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We study the behavior of the electromagnetic field in a biological cell modeled by a
medium surrounded by a thin layer and embedded in an ambient medium. We derive

approximate transmission conditions in order to replace the membrane by these condi-
tions on the boundary of the interior domain. Our approach is essentially geometric and
based on a suitable change of variables in the thin layer. Few notions of differential calcu-
lus are given in order to obtain the first-order conditions in a simple way, and numerical
simulations validate the theoretical results. Asymptotic transmission conditions at any
order are given in the last section of the paper. This paper extends to the time-harmonic
Maxwell equations the previous works presented in [30, 33, 31, 6].
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1. Introduction and Motivations

The electromagnetic modeling of biological cells has become extremely important

since several years, in particular in the biomedical research area. In the simple

models [17, 19], the biological cell is a domain with a thin layer composed of a

conducting cytoplasm surrounded by a thin insulating membrane. When exposed

to an electric field, a potential difference is induced across the cell membrane. This

transmembrane potential (TMP) may be of sufficient magnitude to be biologically

significant. In particular, if it overcomes a threshold value, complex phenomena

such as electropermeabilization or electroporation may occur [37, 38, 25, 24]. The

electrostatic pressure becomes so high that the thin membrane is locally destruc-

tured: some exterior molecules might be internalized inside the cell. This process
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holds great promises particularly in oncology and gene therapy, to deliver drug

molecules in cancer treatment. This is the reason why an accurate knowledge of the

distribution of the electromagnetic field in the biological cell is necessary. Several

papers in the bioelectromagnetic research area deal with numerical electromag-

netic modeling of biological cells [26, 36, 34]. Actually the main difficulties of the

numerical computations lie in the thinness of the membrane (the relative thickness

of the membrane is one thousandth of the cell size) and in the high contrast of

the electromagnetic parameters of the different cell constituents. We present here

an asymptotic method to replace the thin membrane by appropriate transmission

conditions on the boundary of the cytoplasm.

In previous papers [30, 33, 31, 6], an asymptotic analysis is proposed to com-

pute the electric potential in domains with thin layer, using the electroquasistatic

approximation.a However, it is not clear whether the magnetic effects of the field

may be neglected. This is the reason why we present in this paper an asymptotic

analysis for the time-harmonic Maxwell equations in a domain with thin layer. Our

analysis is close to those performed in [30, 33, 31]. Roughly speaking, it is based

on a suitable change of variables in the membrane in order to write the explicit

dependence of the studied differential operator in terms of small parameter (the

thinness of the membrane). The novelty of the paper lies in the use of differential

form formalism, which seems to be the good formalism to treat Maxwell’s equations

in the time-harmonic regime according to Flanders [18], Warnick et al. [39, 40] and

Lassas et al. [20, 21]. The convenience of this formalism allows us to consider the

Helmholtz equation and the Maxwell equations in a similar fashion.

Throughout this paper, we consider a material composed of an interior domain

surrounded by a thin membrane. This material, representing a biological cell, is

embedded in an ambient medium submitted to an electric current density. We

study the asymptotic behavior of the electromagnetic field in the three domains

(the ambient medium, the thin layer and the cytoplasm) as the thickness of the

membrane tending to zero. We derive appropriate transmission conditions at first

order on the boundary of the cytoplasm in order to remove the thin layer from the

problem. Actually, the influence of the membrane is approached by these transmis-

sion conditions. To justify our asymptotic expansion, we provide piecewise estimates

of the error between the exact solution and the approximate solution.

The paper is structured as follows. In Sec. 2, we present the studied problem in

the differential calculus formalism and we state the main results of the paper. We

then provide in Sec. 3 numerical simulations that validate the theoretical results.

In particular, we demonstrate that for biological cells, the membrane behavior dra-

matically changes with respect to the frequency. More precisely, we show that if

the “thin layer” model presented here is valid for quite large frequencies, a “very

aThe electroquasistatic approximation consists in considering that the electric field comes from a
potential: E = −∇V . In this approximation, the curl part of the electric field vanishes and the
magnetic field is neglected.
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resistive thin layer” model, as described in [32], has to be studied for low frequen-

cies. Section 4 is devoted to the geometry: we perform our change of variables and

write the problem in the so-called local coordinates. In Sec. 5, we derive formally

our asymptotic expansion, which is rigorously proved in Sec. 6. In Sec. 7, we give

recurrence formulas to obtain the asymptotic expansion at any order. The Appendix

is devoted to explicit formulas used to derive the conditions.

2. Maxwell’s Equations Using Differential Forms

In the following we present the conventions of differential calculus formalism used

throughout this paper. We refer the reader to Schwarz [35] and Flanders [18] for

complete surveys of the differential calculus.

Notation 2.1. Let p equal 2 or 3 and let k be an integer smaller than p. For a

compact, connected and oriented Riemannian manifold of dimension p, (M, g), of

R3 we denote by Ωk(M) the space of k-forms defined on M .

• The exterior product between two differential forms ω and η is denoted by ω∧ η.
• The inner product on Ωk(M) is denoted by

〈
·, ·
〉
Ωk .

• The Hodge star operator is denoted by �.

• The interior product of a differential form ω with a smooth vector field Y is

written int(Y )ω.

• The L2-scalar product of two k-differential forms u and v is defined by

(u, v)L2Ωk(M) =

∫

M

〈u, v〉Ωk dvolM

and ‖ · ‖L2Ωk(M) denotes the induced norm.

The exterior differential and codifferential operators are respectively denoted by

d, δ. The Laplace–Beltrami operator ∆ is defined by ∆ = −dδ − δd.

L2Ωk(M) is the space of the square integrable k-forms of M while for s ∈ R,
HsΩk(M) is the usual Sobolev space of k-forms. Let HΩk(d,M) and HΩk(δ,M)

denote

HΩk(d,M) = {ω ∈ L2Ωk(M) : dω ∈ L2Ωk+1(M)}, (2.1)

HΩk(δ,M) = {ω ∈ L2Ωk(M) : δω ∈ L2Ωk−1(M)}, (2.2)

that are Hilbert spaces when associated with their respective norms

‖ω‖HΩk(d,M) = ‖ω‖L2Ωk(M) + ‖dω‖L2Ωk+1(M),

‖ω‖HΩk(δ,M) = ‖ω‖L2Ωk(M) + ‖δω‖L2Ωk−1(M).

We also denote by HΩk(d, δ,M) the space HΩk(d,M)∩HΩk(δ,M) equipped with

the norm

‖ω‖HΩk(d,δ,M) = ‖ω‖L2Ωk(M) + ‖dω‖L2Ωk+1(M) + ‖δω‖L2Ωk−1(M).
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Hs(M) and L2(M) denotes the respective spacesHsΩ0(M) and L2Ω0(M). Observe

that for k = 0 (i.e. for functions), the space HΩ0(d, δ,M) is exactly the usual

Sobolev space H1(M), while HΩ1(d, δ,M) cannot be identified to (H1(M))3.

2.1. Statement of the problem

Let Γ be a compact oriented surface of R3 without boundary. Consider the smooth

connected bounded domain Oc enclosed by Γ; Oc is surrounded by a thin layer Oε
m

with constant thickness ε. This material with thin layer is embedded in an ambient

smooth connected domain Oε
e with compact oriented boundary. We denote by O

the ε-independent domain defined by

O = Oε
e ∪ Oε

m ∪ Oc.

Moreover, we denote by Γε the boundary of Oc ∪ Oε
m (see Fig. 1). Let µc, µm and µe

be three positive constants and let qe, qc and qm be three complex numbers. Define

the two piecewise functions µ and q on O by

∀x ∈ O, µ(x) =





µe, in Oε
e ,

µm, in Oε
m,

µc, in Oc,

∀x ∈ O, q(x) =





qe, in Oε
e ,

qm, in Oε
m,

qc, in Oc.

The function µ is the dimensionless permeability of O while the function q denotes

its dimensionless complex permittivity.b

Let d0 > 0 be such that for each point q of Γ, the normal lines of Γ passing

through q, with center at q and length 2d0 are disjoints. In the following, we assume

that ε ∈ (0, d0). We denote by Od0
e the set of points x ∈ Oε

e at distance greater than

d0 of Γ. We assume that the current density J is imposed to the ambient medium, J

Fig. 1. Geometry of the model.

bUsing the notations of the electrical engineering community, q = ω2
`
ε − i σ

ω

´
, where ω is the

frequency, ε the permittivity and σ the conductivity of the domain [3].
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being compactly supported in Od0
e . Throughout the paper the following hypothesis

holds.

Hypothesis 2.2. (i) There exist c1, c2 > 0 such that for all x ∈ O,

c1 ≤ −
(q(x)) ≤ c2, 0 < �(q(x)) ≤ c2. (2.3)

(ii) The source current density J is a 1-form that satisfies

supp(J) � Od0
e , J ∈ L2Ω1(O), δJ = 0, in O.

Maxwell’s equations describe the behavior of the electromagnetic field in O.

Denote by E and H the 1-forms representing respectively the electric and the mag-

netic fields in O in time-harmonic regime. Denote by N∂O the normal vector field of

∂O outwardly directed from O. In the following, the normal vector field and the cor-

responding normal 1-form are identified. Maxwell’s equations in the time-harmonic

regime read [20, 21, 39, 4] (with i2 = −1)

dE = i � (µH), dH = −i � (qE+ J), in O, (2.4a)

N∂O ∧ E|∂O = 0, on ∂O. (2.4b)

Using the idempotence of � in R3, we may infer the vector wave equation on E

� d

(
1

µ
� dE

)
− qE = J, in O, N∂O ∧ E|∂O = 0, on ∂O.

