candidates for the asymptotic energy

of family of singularly perturbed functionals {Gε}ε↓0,

Gε(mε) = ε

∫

Ω

|∇mε|2 +
1

ε

∫

Ω

g(|1− |mε|2|), (5.2)

defined for mε ∈ H1(Ω,R2) satisfying the constraints ∇ · mε = 0 in Ω. One can

eventually impose a boundary condition mε · n = 0 on ∂Ω. Here, ε > 0 is a small

parameter and g : R+ → R+ is some lower semicontinuous function such that
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g(0) = 0 and g(t) > 0 for t > 0. Variational models (5.2) arise in several physi-

cal applications such as smectic liquid crystals, film blisters or convective pattern

formation (see e.g. [4, 64, 50, 42]).

Observe that the vector fields mε in (5.2) are not S1-valued but their distance

to S1 is penalized by the second term of Gε. As ε tends to 0, we expect that families

{mε} of uniformly bounded energies (5.2) will converge (up to extraction and in a

certain topology, see below) to some limit m0 satisfying (2.1).

A natural question arises: If If is indeed the asymptotic energy of {Gε} as

ε → 0, what is the relation between the energy density f and the function g? The

ansatz consists in reducing the 2D variational problem to a 1D asymptotic analysis:

Assume that m0 is of bounded variation and satisfies (2.1), i.e. m0 ∈ BV div(Ω, S
1).

We also assume that at level ε > 0 the energy Gε(mε) concentrates on 1D transition

layers of length scale ε through the jump line-singularities of m0. With the above

notation, let x0 be a jump point of m0, θ0 be the “wall angle” defining the jump

m±
0 (x0) and ν0 be the orientation of the jump set at x0 (see Fig. 5). At level ε > 0,

a 1D transition layer in the direction ν0 has the form

mε(x0 + tν0) = cos θ0ν0 + u

(
t

ε

)
ν⊥0 ,

where u : R → R is the rescaled profile of the tangential component of the layer

satisfying u(s)
±s↑∞−−−−→ ± sin θ0. (Observe that a divergence-free 1D transition layer

has a constant normal component.) Using this ansatz, we obtain that the limit

energy is given by If with the cost function computed as follows:

f(|2 sin θ0|) = min

{∫

R

(∣∣∣∣
du

ds
(s)

∣∣∣∣
2

+ g(|sin2 θ0 − u2(s)|)
)
ds : u : R → R,

u
±s↑∞−−−−→ ± sin θ0

}

= 4

∫ sin θ0

0

√
g(sin2 θ0 − u2)du, θ0 ∈

[
0,
π

2

]
, (5.3)

Fig. 5. 1D ansatz: A line-singularity of a limit configuration m0 (left picture) is regularized by a
smooth 1D transition layer at the level ε > 0 connecting two limit states m±

0 (middle picture).
The full transition occurs in the normal direction ν0 as represented in the right picture.
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which yields the connection between f and g. In particular, every power function

f(t) = tp corresponds to g(t) = ctp−1 in (5.3) where the constant c = c(p) depends

only on p.

For g(t) = t2, the above ansatz is known to be relevant. The corresponding

functional (5.2) has been introduced by Aviles and Giga [4] and we will explain in

Sec. 6.2 why If with f(t) = t3

3 (given by (5.3)) is indeed the asymptotic energy

of {Gε} (in the sense of Γ-convergence in the strong L1-topology). However, let us

stress that for a general function g, the above 1D ansatz may be wrong. Indeed, in

some cases, it is possible to decrease strictly the energy by substituting 2D meso-

scopic structures with 1D transition layers. In these cases, the 1D asymptotic energy

If (with f given by (5.3)) does not match the 2D Γ-limit energy of (5.2). Such coun-

terexamples are obtained with functionals If that are not lower-semicontinuous (see

Definition 2 below). Indeed, a Γ-limit functional over a metric space (which is the

space L1 in our case) must be lower semicontinuous with respect to the induced

topology. A first counterexample is given in [2]: It is shown that power functions

f(t) = tp lead to non-lower semicontinuous functional If for p > 3. A second coun-

terexample is described in [1]: The cost function fARS(2 sin θ) = sin θ − θ cos θ for

0 ≤ θ ≤ π
2 (stemmed from the energy of 1D transition layers associated to a par-

ticular asymptotics of the micromagnetic energy). It turns out that IfARS is not

lower semicontinuous. In both cases it is possible to build a 2D mesoscopic structure

with length scale η � 1 between two limit states m− and m+ with an energetic

cost strictly smaller than the cost of a direct 1D jump. An example of such 2D

structure is described in [1] (see Fig. 6) and stands for the cross-tie wall pattern in

micromagnetics.

5.2. Lower semicontinuity

As explained above, lower semicontinuity implies the optimality of the 1D structure,

i.e. it is not possible to decrease the energy of a (direct) jump by constructing 2D

Fig. 6. A cross-tie wall. As η ↓ 0, the 2D microstructure tends to a jump configuration (m−,m+)
in direction ν and has less energy than the initial cost fARS(2) corresponding to the 1D jump
m± of angle θ = 90◦.
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mesoscopic structures. So it is important to characterize cost functions f such that

the line-energy If is lower semicontinuous in a relevant functional space. In general,

the weak BV -topology is too strong for this aim; due to applications (see Sec. 6),

it is natural to weaken the regularity by using the topology of L1. Of course, in

order for the constraint |m0| = 1 to be stable under convergence, we need to use the

strong L1-topology. Then, let us extend the functional If in L1(Ω,R2) by +∞, i.e.

If (m) = +∞ if m ∈ L1(Ω,R2)\BV div(Ω, S
1)

and let us introduce the relaxed functional If , i.e. the lower semicontinuous envelope

of If with respect to the strong L1-topology: If : L1(Ω,R2) → R ∪ {+∞} is

defined as

If (m) = inf

{
lim inf
k→∞

If (mk) : mk → m strongly in L1

}
, ∀m ∈ L1(Ω,R2).

Obviously, If ≤ If and all configurations of finite relaxed energy If (m) < +∞
belong to

L(Ω) = {m ∈ L1(Ω,R2) : |m| = 1 and ∇ ·m = 0 in Ω}

which is a closed set in L1. Recall that the normal component of m ∈ L(Ω) at the
boundary ∂Ω is well-defined. In particular,

L0(Ω) = {m ∈ L(Ω) : m · n = 0 on ∂Ω} (5.4)

is a closed subset of L(Ω).

Definition 2. We say that the line-energy If : L1(Ω,R2) → R ∪ {+∞} is lower

semicontinuous (l.s.c.) if If (m) = If (m) for every m ∈ BV div(Ω, S
1).

Remark 8. The above definition is weaker than asking for If to be lower semi-

continuous in L1 (i.e. If = If in L1(Ω,R2)). Indeed, for the Aviles–Giga model

with cubic jump costs, it is proved in [2] that It
→t3 (m) = It
→t3(m) for every

m ∈ BV div(Ω, S
1) (so, It
→t3 is lower semicontinuous after Definition 2), but

one can construct a limit configuration m0 ∈ L1\BV with finite relaxed energy

It
→t3(m0) < +∞ = It
→t3 (m0). The crucial point in the construction of m0 relies

on the cubic cost of small jumps of m0 in It
→t3 that cannot control the linear cost

of the jump part of Dm0. Therefore, finite limit energy configurations m0 do not

belong in general to BV ; however,m0 always shares the structure of BV functions,

in particular, an equivalent notion of jump set can be defined for m0 (see [20]).

A first result states the following necessary condition: In order for the line-energy

functional If to be lower semicontinuous, the cost function f should also be lower

semicontinuous.

Proposition 9. (Ignat–Merlet [43]) Let f : [0, 2] → R+ be a measurable function.

If If is lower semicontinuous, then f is lower semicontinuous on [0, 2].
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Recall that Aviles and Giga [6] proved that It
→t3 is lower semicontinuous and

afterwards, Ambrosio, De Lellis and Mantegazza [2] established that If is not lower

semicontinuous for power cost functions f(t) = tp with p > 3. We address the

following question raised in [2].

Conjecture 1. If is lower semicontinuous for power cost functions f(t) = tp if

1 ≤ p < 3.

First of all, we give a partial positive answer to this question: The behavior as

a power function tp for 1 ≤ p ≤ 3 at the origin t = 0 is natural for appropriate cost

function.

Theorem 4. (Ignat–Merlet [43]) For every p ∈ [1, 3], there exists an appropriate

cost function f : [0, 2] → R+ such that f(t) = tp for t ∈ [0,
√
2] and If is lower

semicontinuous.

We mention that our method does not work for p < 1, therefore we do not know if

the condition p ≥ 1 is a necessary condition in Conjecture 1.

Next, we will establish a positive answer to Conjecture 1 for p = 2. Our interest

for this case has a physical motivation, associated with the study of the energetic

behavior of Bloch walls in micromagnetics as we will explain in Sec. 6.2.

Theorem 5. (Ignat–Merlet [43]) If f(t) = t2, then If is lower semicontinuous.

In fact the quadratic cost function stated in Theorem 5 is a particular case of

a large family of cost functions that we will introduce via entropies in Sec. 5.3 and

which induce lower semicontinuous line-energies.

5.3. Cost functions

The concept of entropies introduced in Sec. 3 reveals to be fundamental for cost

functions f leading to l.s.c. functionals If . More precisely, we will associate an

appropriate cost function to every subset of entropies S ⊂ ENT :

Definition 3. For a subset S ⊂ ENT , we define the cost function cS : [0, 2] → R+

by

cS(t) := sup{[Φ(z+)− Φ(z−)] · ν : Φ ∈ S, (z−, z+, ν) ∈ T , |z+ − z−| = t},
where T defines the set of admissible jump discontinuities:

T := {(z−, z+, ν) ∈ (S1)3 : (z+ − z−) · ν = 0}.

Remark 9. The set T is motivated by the structure of jump discontinuities of

divergence-free vector fields m ∈ BV div(Ω, S
1). Indeed, one has (m+ −m−) · ν = 0

H1-a.e. on the jump set J(m) oriented by the normal ν with the traces m± ∈
L∞(J(m), S1). The cost function cS is non-negative since one can switch from ν to

−ν so that [Φ(z+)− Φ(z−)] · ν ≥ 0.
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Observe that these cost functions depend only on the jump size. To be consistent

with this isotropic property, we will impose the following geometric constraints on

our sets of entropies.

Definition 4. A subset S ⊂ ENT is symmetric if S = −S and it is said to be

equivariant if R−1SR = S for every rotation R ∈ SO(2). For any subset of entropies

S ⊂ ENT , we will denote by

〈S〉 := {±R−1ΦR : Φ ∈ S,R ∈ SO(2)},

the smallest symmetric and equivariant subset of entropies which contains S.

In terms of the bijective correspondence ϕ �→ Φ given by (3.3), the notion of

equivariance of S is equivalent to having the set {ϕ ∈ C∞
per(R) : Φ ∈ S} invariant by

translations. For proving that IcS is lower semicontinuous for nonempty symmetric

equivariant subsets S ⊂ ENT , we introduce the following functionals (inspired by

(3.6)) which generalize Theorem 2.1 in [6].

Definition 5. Let S ⊂ ENT . We define ES : L1(Ω,R2) → R̄ by

ES(m) := sup

{
n∑

i=1

〈µΦi(m), αi〉 : n ≥ 0, (Φi, αi) ⊂ S × C∞
c (Ω,R+),

n∑

i=1

αi ≤ 1

}
if m ∈ L(Ω);

otherwise, we set ES(m) = +∞ for m ∈ L1(Ω,R2)\L(Ω).

As a supremum of continuous functionals over L1, this new energy ES is lower

semicontinuous with respect to the strong L1 topology. In the above definition we

use a partition of unity to localize the entropy production. In particular, in the

neighborhood of a jump discontinuity x ∈ J(m) of m ∈ BV div(Ω, S
1), we can

choose a sequence of entropies maximizing the local entropy production as in the

definition of cS(|m+(x)−m−(x)|). Using this property, we prove that ES coincides

with IcS on BV div(Ω, S
1):

Theorem 6. (Ignat–Merlet [43]) Let S ⊂ ENT be nonempty, symmetric and equiv-

ariant. For every m ∈ BV div(Ω, S
1), we have

ES(m) = IcS (m) = IcS (m).

In particular, IcS is lower semicontinuous and ES ≤ IcS in L1(Ω,R2).

We deduce that the class of cost functions in Definition 3 leads to lower semi-

continuous line-energy functionals. Finally, for proving Theorems 4 and 5 we will

construct a subset S ⊂ ENT so that f = cS . Let us give some examples. The

simplest case is given by sets S = 〈Φ〉 generated by a single entropy Φ ∈ ENT . If
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λ(θ) = d
dθΦ(z) · z⊥ (as in (3.4)), then the combination of (3.7) and Definition 3

leads to

c〈Φ〉(2 sinβ) = sup
x∈[0,2π]

|λ  sinβ |(x), β ∈
[
0,
π

2

]
. (5.5)

We obtained a criteria depending on λ that computes the supremum in (5.5): If λ

is an odd π-periodic function and its restriction to (0, π2 ) is convex and even with

respect to π
4 , then the supremum in (5.5) is achieved at x = 0 so that

c〈Φ〉(2 sinβ) = −2

∫ β

0

λ(θ) sin(θ)dθ.

In particular, this criteria leads to the cost functions mentioned in Examples 1

and 2 below, corresponding to the Aviles–Giga and “cross-tie wall” models.

Example 1. (Aviles–Giga cost function) There exists a subset S1 = 〈{Φ1}〉 ⊂
ENT generated by one entropy Φ1(z) =

4
3 (z

3
2 , z

3
1) for z ∈ S1 (i.e. λ1(θ) = −6 sin(2θ)

in (3.4)) such that cS1(t) =
t3

3 for t ∈ [0, 2].

Example 2. (“Cross-tie wall” cost function) There exists a subset S2 = 〈{Φ2}〉 ⊂
ENT generated by one entropy Φ2 ∈ C1,1(S1,R2) (i.e. λ2 in (3.4) is a π-periodic

odd function given by λ2(θ) = |θ − π
4 | − π

4 on (0, π2 )) such that

cS2(2 sin θ) =





sin θ − θ cos θ if 0 ≤ θ ≤ π

4
,

√
2−

(
π

2
− θ

)
cos θ − sin θ if

π

4
< θ ≤ π

2
.

For these examples, the corresponding entropies have been introduced in [50] and [1]

respectively. Obviously, not all appropriate cost functions can be associated to sub-

sets of entropies generated by only one entropy. For example, if cS(t) = t2 for every

t ∈ [0, 2], we are compelled to construct a subset S generated by an infinite family

of entropies.

Conjecture 2. Is it true that every lower semicontinuous line-energy If has the

form IcS for some subset of entropies S ⊂ ENT?

Remark 10. One can address problem (5.1) for higher dimensions N ≥ 3. In this

case, DeLellis proved in [19] that the power function f(t) = t3 (in the Aviles–Giga

model) does not lead anymore to a lower semicontinuous hypersurface-energy as in

the two-dimensional case. The microscopic structure breaking the one-dimensional

ansatz considered in [19] can be adapted to other power functions f(t) = tp. Also we

highlight the fact that our approach for treating lower semicontinuous line-energies

via entropy method cannot be extended to hypersurface-energy functionals ifN ≥ 3.

In fact, for N = 3, the only entropies associated to the system of conservation laws

generated by

v : Ω ⊂ R3 → R3, |v| = 1 and ∇× v = 0 in Ω (5.6)
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are the trivial entropies. Let us explain this fact. If v = (v1, v2, v3) is a smooth

solution of (5.6), then one has

{
∂x1v2 − ∂x2v1 = 0,

∂x1v3 − ∂x3v1 = 0.

Write U := (v2, v3). Since |v| = 1, we have that v1 = ±(1 − |U |2) 1
2 =: F (U).

Denoting the diagonal matrix A(U) = (A1(U), A2(U)) = −F (U)Id, we deduce the

following 2D system of conservation laws:

∂tU +∇s · [A(U)] = 0, (5.7)

where t := x1 and (s1, s2) := (x2, x3) stand for the (time, space) variables and

∇s · [A(U)] = ∂s1 [A1(U)] + ∂s2 [A2(U)]. The pair (entropy, entropy-flux) is defined

as a couple (η,Q) with η : B2 → R and Q = (Q1, Q2) : B
2 → R2 that satisfies the

compatibility identities:

∂UiQj = ∂UiAj · ∇Uη in B2 and for i, j = 1, 2, (5.8)

where B2 = B2 is the closed unit disk in R2. It entails that for every smooth

solution U of (5.7), we have a vanishing entropy production:

∂t[η(U)] +∇s · [Q(U)] = 0.

(This follows by multiplying (5.7) with ∇η(U).) Then we have the following result:

Lemma 1. If (η,Q) is a smooth couple (entropy, entropy-flux ) in the open disk B2

satisfying (5.8), then the entropy η is an affine function, i.e. D2η ≡ 0 in B2.

Proof. Since A is a diagonal matrix valued map, by (5.8), we deduce that for every

point U ∈ B2 (i.e. |U | < 1), ∂UiQj(U) = −∂Ujη(U)∂UiF (U), i, j = 1, 2. Then, by

the Schwarz theorem, i.e. ∂Uj∂UiQk(U) = ∂Ui∂UjQk(U), i, j, k = 1, 2, it follows that

U1∂U1U2η(U) = U2∂U1U1η(U), (5.9)

U2∂U1U2η(U) = U1∂U2U2η(U). (5.10)

Differentiating (5.9) in U2 and (5.10) in U1 respectively, by summation, we obtain

that ∆η(U) = 0. Assume now that U1, U2 �= 0. Then dividing (5.9) by U2 and (5.10)

by U1 respectively, by summation, we deduce that

(
U1

U2
+
U2

U1

)
∂U1U2η(U) = ∆η(U) = 0

which entails that ∂U1U2η(U) = 0 and then, by (5.9) and (5.10), it implies that

D2η(U) = 0 for every U ∈ B2 with U1, U2 �= 0. By hypothesis, η is smooth so that

we conclude D2η ≡ 0 in B2, i.e. η is an affine function.
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5.4. Existence of minimizers for relaxed line-energies

Now we deal with a second issue: The existence of minimizers of the relaxed energy

functional If under certain boundary conditions. (Without imposed boundary con-

ditions, the problem is trivial, If has vanishing minimal value and every constant

unit vector field is a minimizer.) We impose the following boundary condition

m · n = 0 on ∂Ω to our configurations m, so we are looking for minimizers in

L0(Ω) (see (5.4)). Suppose that the cost function f is equal to cS for some subset

S ⊂ ENT . Then the relative compactness in L1 of the sublevel sets of If would

imply the existence of minimizers of the relaxed functional If in L0(Ω). For that,

one should be able to rule out oscillations for configurations of uniformly bounded

energy. It turns out that this statement holds true if the symmetric and equivari-

ant set,

Sf := {Φ ∈ ENT : [Φ(z+)− Φ(z−)] · ν ≤ f(|z+ − z−|), ∀ (z−, z+, ν) ∈ T },

composed of the admissible entropies associated with f , is large enough. More

precisely, we will obtain compactness if

t3 � f(t) in [0, 2] (5.11)

(see Theorem 7 below) which means in fact that up to multiplicative constants, Sf
coincides with ENT , i.e. RSf = ENT .

