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En écrivant ce papier, les auteurs ont toujours présente à l’esprit leur
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A systematic analysis of matched layers is undertaken with special attention to bet-
ter understand the remarkable method of Bérenger. We prove that the Bérenger and
closely related layers define well-posed transmission problems in great generality. When
the Bérenger method or one of its close relatives is well-posed, perfect matching is
proved. The proofs use the energy method, Fourier–Laplace transform, and real coordi-
nate changes for Laplace transformed equations. It is proved that the loss of derivatives
associated with the Bérenger method does not occur for elliptic generators. More gener-
ally, an essentially necessary and sufficient condition for loss of derivatives in Bérenger’s
method is proved. The sufficiency relies on the energy method with pseudodifferential
multiplier. Amplifying and nonamplifying layers are identified by a geometric optics
computation. Among the various flavors of Bérenger’s algorithm for Maxwell’s equa-
tions, our favorite choice leads to a strongly well-posed augmented system and is both
perfect and nonamplifying in great generality. We construct by an extrapolation argu-
ment an alternative matched layer method which preserves the strong hyperbolicity of
the original problem and though not perfectly matched has leading reflection coefficient
equal to zero at all angles of incidence. Open problems are indicated throughout.
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1. Introduction

This paper analyses absorbing layer methods for calculating approximations to the

solution, U , of first-order systems of hyperbolic partial differential equations,

L(∂t, ∂x)U := ∂tU +

d∑

l=1

Al∂lU = F, (t, x) ∈ R1+d, U(t, x) ∈ CN . (1.1)

Approximate values are sought on a finite domain. The source term F and/or

initial condition is compactly supported in the domain. The absorbing layer strategy

surrounds the domain with a layer of finite thickness intended to be absorbing and

weakly reflective.

The simplest case is dimension d = 1 with computational domain x1 < 0 and

absorbing layer in x1 > 0. For the first example consider inhomogeneous initial

data and zero right-hand side. The simplest absorbing layers add a lower order

term σ1x1>0CU where 1 denotes the characteristic function, for example,

∂tU +

(
1 0

0 −1

)
∂1U + σ1x1>0

(
1 0

c b

)
U = 0.

To get a feeling for the reflections, consider the solution U(t, x1) so that,

for t < 0, U = (δ(x1 − t), 0).

Then

U1 = δ(x1 − t)e−σx1 , (∂t − ∂1 + bσ1x1>0)U2 = −σ1x1>0cU1.

If c �= 0, then ∇t,x1U2 is discontinuous across the ray {x1 = −t}. From the per-

spective of a numerical method, such a reflected singularity is undesirable.

The reflected singularity from a discontinuous lower order term is weaker than

the singularity of the incident wave. For the equation

∂tU +A1∂1U + σ1x1>0CU = 0,

if C is diagonal in a basis diagonalizing A1, the reflections are avoided. The ease

of eliminating reflections for this problem with d = 1 is deceptive. No such simple

remedy exists in dimensions d > 1. For symmetric hyperbolic systems A1 = A∗
1,

it is wise to choose C = C∗ ≥ 0 so that the absorption term is dissipative in the

L2(Rd) norm.
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Consider next the wave equation with friction ∂ttv−∂11v+2σ1x1>0∂tv = 0 writ-

ten in characteristic coordinates (U1, U2) = (∂tv − ∂1v, ∂tv + ∂1v) with absorption

B = σC:

∂tU +

(
1 0

0 −1

)
∂1U + σ1x1>0CU = 0, C =

(
1 1

1 1

)
.

The absorption matrix C is symmetric and non-negative but does not commute

with A1. It produces unacceptably strong reflections. The absorption from Israeli

and Orszag [16], ∂ttv− ∂11v+ σ(∂tv + ∂1v) = 0, absorbs only rightward waves and

corresponds to

C =

(
1 0

0 0

)
= π+(A1),

introducing the notation π+(A1) for the spectral projector on the eigenspace corre-

sponding to strictly positive eigenvalues of A1. The general non-negative symmetric

choice commuting with A1 is a positive multiple of

C = π+(A1) + νπ−(A1), ν ≥ 0. (1.2)

We call these smart layers. They dissipate the L2 norm. As observed by Israeli and

Orszag, the numerical performance of the smart layers is not as good as one would

hope. One reduces reflections by choosing σ(x) ≥ 0 vanishing to order k ≥ 0 at the

origin. That reduces the rate of absorption and thereby increases the width of the

layer required. The leading reflection by such smart layers of incoming wave packets

of amplitude O(1) and wavelength ε is O(εk+1). The leading reflection is linear in σ.

In Sec. 6, we introduce the method of Harmoniously Matched Layers which remove

the leading order reflections (at all angles of incidence) by an extrapolation.

Open problem. Repeated extrapolation further reduces the order of reflection. It

is easy to program and it is possible that an optimization could pay dividends.

Elaborate absorbing layer strategies, like Bérenger’s PML introduce operators

related to but often more complicated than the original operator L. The operators

in the absorbing layer and in the domain of interest may not be the same. For

the case of a layer in {x1 > 0}, absorbing layer algorithms solve a transmission

problem for an unknown (V,W ) where V is a CN -valued function on x1 < 0 and

W is a function on x1 > 0. The equations in x1 > 0 are chosen to be absorbing and

the transmission problem weakly reflective. The ingenious innovation of Bérenger

was to realize that the operator R in the layer can differ substantially from L. He

increased the number of unknown functions in the layer. So W is CM -valued with

M > N .

The pair (V,W ) is determined by a well-posed transmission problem,

LV = F on R1+d
− := {(t, x) : x1 < 0} RW = 0 on R1+d

+ , (1.3)
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with the homogeneous transmission condition

(V,W ) ∈ N on {x1 = 0}. (1.4)

Here N ⊂ CN ×CM is a linear subspace.a The choice of the hyperbolic operator R

and transmission condition N is made with three goals:

• The transmission problem is well-posed, and not hard to approximate

numerically.

• Waves from the left are at most weakly reflected at x1 = 0.

• Waves moving rightward decay rapidly in x1 > 0 so that the layer can be chosen

thin.

The criterion for perfection that we adopt is that of Appelo, Hagström and

Kreiss [3]. In the case of one absorption, it is formulated as follows.

Definition 1.1. A well-posed transmission problem is perfectly matched when

for all F supported in x1 < 0, t ≥ 0, the solution supported in t ≥ 0 satisfies

V = U |x1<0.

We prove in Sec. 4.1.4 that Bérenger’s method with one discontinuous absorption

σ1 is perfect in this sense.

In practice one does not absorb in only one direction and the computational

domain is rectangular. We give in Sec. 3.5 a definition with absorptions in more

than one direction and a proof of perfection.

The strategy of Bérenger is quite ingenious. For an artificial boundary in two

dimensions at {x1 = r} and domain of interest {x1 < r} it consists of two steps. The
first is a doubling of the system and the second is insertion of an absorption term

in {x1 > r}. The doubled system involves the unknown Ũ := (U1, U2) ∈ CN ×CN .

When F = 0, the doubled equation without dissipation is

∂tU
j +Aj∂j(U

1 + U2) = 0, j = 1, 2.

The system with damping in x1 changes the j = 1 equation to

∂tU
1 +A1∂1(U

1 + U2) + σ(x1)U
1 = 0, suppσ ⊂ {x1 ≥ r}.

Then U :=
∑

j U
j satisfies L(∂)U = 0 in x1 < r. In practice it is the restriction of

U to x1 < r that is of interest. There are three distinct ways to view this. One can

think of the unknowns as U defined in x1 < r and Ũ in x1 ≥ r with the transmission

condition that A1U = A1(U
1 +U2) on x1 = r. One is given initial values of U and

takes initial values of Ũ vanishing. This is the most natural choice and the one

presented by Bérenger.

From the computational point of view, it is simpler to have the same unknowns

throughout. The simplification is greater when one passes from the half space case

aTransmission conditions which involve derivatives can also be treated. The algorithms of Bérenger
and our HML do not require that generality.
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to a computational domain equal to a rectangular domain in Rd. One introduces Ũ

everywhere with transmission condition [A1(U
1 + U2)] = 0 where [∗] denotes the

jump at x1 = r. The transmission condition is then equivalent to the validity of

the differential equation satisfied by Ũ in all of Rd. When one uses Ũ everywhere,

the initial values of Ũ are taken equal to zero outside the computational domain.

The initial values are constrained to satisfy U =
∑

j U
j within the computational

domain. The choice is otherwise arbitrary. For the case of the doubling above, the

choice U j(0, x) = U(0, x)/2 for j = 1, 2 is common.

If the domain of interest is |x1| ≤ r one would choose σ > 0 on |x1| > r and

vanishing for |x1| < r. The transmission condition is [A1(U
1 + U2)] = 0 with the

jump at x1 = r and also at x1 = −r.
In a rectangular geometry in Rd introduce Ũ := (U1, . . . , Ud), where U l ∈ CN

for 1 ≤ l ≤ d. Then Ũ with values in CNd is required to satisfy (in the case

F = 0),

(L̃(∂t, ∂x)Ũ)l := ∂tU
l +Al∂l




d∑

j=1

U j


+ σl(xl)U

l = 0, 1 ≤ l ≤ d. (1.5)

Each absorption coefficient σl(xl) ≥ 0 depends on only one variable. It is strictly

positive between the inside rectangle, and a larger outside rectangle. In the layer

between the rectangles, the solution is expected to decay. If Ũ solves (1.5), then U =∑d
j=1 U

j solves (1.1) on the set {x : σl(xl) = 0 for 1 ≤ l ≤ d} including the inner

rectangle. In the case considered by Bérenger, the σ were discontinuous and the

equations (1.5) are equivalent to transmission problems where on the discontinuity

surface of σj , one imposes the transmission condition of continuity of Aj

∑
� U

�.

Our first technique is the energy method. In Sec. 3.2 we show that if

(ξ1, . . . , ξd) = 0 does not meet the characteristic variety of L, then the Bérenger

method is well-posed without loss of derivatives. This applies in particular to lin-

earized elasticity and suggests that in some ways the Bérenger method is better

adapted to that situation than the Maxwell equations for which it was intended.

In Sec. 3.3 we give a nontrivial extension of the method of Métral and Vacus

to show that Bérenger’s method for the Maxwell equations in dimension d = 2

(respectively d = 3) is well-posed provided that σj(xj) ∈ W 1,∞(Rxj ) (respectively

σj(xj) ∈ W 2,∞(Rxj )). The method introduces a norm that is the sum of L2(Rd
t,x)

norms of suitable differential operators Pα(D) applied to U . It has the property that

the norm at time t1 is estimated in terms of the norm at time t2. If one introduces

the vector of unknowns Pα(D)U , this shows that the Bérenger problem becomes

strongly well-posed without loss of derivatives. Such transformations are typical

of weakly well-posed problems. (See the Dominics’ proof of Theorem 1.1 in §IV.1
of [30].)

When such an estimate is known, we prove sharp finite speed in Sec. 3.4 and

perfection in Secs. 3.5 and 3.6, the latter concerned with several variants of the

Bérenger strategy. The perfection proof passes by a study of the Laplace transform
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on {Im τ = 0}. The transformed problem is conjugated to the problem without

absorption by a τ -dependent change of independent variable x, an idea inspired

by [10].

Our second method is the Fourier–Laplace method. Bérenger introduced his

PML for Maxwell’s equations with σ piecewise constant. Using a computation

which resembles plane wave analysis of reflections for problems without lower

order terms, Bérenger argued that the layers were perfectly matched for all wave

numbers and all angles of incidence. Using variants of the same approach, other

closely related PML were constructed afterward. Performance is observed to be

enhanced using σ which are not discontinuous. Twice differentiable cubic func-

tions are the most common. The Bérenger method is a very good method for

Maxwell’s equations. The Fourier–Laplace method gives a framework for under-

standing the computations of Bérenger. In addition, it is the only method we know

for proving well-posedness of Bérenger’s PML with discontinuous σ for Maxwell’s

equations.

Plane wave analysis is sufficient to study reflection and transmission for linear

constant coefficient operators without lower order terms. Problems with lower order

terms require other tools as it is no longer true that the plane waves generate all

solutions. The first level of generalization is to use the Fourier–Laplace transform for

problems where an absorbing layer occupies x1 ≥ 0 and both L and R have constant

coefficients. Hersh [11] found necessary and sufficient conditions for (weak) well-

posedness of transmission problems. We recall those ideas in Sec. 4.1.1 including

the modifications needed for characteristic interfaces, and verify in Sec. 4.1.3 that

the condition is satisfied for the Bérenger splitting of general systems with one

discontinuous absorption coefficient. To our knowledge this is the first proof that

the Bérenger split transmission problem with discontinuous σ(x1) is well-posed.

We give necessary and sufficient conditions for perfection at a planar interface.

In Sec. 4.1.4 we verify that the condition is satisfied for the Bérenger splitting.

In Sec. 4.1.5 we prove that in the case of Maxwell’s equations (and not in

general) the perfection criterion follows by analytic continuation from the plane

wave identities established by Bérenger.

In Sec. 4.2 we prove using the Fourier–Laplace method that Bérenger’s method

with one coefficient σ1(x1) ∈ Lip(Rx1) is well-posed and perfectly matched. In

our use of the Fourier–Laplace method, including this one, a central role is played

by the Seidenberg–Tarski theorem estimating the asymptotic behavior of functions

defined by real polynomial equations and inequalities. The Fourier–Laplace method

is limited to coefficients that depend only on x1.

Our third method of analysis is to study the behavior of short wavelength

asymptotic solutions. For such solutions we examine in Sec. 5 the decay in the

absorbing layers, and reflections at discontinuities of σj(xj) or its derivatives when

smoother transitions are used. For problems other than Maxwell, Hu [14] and

Bécache, Fauqueux, and Joly [5] have already shown that the supposedly absorbing

layers may in fact lead to growth. The study of short wavelength solutions in the
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layer yields precise and clear criteria, also valid for variable coefficients, explaining

the phenomenon.