Since µ is a scalar functionc of O, we infer

δ

(
1

µ
dE
)
− qE = J, in O, N∂O ∧ E|∂O = 0, on ∂O. (2.5)

Problem (2.5) is the so-called vector wave equation in the time-harmonic regime [3].

Observe the power of the differential form formalism. In Eq. (2.5) suppose now that

E and J are functions. Since the coderivative applied to the functions identically

vanishes, Eq. (2.5) is nothing but the well-known Helmholtz equation:

−div

(
1

µ
∇E
)
− qE = J, in O, E|∂O = 0, on ∂O,

therefore using differential forms enables us to link the Helmholtz equation and the

vector wave equations in one formalism.

Remark 2.3. Denote E in Euclidean coordinates by Exdx + Eydy + Ezdz and

similarly for H and J. Problem (2.4) and problem (2.5) write now

curlE = iµH, curlH = −i(qE+ J), in O, N∂O × E|∂O = O, on ∂O,

cIf µ is a tensor, the previous equation (2.5) becomes δ(�µ−1 � dE) − qE = J.
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and

curl

(
1

µ
curlE

)
− qE = J, in O, N∂O × E|∂O = 0, on ∂O,

which is the tensorial formulation of the vector wave equation in the time-harmonic

regime.

The aim of this paper is to derive transmission conditions equivalent to Oε
m

in order to avoid its meshing. Hereafter, it is demonstrated that writing these

conditions with differential forms enables us to consider similarly the Helmholtz

equation and the vector wave equations. For the sake of clarity, and since the case

of functions is much simpler, we only provide the detailed proofs of the results for

1-forms (i.e. for the vector wave equation), and we let the reader verify that the

corresponding results hold for the Helmholtz equation.

2.2. Regularized variational formulation

Our functional space X(q) is defined as

X(q) = {u ∈ HΩ1(d,O), δ(qu) ∈ L2(O), N∂O ∧ u|∂O = 0},

associated with its graph norm

‖u‖X(q) = ‖u‖HΩ1(d,O) + ‖δ(qu)‖L2(O).

Define the sesquilinear form aq in X(q) adapted to a regularized variational formu-

lation of the problem (2.5) by

aq(u, v) =

∫

O

(
1

µ
〈du, dv〉Ω2 + 〈δ(qu), δ(qv)〉Ω0 − q〈u, v〉Ω1

)
dvolO.

Using inequalities (2.3), the following lemma holds.

Lemma 2.4. There exist a constant c0 > 0 and α ∈ C such that for all ε ∈ (0, d0),

�(αaq(u, u)) ≥ c0‖u‖2X(q). (2.6)

For all ε ∈ (0, d0), we consider the variational problem: find E ∈ X(q) such that

∀u ∈ X(q), aq(E, u) =
∫

O

〈
J, u
〉
Ω1 dvolO . (2.7)

Using Hypothesis 2.2 the following theorem holds.

Theorem 2.5. (Equivalent problems) Let Hypothesis 2.2 hold.

(i) There is at most one solution E ∈ X(q) to problem (2.7).
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(ii) The solution E satisfies (2.5) in a weak sense

δdE− µqE = J, in Oε
e ∪Oε

m ∪ Oc, N∂O ∧ E|∂O = 0,

with the divergence condition

δ(qE) = 0, in O (2.8)

and the following equalitiesd hold for S ∈ {Γ,Γε}[
1

µ
int(NS )dE

]

S

= 0, [NS ∧ E]S = 0, [q int(NS )E]S = 0. (2.9)

(iii) If (E,H) ∈ (L2Ω1(O))2 is a solution to problem (2.4), then E ∈ X(q) satis-

fies (2.5). Conversely, if E ∈ X(q) satisfies (2.5) then the couple of 1-forms

(E,−(i/µ) � dE) belongs to (L2Ω1(O))2 and satisfies problem (2.4).

Remark 2.6. For the Helmholtz equation, the appropriate space is H1(O). Since

δf ≡ 0 for any function f , Eq. (2.7) is exactly the variational formulation of (2.5)

applied to 0-form. Therefore the Lax–Milgram lemma ensures straightforwardly the

equivalences of the above theorem, replacing 1-forms by 0-forms.

Proof. Unlike Remark 2.6, when dealing with 1-forms, Eq. (2.7) is not the varia-

tional formulation of Eq. (2.5), hence the theorem is not obvious. Its proof is based

on an idea of Costabel et al.

(i) According to estimate (2.6), a straightforward application of the well-known

Lax–Milgram theorem leads to the existence and uniqueness of the solution E to

the regularized variational problem (2.7).

(ii) The proof is precisely worked out in full details in [7, 8] in a very slightly different

configuration. We just give here the sketch of the proof. The first transmission

condition of (2.9) comes easily from the Green formula (see Schwarz [35]) and since

E ∈ X(q), then NS ∧ E and q int(NS )E are continuous across S ∈ {Γ,Γε}.
It remains to prove that E satisfies δ(qE) = 0. Denote by H∆(O) the space

of functions φ ∈ H1
0 (O) such that δ(qdφ) belongs to L2(O). Integrations by parts

imply

∀φ ∈ H∆(O), aq(E, dφ) =
∫

O
〈δ(qE), δ(qdφ) + φ〉Ω0 dvolO.

Since 
(q) ≤ −c1 < 0, the function δ(qdφ)+φ runs through the whole L2(O) space

as φ runs through H∆(O). Moreover, since δ(J) vanishes we have
∫

O
〈J, dφ〉Ω1 dvolO = 0,

from which we infer that δ(qE) identically vanishes in L2(O) according to (2.7).

Therefore the solution E of problem (2.7) solves problem (2.5).

dFor an oriented surface S without boundary and for a differential form u defined in a neigh-
borhood of S we denote by [u]S the jump across S . NS denotes the normal of S outwardly
directed from the domain enclosed by S to the exterior.
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(iii) If (E,H) solves problem (2.4) we straightforwardly infer (2.5), since � is idem-

potent and since µ is a scalar function. Conversely, defining H by

H = − i

µ
� dE,

we infer that (E,H) solves problem (2.4).

Denote by Oe the domain Oe = O\Oc. Define µ̃ and q̃ by

∀x ∈ O, µ̃(x) =

{
µc, in Oc,

µe, in Oe,
∀x ∈ O, q̃(x) =

{
qc, in Oc,

qe, in Oe.

Let E0 ∈ X(q̃) be the “background” solution defined by

∀u ∈ X(q̃), aq̃(E0, u) =

∫

O

〈
J, u
〉
Ω1 dvolO,

which means in a weak sense

δ

(
1

µ̃
dE0

)
− q̃ E0 = J, in O, N∂O ∧ E0|∂O = 0. (2.10)

We have the following regularity result.

Proposition 2.7. Let Hypothesis 2.2 hold. Moreover, let s ≥ 0 and J belong to

HsΩ1(Od0
e ). Then the 1-form E0 exists and is unique in X(q̃). Moreover, denoting

by Ec,0 and Ẽe,0 its respective restrictions to Oc and Oe, we have

Ẽe,0 ∈ H2+sΩ1(Oe), Ec,0 ∈ H2+sΩ1(Oc).

Proof. The 1-form E0 satisfies (2.10). The proof of the existence and the unique-

ness of E0 in X(q̃) is very similar to the one performed in Theorem 2.5, by replacing

X(q) by X(q̃) and aq by aq̃. Since δJ vanishes, we infer δ(q̃E0) = 0 and therefore

E0 satisfies

−∆E0 − µ̃q̃ E0 = J, in Oe ∪ Oc, N∂O ∧ E0|∂O = 0,

with transmission conditions

[NΓ ∧ dE0]Γ = 0, [q̃ int(NΓ)E0]Γ = 0,[
1

µ̃
int(NΓ)dE0

]

Γ

= 0, [δ(q̃E0)]Γ = 0.

The same calculations as performed in Proposition 2.1 of Costabel et al. [8] imply

that the set of the above transmission and boundary conditions coverse the Lapla-

cian in Oc and in Oe, in the sense of Definition 1.5 on p. 125 of Lions and

eAccording to the Appendix of the paper of Li and Vogelius [22] the regularity of E0 may also
be obtained by using a reflection to reduce the problem to an elliptic system with complementing
boundary conditions in the sense of Agmon et al. [1, 2].
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Magenes [23]. Therefore we infer the piecewise elliptic regularity of E0, which ends

the proof of the lemma.

The following estimates, which ensure that E0 is the zeroth order approximation

of E, hold.

Proposition 2.8. Under Hypothesis 2.2, there exists C > 0 such that for any small

parameter ε ∈ (0, d0)

‖E‖X(q) ≤ C, (2.11)

‖E− E0‖HΩ1(d,O) ≤ C
√
ε. (2.12)

Proof. Using (2.6), estimates (2.11) are obvious since 
(q) ≤ −c1 < 0. Now

prove (2.12). We first mention that E0 belongs to H2Ω1(	) for 	 ∈ {Oe,Oc},
according to Proposition 2.7; hence E0 ∈ L∞Ω1(	) and dE0 ∈ L∞Ω2(	). Denoting

by U = E− E0 we infer
∫

O

1

µ
〈dU, dU〉Ω2 − q〈U,U〉Ω1 dvolO

= qm

∫

Oε
m

〈E0,U〉Ω1 dvolOε
m
− 1

µm

∫

Oε
m

〈dE0, dU〉Ω2 dvolOε
m
.