Remark 11. Note that cSf
≤ f in [0, 2] and Sf is the maximal subset of ENT

such that this inequality holds.

Theorem 7. (Ignat–Merlet [43]) Let f be a cost function such that inft∈(0,2]
f(t)
t3 >

0 and cSf
= f . Then If (respectively, ESf

) admits at least one minimizer over

L0(Ω).

It means that a minimizer m ∈ L0(Ω) of If can be written as a limit of a sequence

{mk} in S0(Ω) such that If (m) = limk If (mk). However, we do not know whether

these minimizers m belong to S0(Ω), in other words, we do not know if If admits

a minimizer over S0(Ω).

Remark 12. The existence result in Theorem 7 is still valid if we replace L0(Ω)

by any closed subset of L(Ω). But this does not cover the case of general Dirichlet

boundary conditions. However, the following strategy can be adopted for Dirich-

let boundary condition m = ubd on ∂Ω. If we can extend ubd : ∂Ω → S1 as a

divergence-free vector field u ∈ BV (O,S1) for some smooth open set O ⊃ Ω̄, then

the argument in Theorem 7 shows the existence of minimizers of the functional

F (m) := If (m;O) − If (u;O\Ω̄) in the closed set

{m ∈ L(O) : m ≡ u a.e. in O\Ω̄}.

Observe that finite energy configurations F (m) < ∞ satisfy m ∈ BV (O,S1),

m ·n = ubd · n H1-a.e. on ∂Ω (since m is of vanishing divergence) and the jump
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of the tangential component [m · n⊥] on ∂Ω is penalized through F (m) by the

boundary term: ∫

∂Ω

f(|m+ −m−|)dH1,

where m± denote the inner and outer traces of m on ∂Ω with respect to n (here,

m+ = ubd on ∂Ω). The minimizing problem does not depend on the extended

domain O or on the extension vector field u.

5.5. Viscosity solution

We are also interested in the minimization problem under the more restrictive

boundary condition m = n⊥ on ∂Ω. This condition makes sense for m ∈ BV and

defines a new subset of S0(Ω):

S⊥(Ω) := {m ∈ S0(Ω) : m = n⊥ on ∂Ω}.
For configurations in this set, no change of orientation is allowed along the bound-

ary. The motivation comes from micromagnetics where the boundary vortices are

strongly penalized in certain asymptotic regimes (see Sec. 7.2).

The natural question in this context is whether the minimizer of If over S⊥(Ω)
exists and is associated to the viscosity solution of the Dirichlet problem for the

eikonal equation, i.e. letting ψ∗ be the distance function to the boundary

ψ∗ = dist(x, ∂Ω),

we will always denote the corresponding map in S⊥(Ω) by

m∗ = ∇⊥dist(x, ∂Ω). (5.12)

We will still call m∗ the viscosity solution on Ω (or Landau state in micromagnetic

jargon). In relation with (5.1), this amounts to considering stream functions ψ

satisfyingm = ∇⊥ψ ∈ BV (Ω, S1) and the boundary conditions ψ = 0 and ∂ψ
∂n = −1

H1-a.e. on ∂Ω.

In [50], Jin and Kohn suggested that when the domain Ω is convex, the viscosity

solution minimizes If in S⊥(Ω) for f(t) = tp, 1 ≤ p ≤ 3. The result is proved for

p = 3 when Ω is an ellipse in [50]. For p = 1 and if Ω a convex polygon, it is proved

in [5] that m∗ minimizes If over the set {m ∈ S⊥(Ω) : ∇m is piecewise constant}.
We first give a positive answer in the case of a stadium domain Ω and general

appropriate cost functions:

Theorem 8. (Ignat–Merlet [43]) Let S ⊂ ENT be nonempty, symmetric and equiv-

ariant. We consider the stadium-shaped domain Ω (see Fig. 7)

Ω = (−L,L)× (−1, 1) ∪B((−L, 0), 1) ∪B((L, 0), 1),

for some L ≥ 0. Then the viscosity solution m∗ minimizes IcS over S⊥(Ω).

We also prove positive results for some other special domains not necessarily

convex (in particular, ellipse and union of two discs) and some special appropriate
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Fig. 7. Stadium shaped domain and the corresponding viscosity solution.

Fig. 8. Viscosity solutions m� for an ellipse, the union of two disks, and a bone-shaped domain
(with the jump set oriented by ν� := e2).

cost functions. These results can be extended to the Aviles–Giga model presented

in Sec. 5.1. In particular, one has the following result (similar to Proposition 5.1

in [50]):

Theorem 9. Let Ω ⊂ R2 be an open bounded domain with piecewise Lipschitz

boundary ∂Ω such that the viscosity solution m� = ∇⊥dist(x, ∂Ω) has the jump

set J oriented by one fixed direction ν� (see Fig. 8). We consider the Aviles–Giga

energy

Gε(m) =

∫

Ω

(
ε|∇m|2 + 1

ε
(1− |m|2)2

)
dx, m ∈ H1

div(Ω,R
2). (5.13)

Then there exists a constant C = C(∂Ω) such that for every ε > 0 and m ∈
H1

div(Ω,R
2) with m = n⊥ on ∂Ω, we have:

1

3

∫

J

|m+
� −m−

� |3dH1 ≤ Gε(m) + εC. (5.14)

We will present the proof of Theorem 9 in Sec. 6.2.

For nonconvex domains, it is proved in [5] that for power cost functions f(t) = tp

with p ≤ 4
3 , there exists a nonconvex polygonal domain Ω such that m∗ does not

minimize If over S⊥(Ω). Moreover, the same counterexamples indicate that for

every power cost function with p > 0, m∗ does not minimize If in S0(Ω). In [50],

the authors exhibit a nonconvex Lipschitz domain (a union of two intersecting discs)

such that m∗ is not a minimizer of If in S⊥(Ω) for every f(t) = tp with p �= 3; in

the case f(t) = t3, m∗ is a minimizer of If , but it is not unique. It was conjectured
in [50] that for some other nonconvex domains, m∗ is not a minimizer of It
→t3 . In
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Fig. 9. The configuration m̃ (on the left) is given by “vortex” type vector fields centered at Pk,
k = 1, . . . , 4. It has less energy If than the viscosity solution m∗ (on the right).

the following, we prove this conjecture. In fact, we show a more general fact: There

exists a nonconvex domain such that for any fixed positive cost function f , the

viscosity solution is not optimal in S⊥(Ω).

Theorem 10. (Ignat–Merlet [43]) There exists a nonconvex piecewise Lipschitz

domain Ω such that the viscosity solution is not a minimizer of If over S⊥(Ω) for

every lower semicontinuous function f : [0, 2] → R+ such that
∫ 2√

2 f(t)dt > 0.

The above domain Ω (a union of four discs and a square, see Fig. 9) is nons-

mooth, but universal for every positive cost function f . Moreover, by slightly modi-

fying the boundary of Ω, we can show that the result is not restricted to nonsmooth

domains. However, the modified smooth domain is no longer universal with respect

to the cost function.

Theorem 11. (Ignat–Merlet [43]) For every bounded lower semicontinuous

function f : [0, 2] → R+ such that
∫ 2√

2
f(t)dt > 0, there exists a nonconvex C1,1

domain Ω such that the viscosity solution is not a minimizer of If over S⊥(Ω).

6. Generalized Entropies

In the previous section we characterized lower semicontinuous line-energies If . For
such a line-energy, one may wonder whether If is indeed the Γ-limit of functionals

(5.2) (or of some perturbation functional of (5.2)). If this is the case, how entropies

can be used in proving the Γ-convergence program (in order to have compactness

and lower bounds)?

6.1. Compactness

We focus here on the first step in the method of Γ-convergence, i.e. the compactness

issue for functionals Gε in (5.2):

Claim 1. Any family {mε}ε↓0 ⊂ H1
div(Ω,R

2) of uniformly bounded energy

Gε(mε) ≤ C is relatively compact in L1(Ω) and any limit configuration m0 sat-

isfies (2.1).
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We will assume here the following hypothesis:

g(t) ≥ Ct2, for every t ≥ 0, (6.1)

where C > 0 denotes a generic constant. This assumption is motivated by the fol-

lowing. We want that the energy Gε asymptotically concentrates on line-energies If
as ε→ 0; as discussed in the previous section (see (5.11)), the lower semicontinuity

of If is related to the condition f(t) ≥ Ct3 (so that RSf = ENT ) and in this case,

the 1D ansatz (5.3) suggests (6.1).

Under the assumption (6.1), the compactness issue reduces to the case g(t) =

t2 in (5.2), known as the Aviles–Giga model. It is in fact a Ginzburg–Landau

model for gradient fields and appears either in solid mechanics, liquid crystals or in

micromagnetics (see [13, 33]). It gives rise to a series of articles [50, 6, 2, 26, 17, 66]

that justify that If with f(t) = t3

3 (given by (5.3)) is indeed the asymptotic energy

of {Gε} in the sense of Γ-convergence under the strong L1-topology.

In particular, Claim 1 was proved by Ambrosio, De Lellis and Mantegazza [2]

and DeSimone, Kohn, Müller and Otto [26]. The entropy method comes out to

be fruitful in this matter, too. We explain here the ideas in [26]. Since the vector

fields mε are no longer of values in S1, the strategy used in [26] consists in firstly

extending the notion of entropies to maps defined in the whole space R2:

Definition 6. (DKMO [26]) We will say that Φ ∈ C∞
c (R2,R2) is a DKMO-

entropy if

Φ(0) = 0, DΦ(0) = 0 and (3.2) holds for all z ∈ R2.

Let us discuss some properties of this extension: First of all, any entropy Φ ∈ ENT

can be extended at a DKMO-entropy by considering

Φ̃(z) := ρ(|z|)Φ
(
z

|z|

)
for every z ∈ R2\{0}, (6.2)

where ρ ∈ C∞
c (R+) with ρ(1) = 1. Indeed, by (3.2), we have that

(DΦ̃(z)z⊥) · z = |z|∂Φ̃
∂θ

(z) · z = |z|ρ(|z|)dΦ
dθ

(
z

|z|

)
· z = 0, z ∈ R2.

A second property concerns the entropy production: For every DKMO-entropy Φ,

there exist Ψ ∈ C∞
c (R2,R2) and γ ∈ C∞

c (R2,R) such thatc

DΦ(z) = −2Ψ(z)⊗ z + γ(z)Id for every z ∈ R2, (6.3)

consequently, for every m ∈ H1(Ω,R2), the entropy production is given by:

∇ · {Φ(m)} − γ(m)∇ ·m = Ψ(m) · ∇(1 − |m|2) a.e. in Ω (6.4)

(see [26]).

cThe function γ is an extension of the function given in (3.4) to the whole plane R2.
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The main feature of DKMO-entropies with respect to Claim 1 is the following:

For every DKMO-entropies Φ, the family of entropy productions {∇ · [Φ(mε)]}ε↓0
is asymptotically bounded as measure for every family {mε}ε↓0 ⊂ H1

div(Ω,R
2) of

uniformly bounded energy. In fact, integration of (6.4) yields (due to (6.1)):

lim sup
ε→0

∣∣∣∣
∫

Ω

∇ · {Φ(mε)}ζ
∣∣∣∣

≤ CΦ‖ζ‖∞ lim sup
ε→0

Gε(mε), for every ζ ∈ C∞
c (Ω), (6.5)

where CΦ = 2‖∇Ψ‖∞.

On the one hand, this property yields Claim 1 by a nice combination of the

theory of Young measures and the div–curl lemma of Murat and Tartar (see e.g. [72,

62]) applied to families {Φ(mε) ∧ Φ̃(mε)}ε↓0 where Φ, Φ̃ ∈ C∞(R2,R2) are two

arbitrary DKMO-entropies (see in [26]).

On the other hand, the entropy method also yields the structure of the limiting

configurations m0 (that obviously satisfy (2.1)). First, observe that (6.5) implies

that the entropy production ∇ · [Φ(m0)] is a measure for every DKMO-entropy Φ.

Moreover, this property holds true for every entropy Φ ∈ ENT (by (6.2)). De Lel-

lis and Otto [20] characterized this class of vector fields m0 where the entropy

production is a measure for every entropy. Essentially, every limiting configura-

tion m0 shares some structure properties of maps of bounded variation BV (Ω); in

particular it is possible to give a rigorous definition of the jump set J(m0) as a H1-

rectifiable set so that If makes sense. (A similar result was independently obtained

by Ambrosio, Kirchheim, Lecumberry and Rivière [3] using the characterization of

m0 in terms of its phase θ0.) The main obstacle is that limiting finite-energy con-

figurations m0 are not in BV as we already mentioned in Remark 8. However, the

situation is better if we focus on either zero-energy configurations (see Remark 5)

or dilation invariant configurations (see [31]).

Let us now present a new and easier proof of Proposition 2 that avoids the

properties of lifting of W
1
p ,p(Ω, S1) vector fields, but uses the generalized entropies

in (6.2).

Proof of Proposition 2. Let Φ ∈ C∞(S1,R2) be an entropy, i.e. (3.2) holds.

We want to prove that if m ∈ W
1
p ,p

div (Ω, S1) (with p ∈ [1, 2]) then (3.5) holds.

(For the converse implication we refer to [39] and [43] where an appropriate vortex

configuration m is used.) Let B ⊂ Ω be a ball inside Ω and {ηε}ε>0 be a family of

positive mollifiers. For ε > 0 small enough, we consider the approximation

mε = m  ηε in B.

Then mε ∈ C∞(B,R2), ∇ · mε = 0 and |mε| ≤ 1 in B. Now let us extend the

entropy Φ to a generalized entropy Φ̃ on R2 as in (6.2); for that, we consider a

smooth function ρ : [0,∞) → R such that ρ = 0 on [0, 12 ]∪ [2,∞) and ρ(1) = 1 and

let Φ̃ ∈ C∞
c (R2,R2) be given by (6.2). Therefore, there exist Ψ ∈ C∞

c (R2,R2) and

1230001-28



2nd Reading

November 20, 2012 14:0 WSPC/S1793-7442 251-CM 1230001 29–80

Singularities of Unit-Length Divergence-Free Vector Fields

γ ∈ C∞
c (R2,R) such that (6.3) holds, leading by (6.4) to

∇ · [Φ̃(mε)] = Ψ(mε) · ∇(1− |mε|2) in B (6.6)

because mε is of vanishing divergence in B. The final issue consists in passing to

the limit as ε→ 0.

Case 1. p = 1. On one hand, the chain rule implies that Φ̃(mε) → Φ̃(m) = Φ(m)

in W 1,1(B), in particular,

∇ · [Φ̃(mε)] → ∇ · [Φ(m)] in L1(B). (6.7)

On the other hand, the chain rule leads to 1− |mε|2 → 1 − |m|2 = 0 in W 1,1(B),

in particular,

∇(1− |mε|2) → 0 in L1(B).

Since {Ψ(mε)} is uniformly bounded, the duality 〈· , ·〉L∞(B),L1(B) leads to

Ψ(mε) · ∇(1 − |mε|2) → 0 in L1(B),

which by (6.6) and (6.7) yield ∇ · [Φ(m)] = 0 (in L1(B)).

Case 2. p = 2. We repeat the above argument using the duality

〈· , ·〉
H− 1

2 (B),H
1
2
00(B)

,

where H− 1
2 (B) is the dual space of H

1
2
00(B):

H
1
2
00(B) =

{
ζ ∈ H

1
2 (B) :

∫

B

∫

B

|ζ(x) − ζ(y)|2
|x− y|3 dxdy +

∫

B

|ζ(x)|2
d(x)

dx <∞
}
,

where d(x) = dist(x, ∂B). In fact, H
1
2
00(B) can be seen as the closure of C∞

c (B) in

H
1
2 (R2) (see e.g. [39] for more details). More precisely, on one hand, the chain rule

implies that Φ̃(mε) → Φ̃(m) = Φ(m) in H
1
2 (B), in particular,

∇ · [Φ̃(mε)] → ∇ · [Φ(m)] in H− 1
2 (B). (6.8)

On the other hand, the chain rule leads to 1− |mε|2 → 1− |m|2 = 0 in H
1
2 (B), in

particular,

∇(1 − |mε|2) → 0 in H− 1
2 (B).

Since Ψ(mε) → Ψ(m) in H
1
2 (B), we conclude that for every ζ ∈ C∞

c (B),

〈∇(1− |mε|2), ζΨ(mε)〉
H− 1

2 (B),H
1
2
00(B)

→ 0,

which by (6.6) and (6.8) yield

〈∇ · [Φ(m)], ζ〉
H− 1

2 (B),H
1
2
00(B)

= 0.

Hence, ∇ · [Φ(m)] = 0 in D′(B).
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Case 3. p ∈ (1, 2). By Gagliardo–Nirenberg embedding: L∞ ∩W
1
p ,p ⊂ H

1
2 (see

[10], Lemma D.1) and thus, one concludes by Case 2.

Since B ⊂ Ω was an arbitrarily chosen ball, (3.5) follows in Ω.

6.2. Entropies for S2-valued vector fields.

The Aviles–Giga and Bloch wall models

In this section we will introduce a different extension of entropies ENT (than the

DKMO-entropy) that is adapted for solving the second issue in the Γ-convergence

program, i.e. to show that If is a lower bound of (5.2). We treat this issue for slightly

more general functionals Eε,β defined for S2-vector fieldsm = (m′,m3) ∈ H1(Ω, S2)

(with m′ = (m1,m2)) that are not necessarily divergence-free, but the divergence

∇ ·m = ∇ ·m′ is penalized by the energy Eε,β :

Eε,β(m) =

∫

Ω

(
ε|∇m|2 + 1

ε
g(m2

3) +
1

β
||∇|−1∇ ·m|2

)
dx,

where ε > 0 and β > 0 are small parameters. We will always assume the following

regime

β = β(ε) � ε� 1

and that (6.1) holds. (The opposite regime, i.e. ε� β � 1, entails different asymp-

totic behavior: The energy Eε,β enforces m to take values into S1 much stronger

than satisfying the flux closure condition. This situation is adapted for “cross-tie”

walls, see [1, 68, 69].) Notice that Eε,β controls the functional Gε in (5.2) (for

divergence-free configurations): Indeed, the second term coincides for both func-

tionals (since m2
3,ε = 1− |m′

ε|2), while the first-term in Eε,β controls the one in Gε
since |∇mε| ≥ |∇m′

ε|. Moreover, the compactness issue discussed in the previous

section is still valid for uniformly bounded energy configurations Eε,β(mε) ≤ C

(due to (6.1)).