The analysis of the reflection of short wavelength wave packets at the interface

with the layer also leads us to propose in Sec. 6, a new absorbing layer strategy

which we call Harmoniously Matched Layers. The method starts with a smart layer

for a symmetric hyperbolic system. Then for wavelength ε, asymptotic solutions of

amplitude O(1) and discontinuous σ, the leading order reflected wave at non-normal

incidence typically has amplitude proportional to σε. Therefore an extrapolation

using computations with two values of σ eliminates the reflections proportional to σ.

This yields a method with leading order reflection O(ε2) at all angles of incidence.

The resulting method inherits the simple L2 estimates of the symmetric systems.

More generally if the first discontinuous derivative of the absorption coefficient is

the kth, then the reflection is O([Dkσ]εk+1) and the same extrapolation removes the

leading order reflection. In Sec. 6.4 we investigate several implementations of this

idea and show that the method with cubic σ is competitive with that of Bérenger

with the same σ. On short wavelengths or random data, it performs better than

the Bérenger method. On long wavelengths, Bérenger performs better.

Though we provide satisfactory answers to a wide range of questions about

absorbing layers, there is a notable gap.

Open problem. For the original strategy of Bérenger for Maxwell’s equations with

discontinuous absorptions in more than one direction we do not know if the resulting

problem is well-posed.

Discussion. (1) In Sec. 3.6 we prove well-posedness and perfection for a closely

related method. (2) In practice discontinuous σ have been abandoned, but it is strik-

ing that this problem remains open. (3) Once well-posedness is proved, perfection

follows by the proof in Sec. 3.5.

2. Well-Posed First-Order Cauchy Problems

2.1. Basic definitions

Consider a first-order system of partial differential equations for CN valued func-

tions in R1+d,

L(x, ∂t, ∂x)U := ∂tU +

d∑

l=1

Al∂lU + B(x)U = 0. (2.1)

The principal part of L, denoted L1,

L1(∂t, ∂x) := ∂t +

d∑

l=1

Al∂l,

has constant matrix coefficients Al. In the Bérenger strategy, the operators L̃ are

the centerpieces and they differ from L. It is for this reason that we introduce L
that can be L or L̃.
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Definition 2.1. The characteristic variety Char(L) ⊂ C1+d\{0} of L is the set of

(τ, ξ) such that detL1(τ, ξ) = 0.

Definition 2.2. The smooth variety hypothesis is satisfied at (τ , ξ) ∈ Char(L) if

there is a conic neighborhood Ω of ξ ∈ Rd\{0} and a C∞ function ξ �→ τ(ξ) on Ω so

that on a neighborhood of (τ , ξ), the characteristic variety has equation τ = τ(ξ).

At such a point the associated group velocity is defined to be v := −∇ξτ(ξ).

Example 2.1. This hypothesis holds if and only if for ξ near ξ the spectrum of

L(0, ξ) near −τ consists of a single point with multiplicity independent of ξ. For

the polynomial (τ + ξ1)(τ
2 − |ξ|2) with d > 1 the hypothesis fails at and only at

τ + ξ1 = 0 where two sheets of the variety are tangent. Replacing the first factor

by τ + cξ1 with c > 1 the hypothesis fails where the two sheets cross transversally.

For 0 ≤ c < 1, the hypothesis holds everywhere.

The Cauchy problem for L is to find a solution U defined on [0,∞[×Rd satisfy-

ing (2.1) with prescribed initial data U(0, ·).

Definition 2.3. The Cauchy problem for L is weakly well-posed if there exist q > 0,

K > 0, and α ∈ R so that for any initial values in Hq(Rd), there is a unique solution

U ∈ C0([0,+∞[;L2(Rd)) with

∀ t ≥ 0, ‖U(t, ·)‖L2(Rd) ≤ Keαt‖U(0, ·)‖Hq(Rd). (2.2)

When the conclusion holds with q = 0, the Cauchy problem is called strongly

well-posed.

Theorem 2.1. (i) The Cauchy problem for L1 is weakly well-posed if and only if

for each ξ ∈ Rd, the eigenvalues of L1(0, ξ) are real.

(ii) The Cauchy problem for L1 is strongly well-posed if and only if for each ξ ∈ Rd,

the eigenvalues of L1(0, ξ) are real and L1(0, ξ) is uniformly diagonalisable, there

is an invertible S(ξ) satisfying,

S(ξ)−1L1(0, ξ)S(ξ) = diagonal , S, S−1 ∈ L∞(Rd
ξ).

(iii) If B has constant coefficients, then the Cauchy problem for L is weakly well-

posed if and only if there exists M ≥ 0 such that for any ξ ∈ Rd, detL(τ, ξ) = 0 ⇒
|Im τ | ≤M .

Remark 2.1. (1) The algebraic conditions in (i) and (iii) express weak hyperbol-

icity, in the sense of G̊arding. The necessity of uniform diagonalizability in (ii)

expressing strong hyperbolicity is due to Kreiss [8, 19].

(2) An application of Grönwall’s inequality shows that if L1 satisfies the condition

of Theorem 2.1(ii), then for all B(x) ∈ L∞(Rd; Hom(CN )), the Cauchy problem for

L1 +B is strongly well-posed.
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(3) By property (ii), if L is strongly hyperbolic, then every eigenvalue −τ of L1(0, ξ)

is semi-simple. Equivalently, for any (τ, ξ) ∈ Char(L) the eigenvalue 0 of L1(τ, ξ) is

semi-simple, i.e. its geometric multiplicity is equal to its algebraic multiplicity. It is

equivalent to saying that KerL1(τ, ξ) = Ker(L1(τ, ξ))
2, or that CN = KerL1(τ, ξ)⊕

RangeL1(τ, ξ).

2.2. Characteristic variety and projectors for Bérenger’s L̃

To study the Cauchy problem for Bérenger’s split operators L̃, one starts with a

study of the characteristic, variety. The coefficients of Bérenger’s operator L̃ are

the dN × dN matrices,

Ãl :=




0 · · · · · · · · · 0

...
...

Al · · · · · · · · · Al

...
...

0 · · · · · · · · · 0




, B(x) :=




σ1(x1)IN · · · 0

...
. . .

...

0 · · · σd(xd)IN


. (2.3)

The principal symbol of L̃ is

L̃1(τ, ξ) =




ξ1A1 + τIN ξ1A1 · · · ξ1A1

ξ2A2 ξ2A2 + τIN · · · ξ2A2

...
...

. . .
...

ξdAd ξdAd · · · ξdAd + τIN



.

Theorem 2.2. (i) The characteristic polynomial of L̃ is

det L̃1(τ, ξ) = τN(d−1) detL(τ, ξ). (2.4)

The polynomial associated to the full symbol including the absorption is

det L̃(τ, ξ) = detL




d∏

j=1

(τ + σj), ξ1
∏

j �=1

(τ + σj), ξ2
∏

j �=2

(τ + σj), . . . , ξd
∏

j �=d

(τ + σj)


.

(2.5)

If (τ, ξ) ∈ CharL with τ �= 0, the following properties hold.

(ii) The mapping

S : Φ̃ = (Φ1, . . . ,Φd) �→ −
d∑

j=1

Φj
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is a linear bijection from Ker L̃1(τ, ξ) onto KerL1(τ, ξ). Its inverse is given by

Φ �→
(
ξ1
τ
A1Φ, . . . ,

ξd
τ
AdΦ

)
.

(iii) The kernel of the adjoint L̃1(τ, ξ)
∗ is equal to the set of vectors Φ̃ = (Φ, . . . ,Φ)

such that Φ ∈ KerL1(τ, ξ)
∗. The range of L̃1(τ, ξ) is equal to the set of vectors

Ψ̃ = (Ψ1, . . . ,Ψd) such that (
∑d

j=1 Ψj,Φ) = 0 for all Φ ∈ KerL1(τ, ξ)
∗.

(iv) If moreover the eigenvalue 0 of L1(τ, ξ) with τ �= 0 is semi-simple, the eigen-

value 0 of L̃1(τ, ξ) is semi-simple. Equivalently,

Ker L̃1(τ, ξ)⊕ Range L̃1(τ, ξ) = CdN .

Proof. (i) Adding the sum of the other rows to the first row in the determinant

of L̃1(τ, ξ) yields,

det L̃1(τ, ξ) =

∣∣∣∣∣∣∣∣∣

L(τ, ξ) · · · · · · L(τ, ξ)

ξ2A2 ξ2A2 + τIN · · · ξ2A2

...
. . .

...

ξdAd · · · · · · ξdAd + τIN

∣∣∣∣∣∣∣∣∣
.

Subtracting the first column from the others yields,

det L̃1(τ, ξ) =

∣∣∣∣∣∣∣∣∣

L(τ, ξ) 0 · · · 0

ξ2A2 τIN · · · 0
...

. . .
...

ξdAd 0 · · · τIN

∣∣∣∣∣∣∣∣∣
.

The first result follows. For the second, write

det L̃(τ, ξ) =

∣∣∣∣∣∣∣∣∣∣∣

ξ1A1 + (τ + σ1)IN ξ1A1 · · · ξ1A1

ξ2A2 ξ2A2 + (τ + σ2)IN · · · ξ2A2

...
. . .

...

ξdAd · · · · · · ξdAd + (τ + σd)IN

∣∣∣∣∣∣∣∣∣∣∣

.

For each i, divide the ith row by τ + σi to find,

det L̃(τ, ξ) =

d∏

j=1

(τ + σj)
N det L̃1

(
1,

ξ1
τ + ξ1

, . . . ,
ξd

τ + ξd

)
.

By formula (2.4) this implies

det L̃(τ, ξ) =

d∏

j=1

(τ + σj)
N detL

(
1,

ξ1
τ + ξ1

, . . . ,
ξd

τ + ξd

)
,

which is equivalent to (2.5).
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(ii) Suppose that 0 �= Φ̃ = (Φ1, . . . ,Φd) ∈ Ker L̃1(τ, ξ). Then, for any l,

τΦl + ξlAl

d∑

j=1

Φj = 0. (2.6)

Add to find

L1(τ, ξ)
d∑

j=1

Φj = 0.

Therefore the map Φ̃ �→ −∑j Φj maps Ker L̃1(τ, ξ) to KerL1(τ, ξ).

If
∑d

j=1 Φj = 0, Eq. (2.6) implies that all the Φj vanish since τ �= 0. Therefore

the mapping is injective.

Let Φ ∈ KerL1(0, ξ). Define

Φj =
ξj
τ
AjΦ. (2.7)

This defines an element Φ̃ = (Φ1, . . . ,Φd) in Ker L̃1(0, ξ) with SΦ̃ = Φ, so the

mapping is surjective with inverse given by (2.7).

(iii) Since L̃1(τ, ξ)
∗Φ̃ = (L1(τ, ξ)

∗Φ, . . . , L1(τ, ξ)
∗Φ) it follows that the set of Φ̃ is

included in the kernel. Since the matrices are square, KerL1(τ, ξ) and KerL1(τ, ξ)
∗

have the same dimension. The set of Φ̃ has dimension equal to this common dimen-

sion which by (ii) is equal to the dimension of Ker L̃1(τ, ξ) proving that they exhaust

the kernel. The last property follows directly from the fact that Range L̃1(τ, ξ) is

the orthogonal of KerL1(τ, ξ)
∗.

(iv) It suffices to show that the intersection of these spaces consists of the zero

vector. Equivalently, it suffices to show that there is no Φ �= 0 in KerL1(τ, ξ) such

that

∀Ψ ∈ KerL1(τ, ξ)
∗,




d∑

j=1

ξj
τ
AjΦ,Ψ


 = 0.

The quantity above is equal to −(Φ,Ψ), and Φ would belong to (KerL1(τ, ξ)
∗)⊥ =

RangeL1(τ, ξ). Since τ �= 0 and KerL1(τ, ξ)∩RangeL1(τ, ξ) = 0, this would imply

that Φ = 0, leading to a contradiction.

Denote by ΠL(τ, ξ) (respectively ΠeL(τ, ξ)), the spectral projector onto the kernel

of L1(τ, ξ) (respectively L̃1(τ, ξ)) along its range. For L it is given by

ΠL(τ, ξ) =
1

2πi

∮

|z|=ρ

(zI − L1(τ, ξ))
−1 dz
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with ρ small. Like the characteristic variety, ΠL depends only on the principal

symbol L1. It is characterized by,

Π2
L = ΠL, ΠLL1(τ, ξ) = 0, L1(τ, ξ)ΠL = 0, rankΠL = dimKerL1(τ, ξ),

(2.8)

where the τ, ξ dependence of ΠL is suppressed for ease of reading. The first three

conditions assert that ΠL(τ, ξ) is a projector annihilating Range L1(τ, ξ) and pro-

jecting onto a subspace of KerL1(τ, ξ). That it maps onto the kernel is implied by

the last equality.

Proposition 2.1. The matrix ΠeL(τ, ξ) is given by

ΠeL(τ, ξ) = −




ξ1A1

τ
ΠL(τ, ξ) · · · ξ1A1

τ
ΠL(τ, ξ)

...
...

ξdAd

τ
ΠL(τ, ξ) · · · ξdAd

τ
ΠL(τ, ξ)



.

Proof. Call the matrix on the right M(τ, ξ). The properties of the projectors

associated to L yield formulas for the (i, j) block of the products

(M(τ, ξ)L̃1(τ, ξ))i,j = −ξiAi

τ
ΠLL1 = 0,

(L̃1(τ, ξ)M(τ, ξ))i,j = −ξiAi

τ
L1ΠLL1 = 0 and

(M(τ, ξ)M(τ, ξ))i,j =
ξiAi

τ2
ΠL(L1 − τI)ΠL = −ξiAi

τ
Π2

L = (M(τ, ξ))i,j .

This proves the first three equalities of (2.8). Since M projects onto a subspace

of Ker L̃1, rank M ≤ dimKer L̃1. Apply M to a vector (Ψ, 0, . . . , 0) and compare

with part (ii) of Theorem 2.2 to see that the range of M contains Ker L̃1(τ, ξ), so

rankM ≥ dimKer L̃1. This proves the last equality of (2.8).

Remark 2.2. (1) The characteristic varieties of L and L̃ are identical in τ �= 0.

(2) In particular, the smooth variety hypothesis is satisfied at (τ, ξ) with τ �= 0 for

one if and only if it holds for both, and the varieties have the same equations and

the same group velocities.