Therefore using (2.11) and using the assumption (2.3) on q, we infer

‖dU‖L2Ω2(O) + ‖U‖L2Ω1(O) ≤ C
√
ε.

2.3. Main result

Consider the inclusion J : Γ → O, and J ∗ its pull-back J ∗ : Ωk(O) → Ωk(Γ), for

k ∈ {0, 1, 2, 3}. Denote by dΓ and δΓ the exterior differential and the codifferential

operators defined on Ωk(Γ). Define S and T byf

S = (qm − qe)J ∗(E0) +

(
1

µm
− 1

µe

)
δΓdΓ(J ∗(E0)), (2.13)

T =

(
1

qm
− 1

qe

)
d(int(NΓ)(q̃E0)|Γ) + (µm − µe) int(NΓ)

(
1

µ̃
dE0

)∣∣∣∣
Γ

. (2.14)

The explicit expressions of S and T in local coordinates are given in Sec. 6. Let E1

be the 1-forms defined by

δdE1 − µ̃q̃ E1 = 0, in Oe ∪Oc, N∂O ∧ E1|∂O = 0,

fFor a sufficiently smooth k-form φ defined in O, we denote by φ|Γ its restriction to Γ. In addition,
if φ is regular in Oe and Oc but not in O, we denote by φ|Γ+ (respectively φ|Γ−) the restriction
to Γ of φ from the domain Oe (respectively Oc).
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with the following transmission conditions on Γ

1

µe
int(NΓ)dE1|Γ+ − 1

µc
int(NΓ)dE1|Γ− = S, (2.15)

NΓ ∧ E1|Γ+ −NΓ ∧ E1|Γ− = NΓ ∧ T. (2.16)

The aim of this paper is to prove the following theorem.

Theorem 2.9. Under Hypothesis 2.2, if moreover the current density J belongs to

H3Ω1(Od0
e ), there exist ε0 > 0 and a constant C, independent of ε such that

∀ ε ∈ (0, ε0), ‖E− (E0 + εE1)‖HΩ1(d,δ,Oc) ≤ Cε2,

and for any domain 	 compactly embedded in Oe, there exist ε� > 0 and a constant

C� > 0 independent of ε such that

∀ ε ∈ (0, ε�), ‖E− (E0 + εE1)‖HΩ1(d,δ,�) ≤ C�ε
2.

Remark 2.10. It is possible to give a precise behavior of E in a neighborhood of

Γ by defining a 1-form in the thin membrane (see Theorem 6.3).

In this paper we choose to deal with differential forms, in accordance with

Flanders [18]. This point of view has the convenience of considering both electric

and magnetic fields as 1-forms, i.e. they are physically similar in accordance with

electrical engineering considerations [3]. We point out a few arguments to enlighten

the convenience of the differential calculus formalism.

(i) Anisotropy. For the sake of simplicity, we deal here with isotropic materials,

although the anisotropic case may be interesting for applications. In this case, µ

and q are matrices and the vector wave equation becomes

δ((�µ−1�)dE)− qE = J, in O N∂O ∧ E|∂O = 0, on ∂O,
and the following transmission conditions hold on S ∈ {Γ,Γε}

[int(NS )(�µ−1 � dE)]S = 0, [NS ∧ E]S = 0.

To obtain the approximate transmission conditions equivalent to the thin layer,

we just have to write the tensor �µ−1� in local coordinates, with the help of the

explicit formulas given in the Appendix. The calculations are more tedious but we

are confident that the reader has all the tools to perform the analysis.

(ii) Non-constant thickness. We consider here a thin layer with constant thickness.

As mentioned in Sec. 1 a high electric field may destabilize the cell membrane,

possibly leading to the apparition of pores. Hence the thickness of the membrane is

no longer constant with respect to the tangential variable. As performed in [31], the

change of variables would lead to additional terms in the transmission conditions.

These terms would come from the fact that the coefficients gi3 of the matrix (gij)

given in Sec. 4 by (4.1) do not vanish. The derivation of the asymptotics would

be more tedious but, once again, we are confident that all the tools are given
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in this paper to perform the calculation. In the case of a rough thin layer, the

present analysis may not be applied. We have to introduce appropriate correctors

as performed in [6].

(iii) Link with the Helmholtz equation. As previously mentioned, Eqs. (2.5) are well-

defined if E and J are functions, since operators d and δ are defined for k-forms

and the exterior product between a 1-form and a function is also well-defined.

Moreover, since δ acting on functions is zero, the operator −δd coincides with

Laplace–Beltrami operator ∆. In addition, the above differential forms S and T are

well-defined even if E0 is a function, and in this case we have

S = (qm − qe)E0|Γ +

(
1

µm
− 1

µe

)
δΓdΓ(E0)|Γ,

T =
µm − µe

µc
int(NΓ)(dE0)

∣∣
Γ− ,

since the interior product int(NΓ) acting on functions is zero. Writing our asymp-

totic transmission conditions for functions in tensor calculus formalism, we infer

that the function u solution to

−∇ ·
(
1

µ
∇u
)
− qu = j, in O, u|∂O = 0,

is approached by u0 + εu1 where (uk)k=0,1 satisfy

−∆uk − µ̃q̃uk = δk0 j, in Oc ∪Oe, uk|∂O = 0,

with the following transmission conditions

[u0]Γ = 0,

[
1

µ̃
∂nu

0

]

Γ

= 0, u1|Γ+ − u1|Γ− =
µm − µe

µc
∂nu

0|Γ− ,

1

µe
∂nu

1|Γ+ − 1

µc
∂nu

1|Γ− = (qm − qe)u
0|Γ −

(
1

µm
− 1

µe

)
∆Γu

0|Γ.

This approximation is rigorously proved in [29] (see Eqs. (4) on p. 4 of [29]). There-

fore the differential calculus provides transmission conditions that are valid for the

Helmholtz equation and the Maxwell equations. It is also possible to derive our

asymptotics by tensor calculus considerations, as used in linear elasticity of thin

shells [9, 15, 16]. This approach is worked out in full details in the thesis [28] of the

second author and in [5, 10].

Remark 2.11. (The tensor calculus formulation) Since we are confident that our

result might be useful for bioelectromagnetic computations, and since the electri-

cal engineering community may feel uncomfortable with the differential calculus

formalism, we translate our result with the help of the “usual” differential opera-

tors. Denote by ∇Γ and ∇Γ· the respective gradient and divergence operators on
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Γ. Define RotΓ and rotΓ by

∀ f ∈ C∞(Γ), RotΓ f = (∇Γf)×NΓ,

∀ f ∈ (C∞(Γ))3, rotΓ f = ∇Γ · (f ×NΓ).

Then (Ek)k=0,1 (seen as vector field) satisfies the following equations

curl curlEk − µ̃q̃Ek = δk0J, in Oe ∪ Oc, N∂O × Ek|∂O = 0,

with the following transmission conditions on Γ

NΓ × E0|Γ+ = NΓ × E0|Γ− ,
1

µe
(NΓ × curlE0)|Γ+ =

1

µc
(NΓ × curlE0)|Γ− , (2.17)

NΓ × E1|Γ+ ×NΓ = NΓ × E1|Γ− ×NΓ + qc

(
1

qm
− 1

qe

)
∇Γ(E0|Γ− ·NΓ)

+
µm − µe

µc
(curlE0 ×NΓ)|Γ− ,

1

µe
(curlE1 ×NΓ)|Γ+ =

1

µc
(curlE1 ×NΓ)|Γ− + (qm − qe)(NΓ × E0 ×NΓ)|Γ

+

(
1

µm
− 1

µe

)
RotΓ rotΓ(NΓ × E0 ×NΓ)|Γ.

(2.18)

Remark 2.12. (The impedance boundary condition of Engquist–Nédélec [14]) Let

J be supported in Oc (and be divergence-free) and suppose that Oε
e is a perfectly

conducting domain. Therefore qe = +∞ and µe = 0. A homogeneous Dirichlet

condition is then imposed on Γε

NΓε × E|Γε = 0.

We are now in the same configuration as the problem studied by Engquist and

Nédélec [14], p. 18. According to (2.17) and (2.18), writing the condition satisfied

by E0 + εE1 and neglecting the terms of order ε2, we infer the following boundary

condition for the first-order approximation Ea of the field

NΓ × Ea|Γ− ×NΓ = −ε
(
qc
qm

∇Γ (Ea|Γ− ·NΓ) +
µm

µc
(curlEa ×NΓ)|Γ−

)
.

According to Maxwell’s equations, curlE = iµcH and curlH = −iqcE. Therefore
qcE · NΓ = i curlH · NΓ. The definition of ∇Γ· (see, for example, Eq. (2.22) p. 5

of [14]) leads tog

∇Γ · (H×NΓ) = curlH ·NΓ = −iqcE ·NΓ, (2.19)

gUsing differential forms and since dN = 0, equality (8.1) implies

int(NΓ)E0|Γ− = − 1

iqc
int(NΓ)δ(�H0) = − 1

iqc
δΓ(int(N) � H0|Γ), which is exactly equality (2.19).
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and the impedance boundary condition follows

NΓ × Ea|Γ− ×NΓ = −iε

(
1

qm
∇Γ(∇Γ · (Ha ×NΓ)) + µm(Ha ×NΓ)|Γ−

)
.