In order to obtain sharp lower bounds for Eε,β we introduce a class of gen-

eralized entropies Φ for which the entropy production is controlled by the energy

(with constant 1 comparing to (6.5)) up to a perturbation taking the form of a

boundary-term. More precisely, we systematically study the particular class of Lip-

schitz continuous maps Φ = (Φ1,Φ2) ∈ Lip(S2,R2) and α ∈ Lip(S2) such that for

every smooth m ∈ C∞(Ω, S2), the following holds:

∇ · {Φ(m)}+ α(m)∇ ·m′

≤ ε|∇m|2 + 1

ε
g(m2

3) +∇ · {aε(m)∇m} a.e. in Ω, (6.9)

where ε > 0 is a small parameter and aε(x) is a linear operator mapping the tangent

plane (TxS
2)2 into R2, for every x ∈ S2. In the language of differential geometry,

x �→ aε(x) is a section of the vector bundle

B := {(x, a) : x ∈ S2, a ∈ L((TxS2)2,R2)}
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based on S2 with fiber L(R4,R2). Using the natural differential structure, B is

locally diffeomorphic to R2×L(R4,R2). With the induced topology, we will always

assume that the section x �→ aε(x) is Lipschitz (in order for (6.9) to make sense).

This notion of generalized entropy is inspired by the work of Jin and Kohn [50] on

the Aviles–Giga model. The choice of Lipschitz maps is justified below by the study

of Bloch walls where the limit line-energies have a quadratic cost in the angle.

Let us first give the connection between generalized entropies for S2-valued

vector fields and the set of entropies ENT .

Proposition 10. (Ignat–Merlet [42]) Let Φ ∈ Lip(S2,R2), α ∈ Lip(S2) and aε be

a Lipschitz section of B such that (6.9) holds for every m ∈ C∞(Ω, S2). Then (3.2)

holds in the sense that

d

dθ
Φ(z) · z = 0, for almost every z ∈ S1, (6.10)

where d
dθΦ(z) denotes the tangential derivative of the restriction Φ|S1 on the hori-

zontal circle S1 := S1 × {0} ⊂ S2.

Conversely, let Φ ∈ C∞(S2,R2) satisfying (3.2) and ∂m3Φ ≡ 0 on S1 (m3-

symmetric entropies Φ(m′,m3) = Φ(m′,−m3) do satisfy this condition). Moreover,

we assume a stronger restriction on g than (6.1), i.e. there exists K > 0 such that

g(t) ≥ Kt for every t ∈ [0, 1]. Then there exist a constant C > 0 and α ∈ C∞(S2)

such that CΦ satisfies (6.9) with aε ≡ 0 for every m ∈ C∞(Ω, S2) and every ε > 0.

The above proposition justifies the name of generalized entropies. The differ-

ences with respect to Definition 1 consist in defining our entropies on S2 (which

is the target manifold of our vector fields m in this subsection) and in asking for

Φ to be only Lipschitz continuous. Observe that the inequality (6.9) implies the

following necessary pointwise bounds on generalized entropies (that hold for every

potential g ≥ 0 on R+, so that (6.1) is not necessary here).

Lemma 2. (Ignat–Merlet [42]) Let ε > 0, (Φ = (Φ1,Φ2), α) ∈ Lip(S2,R2) ×
Lip(S2) and aε be a Lipschitz section of B such that (6.9) holds for every m ∈
C∞(Ω, S2). For every τ ∈ [−π, π), we set

ντ = (−sin τ, cos τ, 0) ∈ S2 and

Ψτ := ντ ·Φ = −sin τΦ1 + cos τΦ2 ∈ Lip(S2).

Then for almost every point m ∈ S2, we have

|DΨτ (m) + α(m)Πmντ | ≤ 2
√
g(m2

3), (6.11)

where DΨτ (m) ∈ TmS
2 is the gradient of Ψτ at m and Πm denotes the orthogonal

projection onto TmS
2.

Let us now explain how the generalized entropies are used for proving lower

bound for Eε,β (under the condition (6.1)). Assume that Eε,β(mε) ≤ C. As

explained before, Claim 1 holds, so we may assume that mε → m0 in L1(Ω) and
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m0 satisfies (2.1). Moreover, using the DKMO-entropies, we know that all entropy

productions of m0 are measures so that by [20] we can define the jump set J(m0)

of m0. The question is whether If is a lower bound (in the sense of Γ-convergence)

of Eε,β where f and g are related by (5.3). To simplify the presentation, we focus

on the following periodic setting corresponding to a zoom around a jump point

x ∈ J(m0) of wall angle θ. More precisely, we consider the periodic strip

Ω =
R×R

Z

and we consider m ∈ H1
loc(Ω, S

2) with angle transitions imposed by the limit con-

dition at infinity

lim
x1→±∞

m(x1, ·) = m± = (cos θ,±sin θ, 0) in L2

(
R

Z

)
. (6.12)

The aim is to obtain the following lower bound: If β = β(ε) � ε� 1, then

f(|m+ −m−|) ≤ lim inf
ε↓0

Eε,β(mε); (6.13)

in other words, (6.13) is equivalent by proving that one-dimensional transition layers

are asymptotically optimal as ε→ 0. For that purpose, we introduce the following

notion of adapted triplet:

Definition 7. For θ ∈ (0, π), we will say that a triplet (Φ = (Φ1,Φ2), α) ∈
Lip(S2,R2)× Lip(S2) is adapted to the jump (m−,m+) if

Φ1(m
+)− Φ1(m

−) = [Φ(m+)− Φ(m−)] · e1 = f(|m+ −m−|) (6.14)

and there exists ε0 > 0 such that for every 0 < ε ≤ ε0 one can construct a Lipschitz

section aε of B for which (6.9) holds for every map m ∈ C∞(Ω, S2).

The existence of a triplet (Φ = (Φ1,Φ2), α) satisfying (6.9) and (6.14) would solve

(6.13). Indeed, notice first that
∣∣∣∣
∫

Ω

α(m)∇ ·m′
∣∣∣∣ ≤ ‖∇ ·m′‖Ḣ−1(Ω)‖∇[α(m)]‖L2(Ω)

≤ ‖∇α‖L∞

√
β

ε
Eε,β(m). (6.15)

Then integrating (6.9) on Ω and taking into account the boundary conditions (6.14),

we would deduce (6.13).

Aviles–Giga model . Let us apply this theory to the case of the quadratic potential

g(t) = t2 in the Aviles–Giga model. The following generalized entropy was used

by Jin and Kohn [50]. The idea comes from the scalar conservation laws where the

entropy production through shocks is asymptotically cubic in the limit of small

jumps. Therefore, smooth entropies seem to be adapted for the energy Gε given in
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(5.13) defined for vector fields m ∈ H1
div(Ω,R

2). For that, let Φ : R2 → R2 be the

following smooth extension of the entropy given in Example 1:

Φ(z) =

(
2z2(1− z21)−

2

3
z32 , 2z1(1 − z22)−

2

3
z31

)
, ∀ z ∈ R2. (6.16)

(Notice that Φ is not a DKMO-entropy.) Then setting α(z) = 4z1z2 for z =

(z1, z2) ∈ R2, one checks that (6.9) holds for the triplet (Φ, α) (as maps defined

on R2) and the section aε(z)(U, V ) = 2εz2(V1,−U1) with U = (U1, U2) ∈ R2,

V = (V1, V2) ∈ R2. This means that for smooth maps m : Ω → R2 with ∇ ·m = 0

in Ω, one has

∇ · {Φ(m)} = 2(1− |m|2)(∂1m2 + ∂2m1)

≤ ε|∇m|2 + (1− |m|2)2
ε

+ 2ε∇ ·
(
m2∂2m1

−m2∂1m1

)
. (6.17)

Moreover, (6.14) is satisfied for f(t) = t3

3 . Therefore, one obtains (6.13) for Gε and

also, for Eε,β ; one can extend it to a general domain Ω so that If is a lower bound

of Gε and Eε,β .

Remark 13. Let us explain how the formula (6.16) was obtained; this strategy

can be used in general when searching for generalized entropies (6.9). Suppose that

we are looking for a triplet (Φ, α) satisfying (6.9), i.e. for every m ∈ C∞(Ω,R2),

∇ · {Φ(m)}+ α(m)∇ ·m

≤ ε|∇m|2 + 1

ε
(1 − |m|2)2 +∇ · {aε(m)∇m} a.e. in Ω,

where ε > 0 is a small parameter and x �→ aε(x) is a Lipschitz map from R2 into

the space of linear operators L(R4,R2). Then by Lemma 2, we deduce that

|∇Φ1(m) + α(m)e1| ≤ 2|1− |m|2| for every m ∈ R2. (6.18)

Also, assume that (6.14) is satisfied, i.e. Φ1(m
+) − Φ1(m

−) = |m+−m−|3
3 for every

jump m± = (cos θ,±sin θ) in direction e1 with θ ∈ (0, π2 ). Then, let us define

ϕ(t) := Φ1(cos θ, t sin θ) for t ∈ [−1, 1]. Inequality (6.18) yields
∣∣∣∣
dϕ

dt
(t)

∣∣∣∣ = sin θ|e2 · ∇Φ1(cos θ, t sin θ)| ≤ 2 sin3 θ|1− t2|, t ∈ (−1, 1).

On the other hand, (6.14) yields

0 = −8

3
sin3 θ + ϕ(1)− ϕ(−1) =

∫ 1

−1

{
dϕ

dt
(t)− 2 sin3 θ(1 − t2)

}
dt ≤ 0.

So the integrand vanishes and we have dϕ
dt (t) = 2 sin3 θ(1 − t2). Consequently, one

recovers the formula of Φ1 in (6.16).

We recall that the Γ-convergence program is not completely solved for the

Aviles–Giga model: The difficulty consists in the upper bound construction for
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admissible configurations m0 since the recovery sequences have been constructed

only for BV configurations m0 (see Conti and De Lellis [17] and Poliakovsky [66]).

For general (non-BV ) limiting finite-energy configurations m0, the problem is still

open. Another open question consists in proving that the viscosity solution (5.12)

is asymptotically a minimizer of energy Gε as ε → 0 under the boundary condi-

tion m = n⊥ on ∂Ω. We prove now Theorem 9 that answers this question in a

particular case:

Proof of Theorem 9. We use the strategy of Jin–Kohn (see Proposition 5.1 in

[50]). Letm : Ω → R2 be a smooth map with ∇·m = 0 in Ω andm = n⊥ on ∂Ω and

Φ be the generalized entropy given at (6.16). Using a suitable rotation R ∈ SO(2),

we may assume that ν� = e1. Then by (6.17), we have that
∫

Ω

∇ · {Φ(m)}dx ≤ Gε(m) + 2ε

∫

Ω

∇ ·
(
m2∂2m1

−m2∂1m1

)
dx. (6.19)

Stokes’ theorem leads to
∫

Ω

∇ ·
(
m2∂2m1

−m2∂1m1

)
dx =

∫

∂Ω

−m2∇⊥m1 · ndH1 =

∫

∂Ω

n1∂τn2dH1 =: C

since ∇⊥m1 ·n = ∂τm1 with τ = −n⊥ = −m be the tangent vector field at ∂Ω and

the constant C depends only on the geometryd of Ω. Also, Stokes’ theorem yields
∫

Ω

∇ · {Φ(m)}dx =

∫

∂Ω

Φ(n⊥) · ndH1 =

∫

Ω

∇ · {Φ(m�)}dx

(3.6)
=

∫

J

[Φ(m+
� )− Φ(m−

� )] · e1dH1 (6.14)
=

1

3

∫

J

|m+
� −m−

� |3dH1;

hence, (5.14) holds true. In the general case of a vector field m ∈ H1
div(Ω,R

2) with

m = n⊥ on ∂Ω, one can approximate m in strong H1-topology by smooth vector

fields (satisfying the same divergence and boundary constraints) and then (5.14)

immediately follows by passing to the limit.

The model for the Bloch wall . A second application is given by the linear potential

g(t) = t and is arising in micromagnetics in the study of Bloch walls, i.e. for every

m ∈ H1(Ω, S2),

Eε,β(m) =

∫

Ω

(
ε|∇m|2 + 1

ε
m2

3 +
1

β
||∇|−1∇ ·m|2

)
dx,

where β = β(ε) � ε � 1. The expected line-energy corresponds to a quadratic

cost f(t) = t2. This case is more delicate than the Aviles–Giga model, since smooth

dFor smooth boundary ∂Ω, we have

C = −1

2

Z
∂Ω

τ · ∂τndH1 = −1

2

Z
∂Ω

κdH1,

where κ is the curvature of ∂Ω and we used that ∂τn = κτ .
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entropies are no longer suited to quadratic jumps. This motivates our choice of

considering generalized entropies with discontinuous gradients.

First, let us mention that Lipschitz DKMO-entropies can detect the quadratic

costs over the singular set of limiting configurations. This relies on a control of

the entropy production by the energy. In fact, this control is obtained using an

improvement of inequality (6.5) via the control of |∇m3|2 by the energy density

of Eε,β . If β � ε � 1, Φ is a DKMO-entropy and mε ∈ H1(Ω, S2), by (6.4) and

(6.15) one gets

lim sup
ε→0

∣∣∣∣
∫

Ω

∇ · {Φ(mε)}ζ
∣∣∣∣ ≤ C̃Φ‖ζ‖∞ lim sup

ε→0
Eε,β(mε) for every ζ ∈ C∞

c (Ω),

where C̃Φ = ‖Ψ‖∞. The advantage of the above inequality consists in having the

R.H.S. only dependent on the L∞-norm of Ψ (controlled by the Lipschitz norm of

the DKMO-entropy Φ) whereas in (6.5) the constant CΦ depends on the C1,1-norm

of Φ. For this reason, if Φ is a Lipschitz continuous map satisfying (3.2) and m0 is

a strong limit of {mε} satisfying lim supε↓0Eε,β(mε) < ∞, then ∇ · {Φ(m0)} is a

measure of finite total mass. In [42], we construct a Lipschitz entropy Φ = (Φ1,Φ2)

that satisfies (6.14) and leads to (6.13) up to a constant. Moreover, we proved that

If is a lower bound of Eε,β (up to a constant):

Theorem 12. (Ignat–Merlet [42]) Let Ω ⊂ R2 be a bounded domain. Assume that

the family {mε}ε↓0 ⊂ H1(Ω, S2) converges to m0 in L1(Ω) and β = β(ε) � ε� 1.

Then

If (m0) ≤ C lim inf
ε↓0

Eε,β(mε),

with some C > 1 (in fact, one can choose C =
√
4 + π2).

In order to get the desired inequality (6.13) (with C = 1), we analyze the

existence of adapted triplets. For the 180◦ Bloch wall (i.e. the biggest possible

jump θ = π
2 ), we have a positive answer.

Proposition 11. (Ignat–Merlet [42]) There exists a smooth triplet (Φ =

(Φ1,Φ2), α) adapted to the jump (−e2, e2). Consequently, (6.13) holds for θ = π
2 .

For smaller jumps, we only have a partial result. If m± is the jump of angle

θ ∈ (0, π2 ) in (6.12), we define the spherical cap

Sθ := {m ∈ S2 : m1 ≥ cos θ}

and the set of vector fields taking values into the cap Sθ and adapted to the jump

(m−,m+):

Cθ := {m ∈ H1
loc(Ω, S

2): (6.12) holds and m(x) ∈ Sθ for a.e. x ∈ Ω}.
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Then one can find a triplet (Φ = (Φ1,Φ2), α) that is adapted to a jump (m−,m+)

if we restrict our study to configurations of Cθ.

Proposition 12. (Ignat–Merlet [42]) For every θ ∈ (0, π2 ) and every ε > 0, there

exists a smooth triplet (Φθ, αθ) ∈ C∞(Sθ,R
3) and a smooth section aε of B such

that (6.14) and (6.9) hold for every m ∈ C∞(Ω, Sθ). Consequently, if {mε} ⊂ Cθ,
then (6.13) holds true.

We remark that there is no general recipe for constructing adapted triplets.

However, Lemma 2 gives a very useful tool in this context.

Despite Propositions 11 and 12, we prove in [42] that for small jumps, the

necessary conditions in Lemma 2 are not compatible with condition (6.14). Con-

sequently, there is no triplet (Φ = (Φ1,Φ2), α) adapted to a fixed small jump for

general configurations (when the vector fields cover the entire sphere S2):

Theorem 13. (Ignat–Merlet [42]) There exists η > 0 such that for 0 < θ < η,

there is no triplet (Φ = (Φ1,Φ2), α) adapted to the jump (m−,m+).

However, we strongly believe that (6.13) holds for every angle θ. The conjecture

that If is the Γ-limit energy of our 2D model is supported by Theorem 5. In other

words, it is not possible to asymptotically decrease the energy by substituting a 1D

transition layer by a 2D mesoscopic structure obtained by assembling together 1D

transition layers. (This does not rule out the possibility of having 2D microscopic

structures at smaller scale than ε inside the transition layers). Moreover, numerical

simulations performed in the periodic two-dimensional context indicates that the

microscopic transition layers (for ε > 0) are indeed one-dimensional.

6.3. A zigzag pattern

We analyze here a modified Aviles–Giga model that arises in micromagnetics where

the optimal transitions are no longer one-dimensional, but involve two-dimensional

microstructure. Even if the limit energy is not of the form If , the method of gen-

eralized entropies is also fruitful in this case. The model is the following: We define

the functional:

Fε(m) =

∫

Ω

(
ε|∇m|2 + 1

ε
m2

2 +
1

εs
||∇|−1∇ ·m|2

)
dx,

for ε > 0 small, m ∈ H1(Ω, S2) defined on a domain Ω ⊂ R2 and s ∈ (1, 2) (this is

a technical assumption). Remark that Fε penalizes the m2 component comparing

to Gε (or Eε,β) penalizing the m3 component.

Limiting energy. Suppose that we have a family of maps mε ∈ H1(Ω, S2) with

lim sup
ε↓0

Fε(mε) <∞. (6.20)

What can we say about the asymptotic behavior of mε and the energy Fε(mε) as

ε ↓ 0?
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As before, it is natural to study this question in the framework of Γ-convergence.

To this end, we first need to fix a topology on the space of admissible magnetizations.

The strong L1(Ω,R3)-topology was used for the previous models, but it turns out

that Fε is not coercive enough to deduce compactness from (6.20) in this space.

Another possibility is the weak* topology in L∞(Ω,R3). Clearly, the limit m =

(m′,m3) (as ε ↓ 0) must have a vanishing second component m2 and a vanishing

distributional divergence ∇ · m = ∇ · m′ = 0 in Ω. However, we obtain more

information about the limit if we first apply a nonlinear transformation to m. In

order to do so, we use spherical coordinates (ϕ, ϑ) so that

m = (cosϕ cosϑ, sinϕ, cosϕ sinϑ).

The quantity that we need to study is

ψ = sinϑ− ϑ cosϑ,

at least if we work in the hemisphere where |ϑ| ≤ π
2 . We will show that as long as

ϑ remains sufficiently small, the functional

F0(ψ) = 2 sup

{∫

Ω

∂v

∂x1
ψdx : v ∈ C1

0 (Ω) with sup
Ω

|v| ≤ 1

}
(6.21)

can be identified as the limiting energy. For a sufficiently regular ψ, this is of course

F0(ψ) = 2

∫

Ω

∣∣∣∣
∂ψ

∂x1

∣∣∣∣ dx.