(3) When the smooth variety hypothesis is satisfied, the spectral projection

ΠeL(τ(ξ), ξ) is analytic in ξ, hence of constant rank. It follows that 0 is a semi-

simple eigenvalue of L̃(τ(ξ), ξ) on a conic neighborhood of ξ.

If the eigenvalue 0 of L1(τ, ξ) is semi-simple, the kernel and the range of L1(τ, ξ)

are complementary subspaces as mentioned in Remark 2.1, (3), and the partial

inverse QL(τ, ξ) of L1(τ, ξ) is uniquely determined by

QL(τ, ξ)ΠL(τ, ξ) = 0, QL(τ, ξ)L1(τ, ξ) = I −ΠL(τ, ξ). (2.9)

The partial inverse QL̃(τ, ξ) is defined in the same way from L̃1(τ, ξ).
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2.3. The Cauchy problem for Bérenger’s split operators

Part (i) of Theorem 2.2 proves the following:

Corollary 2.1. If the Cauchy problem for L is weakly well-posed, then so is the

Cauchy problem for the principal part L̃1.

An important observation is that though the Cauchy problem for L̃1 is at least

weakly well-posed, the root τ = 0 is for all ξ a multiple root. When there are

such multiple roots, it is possible that order zero perturbations of L̃1 may lead to

ill-posed Cauchy problems. The next example shows that this phenomenon occurs

for the Bérenger split operators with constant absorption σj . Theorem 2.4 shows

that when τ = 0 is a root of constant multiplicity of detL1(τ, ξ) = 0, the constant

coefficient Bérenger operators have well-posed Cauchy problems. Cases where the

problem are strongly well-posed are identified. In the latter cases, arbitrary bounded

zeroth-order perturbations do not destroy the strong well-posedness.

Example 2.2. (1) For L := ∂t + ∂1+ ∂2, detL(τ, ξ) = τ + ξ1 + ξ2. Therefore τ = 0

is a root if and only if ξ1 + ξ2 = 0. The doubled system with absorption σ = 1 in

x1 is

L̃ := ∂t +

(
1 1

0 0

)
∂1 +

(
0 0

1 1

)
∂2 +

(
1 0

0 0

)
and

det L̃(τ, ξ,−ξ) = det

(
τ + ξ + 1 ξ

−ξ τ − ξ

)

= (τ + ξ + 1)(τ − ξ) + ξ2 = τ2 + τ − ξ.

The roots of det L̃(τ, ξ,−ξ) = 0 are τ = (−1 ± √
1 + 4ξ)/2. Taking ξ →

−∞ shows that the Cauchy problem for L̃ is not weakly well-posed by

Theorem 2.1(iii).

(2) More generally if τ + ξ1 + ξ2 is a factor of detL1(τ, ξ), then for σ �= 0 the

operator L̃ is not even weakly hyperbolic. In this case (2.5) implies that τ2 + τ − ξ

is a factor of det L̃(τ, ξ,−ξ).
(3) This generalizes to linear hyperbolic factors in arbitrary dimension.

A key tool is the following special case of Theorem A.2.5 in [13].

Theorem 2.3. (Seidenberg–Tarski theorem) If Q(ρ, ζ), R(ρ, ζ), and S(ρ, ζ) are

polynomials with real coefficients in the n+1 real variables (ρ, ζ1, . . . , ζn) and the set

M(ρ) := {ζ : R(ρ, ζ) = 0, S(ρ, ζ) ≤ 0}
is nonempty when ρ is sufficiently large, define

µ(ρ) := sup
ζ∈M(ρ)

Q(ρ, ζ).
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Then either µ(ρ) = +∞ for ρ large, or there are a ∈ Q and A �= 0 so that

µ(ρ) = Aρa(1 + o(1)), ρ→ ∞.

Theorem 2.4. Suppose that τ = 0 is an isolated root of constant multiplicity m of

detL1(τ, ξ) = 0.

(i) If the Cauchy problem for L1 is strongly well-posed, then for arbitrary constant

absorptions σj ∈ C, the Cauchy problem for L̃1 +B is weakly well-posed.

(ii) If the Cauchy problem for L1 is strongly well-posed, and if there is a ξ �= 0 such

that KerL(0, ξ) �= ⋂ξj �=0 KerAj , then L̃1(0, ξ) is not diagonalizable. Therefore

the Cauchy problem for L̃ is not strongly well-posed.

(iii) If the Cauchy problem for L is strongly well-posed and for all ξ,KerL1(0, ξ) =⋂
ξj �=0 KerAj , then the Cauchy problem for L̃ is strongly well-posed. This con-

dition holds if L1(0, ∂x) is elliptic, that is detL1(0, ξ) �= 0 for all real ξ.

Remark 2.3. (1) Part (i) is a generalization of results in [15] and Theorem 1 in [5].

In the latter paper, Bécache et al. treated the caseN = 2 assuming that the nonzero

eigenvalues of L1(0, ξ) are of multiplicity one. They conjectured that the result was

true more generally. Like them we treat the roots near zero differently from those

that are far from zero. The treatment of each of these cases is different from theirs.

The tricky part is the roots near zero. We replace their use of Puiseux series by the

related Seidenberg–Tarski Theorem 2.3.

(2) Abarbanel and Gottlieb [1] proved (ii) in the special case of Maxwell’s equa-

tions. The general argument below is simpler and yields a necessary and sufficient

condition for loss of derivatives when the eigenvalue 0 of L(0, ξ) is of constant mul-

tiplicity.

(3) Part (iii) is new, extending a result in the thesis of S. Petit-Bergez [25].

Proof. (i) For ξ ∈ Rd\0, define for ρ ∈ R+,

E(ρ) := max{Im (τ) : det L̃(τ, ξ) = 0, ξ ∈ Rd, |ξ|2 = ρ2}.

Apply the Seidenberg–Tarski Theorem 2.3 with real variables ρ, ζ = (Re τ, Im τ, ξ)

and polynomials R(ρ, ζ) = | det L̃(τ, ξ)|2 + (|ξ|2 − ρ2)2, S = 0 and Q(ρ, ζ) = Im τ .

Conclude that there is an α �= 0 and a rational r so that

E(ρ) = αρr(1 + o(1)), ρ→ ∞.

To prove the result it suffices to prove that Im τ is bounded, i.e. to show that r ≤ 0.

Suppose on the contrary that r > 0.

Given τ, ξ define k ∈ Sd−1, ρ ∈ R+ and θ by

k :=
ξ

|ξ| , ξ = ρk, θ :=
τ

ρ
.
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Choose sequences τ(n) and ξ(n) so that for n→ ∞,

det L̃(τ(n), ξ(n)) = 0, Im τ(n) = α(ρ(n))r(1 + o(1)). (2.10)

Write

L̃(τ, ξ) = L̃1(τ, ξ) +B = ρ

(
L̃1(θ, k) +

1

ρ
B

)
= ρ

(
θI2N×2N + L̃1(0, k) +

1

ρ
B

)
.

The matrix L̃(τ, ξ) is singular if and only if −θ is an eigenvalue of L̃1(0, k)+ ρ−1B.

For large ρ this is a small perturbation of L̃1(0, k). Choose µ > 0 so that for

|k| = 1, the only eigenvalue of L̃1(0, k) in the disk |θ| ≤ 2µ is θ = 0.

Because of the strong well-posedness of L, there is a uniformly independent basis

of unit eigenvectors for the eigenvalues of L1(0, k) in |θ| ≥ µ. By Theorem 2.2(iv)

there is a uniformly independent basis of unit eigenvectors for the eigenvalues of

L̃1(0, k) in |θ| ≥ µ.

It follows that there is a C0 so that for ρ > C0 the eigenvalues of L̃1(0, k)+ρ
−1B

in |θ| > µ differ from the corresponding eigenvalues of L̃1(0, k) by no more than

C0/ρ. In particular, their imaginary parts are not larger than C0/ρ. Therefore, the

corresponding eigenvalues τ = ρθ have bounded imaginary parts. Thus for n large,

E(ρ(n)) can be reached only for the eigenvalues −θ(n) which are perturbations of

the eigenvalue 0 of L̃1(0, k(n)).

Perturbation by O(1/ρ) of the uniformly bounded family of dN × dN matrices,

L̃1(0, k), can move the eigenvalues by no more thanO(ρ−
1

dN ). Since the unperturbed

eigenvalue is 0, |θ(n)| ≤ Cρ(n)−1/dN , so

|τ(n)| ≤ Cρ(n)1−
1

dN , Im τ(n) = αρ(n)r(1 + o(1)), α �= 0.

Therefore r ≤ 1− 1/dN < 1 and

d∏

j=1

(τ(n) + σj) = τ(n)d(1 + o(1)), ξ�(n)
∏

j �=�

(τ(n) + σj) = ξ�(n)τ(n)
d−1(1 + o(1)).

Insert in identity (2.5) to find

detL1(τ(n)
d(1 + o(1)), ξ(n)τ(n)d−1(1 + o(1))) = 0.

Divide the argument by ρ(n)τ(n)d−1 and use homogeneity to find

detL1

(
τ(n)

ρ(n)
(1 + o(1)), k(n)(1 + o(1))

)
= 0.

The constant multiplicity hypothesis shows that

detL1(τ, ξ) = τmF1(τ, ξ) and ∀ ξ ∈ Rd, F1(0, ξ) �= 0. (2.11)
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Since for n large (τ(n)/ρ(n))(1 + o(1)) �= 0 we have

F1

(
τ(n)

ρ(n)
(1 + o(1)), k(n)(1 + o(1))

)
= 0.

Passing to a subsequence, we may assume that the bounded sequence k(n) → k.

In addition, τ(n)/ρ(n) → 0 so passing to the limit yields F1(0, k) = 0 contradict-

ing (2.11). This contradiction proves (i).

(ii) Theorem 2.2(i) shows that 0 is an eigenvalue of L̃1(0, ξ) with algebraic mul-

tiplicity equal to N(d − 1) + m. It remains to see that with the assumption, the

dimension of Ker L̃1(0, ξ) is strictly smaller than N(d− 1) +m. By definition

Ker L̃1(0, ξ) =



Φ̃ = (Φ1, . . . ,Φd) :

d∑

j=1

Φj ∈ ∩pKer (ξpAp)



.

Define

E1 :=



Φ̃ = (Φ1, . . . ,Φd) :

d∑

j=1

Φj = 0



.

Then E1 ⊂ Ker L̃1(0, ξ) and dim E1 = N(d− 1).

Define

E2 := KerL1(0, ξ)⊗Od−1, dim E2 = m.

If Φ̃ ∈ Ker L̃1(0, ξ),
∑d

j=1 Φj ∈ KerL1(0, ξ), write

Φ̃ =
(∑

Φj , 0, . . . , 0
)
−W,

(∑
Φj , 0, . . . , 0

)
∈ E2, W ∈ E1.

Thus, Ker L̃1(0, ξ) ⊂ E1 ⊕ E2.
Pick V in KerL1(0, ξ), but not in

⋂
ξj �=0 KerAj . Then

Ṽ = (V, 0, . . . , 0) ∈ E2 and V /∈ Ker L̃1(0, ξ).

This proves that Ker L̃1(0, ξ) is a proper subset of E1 ⊕ E2, so

dim(Ker L̃1(0, ξ)) < dim E1 + dim E2 = N(d− 1) +m.

Thus the geometric multiplicity of the eigenvalue 0 is strictly less than its algebraic

multiplicity. Therefore, L̃1(0, ξ) is not diagonalizable. This proves (ii).

(iii) To prove that the split problem is strongly well-posed, it suffices to consider the

principal part. Suppose L(0, ξ) is uniformly diagonalizable on a conic neighborhood

of ξ ∈ RN\0. For Ũ = (U1, . . . , Ud), introduce

Ṽ = (V 1, . . . , V d) with V 1 :=

d∑

j=1

U j and V l := U l for 2 ≤ l ≤ d. (2.12)
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Then

L̃1(∂t, ∂x)Ũ = 0 ⇔ ∂tṼ + Q̃(∂x)Ṽ = 0, with Q̃(ξ) :=




L1(0, ξ) 0 · · · 0

ξ2A2 0 · · · 0

...
...

. . .
...

ξdAd 0 · · · 0



.

The eigenvalues of Q̃(ξ) are those of L1(0, ξ), therefore real. It suffices to diag-

onalize uniformly Q̃(ξ) on the conic neighborhood of ξ. By homogeneity it suffices

to consider ξ with |ξ| = 1. By hypothesis there exist a real diagonal matrix D(ξ)

and an invertible matrix S(ξ) so that

L1(0, ξ) = S(ξ)D(ξ)S−1(ξ) and ∃K > 0, ∀ ξ ∈ Rd, ‖S(ξ)‖+ ‖S−1(ξ)‖ ≤ K.

Seek a diagonalization of Q̃(ξ) on |ξ| = 1 in the form,

S̃(ξ)=




S(ξ) 0 · · · 0

ξ2A2Q(ξ)S(ξ) Id · · · 0
...

...
. . .

...

ξdAdQ(ξ)S(ξ) 0 · · · Id


 so (S̃(ξ))−1 =




(S(ξ))−1 0 · · · 0

−ξ2A2Q(ξ) Id · · · 0
...

...
. . .

...

−ξdAdQ(ξ) 0 · · · Id




(2.13)

with Q(ξ) to be determined. Then,

S̃−1(ξ)Q̃(ξ)S̃(ξ) =




D(ξ) 0 · · · 0

ξ2A2(I −Q(ξ)L1(0, ξ))S(ξ) 0 · · · 0
...

...
. . .

...

ξdAd(I −Q(ξ)L1(0, ξ))S(ξ) 0 · · · 0




and

S̃−1(ξ)Q̃(ξ)S̃(ξ) is diagonal ⇔ ξjAj(I −Q(ξ)L1(0, ξ)) = 0, 2 ≤ j ≤ d. (2.14)

From the strong well-posedness of L1, it follows that uniformly in ξ one has

KerL1(0, ξ)⊕ RangeL1(0, ξ) = CN . Choose Q equal to the left inverse of L1(0, ξ)

defined in (2.9). Since KerL1(0, ξ) = ∩Ker ξjAj , the condition on the right in (2.14)

holds so S̃(ξ) diagonalizes Q̃(ξ). Since S(ξ) and S(ξ)−1 are bounded on a conic

neighborhood, it follows that S̃(ξ) and S̃(ξ)−1 are bounded on a neighborhood of

ξ in |ξ| = 1. A finite cover of the sphere, completes the proof.