Observe that this is the impedance boundary condition given in [14] p. 19, since

they took the normal interior to their domain Ω∞, hence n = −NΓ.

3. Numerical Simulations

We have tested the model when Γ is a sphere of radius 0.04. The outside bound-

ary of O is a sphere of radius 0.08. We impose a Silver-Muller condition on this

outer boundary. Hexahedral mesh has been used for experiments, as presented in

Fig. 2. The current source is a Gaussian source polarized along x-coordinate and

centered around the point (0, 0, 0.06). The exact solution is computed numerically

on a similar mesh, where a thin layer made of hexahedra is inserted between the

two domains. Edge finite elements of fourth order (Nedelec’s first family) are used

with curved elements in order to correctly approximate the geometry. We have

observed that the numerical error between fourth-order and fifth-order is below

0.1%. According to [17], we chose the biological electrical parameters:

εm = 10, εe = εc = 80, σm = 10−5, σe = σc = 0.5, (3.1)

and the frequency is equal to 1.2GHz. The numerical values of E0 and E1 are

displayed in Fig. 3. We have displayed the convergence of the model in Fig. 4.

Observe that the numerical convergence rate, which is of order ε2, coincides with

the theory for small values of ε only. This is in accordance with the assumption

Fig. 2. Hexahedral mesh used for experiments.



June 6, 2011 11:51 WSPC/S1793-7442 251-CM S1793744211000345
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Fig. 3. Real part of the electric field (x-component) for E0 (left) and E1 (right).
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Fig. 4. Relative error between the model and the exact solution.

“ε goes to zero” to be imposed, since at the crossingpoint of Fig. 4, ε equal 0.001

which is not small compared with the sphere radius of 0.04.

In addition, the frequency range for which the thin layer model is valid has been

studied. Actually, observe that in (3.1), the cell membrane conductivity is very low

compared with the outer and inner conductivities, while the permittivity of the

three domains are quite similar, compared with the membrane thickness. More-

over, for large frequency, the displacement currents are dominant, meaning that

the permittivities have to be mainly considered. Therefore, for large frequencies,

the cell is a soft contrast material with a thin layer, and the theoretical results

presented in this paper hold. However, if the frequency dramatically decreases, the

conduction currents dominate. In this case, the conductivities have to be used,

and since the membrane conductivity is very low, the cell is then a high contrast
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Fig. 5. Relative error between the model and the exact solution versus frequency.

medium with a thin layer: two small parameters are then involved in the equation,

and the asymptotic analysis presented here is no longer valid. This phenomenon

is illustrated in Fig. 5, where we have checked the accuracy of the model versus

the frequency when ε is chosen constant, and equal to 0.0002: above 100MHz,

the approximate transmission conditions precisely replace the membrane but below

10MHz, the conditions are no longer valid and another analysis has to be per-

formed. Observe that above 2.108Hz both errors increase: this is due to the fact

that the membrane thickness ε remains constant while the wavelength decreases.

4. Geometry

Let VΓ be the tubular open neighborhood of Γ composed by the points at distance

d0 of Γ. In the following, it will be convenient to write the involved differential form

E in local coordinates in the tubular neighborhood VΓ of Γ. We denote by V ε
e and

Vc the respective intersections VΓ ∩Oε
e and VΓ ∩ Oc.

4.1. Parametrization of Γ

Let xT = (x1, x2) be a system of local coordinates on Γ = {ψ(xT)}. By abuse of

notations, we denote by xT ∈ Γ the point of Γ equal to ψ(xT). In the (x1, x2)-

coordinates, we denote by NΓ the outward vector normal to Γ defined by

NΓ =
∂1ψ ∧ ∂2ψ
‖∂1ψ ∧ ∂2ψ‖

and we define by Φ the following map

∀ (xT, x3) ∈ Γ× R, Φ(xT, x3) = ψ(xT) + x3NΓ(xT).

Notation 4.1. In the following ∂j stands for ∂xj for j = 1, 2, 3. Moreover, we use

the summation indices convention aibi =
∑

i=1,2,3 aibi. Observe that according to

our change of variables, xT denotes the tangential variables and x3 is the normal
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direction. In order to stress the difference between xT and x3, the Greek letters α

and β (and possibly γ, ι, κ and λ) denote the indices in {1, 2}, while the letters

i, j, k denote the indices in {1, 2, 3}. Eventually it is convenient to introduce the

Levi–Cività symbol εijk defined by

εijk =





+1, if {i, j, k} is an even permutation of {1, 2, 3},
−1, if {i, j, k} is an odd permutation of {1, 2, 3},
0, if any two labels are the same.

According to the definition of d0, the tubular neighborhood VΓ of Γ may be

parametrized by

VΓ = {Φ(xT, x3), (xT, x3) ∈ Γ× (−d0, d0)}.

The (xT, x3)-system of coordinates is the so-called local coordinates of VΓ. The

Euclidean metric of VΓ written in (xT, x3)-coordinates is given by the following

matrix (gij)i,j=1,2,3

(gij)i,j=1,2,3 =



g11 g12 0

g12 g22 0

0 0 1


, (4.1)

where the coefficient gαβ equals gαβ = 〈∂αΦ, ∂βΦ〉. Here 〈·, ·〉 denotes the Euclidean
scalar product of R3. Denote by (gij) the inverse matrix of (gij), and by g the deter-

minant of (gij). The coefficients gαβ might be written with the help of the coeffi-

cients of the first, the second and of the third fundamental forms of Γ in the basis

(∂1ψ, ∂2ψ) (see Do Carmo [11])

gαβ(xT, x3) = g0αβ(xT)− 2x3bαβ(xT) + x23cαβ(xT).

The mean curvature H of Γ equals

H = −1

2

∂3(
√
g)

√
g

∣∣∣∣
x3=0

. (4.2)

4.2. The transmission conditions in local coordinates

In the (xT, x3)-coordinates, write E = Eidx
i. NΓ is the outward normal field of Γ,

which is identified to the 1-form dx3. Applying straightforward the formulas of the

Appendix we infer

NΓ ∧ E = Eαdx
3dxα, int(NΓ)E = E3, int(NΓ)dE = (∂3Eα − ∂αE3)dx

α.

Hence transmission conditions (2.9) write for h ∈ {0, ε}

[Eα]x3=h = 0,

[
1

µ
(∂3Eα − ∂αE3)

]

x3=h

= 0, [q E3]x3=h = 0. (4.3)
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4.3. Rescaling in the thin layer

Denote by Ee
j and by Ec

j the respective restrictions of Ej to V ε
e and to Vc. In Oε

m

we perform the rescaling x3 = εη, η ∈ (0, 1), and we denote by Em
j , by g

m
ij and by

gm the following functions

∀ η ∈ (0, 1),





Em
j (xT, η) = Ej(xT, εη),

gmij(xT, η) = gij(xT, εη), for i, j = 1, 2, 3.

gm(xT, η) = g(xT, εη),

Observe that gmαβ(xT, η) = g0αβ(xT) − 2εηbαβ(xT) + ε2η2cαβ(xT), hence for l ∈ N,
∂lηg

m
αβ = O(εl), while ∂lαg

m
ικ = O(1). Denote by

δdE = ami (xT, η)dx
i, in Oε

m.

Applying formula (8.5) with the metric given by (4.1), and performing the rescaling

x3 = εη, we infer,

amλ = − 1

ε2
∂2ηEm

λ +
1

ε

(
∂η∂λEm

3 + εαβ3εικ3
gmλι√
gm

∂η
ε

(
gmακ√
gm

)
∂ηEm

β

)

+ εαβ3εικ3
gmλι√
gm

(
∂κ

(
1√
gm
∂αEm

β

)
− ∂η

ε

(
gmακ√
gm

)
∂βEm

3

)
, (4.4)

am3 =
1

ε
εαβ3εικ3∂κ

(
gmαι√
gm
∂ηEm

β

)
+ εαβ3εικ3∂α

(
gmβι√
gm
∂κEm

3

)
. (4.5)

The divergence-free condition δEm = 0 with equality (8.3) can then be written as:

1

ε
∂ηEm

3 +
1√
gm

∂η
ε
(
√
gm)Em

3 + εαβ3εικ3
1√
gm
∂α

(
gmκβ√
gm

Em
ι

)
= 0. (4.6)

The transmission conditions (4.3) in x3 = ε become

1

µe
(∂3Eλ − ∂λE3)|x3=ε+ =

1

µm

(
1

ε
∂ηEm

λ − ∂λEm
3

)∣∣∣∣
η=1

, (4.7a)

Eλ|x3=ε+ = Em
λ |η=1. (4.7b)

The transmission conditions (4.3) in x3 = 0 are:

1

µm

(
1

ε
∂ηEm

λ − ∂λEm
3

)∣∣∣∣
η=0

=
1

µc
(∂3Eλ − ∂λE3)|x3=0− , (4.8a)

Em
λ |η=0 = Eλ|x3=0− , (4.8b)

and the transmission conditions for the normal components E3 are

qeE3|x3=ε+ = qmEm
3 |η=1, qmEm

3 |η=0 = qcE3|x3=0− . (4.9)
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5. Ansatz and Formal Expansion

We now set our Ansatz. We look for solutions written as formal series in ε

E|Oε
e
= Ẽe,0|Oε

e
+ εẼe,1|Oε

e
+ · · · , in Oε

e , (5.1a)

E|Oc = Ec,0 + εEc,1 + · · · , in Oc, (5.1b)

and in the cylinder Γ× (0, 1),

E|Oε
m
◦Φ(xT, εη) = Em,0(xT, η) + εEm,1(xT, η) + · · · , (5.1c)

where the 1-forms (Ẽe,n)n∈N, and (Ec,n)n∈N are defined in ε-independent domains.