The lack of a penalization of ∂ψ
∂x2

means that we can have very rough limiting

configurations. On the other hand, almost every restriction to a horizontal line

Ω ∩ (R × {x2}) will be a function of bounded variation. There can be jumps,

but these jumps contribute to the energy proportionally to the jump height. It is

convenient to imagine here that the magnetization depends only on x1, and then

we can think of a jump as a domain wall. It is worth noting that in general, the

wall energy given by F0 is not achieved by a one-dimensional transition between

the two states on either side of the wall (as in the Aviles–Giga model). Instead,

in order to obtain the optimal limiting energy given by F0, a transition with an

additional zigzag structure is required.

Adapted triplet. In order to obtain that F0 is an optimal lower bound we will use

the same strategy based on generalized entropies. More precisely, we study the

particular class of Lipschitz continuous maps Φ = (Φ1,Φ2) ∈ Lip(S2,R2) and

α ∈ Lip(S2) such that for every smooth m ∈ C∞(Ω, S2), there holds

∇ · {Φ(m)}+ α(m)∇ ·m ≤ ε|∇m|2 + 1

ε
m2

2 a.e. in Ω, (6.22)

where ε > 0 is a small parameter. In (6.22), we skip the last term on the R.H.S. of

(6.9) since it is not important in the sequel. The condition (6.22) yields the corre-

sponding necessary pointwise bounds for an admissible triplet (Φ = (Φ1,Φ2), α) as
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in Lemma 2 where g(m2
3) is to be replaced by m2

2. As explained above, the expected

limit energy for a jump of angle θ ∈ (0, π2 ], i.e.

m± = (cos θ, 0,±sin θ) ∈ S2 (6.23)

is given by

F (θ) = 2(ψ(θ) − ψ(−θ)) = 4(sin θ − θ cos θ).

The periodic case. For simplicity, we first focus as before on the periodic situation

Ω =
R×R

Z
.

For a fixed transition angle θ ∈ (0, π2 ), we set the jump directions m± given by

(6.23) and we consider vector fields (periodic in the tangential direction x2 to the

wall) with the desired transition imposed at the boundary:

M(θ) :=

{
m ∈ H1

loc(Ω, S
2) : lim

x1→±∞
m(x1, ·) = m± in L2

(
R

Z

)}
.

Similar to (6.14), we will say that a triplet (Φ = (Φ1,Φ2), α) ∈ Lip(S2,R3) is

adapted to the jump (m−,m+) if

Φ1(m
+)− Φ1(m

−) = F (θ) (6.24)

and there exists ε0 > 0 such that for any 0 < ε ≤ ε0, inequality (6.22) holds for

every map m ∈ C∞(Ω, S2).

We shall see that surprisingly this context is opposite to the Bloch wall model

where we could find an adapted triplet for the largest angle, but not for small

angles. Here, we prove the existence of adapted triplet for walls of small transition

angles and non-existence for the biggest angle.

Proposition 13. (Ignat–Moser [44]) There exist an angle θ0 ∈ (0, π2 ) and a Lips-

chitz triplet (Φ = (Φ1,Φ2), α) that is adapted to the jump m± for every θ ∈ (0, θ0].

For the biggest jump ±e3, we prove a nonexistence result. This result suggests

that the zigzag pattern may not be optimal for large angles.

Proposition 14. (Ignat–Moser [44]) There is no smooth triplet (Φ = (Φ1,Φ2), α)

adapted to the jump m± for θ = π
2 .

As we have already seen in Sec. 6.2, the existence of adapted triplets is useful for

proving the optimal lower bound for Fε. Indeed, we prove the desired asymptotic

minimal value of Fε on the set M(θ) for small transition angles θ:

Theorem 14. (Ignat–Moser [44]) There exists an angle θ0 ∈ (0, π2 ) such that the

following holds : for every θ ∈ (0, θ0],

min
mε∈M(θ)

Fε(mε) = F (θ) + o(1) as ε→ 0.
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Fig. 10. The zigzag pattern.

The idea of the proof is to match an upper bound coming from the zigzag wall

construction with the lower bound based on adapted triplets in Proposition 13. Let

us explain the heuristics of deducing the upper bound in Theorem 14 for a wall angle

θ. Let β ∈ [0, π2 ) and consider in R3 the plane containing the two points m± ∈ S2

so that ν = (cosβ,− sinβ, 0) is the normal vector to the plane (see Fig. 10). The

construction will involve a transition path from m− to m+ along the geodesic γ on

S2 within this plane. More precisely, we define

b = cos θ cosβ and σ = arcsin
sin θ√
1− b2

;

the smallest arc γ connecting m± on the circle of radius
√
1− b2 whose plane is

perpendicular to ν is given by

γ(t) = bν +
√
1− b2(sinβ cos t, cosβ cos t, sin t) (6.25)

for −σ ≤ t ≤ σ. For a transition along γ = (γ1, γ2, γ3), the expected energy per

unit wall length is

K(β) = 2

∫ σ

−σ
γ2(t)|γ̇(t)|dt.

In order to keep the magnetostatic energy small, we will have to use this transition

across pieces of a zigzag wall that are tilted with respect to {0}× (0, 1) by the angle

β (see Fig. 10). This increases the length of the wall by the factor 1
cosβ , and in the

limit we expect the energy density

h(β) =
K(β)

cosβ
. (6.26)

One can check that h is a decreasing function and concludes that

inf
0≤β<π

2

h(β) = lim
β→π

2
−
h(β) = F (θ).

Observe that the energy cost of a transition of small angle θ is cubic, so that it is

asymptotically cheaper than the quadratic energy cost of a Bloch wall transition of

the same angle.
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Γ-convergence for small transition angles. We now concentrate on families of uni-

formly bounded energy configurations {mε ∈ H1(Ω, S2)} in a smooth bounded

simply-connected domain Ω ⊂ R2, i.e. (6.20) holds. The aim is to establish the

structure of limiting configurations of such families and to justify that F0 is their

limit energy (according to the Γ-convergence method). The first issue is to find the

appropriate topology for the desired Γ-convergence result. Obviously, (6.20) entails

mε,2 → 0 strongly in L2(Ω). However, families {mε} satisfying (6.20) are in general

not relatively compact in the strong L1-topology and the limiting configurations

m are not necessarily taking values into S2 (in general, one only has |m| ≤ 1 a.e.

in Ω). Therefore, one alternative would be to choose the weak* L∞-topology for

{(mε,1,mε,3)}. Rather than studying the limiting behavior of (mε,1,mε,3), we focus

on the quantity

ψε = f(mε), (6.27)

where f : S2 → R is the function defined by

f(m) =





1

4
F

(
arctan

(
m3

m1

))
if m1 > 0,

2 +
1

4
F

(
arctan

(
m3

m1

))
if m1 < 0 and m3 ≥ 0,

−2 +
1

4
F

(
arctan

(
m3

m1

))
if m1 < 0 and m3 < 0,

extended continuously where m1 = 0 and m2 �= ±1 (here, arctan : R → (−π
2 ,

π
2 )).

This function has a discontinuity along the semicircle {m ∈ S2 : m3 = 0, m1 ≤
0}, and from a geometric point of view, it would be more appropriate to regard

f as a function from S2 into R
4Z . Since we work mostly in a hemisphere below,

we keep R as the target anyway. The discontinuities at the poles ±e2, of course,

are unavoidable. Since |ψε| ≤ 2 a.e. in Ω, we choose the weak* L∞-topology for

{ψε} as appropriate for the Γ-convergence result. Extending (6.21) to the limiting

functional F0 : L∞(Ω) → [0,∞], we prove the following Γ-convergence result for

small transition angles:

Theorem 15. (Ignat–Moser [44]) There exists an angle θ0 ∈ (0, π2 ) such that the

following holds true:

(1) (Compactness and lower bound) Let {mε} ⊂ H1(Ω, S2) with (6.20). Consider

the family {ψε} associated to {mε} via (6.27). Then for subsequences,

ψε
∗
⇀ ψ in L∞(Ω) and mε,2 → 0 in L2(Ω). (6.28)

If |ψε| ≤ 1
4F (θ0) a.e. in Ω for every small ε > 0, then

F0(ψ) ≤ lim inf
ε↓0

Fε(mε).
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(2) (Upper bound) For every ψ ∈ L∞(Ω) with |ψ| ≤ 1
4F (θ0) a.e. in Ω, there exists

a family {mε} ⊂ H1(Ω, S2) such that (6.28) holds and

F0(ψ) = lim
ε↓0

Fε(mε).

We are aware of only one other situation where the Γ-limit is explicitly known for

a problem involving similar microstructures: The problem leading to cross-tie walls

in thin ferromagnetic films (see [1, 68, 69]). As shown in Fig. 6, the cross-tie wall

consists in a mixture of vortices and Néel walls (one-dimensional transition layers

similar to Bloch walls, but taking values only in S1). Remarkably, the function

sin θ− θ cos θ plays an important role in that context as well, although this may be

a mere coincidence.

7. Micromagnetics

Ferromagnetic materials are widely used in nowadays as technological tools, espe-

cially for magnetic data storage. The modeling of very small ferromagnetic parti-

cles is based on the micromagnetic theory. The micromagnetic model states that

ferromagnetic materials can be described by a 3D vector-field distribution, called

magnetization, where the stable configurations correspond to (local) minimizers of

the micromagnetic energy. The associated variational problem is nonconvex and

nonlocal. Moreover, it is a multi-scale system involving both intrinsic parameters

(depending on the nature of the ferromagnetic material) and extrinsic parameters

(coming from the geometry of the sample). According to the relative smallness of

these parameters, different asymptotic regimes appear and lead to formation of

various patterns of the magnetization.

The qualitative and quantitative analysis of pattern formation is an extensively

explored topic. Generically, a pattern (stable state) consists in large uniformly

magnetized 3D regions (magnetic domains) separated by narrow transition lay-

ers (domain walls) where the magnetization varies very rapidly. Depending on the

length scales of the system, the experiments predict different type of domain walls:

Wall defects (Néel walls, Bloch walls, asymmetric Néel walls, asymmetric Bloch

walls etc.), interior vortices (Bloch lines), boundary vortices or different type of

microstructures: Cross-tie walls, zigzag walls etc. The main goal is to give a mathe-

matical justification of the physical prediction on the formation and characterization

of these defects. Classical methods of functional analysis are often insufficient to

detect these phenomena of loss of regularity. New approaches need to be developed

in order to implement geometric measure theory contributing to the analysis of

partial differential equations and calculus of variations.

7.1. The general three-dimensional model

The magnetization of a ferromagnetic sample Ω ⊂ R3 is created by the spontaneous

alignment of electron spins and can be described in the non-dimensionalized form
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Fig. 11. A ferromagnetic sample.

by a 3D unit-length vector field

m : Ω → S2.

Let us assume that the sample is a cylinder, i.e.

Ω = Ω′ × (0, t),

where Ω′ is the cross-section of the sample of diameter � and t is the thickness of

the cylinder (see Fig. 11). According to micromagnetics, stable magnetizations in

Ω are described by (local) minimizers of the energy functional defined as:

E3D(m) = d2
∫

Ω

|∇m|2dx+Q

∫

Ω

ϕ(m)dx +

∫

R3

|∇U |2dx

− 2

∫

Ω

Hext ·mdx. (7.1)

In the following we explain the four components of the micromagnetic energy E3D.

• The first-term, called exchange energy is due to short range interactions of spins

and favors parallel alignment of neighboring spins. The constant d is the exchange

length and corresponds to an intrinsic parameter of the material of the order of

nanometers.

• The second-term in (7.1) represents the anisotropy energy that penalizes cer-

tain magnetization axes. The anisotropy energy density ϕ ≥ 0 is a non-negative

function with symmetry properties inherited from the crystalline lattice. The pre-

ferred directions of magnetization are the zeros of ϕ. Typically, we have uniaxial

or multi-axial anisotropy (e.g. ϕ(m) = 1−m2
1 that favors the direction (±1, 0, 0))

and surface anisotropy (e.g. ϕ(m) = m4
3 where the easy plane is the horizontal

one). The quality factor Q is a second intrinsic parameter of the material that

measures the strength of the anisotropy energy relative to the stray-field. Accord-

ing to the values of Q, we distinguish two classes of materials: Soft materials if

Q < 1 and hard materials if Q > 1.

• The third-term of E3D is the stray-field energy and is created by long range

interactions between electron spins modeled by the static Maxwell equation. More

precisely, the stray-field potential U : R3 → R is determined by

∆U = ∇ · (m1Ω) in R3,

i.e.

∫

R3

∇U · ∇ζdx =

∫

Ω

m · ∇ζdx, ∀ ζ ∈ C∞
c (R3).

(7.2)
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By the electrostatic analogy, two types of charges generate the potential U : Vol-

ume charges with density given by the divergence of m in the interior of the

sample Ω and surface charges represented by the normal component of the mag-

netization on the boundary of Ω. Therefore, this nonlocal term favors domain

patterns that achieve flux closure.

• The last term in (7.1) denotes the external field energy generated by an applied

external field Hext : R3 → R3. It favors alignment of the magnetization with

Hext.

More details about the mathematical modeling of micromagnetics can be found in

the book of Hubert and Schäfer [33] or in the overview of DeSimone, Kohn, Müller

and Otto [27].

We will concentrate on the analysis of global minimizers of energy (7.1). In fact,

physically accessible local minima share the same features as the ground state (see

DeSimone, Kohn, Müller, Otto and Schäfer [25]). It is a variational problem relying

on the nonconvex constraint |m| = 1 and the nonlocality of the stray-field energy

due to (7.2). On the other hand, four length scales are involved in the system: Two

intrinsic parameters (d and Q) and two extrinsic scales (t and �). Our approach

is based on asymptotic analysis, taking advantage of the presence of small ratios

involving these parameters. The combination of nonlocality and nonconvexity with

the multi-scale nature of the variational problem leads to a rich pattern formation

of the magnetization.

7.2. A reduced thin-film model

In the following, we are interested in thin ferromagnetic films where we expect

the nucleation of several singular patterns of the magnetization (like Néel walls,

Bloch lines and boundary vortices). The main issue is to identify the scaling law

of the minimum energy and the pattern of the magnetization that achieves this

minimum.

Heuristics and scaling. We will heuristically explain in the following the separation

of energy scales in the regime of thin-films. The balance between the energy terms is

responsible for the formation of certain type of walls in function of certain regimes.

The ansatz is the following: We assume that the magnetic film Ω = Ω′ × (0, t) with

� = diam(Ω′) has a small aspect ratio

h :=
t

�
� 1 (7.3)

so that the variations of m in the vertical variable x3 are strongly penalized by the

energy. Therefore, we assume that m is invariant in x3-direction and depends only

on the in-plane variables x′ = (x1, x2):

m = (m′,m3)(x
′) : Ω′ → S2 and m varies on length scales � t

�
. (7.4)

1230001-43



2nd Reading

November 20, 2012 14:0 WSPC/S1793-7442 251-CM 1230001 44–80

R. Ignat

It is also assumed that the external field is in-plane and invariant in x3, i.e.

Hext = (H ′
ext(x

′), 0).

Here and below, the dash ′ always indicates a 2D quantity. We always denote a� b

if a
b → 0; also, a � b if a ≤ Cb for some universal constant C > 0.

Rescaling in the length � of Ω′, i.e. x̃′ = x′

� , Ω̃
′ = Ω′

� , m̃(x̃′) = m(x′) and

H̃ ′
ext(x̃

′) = H ′
ext(x

′), the exchange energy, anisotropy and external field energy can

be written as∫

Ω

(d2|∇m|2 +Qϕ(m)− 2Hext ·m)dx

= td2
∫

Ω̃′
|∇̃′m̃|2dx̃′ + t�2

∫

Ω̃′
(Qϕ(m̃)− 2H̃ ′

ext · m̃′)dx̃′. (7.5)

What is the appropriate scaling law of the stray-field energy? For configurations

(7.4), the static Maxwell equation (7.2) turns into:

∆U = ∇′ ·m′1Ω +m · ν1∂Ω in R3, (7.6)

where ν is the unit outer normal vector on ∂Ω. Therefore, the volume charges are

given by the in-plane flux ∇′ ·m′ and the surface charges on the top and the bottom

side of the cylinder (x3 ∈ {0, t}) are represented by the out-of-plane component m3

of the magnetization. Equation (7.6) is a transmission problem that can be solved

explicitly using the Fourier transform F(·) in the horizontal variables (see e.g.

[51, 37]) and one computes:

∫

R3

|∇U |2dx = t

∫

R2

f

(
t

2
|ξ′|
) ∣∣∣∣

ξ′

|ξ′| · F(m′1Ω′)

∣∣∣∣
2

dξ′

+ t

∫

R2

g

(
t

2
|ξ′|
)
|F(m31Ω′)|2dξ′,

where

g(s) =
1− e−2s

2s
and f(s) = 1− g(s) for every s ≥ 0.

Approximating g(s) ≈ 1 and f(s) ≈ s if s = o(1) and as above, rescaling in the

length scale � of Ω′, we obtain the following estimate of the stray-field energy:
∫

R3

|∇U |2dx ≈ t2�

2
‖(∇̃′ · m̃′)ac‖2

Ḣ− 1
2 (R2)

+
t2�

2π

∣∣∣∣log
�

t

∣∣∣∣
∫

∂Ω̃′
(m̃′ · ν̃)2dH1 + t�2

∫

Ω̃′
m̃2

3, (7.7)

(see e.g. [23, 51]). This is due to the assumption (7.4), so that indeed the stray-field

energy asymptotically decomposes into three terms in the thin-film regime: The

first one is penalizing the volume charges

(∇̃′ · m̃′)ac = ∇̃′ · m̃′1Ω̃′
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as homogeneous Ḣ− 1
2 -seminorm and induces the leading order of the energy of

Néel walls, a second-term penalizing the lateral charges m̃′ · ν̃ in the L2-norm and

responsible for the nucleation of boundary vortices, as well as the third-term that

counts the surface charges m̃3 on the top and bottom of the cylinder and leading

to formation of Bloch lines.

Summing up (7.5) and (7.7), we deduce the following reduced 2D thin-film

energy:

Ẽ2D(m̃) = td2
∫

Ω̃′
|∇̃′m̃|2dx̃′ + t2�

2

∫

R2

||∇̃′|− 1
2 (∇̃′ · m̃′)ac|2dx̃′

+
t2�

2π

∣∣∣∣log
�

t

∣∣∣∣
∫

∂Ω′
(m̃′ · ν̃)2dH1

+ t�2
∫

Ω̃′
(m̃2

3 +Qϕ(m̃)− 2H̃ ′
ext · m̃′)dx̃′. (7.8)

We will often refer in the following to the above thin-film energy approximation

and we will drop˜ in the sequel.

According to the specific thin-film regime, three types of singular pattern of

the magnetization occur: Néel walls, Bloch lines and boundary vortices. In fact,

the formation of one of these patterns depends on the scale ordering of the three

terms on the R.H.S. of (7.7). Let us now discuss briefly these patterns (and we will

present them in more details in the next sections).

Néel walls . The (symmetric) Néel wall is a transition layer describing a one-

dimensional in-plane rotation connecting two (opposite) directions of the magneti-

zation. It is generated by the volume charges (∇′ ·m′)ac that give the leading order

of the energy of a Néel wall. Observe that this term in (7.7) is related at order of

t2� with the limiting stray-field energy generated by the in-plane charges as h→ 0:

∆uac = (∇′ ·m′)acH2�{x3 = 0} in R3.