Remark 2.4. Denote by S̃(ξ) the function homogeneous of degree zero given

by (2.13) for |ξ| = 1 with Q constructed in the proof. Then ‖S̃(D)Ṽ (t)‖L2(Rd)

with Ṽ from (2.12) is a norm equivalent to ‖Ũ(t)‖L2(Rd) and is conserved for solu-

tions of L̃1(∂)Ũ = 0. Those solutions yield a unitary group with respect to the

norm ‖S̃(D)Ṽ ‖L2(Rd).
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3. Analysis of the Bérenger’s PML by Energy Methods

This section contains results proving that the initial value problems so defined are

well-posed. We begin with the case of Gevrey absorptions, then W 2,∞, and finally

the case of the Heaviside function.

In Sec. 3.1, we prove that when L̃ is only weakly well-posed, Gevrey regular σl
lead to well-posed initial value problems in Gevrey classes. Commonly used σ are

not this smooth.

The strongest result, from Sec. 3.2, applies when L(0, ∂x) is elliptic. Important

cases are the wave equation and linearized elasticity. In these cases the operator L̃1

is strongly hyperbolic so remains strongly hyperbolic even with general bounded

zeroth-order perturbations. Thus for bounded σl(xl), the initial value problem is

strongly well-posed.

In Sec. 3.3, we analyze the case of L̃ associated to Maxwell’s equations with

finitely smooth σ. We follow the lead of [25] and extend the analysis of [22] to several

absorptions σl and to higher dimensions. Related estimates for the linearized Euler

equation have been studied by Métivier [21].

The results of this section do not treat the case of Bérenger’s method for

Maxwell’s equations with discontinuous σj . The case of one absorption is treated

in Sec. 4. A closely related method is treated by an energy method in Sec. 3.6.

3.1. General operators and Gevrey absorption

The next result is implied by Bronstein’s theorem [6, 7, 23, 24]. It shows that when

L1(0, ξ) has only real eigenvalues and the σj belong to the appropriate Gevrey class,

then the Cauchy problem for L̃ is solvable for Gevrey data.

Definition 3.1. For 1 ≤ s < ∞, f ∈ S′(Rd) belongs to the Gevrey class Gs(Rd)

when

∃C,M, ∀α ∈ Nd, ‖∂αf‖L2(Rd) ≤Mα!C|α|.

Then Gs ⊂ ∩σH
σ(Rd) ⊂ C∞(Rd). For s > 1, the compactly supported elements

of Gs are dense. If |f̂(ξ)| ≤ Ce−|ξ|a with 0 < a < 1, then u ∈ G1/a.

Theorem 3.1. If the principal part L1 is weakly hyperbolic and σj ∈ GN/N+1(Rd),

then for arbitrary f ∈ GN/(N+1)(Rd) there is one and only one solution u ∈
C∞(R1+d) to

L̃u = 0, u(0, ·) = f.

The solution depends continuously on f .

3.2. Strong hyperbolicity when L(0, ∂) is elliptic

Theorem 3.2. If L is strongly well-posed and L(0, ∂) is elliptic, then L̃ is strongly

well-posed for any absorption (σ1(x1), . . . , σd(xd)) in (L∞(R))d.
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Proof. Kreiss’ Theorem 2.1 asserts that an operator with constant coefficient prin-

cipal part is uniformly well-posed if and only if the principal part is uniformly diag-

onalizable on a conic neighborhood of each ξ �= 0. Therefore the corollary follows

from the third part of Theorem 2.4.

Example 3.1. This result implies that the PML model for the elastodynamic

system is strongly well-posed. The system is written in the velocity-stress (v,Σ)

formulation,

ρ∂tv − div Σ = 0, ∂tΣ− Cε(v) = 0, εij(v) := (∂ivj + ∂jvi),

with positive definite elasticity tensor C and Σ := Cε. See [5], where the authors

showed that such layers may be amplifying (see Sec. 5).

3.3. The method of Métral–Vacus extended to the 3D PML

Maxwell system

Métral and Vacus proved in [22] a stability estimate for Bérenger’s two-dimensional

PML Maxwell system with one absorption σ1(x1) ∈ W 1,∞(R) and x = (x1, x2) ∈
R2. There are two crucial elements in their method. First following Bérenger, they

do not split all variables in all directions. This section begins by showing that the

partially split model is equivalent to the fully split model restricted to functions Ũ

some of whose components vanish. The L̃ evolution leaves this space invariant and

its evolution on that subspace determines its behavior everywhere.

The second element is that on the partially split subspace there is an a priori

estimate bounding the norm at time t by the same norm at time 0. This looks incon-

sistent with the fact that the Cauchy problem is only weakly well-posed. However,

the norm is not homogeneous. Certain linear combinations of components have more

derivatives estimated than others. The observation of [22] is that the system satis-

fied by the fields and certain combinations of the fields and their derivatives, yields

a large but symmetrizable first-order system. These estimates have been obtained,

and extended in Sabrina Petit’s thesis [25] in the 2D case with two coefficients, and

in the 3D case for an absorption in only one direction.

In this section, motivated in part by the clarification of the role of symmetriz-

ers in the work of Métivier [21] for the 2D variable coefficient Euler equations in

geophysics, we construct analogous more elaborate functionals which suffice for the

general case of three absorptions in three dimensions. They require σj ∈W 2,∞(R).
Maxwell’s equations for ∂tE1 and ∂tB1 contain only partial derivatives with

respect to x2, x3 and not x1. In such a situation Bérenger splits the corresponding

equations in directions x2, x3 but not in direction x1. To see why this is a special

case of the general splitting algorithm (1.5) reason as follows. If the equation for

∂tUj from L does not contain any terms in ∂k, that is the jth row of Ak vanishes,

then the equation for the jth component of the unknown Uk corresponding to the
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splitting for the kth space variable is,

∂tU
k
j + σk(xk)U

k
j = 0, Uk

j = e−σk(xk)tUk
j (0, x). (3.1)

Substituting this into the other equations reduces the number of unknowns by one.

The simplest strategy is to take initial data Uk
j (0, x) = 0 which yields the operator

L̃ restricted to the invariant subspace of functions so that Uk
j = 0. Conversely if

one knows how to solve that restricted system then the full system can be reduced

to the restricted system with an extra source term from (3.1).

Summary. To study the fully split system, it is sufficient to study the system

restricted to {Uk
j = 0}. Performing this reduction for each missing spatial deriva-

tive, corresponds to splitting equations only along directions containing the corre-

sponding spatial derivatives.

An extreme case of this reduction occurs if an equation contains no spatial deriva-

tives, that unknown is eliminated entirely. For the Maxwell system which is the

subject of this section this does not occur. The use of unsplit variables

• reduces the size of Ũ reducing computational cost,

• corresponds to Bérenger’s original algorithm,

• is important for the method of Métral–Vacus which takes advantage of the van-

ishing components Uk
k .

Consider the 3D Maxwell equations,

∂tE −∇×H = 0, ∂tH +∇× E = 0.

Defining U = E+iH , they take the symmetric hyperbolic form (1.1) with hermitian

matrices

A1 =



0 0 0

0 0 −i
0 i 0


 , A2 =




0 0 i

0 0 0

−i 0 0


 and A3 =



0 −i 0

i 0 0

0 0 0


. (3.2)

Introduce the splitting (1.5) with some components unsplit. Define the subspace

H with vanishing components corresponding to the unsplit components

H := {Ũ = (U1, U2, U3) ∈ H2(R3;C3)3 : U1
1 = 0, U2

2 = 0, U3
3 = 0}.

For Ũ = (U1, U2, U3) in H, define

U := U1 + U2 + U3, V j := ∂jU, V i,j := ∂ijU, W :=
∑

k

σk(xk)U
k,

W j := ∂jW, Z :=
∑

k

∂k(Wk + σk(xk)Uk), Zj := ∂jZ,

V := (U, V i, V i,j ,W j, U j ,W,Zj) ∈ C54.

(3.3)

The function Z and therefore Zj are C-valued. The other slots in V are C3-valued.

The second derivatives V i,j of U are ordered as V 1,1, V 2,1, V 3,1, V 2,2, V 3,2, V 3,3.
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This convention is important when the equations for V are written in matrix form.

Computing in turn W j , Z, Zj requires two derivatives of σj .

The unknown in (1.5) is Ũ = (U1, U2, U3). The U j appear in the fifth slot of V.
Therefore,

‖V(t, ·)‖(L2(R3))54 ≥ ‖Ũ(t, ·)‖(L2(R3))9 .

For the Cauchy problem the initial data is Ũ0 = (U1
0 , U

2
0 , U

3
0 ), from which V0 is

deduced by the derivations above, and

‖V0‖(L2(R3))54 ≤ C‖Ũ0‖(H2(R3))9 .

Theorem 3.3. If σj , for j = 1, 2, 3, belong to W 2,∞(R), then for any Ũ0 =

(U1
0 , U

2
0 , U

3
0 ) in H there is a unique solution Ũ in L2(0, T ;H) of the split Cauchy

problem (1.5) with initial value Ũ0. Furthermore, there is a C1 > 0 independent of

Ũ0 so that for all positive time t,

‖Ũ(t, ·)‖(L2(R3))9 ≤ C1e
C1t‖Ũ0‖(H2(R3))9 . (3.4)

Proof. The main step is to derive a system of equations satisfied by V(t, x) together
with a symmetrizer S(D). These imply an estimate for t ≥ 0,

‖V(t)‖L2(R3) ≤ C2e
C2t‖V(0)‖L2(R3). (3.5)

From this estimate it easily follows that the Cauchy problem for the V-equations
is uniquely solvable. It is true but not immediate that if the initial values of V
are computed from those of Ũ then the solution V comes from a solution Ũ of the

Bérenger system. The strategy has three steps:

• Discretize the Bérenger system in x only.

• Derive an estimate analogous to (3.5) for the semidiscrete problem. The esti-

mate is uniform as the discretization parameter tends to zero. The proof is a

semidiscrete analogue of (3.4).

• Solve the semidiscrete problem and pass to the limit to prove the existence.

This is done for the case d = 2 in Ref. 25 to which we refer for details. Uniqueness

of the solutions to the V-system and therefore Ũ is simpler and classical and is also

in Ref. 25.

Equation (1.5) yields,

∂tU
j +

∑

k

AkV
j + σjU

j = 0. (3.6)

Summing on j yields

∂tU + L(0, ∂)U +W = 0. (3.7)

Differentiate in direction xj to find,

∂tV
j + L(0, ∂)V j +W j = 0. (3.8)
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Differentiate once more to get

∂tV
i,j + L(0, ∂)V i,j + ∂iW

j = 0. (3.9)

The quantity ∂iW
j on the left is replaced using the next lemma.

Lemma 3.1.

∂jW = L(0, ∂)AjW + Zej −
∑

k

Ejk(σ
′
kU + σkV

k), (3.10)

where ej is the jth vector of the standard basis, and Eij is the 3 × 3 matrix all of

whose entries vanish except the (i, j) element that is equal to 1.

Proof. First evaluate L(0, ∂)AjW to find

L(0, ∂)AjW =
∑

k

AkAj∂kW.

The matrices in Maxwell’s equations satisfy AjAk = −Ejk for j �= k, and A2
j =∑

k �=j Ekk = I − Ejj . This yields

L(0, ∂)AjW = −
∑

k �=j

Ejk∂kW + (I − Ejj)∂jW

= ∂jW −
∑

k

Ejk∂kW = ∂jW − div(W )ej .

Introduce the definition of Z to find

W j := ∂jW = L(0, ∂)AjW + div(W )ej

= L(0, ∂)AjW + Zej −
(∑

k

∂k(σkUk)

)
ej .

Compute
(∑

k

∂k(σkUk)

)
ej =

∑

k

Ejk∂k(σkU)

=
∑

k

Ejkσ
′
kU +

∑

k

EjkσkV
k,

which proves (3.10). The proof of the lemma is complete.

Differentiate (3.10) in space to obtain

∂iW
j = L(0, ∂)AjW

i + ∂iZej −
∑

k

Ejk∂i(σkU + σ′
kV

k).

Inserting into (3.9) yields

∂tV
i,j + L(0, ∂)V i,j + L(0, ∂)AjW

i + Zij −
∑

k

Ejk∂i(σkU + σ′
kV

k) = 0.
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This is equivalent to

∂tV
i,j + L(0, ∂)V i,j + L(0, ∂)AjW

i + Ziej − σ′
iEjiU

−
(
σ′′
i Eji +

∑

k

σkEjk

)
V i −

∑

k

σ′
kEjkV

i,k = 0. (3.11)

To close the system it remains to evaluate the time derivatives of W,W j and ∂jZ.

∂tW =
∑

k

σk∂tU
k = −

∑

k

σk(AkU + σkU
k) = −

∑

k

σkAkV
k −

∑

k

σ2
kU

k.

Using the particular form of the equations yields

∑

k

σ2
kU

k =

(∑

k

σk

)(∑

k

σkU
k

)
−
∑

k

σk


∑

l �=k

σlU
l




=

(∑

k

σk

)
W − diag(σ2σ3, σ1σ3, σ1σ2)U − diag(σ1, σ2, σ3)W.

Therefore

∂tW +
∑

k

σkAkV
k +

(∑

k

σk

)
W − diag(σ2σ3, σ1σ3, σ1σ2)U

− diag(σ1, σ2, σ3)W = 0. (3.12)

Differentiate in xi to find

∂tW
i +

∑

k

(∂i(σk)AkV
k + σkAkV

ki) + ∂i

(∑

k

σk

)
W +

∑

k

σkW
i

− ∂i(diag(σ2σ3, σ1σ3, σ1σ2))U − diag(σ2σ3, σ1σ3, σ1σ2)V
i

− ∂i(diag(σ1, σ2, σ3))W − diag(σ1, σ2, σ3)W
i = 0. (3.13)

Next compute

∂tZ =
∑

i

∂i∂t(Wi + σiUi).