We emphasize that the sequence (Ẽe,n)n∈N is defined in (Oε
m)

N even if its associated

series does not approach E in the thin layer.

Remark 5.1. The 1-forms (Em,n)n∈N are profiles defined in the cylinder Γ×(0, 1);

note the difference with the 1-forms (Ec,n)n∈N and (Ẽe,n)n∈N. These profiles are the
key-point of the following asymptotic expansion.

In VΓ, for n ∈ N, we denote by

Ẽe,n = Ẽe,n
i (xT, x3)dx

i, Ec,n = Ec,n
i (xT, x3)dx

i,

Em,n = Em,n
i (xT, η)dx

i, η = x3/ε.

Our aim is to identify the first two terms of the sequences and to estimate the

remainder term. Suppose that for n ∈ N, the forms (Ẽe,n
k )k=1,2,3 are as regular as

necessary. Using formal Taylor expansion, we infer for l = 0, 1

∂ljẼ
e,n
k |x3=ε+ = ∂ljẼ

e,n
k |x3=0+ + ε∂3∂

l
jẼ

e,n
k |x3=0+ + · · · . (5.2)

It is convenient to define En for n ∈ N by

En = Ẽe,n, in Oe, En = Ec,n, in Oc.

We are now ready to derive formally our asymptotics. Replace the coeffi-

cients (Em
j )j=1,...,3 and (Ej)j=1,...,3 in Eqs. (4.4)–(4.6) and in transmission con-

ditions (4.7)–(4.9) by their respective formal expansion (5.1), and use the formal

Taylor expansion (5.2). Observe that for any n ∈ N, we necessarily have

δdEn − µ̃q̃En = δn0 J, in Oe ∪ Oc, N∂O ∧ En|∂O = 0, on ∂O. (5.3a)

Observe that δEn = 0, in Oc ∪ Oe, (5.3b)

since δJ = 0. It remains to build the appropriate transmission conditions by iden-

tifying the terms with the same power of ε.
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5.1. Order 0

The term of order −2 in (4.4) vanishes hence ∂2ηEm,0
α = 0. From the divergence-free

condition (4.6) we infer ∂ηEm,0
3 = 0. Equality (4.7a) implies ∂ηEm,0

α = 0. Therefore

the coefficients Em,0
j depend only on xT. From (4.7b), (4.8b) and (4.9) we infer for

n = 0, 1

∂nβ Ẽ
e,0
α |x3=0+ = ∂nβE

c,0
α |x3=0− , (5.4a)

qe∂
n
β Ẽ

e,0
3 |x3=0+ = qc∂

n
βE

c,0
3 |x3=0− . (5.4b)

5.2. Order 1

Since ∂ηEm,0
α and the terms of order −1 in (4.4) vanish, we infer

∂2ηEm,1
α = 0. (5.5)

Hence ∂ηEm,1
α is constant with respect to η. Therefore, according to (4.7a)

1

µe
(∂3Ẽ

e,0
α − ∂αẼ

e,0
3 )|x3=0+ =

1

µc
(∂3E

c,0
α − ∂αE

c,0
3 )|x3=0− . (5.6)

According to (5.3), (5.4) and (5.6) the 1-forms Ẽe,0 and Ec,0 satisfy the elliptic

problem (2.10). According to (4.8b) and (4.9), we infer

Em,0
α (xT, η) = Ec,0

α (xT, 0), (5.7a)

Em,0
3 (xT, η) =

qc
qm
Ec,0

3 (xT, 0). (5.7b)

Therefore the terms of order 0 are entirely determined. According to (4.8a),

using (5.7) and since ∂ηEm,1
α does not depend on η according to (5.5), we infer

∂ηEm,1
α (xT, η) =

qc
qm
∂αE

c,0
3 |x3=0− +

µm

µc
(∂3E

c,0
α − ∂αE

c,0
3 )|x3=0− . (5.8)

The transmission conditions follow

Ẽe,1
α |x3=0+ + ∂3Ẽ

e,0
α |x3=0+ = ∂ηEm,1

α + Em,1
α |η=0

and

Em,1
α |η=0 = Ec,1

α |x3=0− .

Therefore we infer

Ẽe,1
α |x3=0+ − Ec,1

α |x3=0− = ∂ηEm,1
α − ∂3Ẽ

e,0
α |x3=0+ .

Using (5.8) and according to (5.4) and (5.6) we infer

Ẽe,1
α |x3=0+ − Ec,1

α |x3=0− =

(
qc
qm

− qc
qe

)
∂αE

c,0
3 |x3=0−

+
µm − µe

µc
(∂3E

c,0
α − ∂αE

c,0
3 )|x3=0− . (5.9)
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The divergence-free condition leads to

∂ηEm,1
3 = − 1√

g0
εαβ3εικ3∂α

(
g0κβ√
g0
Ec,0

ι

)∣∣∣∣
x3=0−

+ 2H
qc
qm
Ec,0

3 |x3=0− , (5.10)

where H is given by (4.2). Transmission condition (4.9) implies

qeẼ
e,1
3 |x3=0+ + qe∂3Ẽ

e,0
3 |x3=0+ = qm∂ηEm,1

3 + qcE
c,1
3 |x3=0− . (5.11)

According to (2.10) Ec,0 satisfy the divergence-free condition hence

− 1√
g0
εαβ3εικ3 ∂α

(
g0κβ√
g0
Ec,0

ι

)∣∣∣∣∣
x3=0−

= ∂3E
c,0
3 |x3=0− − 2H Ec,0

3 |x3=0− , (5.12)

and similarly for Ẽe,0 by replacing Ec,0
i by Ẽe,0

i . From (5.10)–(5.12), we infer

∂ηEm,1
3 = ∂3E

c,0
3 |x3=0− + 2H

(
qc
qm

− 1

)
Ec,0

3 |x3=0− . (5.13)

Moreover, using (5.4) in (5.12) we infer

qe∂3Ẽ
e,0
3 |x3=0+ = qe∂3E

c,0
3 |x3=0− − 2H (qe − qc)E

c,0
3 |x3=0− ,

and therefore (5.11) with equality (4.2) implies

qeẼ
e,1
3 |x3=0+ − qcE

c,1
3 |x3=0− = (qm − qe)

1√
g|x3=0

∂3(
√
gẼe,0

3 )

∣∣∣∣∣
x3=0+

. (5.14)

5.3. Order 2

Since ∂ηEm,0
α = 0, we identify the terms in ε2 in (4.4) to infer

∂2ηEm,2
λ = ∂η∂λEm,1

3 + εαβ3εικ3
g0λι√
g0

{
∂η
ε

(
gmακ√
gm

)∣∣∣∣
η=0

∂ηEm,1
β

+

(
∂κ

(
1√
g0
∂αEm,0

β

)
− ∂η

ε

(
gmακ√
gm

)∣∣∣∣
η=0

∂βEm,0
3

)}
+ µmqm

√
g0Em,0

λ .

(5.15)

Since the right-hand side of the previous equality does not depend on η, we have

1

µe

(
∂3Ẽ

e,1
λ − ∂λẼ

e,1
3

)∣∣∣∣x3=0+ − 1

µc

(
∂3E

c,1
λ − ∂λE

c,1
3

)∣∣∣∣
x3=0−

=
1

µm

(
∂2ηEm,2

λ − ∂λ∂ηEm,1
3

)
− 1

µe

(
∂23Ẽ

e,0
λ |x3=0+ − ∂λ∂3Ẽ

e,0
3 |x3=0+

)
.
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Since δdẼe,0 − µeqeẼe,0 = 0, explicit formulas of the Appendix imply

∂23Ẽ
e,0
j |x3=0+ =

[
µeqe

√
gẼe,0

j + ∂3∂λẼ
e,0
3 + εαβ3εικ3

gλι√
g
∂3

(
gακ√
g

)
∂3Ẽ

e,0
β

+ εαβ3εικ3
gλι√
g

(
∂κ

(
1√
g
∂αẼ

e,0
β

)
− ∂3

(
gακ√
g

)
∂αẼ

e,0
3

)]∣∣∣∣
x3=0+

.

According to the transmission condition at the order 0, the following equalities hold

1

µe
(∂λẼ

e,0
3 − ∂3Ẽ

e,0
λ )|x3=0+ =

1

µm
(∂λEm,0

3 − ∂ηEm,1
λ )|η=0 , Ẽe,0

λ |x3=0+ = Em,0
λ |η=0,

hence we infer the following transmission conditions

1

µe
(∂3Ẽ

e,1
λ − ∂λẼ

e,1
3 )− 1

µc
(∂3E

c,1
λ − ∂λE

c,1
3 )

= (qm − qe)Ẽ
e,0
λ |x3=0+ +

(
1

µm
− 1

µe

)
εαβ3εικ3

gλα√
g
∂β

(
1√
g
∂ιẼ

e,0
κ

)∣∣∣∣
x3=0+

.