More precisely, the homogeneous Ḣ− 1
2 -seminorm of the in-plane divergence of m′

is given by the Dirichlet integral of uac:
∫

R3

|∇uac|2dx =
1

2

∫

R2

||∇′|− 1
2 (∇′ ·m′)ac|2dx′. (7.9)

Since a Néel wall is a one-dimensional transition layer in the normal direction x1
to the wall (i.e. m = m(x1)), the R.H.S. in (7.9) becomes the homogeneous Ḣ

1
2 -

seminorm of the normal component m1 (on the wall). The Néel wall has two length

scales: A core of size

δ :=
d2

t�

and two tails of length scale depending on the confining mechanism. In order that a

Néel wall is relevant in a certain regime, one should assume that δ � 1. The reduced
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stray-field energy (7.7) per unit length of a Néel wall is of the order of

E2D(Néel wall) = O

(
t2�

|log δ|

)
.

A detailed description of the Néel wall is done in Sec. 8.

Bloch line. A Bloch line is a regularization of a vortex at the microscopic level

of the magnetization that becomes out-of-plane at the center. The prototype of a

Bloch line is given by a vector field

m : B2 → S2

defined in a circular cross-section Ω′ = B2 of a thin-film and satisfying the flux-

closure condition:

∇′ ·m′ = 0 in B2 and m′(x′) = (x′)⊥ on ∂B2. (7.10)

(The magnetization is assumed to be invariant in the thickness direction of the

film and the word “line” of the Bloch line pattern refers to the vertical direc-

tion.) Since the magnetization turns in-plane at the boundary of the disc B2 (so,

deg(m′, ∂Ω) = 1), a localized region is created, that is the core of the Bloch line

of size

η :=
d

�
,

where the magnetization becomes perpendicular to the horizontal plane (see

Fig. 12). In order for a Bloch line to be relevant in a certain regime, one should

assume that η � 1. The reduced energy (7.8) of a configuration (7.10) (in the

absence of anisotropy and applied external field) is given by the exchange energy

and the surface charges in m3:

E2D(m) = td2
(∫

B2

|∇′m|2dx′ + 1

η2

∫

B2

m2
3dx

′
)
.

The Bloch line represents the minimizer of this energy under the constraint (7.10).

Due to the similarity with the Ginzburg–Landau type functional, the Bloch line

corresponds to the Ginzburg–Landau vortex and the energetic cost of a Bloch line

(per unit-length) is carried out by the exchange energy outside the vortex core:

E2D(Bloch line) = O(td2|log η|)

Fig. 12. Bloch line.
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Fig. 13. A micromagnetic boundary vortex.

with the exact prefactor 2π (see e.g. [37]). We will discuss more precisely this

singular pattern in Sec. 10.

Boundary vortex . Next we address boundary vortices. A boundary vortex corre-

sponds to an in-plane transition of the magnetization along the boundary from

ν⊥ to −ν⊥, see Fig. 13. The corresponding minimization problem amounts to the

competition between the exchange energy and the lateral surface charges m′ · ν:

E2D(m) = td2
(∫

Ω′
|∇′m|2dx′ + |log h|

2πδ

∫

∂Ω′
(m′ · ν)2dH1

)

within the set of in-plane magnetizationsm : Ω′ → S1. The minimizer of this energy

is a harmonic vector field with values in S1 driven by a pair of boundary vortices.

These have been analyzed in [51, 54, 53, 60, 61]. The transition is regularized on

the length scale of the exchange part of the energy, i.e. the core of the boundary

vortex has length of size

κ :=
d2

t� log �
t

.

In order that a boundary vortex is relevant in a certain regime, one should assume

that κ � 1. The cost of such a transition has the energy of leading order of

E2D(Boundary vortex) = O(td2|log κ|)
with exact prefactor π. Even if they generate the same amount of energy, a boundary

vortex is different from a “half” vortex (i.e. regularization of x
|x| in the “half ” disc

B2
+): The “half” vortex is tangent at the boundary, i.e. m′ ·ν = 0 on B2

+∩{x2 = 0}
(while the boundary vortex is not), and the boundary vortex is of values into S1

(while the “half” vortex is not). We will describe in more details boundary vortices

in Sec. 11.

Mesoscopic Landau-state in thin-films . At the mesoscopic level in a thin-film, we

expect that the magnetization satisfies the flux-closure constraint. It consists in

assuming that there are no charges in the sample which would imply that (7.7)

vanishes. This type of limit charge-free configurations were predicted in the physics

literature (see van den Berg [73]): They are 2D unit-length vector fields of vanishing

divergence, i.e.
{
m3 = 0, |m′| = 1 and ∇′ ·m′ = 0 in Ω′,

m′ · ν = 0 on ∂Ω′.
(7.11)

This structure reveals the connection with Sec. 2 and explains the formation of

jump line-singularities or vortices at the mesoscopic level of the magnetization
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in thin-films (known in physics as the principle of pole avoidance). We already

discussed in Sec. 2 that the method of characteristics yields the nonexistence of

continuous solutions of (7.11) in bounded simply connected domains. One of the

solutions of (7.11) (in the sense of distributions) is the “viscosity solution” given

via the distance function

m = ∇⊥ψ, with ψ(x′) = dist(x′, ∂Ω′)

that corresponds to the so-called Landau state for the magnetization m′. The line-

singularities for solutions m′ are an idealization of domain walls at the mesoscopic

level. At the microscopic level, they are replaced by smooth transition layers (as

Néel walls, Bloch walls etc.) where the magnetization varies very quickly on a

small length scale. Note that the normal component of m′ does not jump across

these discontinuity lines (because of (7.11)); therefore, the normal vector of the

mesoscopic wall is determined by the angle between the mesoscopic levels of the

magnetization in the adjacent domains (called wall angle).

Regimes . An important step in our analysis consists in identifying reduced models

valid in appropriate regimes where the behavior of the singular patterns described

above is easier to understand. The choice of the asymptotic regimes will corre-

spond to the energy ordering of the three patterns (Néel walls, Bloch lines and

boundary vortices); the choice of the scaling law of the minimal energy determines

the constraints of the model (imposed by the patterns of higher energy order) and

the singular patterns that are to be neglected (of lower energy order). With these

choices, the mathematical approach is based on asymptotic analysis by proving the

matching of upper and lower bounds for the energy (in the spirit of Γ-convergence).

Let us now discuss the possible choices of ordering. First of all, we are interested

in thin-film regimes (i.e. h = t
� � 1) where all three singular patterns are relevant,

meaning that they are contained by the sample:

δ � 1, η � 1, κ� 1,

leading to t � � and d � �. (In fact, if the Néel wall is relevant, i.e. δ � 1, then

also the Bloch line and the boundary vortex are contained, i.e. η � 1 and κ � 1.)

Second, one can check that

E2D(Boundary vortex) � E2D(Néel wall)

or E2D(Boundary vortex) � E2D(Bloch line),

meaning that a boundary vortex never induces the leading order of the total energy

(see [46]). Therefore, one has the following three choices of ordering:

(i)

max{E2D(Boundary vortex), E2D(Bloch line)} � E2D(Néel wall),

equivalent to |log h| � 1
δ|log δ| . A slightly more general regime was treated in

[23], where |log h| � 1
δ and the scaling law of the minimum energy in (7.8) is of
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the order t2�. In this case, the 3D stray-field energy (7.7) reduces to (7.9) (at

order t2�) and the reduced model is rigorously justified via the Γ-convergence

method (see [23]): The limiting configurations are invariant in the vertical

direction x3 (justifying the assumption (7.4)), but they are not in-plane since

Bloch lines may appear in the reduced model. The regime in [23] is appropriate

for permalloy films of diameter of tens of microns and thickness of the order

of tens of nanometers. So, it can be achieved experimentally, though not by

numerical simulation which is generally restricted to a thickness of the order

of sub-microns.

(ii)

E2D(Boundary vortex) � E2D(Néel wall) � E2D(Bloch line),

equivalent to

log |log h| � 1

δ|log δ| � |log h|. (7.12)

It means that the aspect ratio h = h(δ) is exponentially small with respect to

the Néel wall core δ; in particular, t � d � �. This regime is treated in [40]

where the choice of the scaling law of the minimal energy is of the order of

Néel walls, i.e. t2�
|log δ| . Therefore, due to (7.12), Bloch lines are avoided (since

they are too expensive), so that the limiting configurations as h → 0 are x3-

invariant and they are in-plane, i.e. m ∈ S1. The boundary vortices do not

contribute to the leading order of minimal energy (since they are lower order).

In Sec. 9, we discuss this reduced model: The goal is to prove that the optimal

pattern of the magnetization on circular cross-section Ω′ is a peculiar vortex

structure, driven by a 360◦ Néel wall coupled with a pair of boundary vortices

at ∂Ω′.
(iii)

E2D(Néel wall) � E2D(Boundary vortex) � E2D(Bloch line), (7.13)

equivalent to

1

δ|log δ| � log |log h|.

In Sec. 10, we discuss this reduced model. This is part of [46] where the scaling

law of the minimal energy is of the order of Bloch lines O(td2|log η|). How-
ever, in [46], we did not focus on the level of minimal energy, but rather on

metastable configurations where boundary vortices are strongly penalized, so

that the limiting configurations as h→ 0 are assumed to be charges-free on the

lateral surface, i.e. m′ · ν = 0 on ∂Ω′. Indeed, vanishing lateral surface charges

would be physical relevant for a global minimizer only if boundary vortices

were more expensive than both the Néel walls and Bloch line contribution. As

explained above, this assumption is never satisfied in the regime h � 1 and

δ � 1. Therefore, the stray-field energy (7.7) (in the absence of the middle
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term in R.H.S.) is not adapted for studying global minimizers in the regime

(7.13), but rather for metastable states with vanishing normal component at

the lateral surface.

8. Néel Wall

The Néel wall is a dominant transition layer in thin ferromagnetic films (in the

regime presented in Sec. 7.2). It is characterized by a one-dimensional in-plane

rotation connecting two (opposite) directions of the magnetization. It has two length

scales: A small core with fast varying rotation and two logarithmically decaying

tails. In order for the Néel wall to exist, the tails have to be contained. There are

three confining mechanisms for the Néel wall tails: The anisotropy of the material,

the steric interaction with the sample edges and the steric interaction with the

tails of neighboring Néel walls. In the following, we describe these models that

correspond to three nonconvex and nonlocal variational problems depending on a

small parameter:

Model 1. Confinement of Néel wall tails by anisotropy. The model is derived

from (7.8) as follows (we skip˜in (7.8)): We assume the quality factor Q to be of

the order of the aspect ratio h (for simplicity, set Q = t
� � 1), i.e. the material is

soft; we also assume that the material anisotropy density is given by ϕ(m) = m2
1

and we impose an applied field H ′
ext =

t
� (cos θ, 0). Renormalizing the energy (7.8)

at order t2�, we may assume in the regime h = t
� � 1 that the section Ω′ = R×R

Z
is a periodic strip and the admissible configurations are in-plane magnetizations

depending on one variable (normal to the wall) and satisfy the following boundary

conditions (that enforce a transition as in (6.12)):

m = m(x1), m3 = 0 and m(±∞) = m± := (cos θ,±sin θ, 0), (8.1)

where θ ∈ (0, π) is the wall angle (see Fig. 14). Therefore, by (7.8), we derive the

following functional whose behavior is to be studied asymptotically as δ ↓ 0:

m �→ δ‖m‖2
Ḣ1 +

1

2
‖m1‖2

Ḣ
1
2
+ ‖m1 − cos θ‖2L2 , (8.2)

where we recall that δ = d2

t� plays the role of the core of the transition.

Observe that the energy (8.2) is invariant under translation. Since configura-

tions m of finite energy are continuous, the boundary conditions in (8.1) enforce a

m2

m1

m

S1

m

Fig. 14. Néel wall of angle 2θ.
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transition (domain wall) for the magnetization. One can fix the center of the wall

at the origin by setting

m(0) = (1, 0).

Under these restrictions, a Néel wall corresponds to a minimizer of the energy (8.2).

The variational problem is nonconvex because of the saturation constraint |m| =
1 and nonlocal due to the stray-field interaction. It is a nondegenerate problem since

the anisotropy term prevents a Néel wall to spread over the complete domain R;

therefore, the Néel wall tails are forced to be limited and the energy cannot reach

arbitrary small levels. Observe that the energy (8.2) only yields a uniform bound

of m1 in Ḣ
1
2 (R) that barely fails to control the L∞(R)-norm ‖m1‖L∞(R) = 1. This

suggests a logarithmic decay of the energy. Indeed, we prove the following result

(see also [21, 40]):

Lemma 3. Let I ⊂ R be a bounded interval and δ � 1. For every function m1 ∈
Cc(I), the following estimate holds :

δ‖m1‖2Ḣ1 +
1

2
‖m1‖2

Ḣ
1
2
≥ π + o(1)

2|log δ| ‖m1‖2L∞ as δ ↓ 0.

The proof of this estimate is based on a duality argument combined with a

failing Gagliardo–Nirenberg interpolation embedding

BV ∩ L∞(RN ) � Ḣ
1
2 (RN ).

This failing embedding can be corrected by regularizing the homogeneous Ḣ
1
2 -

seminorm. This perturbation yields a weaker seminorm that is controlled with a

logarithmically slow rate having the optimal prefactor 2
π (see [21]):

For δ � w and for any χ : RN → R, we have that

∫

RN

min

{
1

δ
, |ξ|, w|ξ|2

}
|χ̂|2dξ � 2

π

(
log

w

δ

)
‖χ‖L∞

∫

RN

|∇χ|. (8.3)

The exact leading order term of the minimal energy in (8.2) was deduced by

DeSimone, Kohn, Müller and Otto [22, 24] by matching upper and lower bounds in

the case of a 180◦ Néel wall (i.e. θ = π
2 ):

min
(8.1)

θ=π
2

(
δ‖m‖2

Ḣ1 +
1

2
‖m1‖2

Ḣ
1
2
+ ‖m1‖2L2

)
=
π + o(1)

2|log δ| as δ ↓ 0. (8.4)

The analysis of the structure of a minimizer of (8.4) is rather subtle due to the

different scaling behavior of the energy terms in (8.2). Remark that omitting the
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Ḣ
1
2 -seminorm, the formulation of (8.4) in terms of v := m2 corresponds to a varia-

tional problem associated to the Cahn–Hilliard model (see Cahn and Hilliard [15]):

min
v:R→[−1,1]

v(0)=0,v(±∞)=±1

∫

R

(
δ

1− v2

∣∣∣∣
dv

dx1

∣∣∣∣
2

+ 1− v2

)
dt. (8.5)

The minimizer is a transition layer with a single length scale
√
δ, i.e. v(x1) =

tanh( x1√
δ
). The first component of the magnetization m1 would correspond in (8.5)

to sech( x1√
δ
) and the minimal energy is equal to 4

√
δ.

Coming back to our variational problem (8.4), the presence of the nonlocal term

as a homogeneous Ḣ
1
2 (R)-seminorm in competition with the energy (8.5) creates

a second length scale of the transition layer. The Néel wall is divided into two

regions: A core (|x1| � wcore) and two tails (wcore � |x1| � wtail). This particular

structure enables the magnetization to decrease the energy by a logarithmic factor

(8.4). Melcher [56, 57] rigorously established the optimal profile of the Néel wall, i.e.

the unique minimizer m of (8.4) with m1(0) = 1 exhibits two uniformly logarithmic

tails beyond a core region of the order δ close to the origin (see Fig. 15):

m1(t) ∼
|log |x1||
|log δ| for δ < |x1| <

1

e
, i.e. wcore = O(δ), wtail = O(1).

We are interested in the asymptotics of the energy (8.2) as δ ↓ 0. Due to the

logarithmic decay (8.4), we consider a new length scale ε > 0 such that

δ =
ε

|log ε|

and we renormalize the energy (8.2) by a factor |log ε| in order that the minimal

energy become of the order O(1):

Eε(m) = ε‖m‖2
Ḣ1 + |log ε|

(
1

2
‖m1‖2

Ḣ
1
2
+ ‖m1 − cos θ‖2L2

)
. (8.6)

Our goal is to study the Γ-convergence of energies {Eε} as ε ↓ 0 and to characterize

the limiting configurations of the magnetization. We will prove that the limiting

0

1

t

m2

1

-1

t

Fig. 15. First and second component of a 180◦ Néel wall.
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configurations are piecewise constant functions of bounded total variation that can

take two values {m± = (cos θ,±sin θ, 0)}, i.e. they belong to

A =

{
m0 : R → {m±} :

∫

R

∣∣∣∣
dm0

dx1

∣∣∣∣ <∞
}
.

The Γ-limit energy is proportional to the number of jumps of these configurations

and the energetic cost of each jump is π(1−| cos θ|)2
2 ; therefore, we define the following

energy for any configuration m0 ∈ A:

E0(m0) =
π

2
(1− | cos θ|)2 · (number of jumps of m0). (8.7)

Theorem 16. (Ignat [36]) Let θ ∈ (0, π). Then

Eε
Γ→ E0 under the L1

loc(R, S
1)-topology as ε ↓ 0, i.e.

(i) (Compactness and lower bound) If {mε : R → S1}ε satisfies

lim sup
ε↓0

Eε(mε) < +∞,

then for subsequences ε, there exists m0 ∈ A such that mε → m0 in L1
loc(R, S

1)

as ε ↓ 0 and

lim inf
ε↓0

Eε(mε) ≥ E0(m0);

(ii) (Upper bound) For every m0 ∈ A, there exists a family of smooth functions

{mε : R → S1}ε↓0 such that mε − m0 has compact support in R for all ε,

mε −m0
ε↓0−→ 0 in L1(R,R2) and

lim
ε↓0

Eε(mε) = E0(m0).

Remark 14. Observe that the energy of a Néel wall of angle 2θ is quartic in θ for

small angles θ:

min
(8.1)

Eε
ε↓0
=

π

2
(1− cos θ)2 ≈ π

8
θ4 as θ ↓ 0.

We mention that the compactness result fails in general under the strict convergence

in BVloc even if the limiting configurations are of bounded variation in R. In fact,

it is constructed in [45] a sequence of magnetizations {mε} satisfying (8.1) and of

uniformly bounded energies Eε(mε) ≤ C such that the sequence of total variations

{
∫
|dm1,ε

dx1
|} blows-up.

Remark 15. One could compare Model 1 with the Aviles–Giga model presented

in Sec. 6.2. The nonlocal term |log ε|‖m1‖2
Ḣ

1
2

for the energy Eε(m) (penalizing

nonvanishing divergence configurations m which are here 1D) will amount to a

delicate multi-scale structure of the transition layer in Model 1 comparing to the

one-scale transition layers in the Aviles–Giga model. Since the behavior of Eε is

quartic in the wall angle, the entropy method (used for the Aviles–Giga) does not
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m
m2

m1

m

S1

Fig. 16. Néel wall of angle 2θ confined in [−1, 1].

apply here. However, we succeed to show that limiting configurations in Model 1 are

BV and to deduce the complete Γ-convergence result for our nonlocal functionals.