Consider the pair of equations

∂tU
2
1 + i∂2U3 + σ2U

2
1 = 0 and ∂tU

3
1 − i∂3U2 + σ3U

3
1 = 0

and add the two equations. Also add σ2 times the first to σ3 times the second. This

yields two equations,

∂tU1+i(∂2U3−∂3U2)+W1 = 0 and ∂tW1+i(σ2∂2U3−σ3∂3U2)+σ
2
2U

2
1+σ

2
3U

3
1 = 0.

Rewrite the last term as σ2
2U

2
1 + σ2

3U
3
1 = (σ2 + σ3)W1 − σ2σ3U1, to find

∂tU1 + i(∂2U3 − ∂3U2) +W1 = 0 and

∂tW1 + i(σ2∂2U3 − σ3∂3U2) + (σ2 + σ3)W1 − σ2σ3U1 = 0.
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Multiply the first equation by σ1 and add the second to obtain

∂t(W1 + σ1U1) + i((σ1 + σ2)∂2U3 − (σ1 + σ3)∂3U2) +

(∑

k

σk

)
W1 − σ2σ3U1 = 0.

The other indices follow by permutation. Differentiate in xk and add to find
∑

k

∂k∂t(Wk + σkUk) + i
∑

k

∂k((σk + σk+1)∂k+1Uk+2 − (σk + σk+2)∂k+2Uk+1)

+
∑

i

∂i

((∑

k

σk

)
Wi

)
−
∑

k

∂k(σk+1σk+2Uk) = 0.

The terms with two spatial derivatives cancel. This leaves

∂tZ + i
∑

k

σ′
k(∂k+1Uk+2 − ∂k+2Uk+1)

+

(∑

k

σk

)(∑

k

W k
k

)
+
∑

k

σ′
kWk −

∑

k

σk+1σk+2V
k
k = 0.

Since

Z =
∑

k

∂k(Wk + σk(xk)Uk) =
∑

k

(W k
k + σ′

kUk + σkV
k
k ),

we can replace (
∑

k σk)(
∑

kW
k
k ) in the previous equation by

(∑

k

σk

)(
Z −

∑

k

(σ′
kUk + σkV

k
k )

)

so

∂tZ +

(∑

k

σk

)
Z + i

∑

k

σ′
k(V

k+1
k+2 − V k+2

k+1 )−
(∑

k

σk

)(∑

k

(σ′
kUk + σkV

k
k )

)

+
∑

k

σ′
kWk −

∑

k

σk+1σk+2V
k
k = 0.

Differentiating in xj yields

∂tZ
j +

(∑

k

σk

)
Zj + σ′

jZ + iσ′′
j (V

j+1
j+2 − V j+2

j+1 ) + i
∑

k

σ′
k(V

k+1,j
k+2 − V k+2,j

k+1 )

− σ′
j

(∑

k

(σ′
kUk + σkV

k
k )

)
−
(∑

k

σk

)
(σ′′

j Uj + σ′
jV

j
j )

−
(∑

k

σk

)(∑

k

(σ′
kV

j
k + σkV

k
j,k)

)
+ σ′

jWj +
∑

k

σ′
kW

j
k

−
∑

k

∂j(σk+1σk+2)V
k
k −

∑

k

∂j(σk+1σk+2)V
j,k
k = 0.
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Replace Z by
∑

k(W
k
k + σkV

k
k ) to end up with

∂tZ
j +

(∑

k

σk

)
Zj + σ′

j

∑

k

(W k
k + σkV

k
k ) + iσ′′

j (V
j+1
j+2 − V j+2

j+1 )

+ i
∑

k

σ′
k(V

k+1,j
k+2 − V k+2,j

k+1 )− σ′
j

(∑

k

(σ′
kUk + σkV

k
k )

)

−
(∑

k

σk

)
(σ′′

j Uj + σ′
jV

j
j )−

(∑

k

σk

)(∑

k

(σ′
kV

j
k + σkV

k
j,k)

)
+ σ′

jWj

+
∑

k

σ′
kW

j
k −

∑

k

∂j(σk+1σk+2)V
k
k −

∑

k

∂j(σk+1σk+2)V
j,k
k = 0. (3.14)

Summarizing, V is solution of a first-order system, ∂tV+P (∂x)V+B(x)V = 0,

whose principal symbol is given by

P (∂) =




I4 ⊗ L(0, ∂) 04,6 ⊗ 03,3 04,3 ⊗ 03,3 04,3 ⊗ 03,3 04,4 ⊗ 03,3

06,4 ⊗ 03,3 I6 ⊗ L(0, ∂) (I6 ⊗ L(0, ∂))M 06,3 ⊗ 03,3 06,4 ⊗ 03,3

03,4 ⊗ 03,3 03,6 ⊗ 03,3 03,3 ⊗ 03,3 03,3 ⊗ 03,3 03,4 ⊗ 03,3

03,4 ⊗ 03,3 03,6 ⊗ 03,3 03,3 ⊗ 03,3 03,3 ⊗ 03,3 03,4 ⊗ 03,3

04,4 ⊗ 03,3 04,6 ⊗ 03,3 04,3 ⊗ 03,3 04,3 ⊗ 03,3 04,4 ⊗ 03,3



.

Here the V i,j are ordered as indicated before the theorem and

M :=




A1 0 0

0 A1 0

0 0 A1

0 A2 0

0 0 A2

0 0 A3




.

To symmetrize it suffices to construct a symmetrizer for the upper left-hand

block

Q(∂) :=



I4 ⊗ L(0, ∂) 04,6 ⊗ 03,3 04,3 ⊗ 03,3

06,4 ⊗ 03,3 I6 ⊗ L(0, ∂) (I6 ⊗ L(0, ∂))M

03,4 ⊗ 03,3 03,6 ⊗ 03,3 03,3 ⊗ 03,3


.

We verify that

S̃ :=




I4 ⊗ I3 04,6 ⊗ 03,3 04,3 ⊗ 03,3

06,4 ⊗ 03,3 I6 ⊗ I3 (I6 ⊗ I3)M

03,4 ⊗ 03,3 03,6 ⊗ 03,3 I3 ⊗ I3


 with

S̃−1 =




I4 ⊗ I3 04,6 ⊗ 03,3 04,3 ⊗ 03,3

06,4 ⊗ 03,3 I6 ⊗ I3 −M(I3 ⊗ I3)

03,4 ⊗ 03,3 03,6 ⊗ 03,3 I3 ⊗ I3
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is a symmetrizer for Q(iξ). Compute

S̃QS̃−1 =



I4 ⊗ L(0, ·) 04,6 ⊗ 03,3 04,3 ⊗ 03,3

06,4 ⊗ 03,3 I6 ⊗ L(0, ·) 06,4 ⊗ 03,3

03,4 ⊗ 03,3 03,6 ⊗ 03,3 03,3 ⊗ 03,3




which is symmetric since L(0, ·) is.
Therefore P (ξ) is symmetrizable by a matrix independent of ξ. Hence, the

Cauchy problem for (3.7), (3.8), (3.11)–(3.14) is strongly well-posed. The norm

of the zeroth-order terms depends on the coefficients σj and their derivatives up to

order 2. The estimate of the theorem follows.

Remark 3.1. We recall a computation from [25], showing that when there are

only 2 coefficients σ1 and σ2 only one derivative of σj is needed. This is always the

case in dimension d = 2. When σ3 ≡ 0, split W as

W = E33W +



W1

W2

0


.

Then


W1

W2

0


 =



σ2U

2
1

σ1U
1
2

0


 = diag(σ2, σ1, 0)U.

Rewrite (3.7) as

∂tU + L(0, ∂)U + E33W + diag(σ2, σ1, 0)U = 0. (3.15)

Differentiate with respect to x1 and x2 to obtain

∂tV
j + L(0, ∂)V j + E33∂jW + ∂j(diag(σ2, σ1, 0))U + diag(σ2, σ1, 0)W = 0.

(3.16)

To find an equation on W , proceed as in the 3D proof to get,

∂tW +
∑

k

σkAkV
k +

(∑

k

σk

)
W − σ1σ2U = 0. (3.17)

Therefore V is a solution of a first-order system, whose principal symbol is

given by

P (∂) =




L(0, ∂) 0 0 0

0 L(0, ∂) 0 E33∂1

0 0 L(0, ∂) E33∂2

0 0 0 0


 .
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A symmetrizer is given by

S̃ =




I 0 0 0

0 I 0 iE23

0 0 I iE13

0 0 0 I


, with S̃−1 =




I 0 0 0

0 I 0 −iE23

0 0 I −iE13

0 0 0 I3


.

3.4. Sharp finite speed for Bérenger’s PML

Recall some notions associated with estimates on the domains of influence and

determinacy for a hyperbolic operator L (see [17]). The timelike cones are the con-

nected components of (1, 0, . . . , 0) in the complement of the characteristic variety.

The forward propagation cone is dual to the timelike cone. A Lipschitzian curve

[a, b] � t �→ (t, γ(t)) is an influence curve when γ′ belongs to the propagation cone

for Lebesgue almost all t ∈ [a, b].

Theorem 3.4. Suppose that L defines a strongly well-posed Cauchy problem and

that the multiplicity of τ = 0 as a root of detL1(τ, ξ) = 0 is independent of ξ ∈
Rd\0. The support of the solution of the Bérenger transmission problem is contained

in the union of the propagation curves of L starting in the support of the source

terms when either of the following conditions is satisfied.

(i) ∀ ξ ∈ Rd\0,KerL1(0, ξ) =
⋂

j Ker ξjAj , and ∀ j, σj ∈ L∞.

(ii) L1 is Maxwell’s equation and ∀ j, σj ∈ W 2,∞.

Proof. The characteristic varieties of L and L̃ satisfy Char L̃ = CharL∪ {τ = 0}.
When {τ = 0} has multiplicity as a root of detL1(τ, ξ) = 0 independent of ξ ∈
Rd\0, the timelike cones of L and L̃ coincide. Therefore the propagation cones and

influence curves coincide too.

Case (i). Part (ii) of Theorem 2.4 proves that L̃1 defines a strongly well-posed

Cauchy problem. It follows that the sharp propagation conclusion of the theorem

is valid for L̃1 + B(t, x) for any bounded B(t, x). This follows on remarking that

the solution of (L̃ + B)Ũ = 0 with initial data Ũ0 is the limit at ν → ∞ of Picard

iterates Ũν . The first, Ũ1, is defined as the solution of the Cauchy problem without

B. For ν > 1 the iterates are defined by,

L̃1Ũ
ν+1 +B(t, x)Ũν = 0, Ũν+1(0, ·) = Ũ0.

Since L̃1 has constant coefficients, sharp finite speed is classical for that operator.

An induction proves that each iterate is supported in the union of influence curves

starting in the support of Ũ0.

Case (ii). Reason as above constructing by Picard iteration approximations Vν

converging to the solution V from (3.3). Since the equation satisfied by V is strongly

well-posed the iterates converge. An induction shows that they are supported in the

set of influence curves starting in the support of U0.
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3.5. Proof of perfection for Bérenger’s PML by a

change of variables

This section continues the analysis of Bérenger’s method when the hypotheses of

Theorem 3.4 are satisfied. In those cases well-posedness is proved by an energy

method. In addition, suppose that

∀ j, ∃Lj > 0, σj = 0 when |xj | ≤ Lj. (3.18)

Denote by R := Πj ]−Lj, Lj[.

Definition 3.2. In this setting the method is perfectly matched when for arbitrary

F ∈ C∞
0 (]0,∞[×R) the unique solutions Ṽ and Ũ of

L̃Ṽ = F, Ṽ |t≤0 = 0, L̃1Ũ = F, Ũ |t≤0 = 0, (3.19)

with L̃ as in (1.5) satisfies

Ṽ |R×R = Ũ |R×R. (3.20)

Theorem 3.5. With the assumptions of Theorem 3.4 and σj as above, Bérenger’s

method is perfectly matched.

Proof. Taking the Laplace transform of the Ṽ equation in (3.19) yields a transform

holomorphic in Re τ > τ0 with values in L2(Rd) satisfying for 1 ≤ j ≤ d,

V̂ j + (τ + σj(xj))
−1Aj∂j V̂ = F̂ j , with V :=

∑

j

V j , F :=
∑

j

F j . (3.21)

Multiply by τ and sum on j to obtain

τV̂ +
∑

j

τ

τ + σj(xj)
Aj∂j V̂ = τF̂ . (3.22)

When τ is fixed real and positive this equation can be transformed to the corre-

sponding equation without the σj by a change of variables. The change of variables

depends on τ . The resulting equation is exactly that determining Û :=
∑

j Û
j . In

this way we find that V̂ is obtained from Û by this change of variables. This idea

is inspired by Diaz and Joly in [10].

For real τ > 0 define d bi-Lipschitzian homeomorphisms Xj(xj) of R to itself

by

dXj(xj)

dxj
=
τ + σj(xj)

τ
, Xj(0) = 0.

Then,

∂

∂xj
=
∂Xj

∂xj

∂

∂Xj
=
τ + σj(xj)

τ

∂

∂Xj
,

τ

τ + σj(xj)

∂

∂xj
=

∂

∂Xj
.
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Therefore if Û(X) is the solution of

τÛ (X) +
∑

j

Aj
∂

∂Xj
Û = F̂ (X), (3.23)

then the solution V̂ of (3.22) is given by V̂ (x) := Û(X(x)) since the latter function

of x satisfies the equation determining V̂ .

Since X(x) = x for x ∈ R, this proves that the transforms of Ũ and Ṽ satisfy

for real τ > τ0 ∑

j

V̂ j(τ, x) =
∑

j

Û j(τ, x), x ∈ R. (3.24)

Since both sides of the identity in (3.24) are holomorphic in Re τ > τ0, it follows

that the identity extends to that domain by analytic continuation.

Equation (3.21) and its analogue for Ũ then imply that for all j, V̂ j |R = Û j|R.
Uniqueness of the Laplace transform implies V j |R = U j|R for all t proving

perfection.