(5.16)

Therefore E1 satisfies (5.3) for n = 1 with the transmission conditions (5.9)–(5.16)

written in local coordinates. Equalities (5.8)–(5.13) lead to

Em,1
λ (xT, η) = η∂ηEm,1

λ + Ec,1
λ |x3=0− , Em,1

3 (xT, η) = η∂ηEm,1
3 +

qc
qm
Ec,1

3 |x3=0− .

Remark 5.2. The coefficients at order 1 are now uniquely determined. Since

∂ηEm,2
α |η=0 = ∂αEm,1

3 |η=0 −
µm

µc
(∂αE

c,1
3 − ∂3E

c,1
α )|x3=0− ,

∂ηEm,2
λ is uniquely determined by (5.15), namely

∂ηEm,2
λ = η∂2ηEm,2

λ + ∂αEm,1
3 |η=0 −

µm

µc
(∂αE

c,1
3 − ∂3E

c,1
α )|x3=0− . (5.17)

Remark 5.3. Transmission condition (5.14) might be obtained straightforward

from (5.3), (5.9) and (5.16). Writing δdẼe,1 = ãe,1i dxi and δdEc,1 = ac,1i dxi we infer

ac,13 =
1√
g
εαβ3εικ3∂α

(
gβκ√
g

(
∂3E

c,1
ι − ∂ιE

c,1
3

))
,
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and similarly for ãe,13 by replacing Ec,1 by Ẽe,1. According to (5.16) we have

1

µe
ãe,13 |x3=0+ − 1

µc
ac,13 |x3=0− =

(qm − qe)√
g

εαβ3εικ3∂α

(
gβκ√
g
Ẽe,1

ι

)∣∣∣∣
x3=0+

.

The divergence-free property of Ẽe,0 applied in x3 = 0+ implies

1

µe
ae,13 |x3=0+ − 1

µc
ac,13 |x3=0− = −(qm − qe)

1√
g|x3=0

∂3(
√
gẼe,0

3 )|x3=0+ .

Moreover, we have

1

µe
ae,13 |x3=0+ + qeẼ

e,1
3 |x3=0+ =

1

µc
ac,13 |x3=0− + qcE

c,1
3 |x3=0− = 0,

therefore, we infer

qeẼ
e,1
3 |x3=0+ − qcE

c,1
3 |x3=0− = (qm − qe)

1√
g|x3=0

∂3(
√
gẼe,0

3 )

∣∣∣∣∣
x3=0+

,

which is exactly condition (5.14).

6. Justification of the Expansion

Let us rewrite the equations satisfied by the first two terms of the asymptotic

expansion of E in terms of differential forms. Denote by S and T the following

forms

S =

(
(qm − qe)Ẽ

e,0
λ |x3=0+ +

(
1

µm
− 1

µe

)
εαβ3εικ3

gλα√
g
∂β

(
1√
g
∂ιẼ

e,0
κ |x3=0+

))
dxλ,

T =

((
qc
qm

− qc
qe

)
∂αE

c,0
3 |x3=0− +

µm − µe

µc
(∂3E

c,0
α − ∂αE

c,0
3 )|x3=0−

)
dxα.

The reader easily verifies that the definitions (2.13) and (2.14) coincide with the

above expressions of S and T. The 1-form E0 satisfies (2.10) in a weak sense and

E1 satisfy (5.3) with the following transmission conditions on Γ according to (5.9)–

(5.14)

1

µe
int(NΓ)dẼe,1|Γ+ − 1

µc
int(NΓ)dEc,1|Γ− = S, (6.1a)

NΓ ∧ Ẽe,1|Γ+ −NΓ ∧ Ec,1|Γ− = NΓ ∧ T. (6.1b)

Observeh that according to (5.14)

δS = −(qm − qe)
1√
g|x3=0

∂3(
√
gẼe,0

3 )

∣∣∣∣∣
x3=0+

. (6.2)

hSince qe int(NΓ)Ẽe,1|Γ+ = int(NΓ)((1/µe)δdẼe,1|Γ+) using (8.1) since dNΓ = 0 we infer
int(NΓ)((1/µe)δdẼe,1|Γ+) = −δ((1/µe)int(NΓ)dẼe,1|Γ+), and similarly for Ec,1. Therefore accord-
ing to (6.1a) we infer qe int(NΓ)Ẽe,1|Γ+−qc int(NΓ)Ec,1|Γ− = −δS, hence (6.2) according to (5.14).
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In the cylinder Γ× (0, 1), the 1-form Em,0 equals

Em,0 = Ec,0
α |x3=0−dx

α +
qc
qm
Ec,0

3 |x3=0−dx
3, (6.3)

while the 1-form Em,1 equals

Em,1 =

{
Ec,1

α |x3=0− + η

(
qc
qm
∂αE

c,0
3 +

µm

µc
(∂3E

c,0
α − ∂αE

c,0
3 )

)∣∣∣∣
x3=0−

}
dxα

+

{
qc
qm
Ec,1

3 |x3=0− + η

(
∂3E

c,0
3 + 2H

(
qm
qc

− 1

)
Ec,0

3

)∣∣∣∣
x3=0−

}
dx3.

(6.4)

6.1. Regularity results

We now present the regularity of the 1-forms E0 and E1.

Proposition 6.1. Let Hypothesis 2.2 hold. Moreover, let s ≥ 0 and J belong to

H1+sΩ1(Od0
e ). Then the 1-forms E0 and E1 exist and are unique. Moreover, the

following regularity results hold

Ẽe,0 ∈ H3+sΩ1(Oe), Ec,0 ∈ H3+sΩ1(Oc),

Ẽe,1 ∈ H2+sΩ1(Oe), Ec,1 ∈ H2+sΩ1(Oc).

Proof. All the assertions concerning E0 are proved in the above Proposition 2.7.

Since Ẽe,0 and Ec,0 belong respectively to H3+sΩ1(Oe) and H
3+sΩ1(Oc), the forms

S and T belong to the following Sobolev spaces

S ∈ H1/2+sΩ1(Γ), T ∈ H3/2+sΩ1(Γ).

Moreover, according to (6.2), δS ∈ H3/2+s(Γ). Let C ∈ H2+sΩ1(Oc) such that

δC = 0, in Oc,





NΓ ∧ C|Γ = NΓ ∧ T,
1

µc
int(NΓ)dC|Γ = S,




qc int(NΓ)C|Γ = δS,

δ(qcC|Γ) = 0.

Observe that δdC−µcqcC belongs to HsΩ1(Oc). Denote by U the following 1-form

U = Ẽ1,e, in Oe, U = E1,c − C, in Oc.

Then U satisfies

δdU− µeqeU = 0, in Oe,

δdU− µcqcU = −δdC + µcqcC, in Oc,

N∂O ∧U|∂O = 0,
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with the following homogeneous transmission conditions on Γ

[NΓ ∧ U]Γ = 0,

[
1

µ̃
int(NΓ)dU

]

Γ

= 0, [q̃ int(NΓ)U]Γ = 0.

Arguing as in Proposition 2.7, we infer Proposition 6.1.

The next proposition gives the regularity of the 1-form Em,0, Em,1 and Em,2. Its

proof easily comes from Proposition 6.1 and from the explicit expressions of the

components of Em,n, for n = 0, 1, 2, given in Sec. 5.

Proposition 6.2. Let Hypothesis 2.2 hold. Moreover, let s ≥ 0 and suppose that J
belongs to H1+sΩ1(Od0

e ). By abuse of notations,i we define Em,2 using (5.17) by

Em,2 =

∫ x3/ε

0

∂ηEm,2
α dη dxα.

Denote by C∞Ω1([0, 1], H5/2+s−nΩ1(Γ)) is the space of the 1-forms, which

are smooth in the normal variable η, and which belong to H5/2+s−nΩ1(Γ) at

given η ∈ [0, 1]. Then for n = 0, 1, 2, the profile terms belong to Em,n ∈
C∞Ω1([0, 1], H5/2+s−nΩ1(Γ)).

6.2. Convergence

Suppose that Hypothesis 2.2 holds, and let the source current density J belong to

H3Ω1(Od0
e ), with δJ = 0. It is convenient to define

Ee
app = Ẽe,0 + εẼe,1, in Oε

e , Ec
app = Ec,0 + εEc,1, in Oc,

∀ (xT, x3) ∈ Γ× (0, ε), Em
app ◦Φ(xT, x3) =

2∑

n=0

εnEm,n(xT, x3/ε),

and let Eapp equal to Ee
app in Oε

e, Ec
app in Oc and to Em

app in Oε
m. According to the

construction of the coefficients (Em,n)n=0,1,2 and using Proposition 6.2, there exists

a 1-form G ∈ C∞Ω1([0, 1], H1/2Ω1(Γ)), such that

δdEm
app − µmqmEm

app = εG ◦Φ−1, in Oε
m,

and for an ε-independent constant C > 0,

sup
η∈[0,1]

‖G(·, η)‖H1/2Ω1(Γ) ≤ C, sup
η∈[0,1]

‖δG(·, η)‖H3/2(Γ) ≤ C.