Model 2. Confinement of Néel wall tails by the finite size of the sample.

The constraints are given by:

m : R → S1 and m(±x1) = m± for ±x1 ≥ 1, (8.8)

with θ ∈ (0, π) (see Fig. 16), whereas the energy functional is:

m �→ δ‖m‖2
Ḣ1 +

1

2
‖m1‖2

Ḣ
1
2

(8.9)

with δ > 0 a small parameter. It models a one-dimensional magnetization in a

thin ferromagnetic film of finite width where the effect of crystalline anisotropy

and external field is neglected (i.e. Q = 0 and Hext = 0 in (7.8) and the energy

rescales as for Model 1). The corresponding variational problem was analyzed in

[23, 21, 45]. The main difference with respect to Model 1 consists in the confinement

of the Néel wall tails by the interaction with the sample edges placed in −1 and 1 in

our framework. However, the properties of the transition layer in Model 1 naturally

transfer to the structure of the minimizer of (8.9) that satisfies m(0) = (1, 0). It is

a two length scale object with a small core of the order δ and two logarithmically

decaying tails contained in [−1, 1] and it attains the same level of minimal energy
π+o(1)
2|log δ| as δ ↓ 0. The stability of 180◦ Néel walls under arbitrary 2D modulation

was proved by DeSimone, Knüpfer and Otto [21]. Moreover, we proved in [45] the

optimality of the one-dimensional minimizer, i.e. asymptotically, the Néel wall is

the unique minimizer of the associated two-dimensional variational problem in the

strip Ω′. As before, by rescaling (8.9), the corresponding energy writes:

Fε(m) = ε‖m‖2
Ḣ1 +

|log ε|
2

‖m1‖2
Ḣ

1
2

(8.10)

for a small parameter ε > 0. We proved in [36] the similar asymptotic of Fε by the

Γ-convergence method as ε ↓ 0 as in Model 1. The difference will consist in having

all the walls confined in the interval [−1, 1].

Model 3. Confinement of Néel wall tails by the neighboring Néel walls.

The magnetizations are periodic functions such that:

m = eiϕ,

ϕ : R → R with ϕ(x1 + 2) = ϕ(x1) and ϕ(x1 + 1) = ϕ(x1) + π
(8.11)
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1

m

t

m2

m1

m

S1

Fig. 17. Periodic array of winding walls.

(see Fig. 17). The energy is given by:

m �→ δ‖m‖2
Ḣ1

per
+

1

2
‖m1‖2

Ḣ
1
2
per

, (8.12)

for a small parameter δ > 0.

This model was investigated by DeSimone, Kohn, Müller and Otto [24] in order

to quantify the repulsive interaction of Néel walls. It consists in considering a peri-

odic array of winding walls at a renormalized distance w = 2 in the absence of

anisotropy and external field. A transition of 180◦ is enforced in the middle of each

period by the constraint (8.11). Therefore, the tails of a Néel wall are limited by

the tails of the neighboring walls at a distance O(1) and we expect that this model

generates only 180◦ Néel walls. As before, the following rescaled energy associated

to (8.12):

Gε(m) = ε‖m‖2
Ḣ1

per
+

|log ε|
2

‖m1‖2
Ḣ

1
2
per

has the same limiting behavior when ε ↓ 0 as in Model 1.

9. 360◦ Néel Walls and Vortex Energy

360◦ Néel walls. The aim of the section concerns the special case of 360◦ Néel walls.

For these walls, the magnetization performs a complete rotation across the meso-

scopic wall so that it carries a nonzero topological degree. They are characterized

by the angle α ∈ [0, 2π) between the mesoscopic direction of the magnetization

and the normal direction to the wall (see Fig. 18). We call these transition layers

“360◦ Néel walls of initial angle α”. Note that for any mesoscopic Néel wall (with a

wall angle smaller than 360◦), the condition to be charge free uniquely determines

the initial angle α. For 360◦ Néel walls, the situation is different: In this case, the

condition of being charge-free can be achieved for any initial angle α. Our anal-

ysis shows that the initial angle α contributes to the leading order energy of the

360◦ Néel wall. Another peculiarity of 360◦ Néel walls (of initial angle α > 0) with

Fig. 18. 360◦ Néel wall of initial angle α.
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respect to general Néel walls comes from their internal structure. It consists of two

parts with zero magnetic net charge: A first Néel wall of angle 2π−2α and a second

Néel wall of angle 2α (see Fig. 18). This means that these two parts only interact

by weak dipole–dipole interaction. For this reason the thickness of the 360◦ Néel

wall is much larger than the thickness of the 180◦ Néel wall. A detailed numerical

analysis of the 360◦ Néel wall, also including the effect of anisotropy and external

field, can be found in [63].

The 360◦ Néel walls we consider in the following are confined by the boundary

of the sample (as in Model 2 in Sec. 8). We will assume that the magnetization

m = (m1,m2) : R → S1

only depends on a single variable x1 ∈ R. In this case, the specific one-dimensional

energy associated to m in our model reduces to the following expression (see

(8.10)):

Fε(m) = ε

∫

R

1

1−m2
1

∣∣∣∣
d

dx1
m1

∣∣∣∣
2

dx1 +
|log ε|
2

∫

R

∣∣∣∣∣

∣∣∣∣
d

dx1

∣∣∣∣
1
2

m1

∣∣∣∣∣

2

dx1. (9.1)

For our analysis of 360◦ Néel walls, we assume that the initial direction of the

magnetization is given by the angle α ∈ [0, 2π) and a complete rotation is imposed

by the following condition:

m(x1) = eiα for |x1| ≥ 1 and deg(m) = 1.

In other words, using the lifting m = eiφ, the above condition is equivalent to

φ(x1) =

{
α for x1 ≤ −1,

2π + α for x1 ≥ 1.
(9.2)

We finally mention that 360◦ Néel walls are a commonly observed structure in

thin magnetic films, see [33, p. 457]. They typically arise from (global) topological

constraints which can be related to the geometry of the magnetic sample. As we will

show in the second part of this section, the 360◦ Néel wall is a global minimizing

structure for magnetic samples with circular cross-section in a certain regime. Note,

however, that commonly 360◦ Néel walls occur as metastable states [33].

Our first result concerns the exact leading order energy of a 360◦ Néel wall with

initial angle α.

Theorem 17. (Ignat–Knüpfer [40]) Let mε : R → S1 be a minimizer of (9.1)

satisfying (9.2). Then mε is a smooth map inside (−1, 1) and its energetic cost is

given by

Fε(mε) = π(1 + cos2 α) + o(1) as ε→ 0. (9.3)

The result shows that even within the class of 360◦ Néel walls there is a depen-

dence of the energy with respect to the initial angle α. This result agrees well with

a numerical simulation in [63, Fig. 2] where the energetic difference between the
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two extreme cases α = 0 and α = π
2 by a factor 2 is predicted. Note that we have

smoothness in the interior for any critical point of the energy functional (9.1). The

main idea for the proof of Theorem 17 is the following: Consider any admissible

configuration mε = (m1,ε,m2,ε) satisfying (9.2) for some given initial angle α. We

first prove an optimal lower bound separately for the regions where m1,ε is larger

than cosα and less than cosα, respectively. These regions correspond to a Néel

wall transition of angle 2π − 2α and 2α, respectively. Then we use the fact that

the “interaction” of the nonlocal magnetostatic component of the energy is positive

between these two regions.

Vortex induced by 360◦ Néel wall . Our second goal is to analyze the behavior of a

vortex configuration in ultra thin-films of circular cross-section. As we shall explain

in the following, a vortex in our model is a very peculiar structure driven by a 360◦

Néel wall along a radius of a disc, so that the topological degree around the center

of the disc is zero. Therefore, it is a configuration completely different from the

Bloch line (a structure characteristic of moderately thick ferromagnetic films) or

of the so-called Ginzburg–Landau vortices (characteristic to superconductors) that

carry a non-zero topological degree.

Let us fix the setting: We use the thin-film reduction (7.8) where we will skip .̃

We shall for simplicity ignore the anisotropy and the applied external field (i.e.

Q = 0 and Hext = 0). It is trivial, however, to include a small anisotropy and

an appropriately-scaled applied field energy, since Γ-convergence is insensitive to

compact perturbations of the functional. We are interested here in ferromagnetic

samples of a thin circular film, i.e. Ω′ = B� is the disc of radius �. We use the two

dimensionless parameters δ = d2

t� as the size of the core of a Néel wall and h = t
�

as the aspect ratio of the micromagnetic sample. We focus on the regime of ultra

thin-films where h = h(δ) satisfies (7.12) and the energy scaling is chosen at the

level of Néel walls. Rescaling the energy (7.8) by t2�, we get the following functional

energy over the set of configurations m : B2 → S1:

Êδ(m) = δ

∫

B2

|∇m|2dx+
1

2
‖(∇ ·m)ac‖2

Ḣ− 1
2 (R2)

+
1

2π
|log h|

∫

∂B2

(m · ν)2dH1. (9.4)

In this section, we denote the in-plane differential operator by ∇ = (∂x1 , ∂x2) and

since m ∈ S1, we have m′ ≡ m (with m3 = 0). We conjecture that the vortex is

asymptotically the minimizer of the above variational problem.

Open Problem 4. Let δ � 1 and let h = h(δ) satisfying (7.12). If mδ is a

minimizer of (9.4) for δ > 0, then

mδ → m0(x) :=
x⊥

|x| in L2(B2) and lim
δ↓0

|log δ|Êδ(mδ) = E0

(
x⊥

|x|

)
,
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where E0(
x⊥

|x| ) = 2π is the energetic cost (9.3) of a 360◦ Néel wall with vanishing

initial angle α = 0.

For the moment, let us simplify the problem by omitting the last term that

penalizes the surface charges in (9.4). (We will discuss later the general context

of Open Problem 4.) The analysis is based on the following renormalization of

two-dimensional micromagnetic energy (already mentioned at Remark 7 in Sec. 2):

Eε(m) = ε

∫

B2

|∇m|2dx+
|log ε|
2

∫

R2

||∇|− 1
2 (∇ ·m)ac|2dx, (9.5)

where ε is a rescaled small parameter corresponding to the Néel core given by

δ =
ε

|log ε| > 0.

Our viewpoint is based on the method of Γ-convergence: We enforce the formation

of a vortex in the limit ε → 0 by considering families {mε}ε>0 of magnetizations

that satisfy

mε →
x⊥

|x| in L2(B2) as ε→ 0 (9.6)

and we define the energy of the vortex by the following relaxed problem:

E0

(
x⊥

|x|

)
= inf

{
lim inf
ε→0

Eε(mε) : {mε} satisfies (9.6)
}
. (9.7)

Indeed, the infimum in (9.7) is achieved (and nontrivial). We call a minimizing

family, every family {mε} that satisfies (9.6) and achieves the minimum (9.7),

i.e. limε→0Eε(mε) = E0(
x⊥

|x| ). The L
2-compactness of uniformly bounded energy

configurations has been proved in [45].

Note that the minimal level of energy Eε is trivial and all minima are con-

stant since (9.5) does not penalize surface charges m · ν �= 0 on ∂B2 (which is

the case of (9.4)). In fact, every finite energy configuration Eε(m) < ∞ does

have surface charges on ∂B2 and zero winding number on each closed curve in

B2. For this reason, the two constraints of having a degree 1 and the absence of

surface charges can only be imposed in the limit ε → 0 (as in (9.6)). Our analy-

sis shows that asymptotically the vortex state represents the minimum energy Eε
under the constraint (9.6). We conjecture that the vortex is still a minimizer if the

constraint (9.6) is relaxed and convergence is only assumed on the boundary ∂B2

(i.e.mε → x⊥ in L2(∂B2) as ε→ 0); this is of course a weaker conjecture than Open

Problem 4.

Our main result in this direction characterizes asymptotically the energy of the

vortex:

Theorem 18. (Ignat–Knüpfer [40]) Let {mε} be a minimizing family in (9.7).

Then we have

Eε(mε) = 2π + o(1) as ε→ 0,

so that E0(
x⊥

|x| ) = 2π.
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Fig. 19. Microscopic vortex structure at level ε.

Note that this result includes the precise leading constant of the minimal energy.

Our construction for the upper bound of the energy is based on the inclusion of a

360◦ Néel wall of initial angle 0 along a radius of the disc (see Fig. 19). On the other

hand, we prove the lower bound of the energy of a vortex in a slightly more general

context. More precisely, as in [45], we consider localized stray-fields H : B3 → R3

determined by the static Maxwell’s equation in the weak sense: For all ζ ∈ C∞
c (B3),

∫

B3

H ·
(
∇, ∂

∂z

)
ζdxdz =

∫

B2

∇ ·mζdx, (9.8)

where B3 ⊂ R3 is the unit ball in R3 and we define the localized micromagnetic

energy

Eloc
ε (m,H) = ε

∫

B2

|∇m|2dx + |log ε|
∫

B3

|H |2dxdz.

Obviously, by (7.9), Eloc
ε (m,∇uac) ≤ Eε(m) (since Eloc

ε counts the stray-field

energy only inside the ball B3). We prove the following estimate for the localized

energy:

Theorem 19. (Ignat–Knüpfer [40]) Let {mε} be a family satisfying (9.6) and let

Hε : B
3 → R3 be localized stray-fields associated to mε by (9.8). Then we have

Eloc
ε (mε, Hε) ≥ 2π + o(1) as ε→ 0.

Crucial for the estimate of the lower bound is the control of the localized stray-

field energy. The main idea relies on a dynamical system argument combined with

localized interpolation inequalities similar to (8.3). Since the stray-field energy is

created by ∇ ·mε, by Stokes theorem this implies a control for the net flow of mε

across the boundary of any subdomain of B2. The first step of the proof consists in

finding such a domain with maximal net flow; as in [21, 45], we consider the flow

generated by the vector field m⊥
ε . Using Stokes theorem, this yields the optimal

lower bound for the energy in some particular cases. To get to the general result,

a careful analysis is carried out on a partition in small annuli of the domain B2 by

balancing two effects: Rotation versus the length of orbits of the flow.

Discussion on Open Problem 4. While we cannot rigorously prove Open Prob-

lem 4, we would like to compare the vortex with the typical counter-candidate
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Fig. 20. S-state.

observed in thin ferromagnetic discs, the so-called S-state (see [33]). We show that

the vortex has asymptotically lower energy than the S-state (see Fig. 20), thus

indicating that the vortex might indeed be global minimizer of the energy. Recall

that the vortex corresponds to the viscosity solution of the domain B2, i.e.

m0(x) = ∇⊥dist(x, ∂B2).

In our regime, the asymptotic cost of a vortex follows by Theorem 18:

E0(m0) = 2π.

The limit configuration of the S-state is represented at the mesoscopic level by

S(x) =

{
∇⊥dist(x, ∂B2

+) if x ∈ B2
+,

−∇⊥dist(x, ∂B2
−) if x ∈ B2

−,

where B2
± = {x ∈ B2 : ±x2 ≥ 0} are the upper (respectively, lower) half-discs (see

Fig. 20). Let γ be the jump set of the S-state, i.e.

γ = γ+ ∪ γ− and γ±(x1) =

(
x1,±

1− x21
2

)
with x1 ∈ (−1, 1).

In fact, if we denote by S± the traces of S on γ, one has S−(x) = (1, 0) and S+(x) =

±x⊥

|x| for x ∈ γ±. So, the angle of the jump θ (given by S+ = eiθS−) increases

on γ± from 90◦ to 270◦. Furthermore, we denote the corresponding asymptotic

energy density of a Néel wall connecting the directions S+ and S− by e(S+, S−) =
π
2 (1− cos θ2 )

2. Then

E0(S) =

∫

γ

e(S+, S−)dH1.

Therefore, one computes:
∫

γ

e(S+, S−)dH1 = 2

∫

γ+

e(S+, S−)dH1 = 2
√
2π > E0(m0).

The above computation shows that the S-state is asymptotically less favorable than

the vortex state in the regime (7.12). It is an open question to rigorously prove

that the vortex state indeed is the global minimizer over all planar configurations

of (9.4).
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10. Landau State

In this section, we investigate a common pattern of the magnetization in thin fer-

romagnetic films (the Landau state), that corresponds to the global minimizer of

the micromagnetic energy in the regime (7.13). For that, we focus on a toy problem

rather than on the full physical model: We use the thin-film reduction (7.8) and

for simplicity, we ignore the anisotropy and the applied external field (i.e. Q = 0

and Hext = 0). So, let Ω ⊂ R2 be a bounded simply-connected domain with a C1,1

boundary corresponding to the horizontal section of a ferromagnetic cylinder of

small thickness. We consider magnetizations that are invariant in the out-of-plane

variable, i.e.

m = (m1,m2,m3) : Ω → S2

and they are tangent to the boundary ∂Ω, i.e.

m′ · ν = 0 on ∂Ω, (10.1)

where m′ = (m1,m2) is the in-plane component of the magnetization and ν is the

normal outer unit vector to ∂Ω. The assumption (10.1) is not compatible with our

regime (7.13) when analyzing the minimal energy since metastable states of the

magnetization under the restriction (10.1) are not minimizers of (7.8). Scaling the

energy at order of td2, the reduced energy (7.8) can be written as the following

functional:

Eη,δ(m) =

∫

Ω

|∇m|2dx+
1

η2

∫

Ω

m2
3dx+

1

2δ

∫

R2

||∇|− 1
2 (∇ ·m′)|2dx,

where η = d
� and δ = d2

t� are two small positive parameters (standing for the size of

the Bloch line core and the Néel wall core, respectively). Here, x = (x1, x2) are the

in-plane variables with the differential operator ∇ = (∂x1 , ∂x2). In this section, we

will always think of

m′ ≡ m′1Ω

as being extended by 0 outside Ω. Observe that the boundary condition (10.1) is

necessary so that the homogeneous Ḣ− 1
2 -seminorm of ∇ ·m′ is finite since

∇ ·m′ = (∇ ·m′)1Ω + (m′ · ν)1∂Ω in R2.

We are interested in the asymptotic behavior of minimizers of the energy Eη,δ
in the regime

η � 1 and δ � 1.