Remark 3.2. The proof is very general. It shows that once the initial value problem

defined by L̃ is well-posed, there is perfect matching. The proof works more generally

for at least weakly well-posed methods for which the Laplace transform can be

reduced to (3.22) for real τ . Our favorite version of the Bérenger algorithm is

analyzed in this way in Sec. 3.6.

3.6. Perfection for methods related to Bérenger’s PML

Consider (3.22) with F = 0. This equation is the starting point for many authors to

construct well-posed PML. It has been viewed as a complex stretching of coordinates

(see [29, 9, 26, 12]). This idea, for τ real, becomes an honest change of variables as

in [10], that is at the heart of the proof in Sec. 3.5. In the case of Maxwell system,

it can be viewed as a system with modified constitutive equations (a lossy medium

[27, 2]), or recovered as above from the Bérenger’s system. The system (3.22) is not

differential because of the division by τ + σj(xj). In order to recover a hyperbolic

system, a change of unknowns is performed. We adopt the approach in [20] for the

Maxwell system.

Lemma 3.2. With matrices given in (3.2), define Sj := (τ + σj(xj))/τ . There

exists a pair of invertible matrices M,N, unique up to a multiplication by the same

constant, such that

S−1
j NAj = AjM, j = 1, 2, 3. (3.25)

They are given by

M = γ



S1 0 0

0 S2 0

0 0 S3


, N = γ



S2S3 0 0

0 S1S3 0

0 0 S1S2


, γ ∈ C\0. (3.26)
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Proof. Since

Ajej = 0, Ajej+1 = −iej+2, Ajej+2 = iej+1,

it is easy to see by applying (3.25) to ej that M is necessarily diagonal, M =

diag(m1,m2,m3). Applying (3.25) to ej+1 and ej+2 shows that for any j,

Nej+1 = mj+2Sjej+1, Nej+2 = mj+1Sjej+2.

This implies that N is also diagonal, equal to diag(m2S3,m3S1,m1S2), and

m1S3 = m3S1, m2S1 = m1S2, m3S2 = m2S3.

This leaves no choice but to choose (3.26).

In the rest of the analysis take γ = 1. In (3.22) with F = 0 replace V̂ by U .

Insert (3.25) to obtain

τNU +
∑

j

AjM∂jU = 0. (3.27)

The fact that σj depends only on xj and the form of the matrices guarantees

Aj∂jM = 0. This yields

AjM∂jU ≡ Aj∂j(MU).

Define a new unknown V :=MU to find

NM−1τV +
∑

j

Aj∂jV = 0. (3.28)

NM−1 = diag(S−1
1 S2S3, S

−1
2 S3S1, S

−1
3 S1S2). Next compute a rational fraction

expansion of τS−1
1 S2S3 as

(τ + σ2)(τ + σ3)

τ + σ1
= τ + (σ2 + σ3 − σ1) +

σ2
1 + σ2σ3 − σ1(σ2 + σ3)

τ + σ1
.

Introduce a new unknown W by

τNM−1V = τV +Σ1V +Σ2W, equivalently Wj =
1

τ + σj(xj)
Vj =

1

τ
Uj,

with

Σ := diag(σ1, σ2, σ3),

Σ(1) := diag(σ2 + σ3 − σ1, σ3 + σ1 − σ2, σ1 + σ2 − σ3),

Σ(2) := diag((σ1 − σ2)(σ1 − σ3), (σ2 − σ1)(σ2 − σ3), (σ3 − σ1)(σ3 − σ2)).

This leads to a system in the unknowns V and W

L(∂t, ∂x)V +Σ(1)V +Σ(2)W = 0, ∂tW +ΣW − V = 0. (3.29)
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Finally, U is recovered from

U = ∂tW = V − ΣW.

The system of equations for V,W is strongly well-posed since L is symmetric hyper-

bolic. In the case of a single layer in the x1 direction, there is only one coefficient

σ and therefore a single complex-valued supplementary variable. The equations for

the magnetic and electric fields are

∂tE1 − (∇ ∧H)1 − σE1 + σ2W1 = 0,

∂tE2 − (∇ ∧H)2 + σE2 = 0,

∂tE3 − (∇ ∧H)3 + σE3 = 0,

∂tW1 + σW1 − E1 = 0,

∂tH1 + (∇ ∧ E)1 − σH1 + σ2W2 = 0,

∂tH2 + (∇ ∧ E)2 + σH2 = 0,

∂tH3 + (∇ ∧ E)3 + σH3 = 0,

∂tW2 + σW2 −H1 = 0.

In 2D this is identical to the layers in [27] and equivalent to those in [2].

The principal symbol and lower terms are

R1 =

(
L 0

0 I3∂t

)
and B =

(
Σ(1) Σ(2)

−I3 Σ

)
.

Reversing the computation shows that (V,W ) ∈ KerR(τ, ξ) if and only if V =MU ,

W = 1/τU , and L1(τ,
ξ1τ

τ+σ1
, . . . , ξ3τ

τ+σ3
)U = 0. The characteristic polynomial is

therefore the same as for Bérenger’s layer. Thus, by Theorem 2.2

detR(τ, ξ) = τ2 −
∑ ξ2j τ

2

(τ + σj)2
.

Theorem 3.6. If σj(xj) ∈ L∞(R) and vanish for |xj | ≤ Lj, then the system (3.29)

for V := MU and Wj := Vj/(τ + σj(xj)) is strongly well-posed in L2(Rd) and

perfectly matched in the sense that for sources supported in R := Πj{|xj | ≤ Lj}
the function U computed from V,W agrees in Rt×R with the solution of Maxwell’s

equation with corresponding sources.

Proof. The proof of Theorem 3.4 applies with only minor modifications.

Remark 3.3. Note the ease with which strong well-posedness is established and

the lack of regularity required of the functions σj .

4. Analysis of Layers with Only One Absorption by

Fourier–Laplace Transform

There are cases where the energy method presented above does not prove well-

posedness. This is the case for the Bérenger algorithm when the ellipticity assump-

tion is not satisfied and the absorptions are not regular. Notably for the Maxwell

system and discontinuous absorptions. In this section we present a systematic anal-

ysis by Fourier–Laplace transformation of transmission problems with absorption

in only one direction.
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4.1. Fourier analysis of piecewise constant coefficient

transmission problems

Return to the situation of (1.3) with operators L and R on the left and right half

spaces and transmission condition (1.4). Suppose that both L and R are weakly

hyperbolic in the sense of G̊arding. An example is the classical method of Bérenger

with one absorption. Among other things we will prove that the method is well-

posed and perfect. Note the open problem at the end of the introduction emphasiz-

ing that we do not know if the classic algorithm with two discontinuous absorptions

is well-posed. In addition, we show, by a nontrivial analytic continuation argument

in Sec. 4.1.5, that the perfection of Bérenger’s method can be verified using the

modified plane wave solutions from his original paper. It is our hope that the anal-

ysis may help in the construction of new perfectly matched layers.

4.1.1. Hersh’s condition for transmission problems

This section takes up the analysis of mixed problems following Hersh in [11]. In the

present context we treat transmission problems which are essentially equivalent.

The analysis of Hersh assumed the interface is noncharacteristic which is never

the case for Maxwell’s equations. We address the changes that are needed to treat

problems with characteristic interfaces.

First analyze the solution of the constant coefficient pure initial value problem

LU = F on R1+d by Laplace transform in time and Fourier transform in x′ =

(x2, . . . , xd). The transform

Û(τ, x1, η) :=

∫∫ ∞

0

e−τt(2π)−d/2e−ix′·ηU(t, x′)dtdx′

decays as |x1| → ∞ and satisfies

L(τ, d/dx1, iη)Û = F̂ in R.

When A1 is invertible, this is a standard ordinary differential equation in x1.

When A1 is singular, the analysis requires care. The homogeneous equation

L(τ, d/dx1, iη)Û = 0 has purely exponential solutions eρx1 corresponding to the

roots ρ of the equation

detL(τ, ρ, iη) = 0. (4.1)

Hyperbolicity of L guarantees that for Re τ > τ0 and η ∈ Rd−1, this equation has

no purely imaginary roots.

The number of boundary conditions at x1 = 0 for the boundary value problem

in the right half space is chosen equal to the number of roots with negative real

part (see also Remark 4.1). That integer must be independent of τ, η. Since roots

cannot cross the imaginary axis, the only way the integer can change is if roots

escape to infinity. That can happen when the coefficient of the highest power of ρ

vanishes. The next hypothesis rules that out.
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Definition 4.1. A hyperbolic operator L(∂t, ∂x) is nondegenerate with respect to

x1 when there is a τ1 > 0 so that the degree in ρ of the polynomial detL(τ, ρ, iη)
is independent of (τ, η) for Re τ > τ1, η ∈ Rd−1.

Example 4.1. In the noncharacteristic case, detA1 �= 0, the condition is satisfied

and the degree with respect to ρ is equal to N .

(2) For Maxwell’s equations written in the real 6× 6 form, the degree with respect

to ρ is equal to 4. If written in the complex form (3.2), the degree is 2.

(3) The formula for the characteristic polynomial in Theorem 2.2 shows that if L

is nondegenerate, then so is the Bérenger doubled operator L̃ with one absorption

σ1 in x1 > 0. The degree in ρ is the same for L and L̃.

(4) If L = L1 + B is nondegenerate with respect to x1, then so is the operator

P := L1(∂) + a−1B = a−1L(a∂) for any a > 0. If the degree for L is constant in

Re τ > τ1, then the degree for P is constant for Re τ > a−1τ1.

For the lemmas to follow, it is useful to transform so that A1 has block form.

Lemma 4.1. If L in (2.1) is nondegenerate with respect to x1 then for Re τ >

τ1, η ∈ Rd−1,

(i) the degree in ρ of the polynomial detL(τ, ρ, iη) is equal to rankA1,

(ii) the number of roots ρ with positive real part is equal to the number of negative

eigenvalues of A1.

Proof. Since L is nondegenerate, it suffices to study the case η = 0.

(i) Choose invertible K so that

K−1A1K =

(A 0

0 0

)
, A an invertible square matrix of size rankA1.

Then

K−1L(τ, ρ, 0)K =

(
τI +Aρ 0

0 τ I

)
+matrix independent of τ, ρ.

It follows that the degree in ρ is no larger than rankA1.

The coefficient of ρrankA1 in detL(τ, ρ, 0) is a polynomial in τ of degree ≤
N − rankA1. For large τ the coefficient is equal to

(detA) (τN−rankA1) + lower order in τ.

Thus the degree in ρ is rankA1 for such τ proving the result.

(ii)

detL(τ, ρ, 0) = det

((
τI + ρA 0

0 τI

)
+ B

)
.
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For fixed τ , sufficiently large, ρ �= 0, and ρ/τ is a root of the polynomial p(x, 1/τ)

of degree rankA:

p(x, ε) =

∣∣∣∣∣
I + xA + εB11 εB12

εB21 I + εB22

∣∣∣∣∣ .

This polynomial has exactly rankA roots. By Rouché’s theorem,

ρj
τ

∼ − 1

λj
, τ � 1,

where the λj are the rankA eigenvalues of A repeated according to their algebraic

multiplicity. Since the eigenvalues of A and the nonzero eigenvalues of A1 are the

same, this completes the proof.

Remark 4.1. For the transformed one-dimensional hyperbolic operator

L(∂t, ∂1, iη), the number of incoming characteristics at the boundary x1 = 0 in

the right half space is equal to the number of strictly positive eigenvalues of A1.

The second part of the lemma shows that this is equal to the number of roots

with negative real part. The two natural ways to compute the number of necessary

boundary conditions yield the same answer.

The next lemma shows that for nondegenerate operators, the characteristic case

can be transformed to a standard ordinary differential equation.

Lemma 4.2. Suppose that A,M ∈ Hom(CN ) and the equation det(Aρ +M) = 0

has degree in ρ equal to rankA and no purely imaginary roots. Then,

(i) The matrix M is invertible and all solutions of the homogeneous equation

A
dU

dx1
+MU = 0 (4.2)

take values in the space G :=M−1(Range A) satisfying dimG = rankA.

(ii) There is a M̃ ∈ HomG so that a function U satisfies (4.2) if and only if U is

G valued and satisfies

dU

dx1
+ M̃U = 0. (4.3)

(iii) The vector space U of solutions of (4.2) is a linear subspace of C∞(R) with

dimension equal to rankA. The Cauchy problem with data in G is well-posed.

Proof. (i) Since ρ = 0 is not a root, M is invertible. The equation U =

M−1AdU/dx1 shows that continuously differentiable solutions U take values in

G. More generally, if U is a distribution solution and ψ ∈ C∞
0 (R) takes values in

the annihilator, G⊥ of G, then

〈U,ψ〉 = 〈M−1AdU/dx1, ψ〉 = 〈dU/dx1, (M−1A)∗ψ〉.
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But G = rangeM−1A so G⊥ = ker(M−1A)∗. Therefore (M−1A)∗ψ = 0 so 〈U,ψ〉 =
0 which is the desired conclusion.

(ii) Multiplying the equation by an invertible P and making the change of variable

U = KV transforms the equation to the equivalent form

PAK
dV

dx1
+ PMKV = 0.

Choose invertible P,K so that PAK has block form

PAK =

(
I 0

0 0

)
,

where I is the rankA × rankA identity matrix. With V = (V1, V2), one has the

block forms

PMK =

(
H11 H12

H21 H22

)
and

(
I 0

0 0

)
dV

dx1
+

(
H11 H12

H21 H22

)
V = 0.

One has,

det(Aρ+M) = detP−1 det

(
ρI +H11 H12

H21 H22

)
detK−1.

The first part of the preceding lemma implies that the determinant on the left is a

polynomial of degree rankA in ρ. It follows that H22 is invertible.

The solutions V satisfy H21V1 + H22V2 = 0 so take values in V := {V2 =

−H−1
22 H21V1}. The function V is a solution if and only if it takes values in V and

dV1
dx1

+RV1 = 0, R := H11 −H12H
−1
22 H21.

If N : V → V is the map,

(V1, V2) �→ (RV1,−H−1
22 H21RV1),

then V is a solution if and only if it is V-valued and satisfies dV/dx1 = NV . Writing

V = K−1U and M̃ = −KN implies (ii).

(iii) Follows from (ii).