DefineW byW = E−Eapp and denote byWe,Wm andWc the respective restrictions

of W to Oε
e , Oε

m and Oc. In local coordinates, We = W e
i dx

i, Wm = Wm
i dxi and

Wc =W c
i dx

i. Theorem 2.9 is a straightforward corollary of the following result.

Theorem 6.3. There exists an ε-independent constant C > 0 such that

‖We‖HΩ1(d,δ,Oε
e )
+
√
ε‖Wm‖HΩ1(d,δ,Oε

m)
+ ‖Wc‖HΩ1(d,δ,Oc) ≤ Cε2.

iSince Em,2 vanishes in x3 = 0, it is not the third coefficient of the profile in Γ× (0, 1).
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Proof. The 1-form W satisfies

δdW− µqW = ε1Oε
m
G, in Oε

e ∪ Oε
m ∪ Oc, N∂O ∧We|∂O = 0, on ∂O,

with the following transmission conditions for S ∈ {Γε,Γ}

[NS ∧W]S = −[NS ∧ Eapp]S , (6.5a)
[
1

µ
int(NS )dW

]

S

= −
[
1

µ
int(NS )dEapp

]

S

. (6.5b)

Let Ee
app = Ee,app

i dxi. According to Proposition 6.1, Ee
app ∈ H4Ω1(Oe). Hence there

exist fα ∈ H1/2(Γ) and gj ∈ H3/2(Γ) such that

(∂3E
e,app
α − ∂αE

e,app
3 )|x3=ε =

∑

l=0,1

εl∂l3(∂3E
e,app
α − ∂αE

e,app
3 )|x3=0+ + ε2fα,

Ee,app
j |x3=ε = Ee,app

j |x3=0+ + ε∂3E
e,app
j |x3=0+ + ε2gj .

Moreover there exists an ε-independent constant C > 0 such that

|fα|H1/2(Γ) ≤ C, |gj|H3/2(Γ) ≤ C. (6.6)

After simple calculations involving the explicit expressions of (Em,n)n=0,1,2 in local

coordinates, transmission conditions (6.5) are written as

1

µe
(∂3W

e
α − ∂αW

e
3 )|x3=ε+ =

1

µm
(∂3W

m
α − ∂αW

m
3 )|x3=ε− +

ε2

µe
fα,

1

µc
(∂3W

c
α − ∂αW

c
3 )|x3=0− =

1

µm
(∂3W

m
α − ∂αW

m
3 )|x3=0+ ,

W e
α|x3=ε+ =Wm

α |x3=ε− + ε2gα, and W c
α|x3=0− =Wm

α |x3=0+ .

Observe that δW = − ε
µmqm

1Oε
m
δG, and the following equalities hold

qeW
e
3 |x3=ε+ = qmW

m
3 |x3=ε− + qeε

2g3, qcW
c
3 |x3=0− = qmW

m
3 |x3=0+ .

We choose P = pidx
i in H2Ω1(Oε

e ) such that

N∂O ∧ P|∂O = 0, and P|x3=ε+ = gi(xT)dx
i.

Since for ε ∈ (0, d0/2), the domain Oε
e satisfies Oe\(VΓ ∩ Oe) ⊂ Oε

e ⊂ Oe, and

according to (6.6), there exists an ε-independent constant C > 0 such that

‖P‖H2Ω1(Oε
e )

≤ C.

Defining W̃ = W+ ε21Oε
e
P, we infer

δdW̃− µqW̃ = ε21Oε
e
(δdP− µeqeP) + ε1Oε

m
G, in O, N∂O ∧ W̃|∂O = 0, on ∂O,
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and the following transmission conditions hold

1

µe
(∂3W̃

e
α − ∂αW̃

e
3 )|x3=ε+ =

1

µm
(∂3W̃

m
α − ∂αW̃

m
3 )|x3=ε− +

ε2

µe
f̃α,

1

µc
(∂3W̃

c
α − ∂αW̃

c
3 )|x3=0− =

1

µm
(∂3W̃

m
α − ∂αW̃

m
3 )|x3=0+ ,

W̃ e
α|x3=ε+ = W̃m

α |x3=ε− , W̃ c
α|x3=0− = W̃m

α |x3=0+ ,

where f̃α = fα − (∂3pα − ∂αp3)|x3=ε+ . Moreover,

qeW̃
e
3 |x3=ε+ = qmW̃

m
3 |x3=ε− , qcW̃

c
3 |x3=0− = qmW̃

m
3 |x3=0+ .

Since the functions f̃α are defined on Γ, it is convenient to define F̃α on Γε by

∀ xT ∈ Γ, F̃α ◦Φ(xT, ε) = f̃α(xT).

Denoting by G̃ and F̃, the following 1-forms defined by

G̃ = ε1Oε
m
G+ ε21Oε

e
(δdP− µeqeP), F̃ = F̃αdx

α,

there exists an ε-independent constant C > 0 such that

‖G̃‖L2Ω1(O) ≤ Cε3/2, ‖δG̃‖L2(O) ≤ Cε3/2 and ‖F̃‖H−1/2Ω1(Γε) ≤ C.

The 1-form W̃ satisfies the following equalities

δdW̃− µqW̃ = G̃, in Oε
e ∪ Oε

m ∪ Oc, N∂O ∧ W̃e|∂O = 0, on ∂O, (6.7a)

with the following transmission conditions on Γε and on Γ

1

µe
int(NΓε)dW̃e|Γ+

ε
=

1

µm
int(NΓε)dW̃m|Γ−

ε
+
ε2

µe
F̃, (6.7b)

1

µm
int(NΓ)dW̃m|Γ+ =

1

µc
int(NΓ)dW̃c|Γ− , (6.7c)

NΓε ∧ W̃e|Γ+
ε
= NΓε ∧ W̃m|Γ−

ε
, and NΓ ∧ W̃m|Γ+ = NΓ ∧ W̃c|Γ− . (6.7d)

Moreover,

δW̃ =
1

µq
δG̃, in Oε

e ∪ Oε
m ∪ Oc, (6.8)

and G̃ and F̃ are such that

qe int(NΓε)W̃e|Γ+
ε
= qm int(NΓε)W̃m|Γ−

ε
, qc int(NΓ)W̃c|Γ− = qm int(NΓ)W̃m|Γ+ .

Multiply (6.7) by W̃ and integrate by parts with the help of (6.8) to infer

‖W̃e‖HΩ1(d,δ,Oε
e )
+
√
ε‖W̃m‖HΩ1(d,δ,Oε

m)
+ ‖W̃c‖HΩ1(d,δ,Oc) ≤ Cε2,

for an ε-independent constant C. Morever, W̃ = W+ ε21Oε
e
P implies

‖We‖HΩ1(d,δ,Oε
e )
+
√
ε‖Wm‖HΩ1(d,δ,Oε

m)
+ ‖Wc‖HΩ1(d,δ,Oc) ≤ Cε2, (6.9)

from which we infer Theorem 2.9.
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7. Asymptotic Expansion at any Order

We may extend our derivation principle to obtain asymptotic transmission condi-

tions at any order. Actually, there exists a recurrence formula, which is given in

this section. The sketch of the proof of the expansion, which is similar to the proof

of Theorem 6.3 is left to the reader. For (α, β, ι, κ) ∈ {1, 2}4 define the following

sequences (Al
αβικ)l∈N, (Bl

αβικ)l∈N, (Cl
αβικ)l∈N and (Dl

αβικ)l∈N by





Al
αβικ =

∂lη
εl

(
gmαι√
gm

∂η
ε

(
gmβκ√
gm

))∣∣∣∣∣
η=0

,

Bl
αβκ =

∂lη
εl

(
gmαβ√
gm
∂κ

(
1√
gm

))∣∣∣∣∣
η=0

,

Cl
αβ =

∂lη
εl

(
gαβ
gm

)∣∣∣∣∣
η=0

.





Dl =
∂lη
εl

(
1√
gm

∂η
ε

(√
gm
))
∣∣∣∣∣
η=0

,

El
αβκ =

∂lη
εl

(
1√
gm
∂α

(
gβκ√
gm

))∣∣∣∣∣
η=0

,

Using (4.4)–(4.6), for k ≥ 1 we define ∂2ηEm,k+2
λ and ∂ηEm,k+1

3 respectively by

∂2ηEm,k+2
λ = ∂η∂λEm,k+1

3 + εαβ3εικ3A
0
λαικ∂ηEm,k+1

β − µmqmEm,k
λ

+ εαβ3εικ3

k∑

l=1

{(Bl
λικ∂α + Cl

λι∂κ∂α)Em,k−l
β

+ Al
λαικ(∂ηEm,k+1−l

β − ∂βEm,k−l
3 )},

∂ηEm,k+1
3 = −

k∑

l=0

(DlEm,k−l
3 + εαβ3εικ3

(
Cl

κβ∂α + El
αβκ

)
Em,k−l
ι ).

Define now the differential forms Sk+1 and Tk+1 by

Sk+1 =

{
1

µm

∫ 1

0

(∂2ηEm,k+2
λ − ∂λ∂ηEm,k+1

3 )dη

− 1

µe

k∑

l=0

∂lx3
(∂3Ẽe,k−l

λ − ∂λẼe,k−l
3 )|x3=0+

}
dxλ,

Tk+1 =

{∫ 1

0

∂ηEm,k+1
λ dη −

k∑

l=0

∂lx3
Ẽe,k−l
λ

}
dxλ.