The characteristic singular patterns expected in this context are the Néel walls

together with topological defects (due to (10.1)) standing for interior vortices (the

Bloch lines) or “half” Bloch lines at the boundary. Recall that the energy Eη,δ per

unit-length of a Néel wall of angle 2θ (with θ ∈ (0, π2 ]) is given by:

π(1− cos θ)2 + o(1)

2δ|log δ| as δ → 0, (10.2)
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(see (8.7)). The formation of interior or boundary vortices is explained by the com-

petition between the exchange energy and the penalization of the m3-component

for configurations tangent at the boundary. Indeed, there is no S1-configuration

that is of finite exchange energy and satisfies (10.1). There are only two possible

situations:

• If m′ does not vanish on ∂Ω, then (10.1) implies that m′ carries a nonzero topo-

logical degree, deg(m′, ∂Ω) = ±1. In this case, we expect the nucleation of an

interior vortex of core-scale η (i.e. Bloch line in the micromagnetic jargon). The

scaling of the vortex energy is related to the minimal Ginzburg–Landau (GL)

energy (see Bethuel, Brezis and Helein [7]):

min
m′∈H1(Ω,R2)

m′=ν⊥ on ∂Ω

∫

Ω

gη(m
′)dx = (2π + o(1))|log η| as η → 0, (10.3)

where the GL density energy is given in the following:

gη(m
′) = |∇m′|2 + 1

η2
(1− |m′|2)2. (10.4)

• The second situation consists in having zeros ofm′ on the boundary. Therefore, we

expect that GL boundary vortices do appear. Roughly speaking, they correspond

to “half” of an interior vortex where the vector fieldm′ is tangent at the boundary
and vanishes at the core; therefore they are different from the micromagnetic

boundary vortices that take values into S1, so they never vanish. Remark the

importance of the regularity of ∂Ω in estimate (10.3). In fact, if ∂Ω has a corner

and the boundary condition m′ = ν⊥ on ∂Ω in (10.3) is relaxed to (10.1), then

estimate (10.3) does not hold anymore, it depends on the angle of the corner.

Therefore, at the microscopic level, topological point defects do appear in the

Landau state pattern and are induced by (10.1).

The aim of the section is to show compactness of magnetizations energetically

Eη,δ close to the Landau state in order to rigorously justify the limit behavior

(7.11): The delicate issue consists in having the constraint |m| = 1 conserved in

the limit. For that, we have to evaluate the energetic cost of the Landau state. We

expect that the leading order energy of a Landau state is given by the topological

point defects and Néel walls. The Landau state configuration consists in several

Néel walls and either one interior Bloch line or two “half” Bloch lines placed at

the boundary of the sample Ω. Therefore, by (10.2) and (10.3), we expect that the

energy of the Landau state has the following order:

2π|log η|+ A

δ|log δ| , (10.5)

for some positive A > 0 depending on the length and angle of Néel walls.

Main results. First of all, we want to rigorously prove the upper bound (10.5) for

the Landau state. Our result gives the exact leading order energy of the Landau
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state in the case of a stadium domain Ω (see Fig. 7). Note that the Landau state of

a stadium consists in a single Néel wall of 180◦ around the jump set of the viscosity

solution (in our example, the length of the wall is equal to 2L, so that by (10.2),

A = πL in (10.5)).

Theorem 20. (Ignat–Otto [46]) Let Ω be a stadium domain (as in Fig. 7). In the

regime η � δ � 1, there exists a C1 vector field mη,δ : Ω → S2 that satisfies (10.1)

and

Eη,δ(mη,δ) ≤ 2π|log η|+ πL+ o(1)

δ|log δ| as δ ↓ 0. (10.6)

Observe that the vortex energy in the above estimate is relevant only if its

energy costs at least as much as a Néel wall, i.e. 1
δ|log δ| � |log η| (otherwise, the

vortex energy would be absorbed by the term o( 1
δ|log δ| )). This regime leads to a

size η of the vortex core exponentially smaller than the size δ of the Néel wall core

(see Remark 16).

Now we state our main result on the compactness of the S2-valued magneti-

zations that have energies near the Landau state. The issue consists in rigorously

justifying that the constraint |m| = 1 is conserved by the limit configurations as

η, δ → 0. The regime where we prove our result corresponds to the case where a

topological defect is energetically more expensive than the Néel wall:

Theorem 21. (Ignat–Otto [46]) Let α ∈ (0, 12 ) be an arbitrary constant. We con-

sider the following regime between the small parameters η, δ � 1:

η
1
2 � δ, (10.7)

log |log η| � 1

δ|log δ| . (10.8)

For each η and δ, we consider C1 vector fields mη,δ : Ω → S2 that satisfy (10.1)

and

Eη,δ(mη,δ)− 2π|log η|





≤ 2πα|log η|, (10.9)

� 1

δ|log δ| . (10.10)

Then the family {mη,δ}η,δ↓0 is relatively compact in L2(Ω, S2) and any accumula-

tion point m : Ω → S2 satisfies

m3 = 0, |m′| = 1 a.e. in Ω and

∇ ·m′ = 0 distributionally in R2.
(10.11)

The proof of compactness is based on an argument of approximating S2-valued

vector fields by S1-valued vector fields away from a small defect region. This small

region consists in either one interior vortex or two boundary vortices. The detection

of this region is done in Theorem 22 below and uses some topological methods due

to Jerrard [49] and Sandier [70] for the concentration of the Ginzburg–Landau
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energy around vortices (see also Lin [55], Sandier and Serfaty [71]). Away from

this small region, the energy level only allows for line-singularities. Therefore, the

compactness result for S1-valued vector fields in [45] applies.

Let us discuss the assumptions (10.7)–(10.10). Inequality (10.10) assures that

cutting out the topological defect (one vortex or two boundary vortices), the remain-

ing energy rescaled at the energetic level of Néel walls is uniformly bounded.

Inequality (10.9) together with the choice of α < 1
2 mean that the energy can-

not support three “half” vortices and is precisely explained in Theorem 22 below.

Inequality (10.8) is imposed due to our method to detect a boundary vortex: It

leads to a loss of energy of the order O(log |log η|) with respect to the expected

half energy π|log η| of an interior vortex (see Theorem 22 and Proposition 15). This

amount of energy could leave room for configurations of Néel walls that may destroy

the compactness of |m′| = 1. Therefore, to avoid this scenario, (10.8) is imposed.

The regime (10.7) is rather technical: It is needed in the approximation argument

of S2-valued vector fields by S1-valued vector fields away from the vortex balls. In

fact, starting from the values ofm′ on a square grid of size ηβ , the S1-approximation

argument requires zero degree ofm′ on each cell, leading to the condition β < 1−α;
furthermore, the condition ηβ � δ is needed in order that the approximating S1-

valued vector fields induce a stray-field energy of the same order of m′. Therefore,
(10.7) can be improved to a larger regime

ηβ � δ for any β < 1− α

(Theorem 21 is stated for the value β = 1
2 which is the universal choice for every

α < 1
2 .) However, this slightly improved condition is weaker than the complete

regime implied by (10.9) as explained in the following remark.

Remark 16. Any limit configuration m′ satisfies (10.11). If Ω is a bounded

simply-connected domain which is not a disc, then m′ has at least one ridge

(line-singularity) that corresponds to a Néel wall. Therefore, the minimal energy

verifies

min
(10.1)

Eη,δ − 2π|log η| � 1

δ|log δ| .

Combining with (10.9), it follows that

1

δ|log δ| � |log η|,

in particular, η � e−
1

δ|log δ| , i.e. the core of the vortex is exponentially smaller than

the core of the Néel wall. However, in the proof of Theorem 21, this constraint much

stronger than (10.7) is not needed.

We prove the following result of the concentration of Ginzburg–Landau energy

around one interior vortex or two boundary vortices for vector fields tangent at the
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boundary:

Theorem 22. (Ignat–Otto [46]) Let α ∈ (0, 12 ) and Ω ⊂ R2 be a bounded simply-

connected domain with a C1,1 boundary. Then there exists η0 = η0(α, ∂Ω) > 0 such

that for every 0 < η < η0, if m
′ : Ω → B2 is a C1 vector field that satisfies (10.1)

and
∫

Ω

gη(m
′)dx ≤ 2π(1 + α)|log η|, (10.12)

then there exist either a ball B(x∗1, r
∗) ⊂ Ω (called vortex ball) with r∗ = 1

|log η|3 and

∫

B(x∗
1,r

∗)
gη(m

′)dx ≥ 2π

∣∣∣∣log
r∗

η

∣∣∣∣− C, (10.13)

or two balls B(x∗2 , r
∗) and B(x∗3, r

∗) (called boundary vortex balls) with x∗2, x
∗
3 ∈ ∂Ω

and
∫

(B(x∗
2,r

∗)∪B(x∗
3,r

∗))∩Ω

gη(m
′)dx ≥ 2π

∣∣∣∣log
r∗

η

∣∣∣∣− C, (10.14)

where C = C(α, ∂Ω) > 0 is a constant depending only on α and on the geometry of

∂Ω.

The condition α < 1
2 is essential in our proof. In fact, if no topological defect

exists in the interior (in which case, condition (10.1) induces boundary vortices), we

perform a mirror-reflection extension of m′ outside the domain. Roughly speaking,

the GL energy in the extended domain doubles, i.e. it is of the order 2π(2+2α)|log η|
and the topological degree at the new boundary is equal to two; in order to avoid

the formation of three interior vortices in the extended region, we should impose

2 + 2α < 3, i.e. α < 1
2 .

Observe that the Ginzburg–Landau energy concentration for a boundary vortex

in (10.14) has a cost of the order π|log η|−C log |log η| provided that the boundary

has regularity C1,1. We conjecture that the same energetic cost for a boundary

vortex holds true if the boundary has regularity C1,β , β ∈ (0, 1). However, if the

boundary regularity is only C1, then the energetic cost of a boundary vortex may

decrease to (π− C
log |log η| )|log η| where C > 0 is a universal constant. This indicates

that the loss of energy of the order log |log η| in (10.14) could occur for boundary

vortices in C1,β-domains and the order of this energy loss increases to |log η|
log |log η| for

C1 boundaries as β → 0. This claim is supported by the following example for a

C1 boundary domain:

Proposition 15. (Ignat–Otto [46]) We consider in polar coordinates the following

C1 domain Ω = {(r, θ) : r ∈ (0, 1
20 ), |θ| < γ(r) = π

2 − 1
log log 1

r

}. For every 0 < η < 1,

there exists a C1-function m′
η : Ω ∩ B 1

200
→ R2 that satisfies (10.1) on ∂Ω ∩ B 1

200
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and ∫

Ω∩B 1
200

gη(m
′
η)dx ≤

(
π − C

log |log η|

)
|log η|,

where C > 0 is some universal positive constant (independent of η).

11. Boundary Vortices

In this section, we analyze a special thin-film regime where boundary vortices

appear. We will assume small aspect ration, i.e. h = t
� � 1 and that the Néel

walls have a large core δ = d2

t� , i.e.

δ � 1 or δ = O(1),

which is the opposite context with respect to the ordering presented in Sec. 7.2.

(a) The regime of very small films, characterized by

δ � |log h|
was considered by Kohn–Slastikov [51] with the scaling law of minimal energy

chosen at the order of t2�|logh|. (In this regime, Néel walls and boundary

vortices are not contained by the sample). Then the exchange term in the

energy dominates completely (since rescaling by t2�|log h|, its coefficient in (7.8)

is equal to δ
|log h| � 1) and the magnetization becomes an in-plane constant

vector field. The corresponding reduced energy (in the sense of Γ-convergence)

was derived in [51] and is related to earlier work of Carbou [16]. Their result

shows that the nonlocal stray-field energy (7.7) reduces to a local contribution

of the boundary
∫
∂Ω′(m

′ · ν)2dH1.

(b) Slightly larger films, where

δ = α|log h|
with 0 < α < ∞ and the minimal energy scales as t2�|logh| were also studied

by Kohn–Slastikov [51]. In this context, Néel walls are not contained by the

sample, while boundary vortices have a core size of the order O(1). Since in

this regime Bloch lines have higher cost than boundary vortices, the limiting

magnetizations are still required to be in-plane

m′ : Ω′ ⊂ R2 → S1,

but no longer need to be constant. Instead, the exchange energy and the

boundary contribution compete, and the rescaled energy E3D (at the order

of t2�|logh|) Γ-converges to

E2D(m′) = α

∫

Ω′
|∇m′|2dx+

1

2π

∫

∂Ω′
(m′ · ν)2dH1.

A second limit, describing the behavior of 1
αE

2D when α → 0, was examined

by Kurzke [54, 53]. As there is no m′ ∈ H1(Ω′, S1) that satisfies m′ · ν = 0
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on ∂Ω′ for simply-connected bounded domains Ω′, the limit is characterized

by boundary vortices, whose interaction is governed by a (local) renormalized

energy.

(c) The case where δ = O(1) was studied by Moser [60, 61] when the minimal

energy scaling is at order of log |log h|. Here, all three patterns (Néel walls,

boundary vortices, Bloch lines) are contained by the sample and the ordering

is given by

E2D(Néel wall) � E2D(Boundary vortex) � E2D(Bloch line),

as in regime (iii) in Sec. 7.2. Due to the scaling law of the energy ofO(log |log h|),
both the stray-field (represented by the lateral surface charges) and exchange

terms survive in the limit. The balance between these terms produces boundary

vortices. The corresponding vortex interaction is nonlocal here, in contrast to

the local renormalized energy in [53].

Model . The aim of this section is to show the existence of a boundary vortex regime

with purely exchange-driven and local vortex interaction. To do so, we show that

the double limit in [51] and [53] can be replaced by a direct approach. The context

is the following: Our regime is given by

1 � δ � |log h|.

Here, the Néel wall is not contained by the sample, but boundary vortices and

Bloch lines may nucleate knowing that a boundary vortex energetically costs less

than a Bloch line. The scaling law of the minimal energy is chosen at the level of

a boundary vortex, i.e. O(d2t|log κ|) where we recall that κ = d2

t� log( �
t )
. Therefore,

our regime is equivalent to the assumption h� 1 and 1
|log h| � κ = κ(h) � 1. The

full energy E3D (in the absence of anisotropy and external field) will be rescaled as

Eh(mh) =
1

h|log κ|

∫

Ωh

|∇mh|2dx+
1

η2h|log κ|

∫

R3

|∇Uh|2dx, (11.1)

where

Ωh = Ω′ × (0, h)

is the rescaled sample and Ω′ ⊂ R2 is a C1,α domain with diamΩ′ = 1. (Here,

the core of the Block line η can be written in function of the aspect ratio h and

the boundary vortex core κ as η2 = κh|log h|.) We highlight the fact that here we

consider the full model, i.e. we do not assume invariance of magnetization in the

vertical direction x3. The rescaled configurationsmh(x) = m(�x) and the stray-field

potential Uh(x) =
1
�U(�x) satisfy

mh : Ωh → S2, ∆Uh = ∇ · (mh1Ωh
) in R3. (11.2)

Our goal is to derive the reduced model as h → 0 (in the sense of Γ-

convergence). Let us first discuss the compactness issue for uniformly bounded
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energy configurations mh that yields the correct topology of Γ-convergence. It con-

sists in regarding for averaged magnetization (in x3-component):

m̄h(x
′) =

1

h

∫ h

0

mh(x
′, x3)dx3, x′ = (x1, x2) ∈ Ω′.

Then m̄h ∈ H1(Ω′, B̄3) and the trace of m̄h on ∂Ω′ belongs to H
1
2 (Ω′, B̄3). We will

prove relative compactness of {m̄h}h at the boundary ∂Ω′ in L2(∂Ω′) where the

limiting configurations m0 belong to BV (∂Ω′, S1). Moreover, the boundary Jaco-

bians associated to the in-plane vector field m̄′
h on the boundary ∂Ω′ are uniformly

bounded measures.

Boundary Jacobian. This notion is defined as follows: For every m̄′
h ∈ H1(Ω′,

R2), we denote the (usual) Jacobian of m̄′
h by

Jac(m̄′
h) =

1

2
∇× (m̄′

h ∧∇m̄′
h) = ∂x1m̄

′
h ∧ ∂x2m̄

′
h ∈ L1(Ω′).

We call boundary Jacobian, the operator D : H1(Ω′,R2) → (C0,1)∗(Ω̄′) defined as
∫

Ω′
D(m̄′

h)ζdx
′

:=

∫

Ω′
(2Jac(m̄′

h)ζ + m̄′
h ∧∇m̄′

h · ∇⊥ζ)dx′, for every ζ ∈ C0,1(Ω̄′).

It is a continuous operator and
∫

Ω′
D(m̄′

h)ζdx
′ =

∫

∂Ω′
m̄′
h ∧ ∂τm̄′

hζdH1 if m̄′
h ∈ C1(Ω̄′,R2). (11.3)

Note that D(m̄′
h) acts only on the boundary ∂Ω′ (which has a natural meaning

whenever m̄′
h ∈ C1(Ω̄′)). Indeed, by density of C1(Ω̄′) in H1(Ω′,R2) and the conti-

nuity of the operatorD overH1(Ω′,R2), it means thatD can be seen as an operator

on the boundary acting on H
1
2 (∂Ω′,R2) which gives a meaning of the R.H.S. of

(11.3) if m̄′
h ∈ H

1
2 (∂Ω′,R2).

Vorticity and renormalized energy. We expect that the limiting measure of

{D(m̄′
h)}h↓0 is the vorticity measure

J0 = π

N∑

j=1

djδaj , (11.4)

carried by the boundary vortices aj ∈ ∂Ω′ of “degree” dj ∈ Z satisfying∑N
j=1 dj = 2. A boundary vortex aj of “degree” dj ∈ Z corresponds to a jump

of size djπ in the lifting of the limit magnetization m0. More precisely, we intro-

duce a lifting ψ : ∂Ω′ → R of the tangent vector τ = eiψ on ∂Ω′ such that ψ

is continuous on ∂Ω′ except on a jump point with the size of the jump equal to

2π (after a complete turn on ∂Ω′). This explains the above constraint
∑

j dj = 2.

The limit magnetization m0 = eiϕ0 belongs to BV (∂Ω′, S1) and has the property
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that ψ − ϕ0 is a piecewise constant function with values into πZ, so that the total

variation of ψ − ϕ0 coincides with the mass of the vorticity measure:

J0 = ∂τ (ψ − ϕ0) on ∂Ω′ and ‖J0‖M(∂Ω′) =

∫

∂Ω′
|∂τ (ψ − ϕ0)| = π

N∑

j=1

|dj |.

This result is very similar to the Ginzburg–Landau type functionals, the differ-

ence here residing in the concentration of the Jacobian on the boundary rather

than at the interior of the domain. Similar to [7], we define the solution V of the

inhomogeneous Neumann problem:




∆V = 0 in Ω′,

∂V

∂ν
= ∂τψ − J0 on ∂Ω′,

and let R ∈ C(Ω̄′) be the continuous harmonic function in Ω′ given by

R(x′) := V (x′)−
N∑

j=1

dj log |x′ − aj|, x′ ∈ Ω′.

The renormalized energy corresponding to {(aj , dj)} is defined as follows:

W ({(aj, dj}) = −π
∑

1≤i<j≤N
didj log |ai − aj|+

1

2

∫

∂Ω′
V ∂τψ − π

2

N∑

j=1

djR(aj).

Main result . We prove the following Γ-convergence result:

Theorem 23. (Ignat–Kurzke [41]) Assume that h � 1 and let κ = κ(h) be such

that 1
|log h| � κ� 1.

(1) (Compactness and lower bound) If mh : Ωh → S2 is a sequence of magnetiza-

tions such that

lim sup
h→0

Eh(mh) <∞,

then for a subsequence, the x3-averaged magnetizations m̄h → m0 = eiϕ0 in L2(∂Ω′)
where ψ − ϕ0 ∈ BV (∂Ω′, πZ) and averaged boundary Jacobians {D(m̄′

h)}h↓0 con-

verge to a vorticity measure J0 = ∂τ (ψ−ϕ0) of the form (11.4). The energy satisfies

the following lower bound :

lim inf
h→0

Eh(mh) ≥ ‖J0‖M(∂Ω′).