Lemma 4.3. If L is hyperbolic and nondegenerate with respect to x1, then its

principal part L1(∂t, ∂x) is also nondegenerate with respect to x1. The degree in ρ

of detL1(τ, ρ, iη) is constant for Re τ > 0 and η ∈ Rd−1.

Proof. With notation from the preceding proof,

L(∂t, ∂x1 , ∂x′) = P−1

((
I∂x1 0

0 0

)
+

(
H11(∂t, ∂x′) H12(∂t, ∂x′)

H21(∂t, ∂x′) H22(∂t, ∂x′)

))
K−1. (4.4)

The proof of the last lemma showed that for Re τ > τ1 and η ∈ Rd−1, H22(τ, η) is

invertible.
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The computation in Lemma 4.1 shows that for η = 0 and R � τ → ∞ the

coefficient of ρrankA1 has modulus ≥ cτN−rankA1 with c > 0. This implies that

η = 0 is noncharacteristic for H22. Therefore H22(∂t, ∂x′) is hyperbolic.

Replacing L by its principal part L1 has the effect of replacing each operator

Hij(∂) by its principal part. This yields identity (4.4) with L and the Hij replaced

by their principal parts.

Since the principal part of a hyperbolic operator is hyperbolic, it follows

that (H22)1(∂t, ∂x′) is a homogeneous hyperbolic operator. Therefore (H22)1(τ, iη)

is invertible for η ∈ Rd−1 and Re τ �= 0. Thus, the coefficient of ρrankA1 in

detL1(τ, ρ, iη) is nonzero for η ∈ Rd−1 and Re τ �= 0.

Lemma 4.4. Suppose that the ordinary differential equation (4.2) satisfies the

hypotheses of Lemma 4.2. Denote by E± the linear space of solutions which tend

exponentially to zero as x1 → ±∞ and by Ė± their traces at x1 = 0. Then

(i) Ė± ∩ kerA = {0},
(ii) dimAE± = dimE±,
(iii) The map U �→ U(0) is an isomorphism from E± to Ė±,
(iv) AĖ+ ∩AĖ− = {0},
(v) AĖ+ ⊕AĖ− = Range A.

Proof. (i) The absence of purely imaginary roots shows that every solution is

uniquely the sum of two solutions. One grows exponentially at +∞ and decays

exponentially at x1 = −∞. The second grows at −∞ and decays at +∞. In par-

ticular the only bounded solution is the zero solution.

If e+ ∈ Ė+ ∩ kerA, denote by U(x1) the solution with this Cauchy data. The

function that is equal to U on x1 > 0 and equal to 0 in x1 ≤ 0 is a distribution

solution of (4.2) on all of R since A[U ]x1=0 = 0. This solution is bounded hence

identically equal to zero. Therefore e+ = 0. The case for Ė− ∩ kerA is analogous.

(ii) Follows from (i).

(iii) It is surjective by definition. If it were not injective for E+, there would be a

nontrivial solution U(x) exponentially decaying as x1 → +∞ with U(0) = 0 violat-

ing (i).

(iv) The set AĖ+ consists of the values AU+(0) with U+ satisfying (4.2) and expo-

nentially decreasing in x1 > 0. If the intersection were nontrivial there would be

a solutions U− decaying as x1 → −∞ so that AU+(0) = AU−(0). The function

V equal to U+ in x1 > 0 and U− in x1 < 0 is then a distribution solution for

all x1 exponentially decaying in both directions. Hyperbolicity implies that V = 0

contradicting the nontriviality.

(v) Using (ii) and (iv), one sees that the direct sum on the left is a subspace of

RangeA of full dimension.

The next lemma is needed in Sec. 4.1.2.
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Lemma 4.5. Assume that the hypothesis and notations of Lemma 4.2 are in force.

Then for K ∈ Ė+ there is an F ∈ C∞
0 (]−∞, 0[) so that the unique solution of

A
dU

dx1
+MU = F, lim

|x1|→∞
‖U(x1)‖ = 0, (4.5)

satisfies U(0) = K.

Proof. Consider first the case of invertible A. A change of dependent variable

yields the block form for the new variable still denoted U

dU

dx1
+

(
M+ 0

0 M−

)
U = F, U = (U1, U2), F = (F1, F2),

specM± ⊂ {±Re z > 0}.

Then Ė+ = {U2 = 0} so K = (K1, 0). Choose F = (F1, 0). Then U(0) = K if and

only if,

K1 =

∫ 0

−∞
eM+sF1(s)ds.

This is achieved with,

F1(s) = χ(s)e−M+sK1, χ ∈ C∞
0 (]−∞, 0[),

∫
χ(s)ds = 1.

When A is not invertible change variable as in Lemma 4.2 to find the block form
(
I 0

0 0

)
dU

dx1
+

(
H11 H12

H21 H22

)
U = F,

with invertible H22.

Part (i) of (4.2) implies that the map G � G = (G1, G2) �→ G1 is an isomor-

phism. Write G � K = (K1,K2). Choose F = (F1, 0). Then choose a G-valued

solution U defined by

dU1

dx1
+H11U1 = F1, U2 = −H−1

22 H21U1.

One has U(0) = K if and only if U1(0) = K1. The construction in the invertible

case completes the proof.

Suppose that

L = ∂t +A1∂1 + · · · and R = ∂t +A1∂1 + · · ·

are nondegenerate with respect to x1. For Re τ > τ0 and η ∈ Rd−1, define E±
L (τ, η)

to be the set of solutions of

L(τ, d/dx1, iη)V = 0
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tending to zero as x1 → ±∞. Denote by Ė±
L (τ, η) ⊂ CN the linear space of traces

at x1 = 0 of solutions in E±
L (τ, η).

Similarly with a possibly larger value still called τ0, there are Ė±
R (τ, η) ⊂ CM

so that the solutions of R(τ, d/dx1, iη)Z = 0 taking values in Ė±
R (τ, η) are exactly

those tending to zero exponentially as x1 → ±∞. The subspaces E±
L (τ, η) and

E±
R (τ, η) depend smoothly on τ, η for Re τ > τ0 and η ∈ Rd−1.

Lemma 4.1 implies that

dimE−
L (τ, η) = # positive eigenvalues of A1,

dimE+
R (τ, η) = # negative eigenvalues of A1.

(4.6)

Consider the inhomogeneous transmission problem,

LV = 0 when x1 < 0, RW = 0 when x1 > 0, (4.7)

(V,W )− g ∈ N when x1 = 0. (4.8)

The problem with inhomogeneous term F can be reduced to this form by subtract-

ing on the left a solution of the hyperbolic Cauchy problem LU = F on R1+d with

U |t<0 = 0. Denote by V̂ (τ, x1, η), Ŵ (τ, x1, η), ĝ(τ, η) the Fourier–Laplace trans-

forms. The transform Û is defined for x1 ∈ R, while V̂ (respectively Ŵ ) is defined

for x1 < 0 (respectively x1 > 0). The transforms V̂ , Ŵ decay as |x1| → ∞. V̂ , Ŵ

satisfy the ordinary differential transmission problem

L(τ, d/dx1, iη)V̂ = 0 in x1 < 0, R(τ, d/dx1, iη)Ŵ = 0 in x1 > 0, (4.9)

(V̂ (τ, 0, η), Ŵ (τ, 0, η))− ĝ(s, η) ∈ N . (4.10)

Hersh’s necessary and sufficient condition for well-posedness of the transmission

problem is derived as follows. Uniqueness of solutions of (4.9), (4.10) for Re τ >

τ0, η ∈ Rd−1 is equivalent to the fact that there are no exponentially decaying

solutions of the homogeneous transmission problem. That is,

N ∩ (Ė−
L (τ, η)× Ė+

R (τ, η)) = {0}. (4.11)

In order to guarantee existence, one imposes the maximality condition,

N ⊕ (Ė−
L (τ, η) × Ė+

R (τ, η)) = CN × CM . (4.12)

Using (4.6), this determines the dimension of N from the coefficients A1 and A1 of

L and R respectively.

Definition 4.2. If the transmission problem (4.7), (4.8) satisfies (4.12) for all

Re τ > τ0 and η ∈ Rd−1 it is said to satisfy Hersh’s condition.

Theorem 4.1. Hersh’s condition is satisfied if and only if there is an r and a λ0
so that for all λ > λ0 and g supported in t ≥ 0 with e−λtg ∈ Hs+r(Rd

t,x′) with
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values in CN × CM there is a unique V,W supported in t ≥ 0 with

e−λtV ∈ Hs(]−∞,∞[×{x1 < 0}) and e−λtW ∈ Hs(]−∞,∞[×{x1 > 0})

satisfying the transmission problem (4.7), (4.8).

Sketch of Proof. We have shown that the Hersh condition permits one to compute

a candidate Fourier–Laplace transform. We outline how the condition implies the

desired estimate. The method is to use the Seidenberg–Tarski Theorem 2.3 to derive

a lower bound on the real parts of the roots ν together with a contour integral

representation. The same elements form the heart of [18], and Sec. 12.9 of [13]. In

the present context we treat a transmission problem rather than a boundary value

problem. In addition, one needs to use the earlier lemmas to treat the case when

x1 = 0 is characteristic.

Choose Λ > max{τ0(L), τ0(R)}. The equations

detL(τ, ν, iη) = 0, detR(τ, ν, iη) = 0

with Re τ ≥ Λ, η ∈ Rd−1 have no purely imaginary roots. Define

ζ(R) := min {|Re ν| : η ∈ Rd−1,Re τ ≥ Λ, |τ |2 + |η|2 ≤ R2,

{detL(τ, ν, iη) = 0 or detR(τ, ν, iη) = 0}}.

The Seidenberg–Tarski Theorem 2.3 implies that there is a ρ ∈ Q and b �= 0 so that

ζ(R) = Rρ(b+ o(R)), as R → ∞.

Thus, there are C,N so that, for any τ , η with Re τ ≥ Λ,

|Re ν| ≥ C

1 + |(τ, η)|N . (4.13)

The solutions in E+
R (τ, η) are written using a contour integral representation of

Ŵ in the block form of Lemma 4.2. Here the matrix Hij depends of (τ, η). Denote

by D = D(τ, η) the finite union of squares with centers at the roots with Re ν < 0.

The side of each square is the smaller of 1 and half the distance of the root to the

imaginary axis. Then

ŴI =
1

2πi

∮

∂D

eτx1(τ + (H11 +H12H
−1
22 H21))

−1dτ
˙̂
W I , ŴII = H−1

22 H21ŴI .

(4.14)

The Seidenberg–Tarski Theorem 2.3 applied to

max{|w|2 : |z|2 = 1, H22w = z,Re τ ≥ Λ, |τ |2 + |η|2 ≤ R2}

proves that

‖H22(τ, η)
−1‖ = Rβ(a+ o(1)), a �= 0, β ∈ Q.
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This estimate together with (4.13) yields with new C,N ,
∫ ∞

0

|Ŵ (τ, x1, η)|2 dx1 ≤ C(1 + |(τ, η)|2N )|ŴI(0)|2.

With the analogous expression for V the solution of (4.7) satisfies
∫ ∞

−∞
|V̂ (τ, x1, η)|2 dx1 ≤ C(1 + |(τ, η)|2N )|V̂I(0)|2.

The Hersh condition asserts that for each (τ, η), ŴI(0) and V̂I(0) are uniquely

determined by ĝ(τ, η). Seidenberg–Tarski Theorem 2.3 yields an estimate

‖ŴI(0), V̂I(0)‖ ≤ C(1 + |(τ, η)|)a‖ĝ(τ, η)‖2.
The last three estimates together with Parseval’s identity proves the desired

estimate,

∃C,N, ∀ g, ∀λ > Λ, ‖e−λtU‖2L2(R1+d) ≤ C
∑

|α|≤N

‖e−λt∂αt,xg‖L2(R1+(d−1)).

This estimate proves the existence part of the theorem.

4.1.2. Necessary and sufficient condition for perfection

The Fourier–Laplace method is used to derive a necessary and sufficient condition

for perfection of an absorbing layer. Begin with a closer analysis of the transform,

Û(τ, x1, η), of the solution of the basic Eq. (1.1).

When A1 is invertible, Û is analyzed as follows. Denote by Π±(τ, η) the pro-

jectors associated with the direct sum decomposition Ė+
L (τ, η) ⊕ Ė−

L (τ, η) = CN .

Define S±(τ, x1, η) as the Hom(CN )-valued solutions of

L(τ, d/dx1, iη)S± = 0, S±|x1=0 = A−1
1 Π±.

Then S± decays exponentially as x1 → ±∞ and

χ]−∞,0[S− + χ[0,∞[S+

is the unique tempered fundamental solution of L(τ, d/dx1, iη). Decompose F̂ =

F̂− + F̂+, Û = Û+ + Û− according to E+
L (τ, η) ⊕ E−

L (τ, η) = CN . Then Û− is the

convolution of F̂− with χ]−∞,0[S− and Û+ is the convolution of F̂+ with χ[0,∞[S+.

In particular, Û−(τ, 0, η) vanishes on a neighborhood of [0,∞[ so Û(τ, 0, η) =

Û+(τ, 0, η) ∈ Ė+
L (τ, η). The value of Û in x1 ≥ 0 satisfy the homogeneous ordi-

nary differential equation L(τ, d/dx1, iη)Û = 0 with initial value Û(0) ∈ Ė+
L (τ, η).

To reach the same conclusion when A1 is singular, apply the lemmas of the

preceding section to the equation L(τ, d/dx1, iη)Z = 0. Lemma 4.4 applied to A =

A1 and M = τI + i
∑d

j=2 Ajηj shows that both Ė±
L (τ, η) are subspaces of G and

that the space of solutions is a direct sum E+
L (τ, η) ⊕ E−

L (τ, η). It follows that

Ė−
L (τ, η)⊕ Ė+

L (τ, η) = G(τ, η).
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Repeating the analysis in the nonsingular case applied to (4.3) shows that

Û(τ, 0, η) ∈ Ė+
L (τ, η).