The 1-forms Ẽe,k+1 and Ec,k+1 are therefore defined by

δdẼe,k+1 − µeqeẼe,k+1 = 0, in Oe,

δdEc,k+1 − µcqcEc,k+1 = 0, in Oc,

N∂O ∧ Ẽe,k+1|∂O = 0,
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with the following transmission conditions on Γ

1

µe
int(NΓ)dẼe,k+1|Γ+ − 1

µc
int(NΓ)dEc,k+1|Γ− = Sk+1,

NΓ ∧ Ẽe,k+1|Γ+ −NΓ ∧ Ec,k+1|Γ− = NΓ ∧ Tk+1.

Since for n = 0, 1 the 1-forms (Em,n,Ec,n, Ẽe,n)n=0,1 are determined by (2.10)–(6.3)–

(6.1)–(6.4), and since ∂ηEm,2
λ is also known according to Remark 5.2, the recurrence

process is initialized. The reader could prove that outside a neighborhood of Oε
m

the following estimate holds E =
∑n

k=0 ε
kEk +O(εn).

Appendix: Explicit Formulas

We refer the reader to [18, 35] for the basic notions of differential calculus for

a general compact connected oriented Riemannian manifold (M, g) of Rn with

smooth compact boundary ∂M . The following property has been used through-

out the paper.

Property A.1. (Useful equality) Suppose thatM is a compact connected oriented

Riemannian manifold without boundary of Rn, and let k be an integer smaller than

n. Let ω is a k-form and Y is a smooth 1-form such that dY = 0. Then applying

the above Green formula with the help of the definition of the inner product we

infer that for ω ∈ HΩk(δ,M)

int(Y )δω = (−1)kδ(int(Y )ω). (A.1)

Proof. Actually, for any η ∈ HΩk−2(d,M), we have
∫

M

〈int(Y )δω, η〉Ωk−2 dvolM =

∫

M

〈δω, Y ∧ η〉Ωk−1 dvolM

=

∫

M

〈ω, d(Y ∧ η)〉Ωk dvolM ,

= (−1)k−2

∫

M

〈ω, Y ∧ dη〉Ωk dvolM

= (−1)k−2

∫

M

〈int(Y )ω, dη〉Ωk−1 dvolM

= (−1)k−2

∫

M

〈δ(int(Y )ω), η〉Ωk−2 dvolM .

We now present explicit formulas of the differential calculus for a manifold

M ⊂ R3 endowed with the Euclidean metric. Denote by (x, y, z) the usual Euclidean

coordinates of M and let (y1, y2, y3) be another system of coordinates: there exists

a C∞-diffeomorphism ψ such that ψ(y1, y2, y3) = (x, y, z). The Euclidean metric

in (y1, y2, y3)-coordinates is given by the matrix (gij)i,j=1,2,3 : gij = ∂yiψ · ∂yjψ,
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where · denotes the Euclidean scalar product of R3. The inverse matrix of (gij)ij is

denoted by (gij)ij and let g denote by its determinant g = det((gij)i,j=1,2,3).

Denote by (dy1, dy2, dy3) the basis of Ω1(M) associated to (y1, y2, y3). It is

clear that 2-forms (dy2 ∧ dy3, dy3 ∧ dy1, dy1 ∧ dy2) is a basis of Ω2(M). Since

M is equipped with the Euclidean metric, we perform the change of coordinates

ψ(y1, y2, y3) = (x, y, z) to infer that the inner product 〈·, ·〉Ωk for k = 0, 1, 2, is

determined in (y1, y2, y3)-coordinates by
j the following equalities





〈F,G〉Ω0 = FG , 〈dyi, dyj〉Ω1 = gij ,

〈dyidyk, dyjdyl〉Ω2 = gijgkl − gilgjk,

〈Fdy1dy2dy3, Gdy1dy2dy3〉Ω3 =
1

g
FG,

(A.2)

where F and G are smooth functions on M , and g is the determinant of (gij).

• Exterior products on R3. The exterior product between a k-form and a l-form

equals zero as soon as k + l > 3. Moreover, for k ∈ {0, . . . , 3}, the exterior

product between a 0-form and a k-form is the usual scalar multiplication between

a function and a k-form. The following formulas hold (see Flanders [18]).

� Exterior product of 1-forms. Let λ = λidy
i and µ = µidy

i be two 1-forms, then

λ ∧ µ = λiµjdy
idyj =

εijk
2

(εklmλlµm)dyidyj.

� Exterior product between a 2-form and a 1-form. Let λ =
εijk
2 λkdy

idyj and

µ = µidy
i, then

λ ∧ µ = λkµkdy
1dy2dy3.

• Expression of d. A straightforward application of the recurrence formula for d

given Schwarz [35] implies the following formulas.

� d on 0-forms. Let λ be a 0-form, i.e. λ is a function. Then

dλ =
∂λ

∂yi
dyi.

� d on 1-forms. Let µ = µidy
i, then dµ equals

dµ =
∂µj

∂yi
dyidyj =

εijk
2

(
εklm

∂µm

∂yl

)
dyidyj.

� d on 2-forms. Let λ =
εijk
2 λkdy

idj be a 2-form, then we have

dλ =
∂λk
∂yk

dy1dy2dy3.

jTo simplify notations, we omit the sign ∧ between the differential forms dyi and dyj , for i, j =
1, 2, 3.
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Proposition A.2. (Star Hodge operator) Star Hodge operator is defined in R3 by

the following formula.

• Hodge on functions and 3-forms. Let S be a 0-form and T = τ dy1dy2dy3 be a

3-form. Then

�S =
√
gS dy1dy2dy3, �T =

1√
g
τ.

• Hodge on 1-forms. Let R = Ri dy
i be a 1-form. Then �R is the 2-form defined by

�R =
εijk
2

√
ggklRl dy

idyj.

• Hodge on 2-forms. Let S =
εijk
2 Sk dy

idyj be a 2-form. Then �S is the 1-form

equal to

�S =
1√
g
gikSk dy

i.

Proof. If ω is a k-form in R3, then �ω is the (3 − k)-form such that

∀ η ∈ Ωk(M), η ∧ �ω = 〈η, ω〉Ωk(M)
√
g dy1dy2dy3.

Applying the above formulas of the exterior products, and equalities (A.2), we infer

the proposition.

Proposition A.3. (The codifferential operator δ) According to the codifferential

definition (see Schwarz [35]) the following formulas hold.

• Codifferential of 1-forms. Let µ = µidy
i, then

δµ = − 1√
g

∂

∂yk
(
√
ggklµl). (A.3)

• Codifferential of 2-forms. Let λ =
εijk
2 λkdy

idyj, then

δλ = εjkl
gij√
g

∂

∂yk

(
glm√
g
λm

)
dyi.

Proof. Since the codifferential on k-forms in R3 is defined by δ = (−1)3k � d�, a

straightforward application of the formulas of the differential operator d and the

use of Proposition A.2 lead us to the formulas of the codifferential operator.

Proposition A.3 with the formulas of d differential operator implies the following

corollary.

Corollary A.4. (δd and ∆ operators on functions and on 1-forms) Recall that

∆ = −(δd + dδ).
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• Let f be a function. Then

∆f = −δdf =
1√
g

∂

∂yk

(√
ggkl

∂

∂yl
f

)
. (A.4)

• Let λ = λidy
i be a 1-form, then

δdλ = εijkεlmn
gri√
g

∂

∂yj

(
gkl√
g

∂

∂ym
λn

)
dyr, (A.5)

∆λ = −
(
εijkεlmn

gri√
g

∂

∂yj

(
gkl√
g

∂

∂ym
λn

)
− ∂

∂yr

(
1√
g

∂

∂yk
(
√
ggklλl)

))
dyr.

(A.6)

Using duality between the interior and the exterior products [35], we infer the

following proposition.

Proposition A.5. (Interior product) Let N be a vector-field identified with the

corresponding 1-form N = Nidy
i.

• Interior product of a vector-field on a 1-form. Let µ = µidy
i. Then

int(N)µ = gijNjµi (A.7)

• Interior product of a vector-field on a 2-form. Let µ = µij dy
idyj , then

int(N)µ = grlµijNk(g
ikgjl − gilgjk) dyr. (A.8)

Acknowledgments

We thank very warmly Monique Dauge for her well-advised suggestions. C.P. has

deep thoughts and memories of Michelle Schatzman, who taught him the ropes of

differential calculus.

References

1. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of
elliptic partial differential equations satisfying general boundary conditions, I, Comm.
Pure Appl. Math. 12 (1959) 623–727.

2. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions
of elliptic partial differential equations satisfying general boundary conditions, II,
Comm. Pure Appl. Math. 17 (1964) 35–92.

3. C. Balanis, Advanced Engineering Electromagnetics (John Wiley and Sons, 1989).
4. D. Boffi, M. Costabel, M. Dauge, L. Demkowicz and R. Hiptmair, Discrete compact-

ness for the p-version of discrete differential forms, accepted for publication in SIAM
J. Numer. Anal.
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27. L. Paquet, Problèmes mixtes pour le système de Maxwell, Ann. Fac. Sci. Toulouse
Math. 4 (1982) 103–141.
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