Furthermore, if the “degrees” dj belong to {±1} for every 1 ≤ j ≤ N, then we have

the following optimal lower bound at the second order of the energy:

lim inf
h→0

|log κ|(Eh(mh)− ‖J0‖M(∂Ω′)) ≥W ({aj, dj}) + γ0‖J0‖M(∂Ω′),

where γ0 = 1− log 2 and W is the renormalized energy defined above.
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(2) (Upper bound) Given a configuration of disjoint boundary points aj ∈ ∂Ω′ and
dj ∈ Z with

∑N
j=1 dj = 2, there exists a family of magnetizations mh : Ωh → S2

such that the averaged magnetizations m̄h → m0 = eiϕ0 in L2(∂Ω′) where ∂τϕ0 =

∂τψ−J0 and the boundary Jacobians {D(m̄′
h)}h↓0 converge to the vorticity measure

J0 and

lim
h→0

Eh(mh) = π

N∑

j=1

|dj |.

Furthermore, if |dj | = 1 for all j = 1, . . . , N, then mh can be chosen such that

lim
h→0

|log κ|(Eh(mh)− πN) =W ({ai, di}) + πNγ0.

Our strategy in proving this theorem is as follows. First, we reduce the energy

Eh(mh) to a simplified functional defined for averaged magnetizations m̄h:

Ēh(m̄h) =
1

|log κ|

(∫

Ω′
|∇′m̄h|2dx′ +

1

η2

∫

Ω′
(1− |m̄′

h|2)dx′

+
1

2πκ

∫

∂Ω′
(m̄h · ν)2dH1

)
.

In fact, the energy Ēh(m̄h) is close to Eh(mh) up to o( 1
|log κ|) (note that o(1) would

suffice for the first leading order of the Γ-limit development). This is done by a care-

ful series of estimates that improve in a more quantitative way results of Carbou

[16] and Kohn–Slastikov [51]. Then we show that the averaged magnetizations m̄′
h

can be approximated by S1-vector fields with small energy error, using an argument

related to the one explained in Sec. 10. This allows us to show compactness of the

boundary Jacobians based on a new argument that avoids rearrangement inequal-

ities used initially in [54]. Finally, we show the Γ-convergence result. Essentially,

the idea here is to reduce to the pure boundary vortex regime using η-compactness

type estimates.

12. Cross-Over from Symmetric to Asymmetric Walls

We have already presented the (symmetric) Néel wall in Sec. 8 as an x3-invariant

transition layer that is predominant in thin-films. For thicker-films, we expect that

asymmetric walls (i.e. varying in the x3-direction) become favorable as stray-field

free transition layers. In this section, we are interested in the critical regime of the

cross-over from symmetric to asymmetric walls in soft ferromagnetic films.

Model . We consider a magnetic material Ω ⊂ R3 with the easy axis e2 =

(
0
1
0

)

driven by an anisotropy density Qϕ(m) with ϕ(m) = m2
1 +m2

3. The domain wall

is set to be parallel to the x2x3-plane as in Fig. 21. In order to deal with arbitrary

1230001-70



2nd Reading

November 20, 2012 14:0 WSPC/S1793-7442 251-CM 1230001 71–80

Singularities of Unit-Length Divergence-Free Vector Fields

Fig. 21. A 180◦ domain wall perpendicular to x1-direction.

wall angles θ ∈ [0, π2 ] between the directions

m± = (cos θ,±sin θ, 0),

we apply an external field Hext = Q(cos(θ), 0, 0) in the normal direction to the wall

plane. The aim consists in studying the specific energy of a domain wall per unit

length in x2-direction and to understand the behavior of the transition layer that

achieves the minimal energy. Hence, the admissible magnetizations are considered

to be x2-invariant and connect the two mesoscopic directions m± inside the x1x3-

plane:

m = m(x1, x3) ∈ S2, (x1, x3) ∈ ω := R× (−t, t), m(±∞, ·) = m±. (12.1)

Rescaling in the thickness variable t, i.e. x̃ = x
t , ω̃ = ω

t , m̃(x̃) = m(x), Ũ(x̃) = U(x)
t ,

the specific energy (per unit-length in x2) is given by

Ẽ2D(m̃) = d2
∫

ω̃

|∇̃m̃|2dx̃+ t2
∫

R2

|∇̃Ũ |2dx̃

+Qt2
∫

ω̃

((m̃1 − cos(θ))2 + m̃2
3)dx̃, (12.2)

where the differential operator ∇̃ refers to the variables x̃ = (x̃1, x̃3) and Ũ : R2 →
R is the 2D stray-field potential given by

∆̃Ũ = ∇̃ · (m̃1ω̃) in R2.

Observe that the scaling of the stray-field energy is the same as for the Bloch wall,

i.e. ∫

R2

|∇̃Ũ |2dx̃ = ‖∇̃ · (m̃1ω̃)‖2Ḣ−1(R2)
.

Throughout the section, we skip .̃

Symmetric walls . As we explained in Sec. 8, in the regime of thin-films (correspond-

ing to small thickness t), the (symmetric) Néel wall m is the favorable transition

layer: ∂m
∂x3

= 0 in ω (i.e. m = m(x1) is invariant in x3) and m3 = 0 in ω (i.e.

m ∈ S1). It is a two length scale objects with a core of size wcore = O d2

t and two
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logarithmically decaying tails wcore � |x1| � wtail = O t
Q . Even if it does not satisfy

the flux-closure constraint, it is invariant with respect to the group of symmetries

generated by the charges ∇ ·m in ω and m3 = 0 on ∂ω:

(1) x1 → −x1, x3 → −x3, m2 → −m2;

(2) x1 → −x1, m3 → −m3, m2 → −m2;

(3) x3 → −x3, m3 → −m3;

(4) Id.

The specific energy of a Néel wall is given by

E2D(symmetric Néel wall) = O

(
t2

1

log wtail

wcore

)
= O

(
t2

1

log t2

d2Q

)

(see e.g. [65, 27]).

Asymmetric walls . The main feature of an asymmetric wall relies on the flux-

closure, i.e. it is a smooth transition layer m that satisfies (12.1) and

m : ω → S2, ∇ ·m = 0 in ω and m3 = 0 on ∂ω. (12.3)

Observe that m′ = (m1,m2) : ∂ω → S1 since m3 vanishes on ∂ω, so that one can

define a topological degree for m′ on ∂ω (where ∂ω is the closed “infinite” curve

(R × {±1}) ∪ ({±∞} × [−1, 1])). The physical experiments predict two types of

asymmetric walls related to the breaking of symmetries and the degree of m′ on
∂ω:

(1) For small angles θ, the system prefers the so-called asymmetric Néel wall. The

main features amount to the conservation of symmetry (1) and (4) and in

having a vanishing degree of m′ on ∂ω (see Fig. 22). Due to symmetry (1), the

asymmetric Néel wall has the m2 component vanishing on a curve symmetric

with respect to the center of the wall (by x → −x). Moreover, m2 is not

monotone at the surface |x3| = 1.

(2) For large angles θ, the system prefers the so-called asymmetric Bloch wall.

In fact, as the angle θ grows, there is a breaking of symmetry with respect

-1
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Fig. 22. Asymmetric Néel wall (on the left) and asymmetric Bloch wall (on the right). Numerics
(made by L. Döring).
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to the asymmetric Néel wall, so that the asymmetric Bloch wall conserves

only the trivial symmetry (4). Another difference consists in the nonvanishing

topological degree on ∂ω carried by asymmetric Bloch wall (i.e. deg(m′, ∂ω) =
1). Then a vortex defect of (m1,m3) is nucleated at the center of the wall, and

the curve of zeros of m2 is no longer symmetric with respect the center of the

wall (see Fig. 22). Moreover, the m2-component is expected to be monotone at

the surface |x3| = 1.

The asymmetric wall has a single length scale wcore ∼ t and the specific energy is

carried out by the exchange energy of the order (see e.g. [65, 27])

E2D(asymmetric wall) = O(d2).

Regime. We focus on the challenging regime of soft materials and thickness t close

to the exchange length d where we expect the cross-over in the scaling energy of

symmetric walls (Néel wall) and asymmetric walls:

Q� 1 and |logQ| ∼
(
t

d

)2

.

Rescaling the energy (12.2) by d2 and setting

ρ := Q
t2

d2
� 1 and λ :=

t2

d2|log ρ| > 0,

then λ = O(1) is a tuning parameter in the system and the rescaled energy, which

is to be minimized, can be written as:

Eρ(m) =

∫

ω

|∇m|2dx + λ|log ρ|
∫

R2

|∇U |2dx+ ρ

∫

ω

((m1 − cos(θ))2 +m2
3)dx

under the constraint

m : ω = R× [−1, 1] → S2, m(±∞, ·) = m±,

U : R2 → R, ∆U = ∇ · (m1ω) in R2.

To fix the center of the transition we set

m̄2(0) := −
∫ 1

−1

m2(0, x3)dx3 = 0.

Main result. We are interested in understanding the dependence in the wall angle θ

of the asymptotic behavior of the minimal energy Eρ and to describe the qualitative

properties of minimizing transition layers as ρ→ 0.

We expect the following scenario (for ρ � 1): For small angles 0 ≤ θ ≤ θ∗ =

θ∗(λ), the transition layer is symmetric, i.e. driven by the (symmetric) Néel wall,

so that the minimal energy amounts to the logarithmic decaying tails of the Néel

wall. In fact, if λ is very small, then the system will always prefer the symmetric

transition layer. However, for larger λ, there exists a critical angle θ∗ where a

bifurcation occurs: An asymmetric wall becomes favorable to nucleate into the core
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of the transition. In fact, for large wall angles θ > θ∗, the optimal transition layer

has a core driven by the exchange energy where the transition layer is charge-free,

while outside the core, it preserves the tails of the symmetric wall (driven by the

stray-field energy). The splitting into the core and the tails is determined by an

angle θin of the asymmetric part of the wall. In fact, the angle θin optimizes the

balance between the energy of asymmetric part of the transition in the core (turning

from −θin to θin) and the energy of the symmetric part of the wall inside the tails

(where the transition completes the rotation by an angle θout = θ − θin).

This separation of the minimal energy is justified by the following Γ-convergence

result at the level of minimizers:

Theorem 24. (Döring–Ignat–Otto [29]) Let θ ∈ (0, π2 ]. As ρ → 0 we have the

following splitting of the minimal energy:

min
(12.1)

Eρ → min
{
Easym(θin) + λEsym(θ − θin) : θin ∈

[
0,
π

2

]}
, (12.4)

where the asymmetric wall energy is given by

Easym(θin) := min
(12.3)

{∫

ω

|∇m|2dx
∣∣∣∣ m̄2(0) = 0,

m(±∞, ·) = (cos(θin),±sin(θin), 0)

}
(12.5)

while the symmetric wall energy can be written for θout = θ − θin as :

Esym(θout) := 2π(cos(θin)− cos(θ))2.

Observe now that the symmetric part of the energy is quartic for small angles θ

(as the Néel wall), i.e. Esym � θ4. Therefore, in order to understand the bifurcation

at the critical angle θ∗ (when both symmetric and asymmetric walls are favorable),

by (12.4) we need to compute the asymptotic expansion of the asymmetric energy

at order θ4 as θ → 0. For that, we will prove

Easym(θ) = E0θ
2 + E1θ

4 + o(θ4),

with some positive constants E0 > 0 and E1 > 0 that we compute explicitly. This

allows us to heuristically determine a critical angle θ∗, at which the symmetric Néel

wall loses stability and an asymmetric core is generated. Moreover, a new path of

stable critical points with increasing inner wall angle θin branches off of θin = 0 (see

Fig. 23).

Leading order of Easym: We will determine the first leading order term E0θ
2 of the

asymmetric wall energy when the transition angle θ → 0. Moreover, we prove the

asymptotic behavior of an asymmetric transition layer mθ:

mθ = (cos θ, (sin θ)m∗
2, 0) +O(θ2), as θ → 0,
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stable unstable

θin

θ
θ∗0

Fig. 23. Bifurcation diagram for the angle θin of the asymmetric core part, depending on the global
wall angle θ.

where m∗
2 is a minimizing transition layer of the following problem

E0 = min

{∫

ω

|∇f |2dx
∣∣∣∣f : ω → R, f(±∞, ·) = ±1,

−
∫ 1

−1

f2(·, x3)dx3 = 1, f̄(0) = 0

}
. (12.6)

The asymptotic analysis is done by matching upper and lower bounds in the spirit

of the Γ-convergence at the level of minimizers:

Theorem 25. (Döring–Ignat–Otto [28]) The leading order coefficient of Easym is

given by:

E0 = lim
θ→0

Easym(θ)

θ2
,

where E0 is the minimal energy value (12.6). There are only two minimizers of E0

corresponding to σ ∈ {±1} that we explicitly determine:

m∗
2(x) = tanh

(
π

2
x1

)
+ σ

√
2 sin

(
π

2
x3

)√
1− tanh2

(
π

2
x1

)
, x = (x1, x3) ∈ ω.

Moreover, one computes E0 = 4π.

The above theorem already justifies the physical prediction on the asymmetric

Néel wall: First of all, observe that m∗
2 is a non-monotone function on the surface

{|x3| = 1}, so that the same behavior is conserved by the second component of

the asymmetric Néel wall. Second, observe that the curve where m∗
2 vanishes is

symmetric with respect to the origin, so that the zeros of the second component of

an asymmetric Néel wall conserves the same symmetry (as predicted by numerical

simulations in Fig. 22).

Second leading order of Easym: We will now determine the second leading order

term E1θ
4 of the asymmetric wall energy in the asymptotic of the transition angle
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θ → 0. Moreover, the behavior of the asymmetric transition layer mθ is expected

to have the following second order expansion in θ:

mθ = (cos θ, (sin θ)m∗
2, 0) + (sin2 θ)m̂+O(θ3), as θ → 0, (12.7)

where m∗
2 is a minimizing transition layer of E0 (given by Theorem 25) and m̂ has

the following components:

m̂1 =
1− (m∗

2)
2

2
, m̂2 = 0 and ∂x3m̂3 = ∂x1

(m∗
2)

2

2
in ω,

where m̂3 is uniquely determined by the boundary condition m̂3 = 0 on ∂ω. Using

this heuristic expansion (12.7), one computes that
∫

ω

|∇mθ|2dx = θ2E0 + θ4E1 + o(θ4)

with some exact constant

E1 =
304

105
π.

The following result rigorously proves the above second order term of Easym by

matching upper and lower bound:

Theorem 26. (Döring–Ignat–Otto [28]) We have the following second-leading

order coefficient

E1 = lim
θ→0

(Easym(θ)− θ2E0)

θ4
.

Now we can rigorously justify the supercritical bifurcation in the wall angle from

symmetric to asymmetric optimal profile (as shown in Fig. 23). By Theorem 26, we

have that

Easym(θ) = 4πθ2 +
304

105
πθ4 + o(θ4). (12.8)

If θ is the transition wall angle, it means by Theorem 24 that:

min
(12.1)

Eρ = min
θin∈[0,π2 ]

(Easym(θin) + 2πλ(cos(θin)− cos(θ))2)

+ o(1) as ρ→ 0, (12.9)

where θin is the angle of the inner asymmetric core part. For small θ, combining

with (12.8), the R.H.S. of (12.9) as function of θin ∈ [0, θ] has the unique critical

point θin = 0 if θ ≤ θ∗ where the bifurcation angle θ∗ is given by

θ∗ = arccos

(
1− E0

2πλ

)
+ o(1), as θ → 0.

(Observe that θ∗ is well-defined provided that λ ≥ E0

4π ; therefore, the bifurca-

tion appears only if λ is large enough.) For θ > θ∗, the optimal splitting angle

θin becomes positive and the symmetric wall becomes unstable under symmetry-

breaking perturbations; hence, the asymmetric wall becomes favored by the system.

Moreover, the second variation of the R.H.S. of (12.9) at θ∗ is positive so that the

bifurcation from symmetric to asymmetric wall is supercritical.
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Études Sci. 99 (2004) 1–115.

12. H. Brezis, P. Mironescu and A. C. Ponce, W 1,1-maps with values into S1, in Geometric
Analysis of PDE and Several Complex Variables, Contemp. Math., Vol. 368 (Amer.
Math. Soc., 2005), pp. 69–100.

13. W. F. Brown, Micromagnetics (Wiley Interscience, 1963).
14. L. A. Caffarelli and M. G. Crandall, Distance functions and almost global solutions

of eikonal equations, Comm. Partial Differential Equations 35 (2010) 391–414.
15. J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial

energy, J. Chem. Phys. 28 (1958) 258–267.
16. G. Carbou, Thin layers in micromagnetism, Math. Models Methods Appl. Sci. 11

(2001) 1529–1546.
17. S. Conti and C. De Lellis, Sharp upper bounds for a variational problem with singular

perturbation, Math. Ann. 338 (2007) 119–146.
18. J. Dávila and R. Ignat, Lifting of BV functions with values in S1, C. R. Math. Acad.

Sci. Paris 337 (2003) 159–164.
19. C. De Lellis, An example in the gradient theory of phase transitions, ESAIM Control

Optim. Calc. Var. 7 (2002) 285–289.
20. C. De Lellis and F. Otto, Structure of entropy solutions to the eikonal equation,

J. Eur. Math. Soc. 5 (2003) 107–145.
21. A. DeSimone, H. Knüpfer and F. Otto, 2d stability of the Néel wall, Calc. Var. Partial

Differential Equations 27 (2006) 233–253.

1230001-77



2nd Reading

November 20, 2012 14:0 WSPC/S1793-7442 251-CM 1230001 78–80

R. Ignat

22. A. DeSimone, R. V. Kohn, S. Müller and F. Otto, Magnetic microstructures — a
paradigm of multiscale problems, in ICIAM 99 (Edinburgh), (Oxford Univ. Press,
2000), pp. 175–190.

23. A. Desimone, R. V. Kohn, S. Müller and F. Otto, A reduced theory for thin-film
micromagnetics, Comm. Pure Appl. Math. 55 (2002) 1408–1460.

24. A. Desimone, R. V. Kohn, S. Müller and F. Otto, Repulsive interaction of Néel walls,
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28. L. Döring, R. Ignat and F. Otto, Asymmetric domain walls of small angle in micro-
magnetics, preprint.
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optimality of the Néel wall, J. Eur. Math. Soc. 10 (2008) 909–956.

46. R. Ignat and F. Otto, A compactness result of Landau state in thin-film micromag-
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Equations 21 (2004) 209–219.

58. P. Mironescu, Lifting of S1-valued maps in sums of Sobolev spaces, preprint.
59. P. Mironescu, S1-valued Sobolev mappings, Sovrem. Mat. Fundam. Napravl. 35

(2010) 86–100.
60. R. Moser, Ginzburg–Landau vortices for thin ferromagnetic films, AMRX Appl. Math.

Res. Express 1 (2003) 1–32.
61. R. Moser, Boundary vortices for thin ferromagnetic films, Arch. Rational Mech. Anal.

174 (2004) 267–300.
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