Definition 4.3. For a transmission problem (L,R,N ) satisfying Hersh’s con-

dition (Definition 4.2), Re τ > τ0 and η ∈ Rd−1, define the reflection opera-

tor, H(τ, η) : Ė+
L (τ, η) → Ė−

L (τ, η) as follows. Hersh’s condition implies that

for each K ∈ Ė+
L (τ, η) there is a unique (V̇ , Ẇ ) ∈ Ė−

L (τ, η) × Ė+
R (τ, η) so that

(K, 0) ≡ (V̇ , Ẇ )modN . Define, H(τ, η)K := V̇ .

Theorem 4.2. Suppose that the transmission problem (L,R,N ) satisfies the Hersh

condition. The following are equivalent.

(i) The transmission problem is perfectly matched in the sense of Definition 1.1.

(ii) There is a τ0 ∈ R so that for all Re τ > τ0 and η ∈ Rd−1, H(τ, η) = 0.

(iii) There is a τ0 ∈ R so that for all Re τ > τ0 and η ∈ Rd−1,

∀KL ∈ Ė+
L (τ, η), ∃!KR ∈ Ė+

R (τ, η), such that (KL,KR) ∈ N . (4.15)

Proof. Conditions (ii) and (iii) are clearly equivalent.

For the equivalence with (i), compare the values of Û and V̂ in {x1 < 0}. Since
both satisfy LZ = F and decay as x1 → −∞ it follows that L(V̂ − Û) = 0, so,

V̂ − Û := Γ is an Ė−
L valued solution of LΓ = 0. Since F = 0 in x1 > 0, Ŵ ∈ E+

R .

The transmission condition requires that

N � (V̂ (0), Ŵ (0)) = (Û(0) + Γ(0), Ŵ (0)) = (Û(0), 0) + (Γ(0), Ŵ (0)). (4.16)

Since (Γ(0), Ŵ (0)) ∈ Ė−
L (τ, η)× Ė+

R (τ, η), (4.16) expresses (Û(0), 0) as a sum of an

element in N and an element of Ė−
L (τ, η) × Ė+

R (τ, η). The Hersh condition (4.12)

asserts that such a decomposition is unique. Therefore (V̂ (0), Ŵ (0)) is uniquely

determined from Û(0).

The method is perfectly matched if and only if for all F supported in x1 < 0,

t ≥ 0

V = U |x1<0.

This occurs if and only if Γ vanishes for x1 < 0 which holds if and only if Γ(0) = 0.

If the method is perfectly matched, then in the decomposition (4.16) one has

Γ(0) = 0. Then (Û(0), Ŵ (0)) ∈ N . Lemma 4.5 asserts that for any K ∈ Ė+
L there

is an F so that Û(0) = K. This proves that (4.15) holds.

Conversely if (4.15) holds, then in the decomposition (4.16), Γ(0) = 0 so Γ = 0.

It follows that U |x1<0 = V .

Remark 4.2. (1) When (4.15) holds, the decomposition of (K, 0) ∈ CN × CM in

the direct sum (4.12) is,

(K, 0) = (K,W (K))− (0,W (K)) ∈ N ⊕ (E−
L × E+

R ).
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(2) With K = U(0) as above, the solution (V,W ) of the ordinary differential equa-

tion transmission problem is given by V = U |x<0 and W is the solution of RZ = 0

with Z(0) = −W (K).

(3) In the important case whereN =M , invertible A1 andA1 and transmission con-

ditionN = {V =W}, the perfection criterion (iii) asserts that Ė+
L (τ, η) = Ė+

R (τ, η).

We present a typical example showing that the natural absorbing layers are

virtually never perfectly matched in dimension d ≥ 2.

Proposition 4.1. Consider the dissipative symmetric hyperbolic example with d =

N =M = 2,

A1 =

(
1 0

0 −1

)
, A2 =

(
0 1

1 0

)
, R = L+ P, P = P ∗ ≥ 0,

N = {(V,W ) : V =W}.

(i) The transmission problem is perfectly matched if and only if P = 0.

(ii) The corresponding problem with d = 1 is perfectly matched if and only if P is

diagonal.

Proof. Define

ML := A−1
1 [τ + iηA2], MR := A−1

1 [τ + iηA2] +A−1
1 P,

so that A−1
1 L(τ, ∂1, iη) = ∂1 + ML(τ, η) and similarly for A−1

1 R(τ, ∂1, iη). For

Re τ > 0 and η ∈ R, the matrices ML and MR have one eigenvalue with posi-

tive real part and one with negative real part. The eigenspace corresponding to

positive (respectively negative) real part eigenvectors is equal to Ė+
L (τ, η) (respec-

tively Ė+
R (τ, η)). Therefore the necessary and sufficient condition for perfection is

that for Re τ > τ0 and any η, Ė+
L (τ, iη) = Ė+

R (τ, iη).

Since

L(τ, ρ, iη) =

(
τ + ρ iη

iη τ − ρ

)
and detL(τ, ρ, iη) = τ2 − ρ2 + η2,

the eigenvalue of ML(τ, η) with positive real part is ρ =
√
τ2 + η2. The eigenspace

is the kernel of L(τ, ρ, iη). Therefore

Ė+
L (τ, η) = C(−iη, τ + ρ). (4.17)

Since MR = ML + A−1
1 P , a necessary condition is that the family of vectors

v(η, τ) := (−iη, τ + ρ) be eigenvectors of the constant matrix A−1
1 P , which is

possible only if A−1
1 P is a constant multiple of the identity. Therefore P = cA1.

Since P ≥ 0 and A1 has eigenvalues of both signs, it follows that c = 0 proving (i).

In the one-dimensional case there is just one eigenvector (0, 1) which must be

an eigenvector of A−1
1 P . Since (0, 1) is also an eigenvector of A1, it follows that

(0, 1) must be an eigenvector of P . Since P = P ∗, the orthogonal vector (1, 0) is
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also an eigenvector and P is diagonal. Conversely, if P is diagonal the condition is

satisfied.

Remark 4.3. (1) Examples verifying perfection for a family of absorbing layers

related to but not including those of Bérenger are presented in [3]. To our knowledge,

Hersh’s criterion for Bérenger’s layers has not been verified before.

(2) The perfection criterion is related to the plane wave criterion of Bérenger. We

examine the relation in Sec. 4.1.6.

4.1.3. Hersh’s condition for Bérenger’s PML with piecewise constant σ1

Of our earlier results, only those of Sec. 3.2 apply to discontinuous absorptions. So,

if the generator is not elliptic, (for example, the PML Maxwell system of Bérenger),

the preceding results do not prove that the initial value problem is well-posed. In

this section we prove that the doubled operators of Bérenger define a (weakly)

well-posed initial value problem provided that

σj ≡ 0 for j ≥ 2 and σ1(x1) ≡ σ± in Rd
±, (4.18)

and, the constant coefficient operators L̃ on Rd
± are both (weakly) hyperbolic.

The unknown Ũ satisfies (1.5). Denote by Ũ± = {U±
1 , . . . , U

±
d } the restriction

of the unknown Ũ to Rd
±. They satisfy differential equations in the half spaces Rd

±.

Lemma 4.6. For Ũ locally square integrable on a neighborhood of (t, x) ∈ {x1 = 0},
the following are equivalent.

(i) L̃Ũ ∈ L2 on a neighborhood of (t, x) in R1+d in the sense of distributions.

(ii) There is a neighborhood O of (t, x) so that L̃Ũ± is square integrable on O∩Rd
±

and [Ã1Ũ ] = 0.

Remark 4.4. The first hypothesis is often verified by combining L̃Ũ + B̃(x)Ũ ∈
L2
loc, Ũ ∈ L2

loc and B̃ ∈ L∞
loc.

(2) [Ã1Ũ ] makes sense since the differential equation implies

∂1(Ã1Ũ
+) ∈ L2

loc(]0, ε[ ; H
−1
loc (R

d
t,x′)).

With Ũ ∈ L2(]0, ε[;H−1
loc (Rd)) this implies that Ã1Ũ

+ ∈ C([0, ε[;H
−1/2
loc (Rd)). An

analogous result holds for Ã1Ũ
−. Therefore the traces from both sides and the jump

are well-defined elements of H
−1/2
loc .

(3) is clear on a formal level since if Ã1Ũ were discontinuous there would be a δ(x1)

term from the differential operator L̃ applied to Ũ .

(4) The standard proof based on these remarks is omitted.
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We have assumed that the nonzero data are initial values f±(x). By the usual

subtraction one can convert the problem to one with homogeneous initial values

and right-hand side and inhomogeneous transmission condition. In this way, the

determination of Ũ± is reduced to finding W̃± satisfying the inhomogeneous trans-

mission problem

L̃1(∂t, ∂x)W̃
± + B̃±W̃± = 0, Ã1[W̃ ] = g̃, (4.19)

where

B̃± :=




σ±IN 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0



, (4.20)

and g̃(t, x) take values in Range Ã1. The unknowns W̃ and source g̃ are vectors of

length dN .

Theorem 4.3. Suppose that L(∂) is a hyperbolic operator nondegenerate with

respect to x1 and that the Bérenger’s doubled operator L̃ is weakly hyperbolic for

σ = σ±. Then, the transmission problem (4.19) with absorption (4.18) satisfies

Hersh’s condition.

Proof. Drop the tildes on the Fourier–Laplace transforms of W̃ , g̃ for ease of read-

ing. The transformed problem is

(
Ã1

d

dx1
+ L̃(τ, 0, iη)

)
Ŵ± = 0, Ã1[Ŵ ] = ĝ. (4.21)

The condition of Hersh is that for an arbitrary right-hand side ĝ in range Ã1 this

transmission problem has one and only one solution.

Denote by E±
eL
(τ, η, σ) the spaces associated to the Bérenger operator L̃ with

absorption σ. The uniqueness of solutions of (4.21) is equivalent to

Ã1Ė
−
eL
(τ, η, σ−) ∩ Ã1Ė

+
eL
(τ, η, σ+) = {0}. (4.22)

Existence is equivalent to

Ã1Ė
−
eL
(τ, η, σ−) + Ã1Ė

+
eL
(τ, η, σ+) = range Ã1. (4.23)

Part (ii) of Lemma 4.4 implies that

dim(Ã1Ė
−
eL
(τ, η, σ−)) + dim(Ã1Ė

−
eL
(τ, η, σ+)) = dim(range Ã1),

so (4.22) implies (4.23). It remains to prove (4.22).
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For σ > 0, the split Bérenger operator L̃ is hyperbolic so for Re τ > τ0(σ) the

solutions of

L̃(τ, d/dx1, iη)Û = 0 (4.24)

are generated by exponentially growing and exponentially decaying solutions. The

next lemma identifies these solutions in terms of the corresponding solutions of

L(τ, d/dx1, iη)V̂ = 0. (4.25)

The result shows that the traces at x1 = 0, Ė±
eL
, are independent of σ.

Lemma 4.7. For σ > 0,Re τ > τ0(σ), η ∈ Rd−1,

(i) The map

V̂ (x1) �→
(
η1
τ
A1V̂ ((τ + σ)x1/τ),

η2
τ
A2V̂ ((τ + σ)x1/τ), . . . ,

η2
τ
AdV̂ ((τ + σ)x1/τ)

)

is an isomorphism from solutions of (4.25) onto the solutions of (4.24).

(ii) µ is a root of detL(τ, ·, iη) = 0 if and only if ν = (τ + σ)µ/τ is a root of

det L̃(τ, ·, η) = 0.

(iii) For the roots in (ii), the real parts of µ and ν have the same sign. In particular,

the map in (i) is an isomorphism E±
L (τ, η) �→ E±

eL
(τ, η, σ).

(iv) The map Ŵ = (Ŵ1, . . . , Ŵd) �→ ∑
j Ŵj is an isomorphism E±

eL
(τ, η, σ) →

E±
L (τ, η).

Remark 4.5. In (i) it is important to know that the solutions V̂ (x1) are entire

analytic functions of x1 so it makes sense to evaluate V̂ at points off the x1-axis.

In the literature this is sometimes called a complex change of variables. It is only

reasonable for analytic solutions. A related idea is used in the Fourier–Laplace

analysis for general σ1(x1) presented in Sec. 4.2.

Proof of Lemma 4.7. (i) If Û = (Û1, . . . , Ûd) satisfies (4.24), then with Ŵ :=∑
j Ûj,

A1
dŴ

dx1
+ (τ + σ)Û1 = 0, τÛj + iηjAjŴ = 0, j = 2, . . . , d. (4.26)

Multiply the first by τ and the last d− 1 by (τ + σ). Sum and then divide by τ to

find,

A1
dŴ

dx1
+
τ + σ

τ
L(τ, 0, iη)Ŵ± = 0. (4.27)

Conversely if Ŵ satisfies (4.27) and Ûj for j ≥ 2 is defined from Ŵ using the last

equations in (4.26) and Û1 := Ŵ −∑j≥2 Ûj then U satisfies (4.24).
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The solutions Ŵ to (4.27) are exactly the V̂ ((τ + σ)x1/τ) with V̂ satisfy-

ing (4.25). This proves that the mapping in (i) is surjective.

The set of solutions V̂ of (4.25) has dimension rankA1. The set of solutions of

(4.24) has dimension rank Ã1 = rankA1 (see (2.3)), so surjectivity implies injectiv-

ity.

(ii) and (iv) follow from (i).

(iii) Denote by K the mapping from (i). When τ > 0, (τ + σ)/τ is also positive

and real. ThereforeK maps decaying (respectively increasing) solutions to decaying

(respectively increasing) solutions. Thus for τ > τ0 and real,

K(E+
L (τ, η)) = E+

eL
(τ, η, σ). (4.28)

For all Re τ > τ0, K(E+
L (τ, η)) is a subspace of solutions of (4.24) with dimension

equal to dimE+
L (τ, η). If (4.28) were violated, K(E+(τ, η)) would contain exponen-

tially growing solutions. If this happened at τ , η with Re τ > τ0, consider the values

τ(r) = Re τ + r Im τ for 0 ≤ r ≤ 1. For r = 0, (4.28) is satisfied while for r = 1 it

is violated. Let

f(r) := max

{
Re

τ(r) + σ

τ(r)
µ : detL(τ(r), µ, iη) = 0, Reµ < 0

}
.

Then f(0) < 0, f(1) > 0 and f is continuous, so there is a 0 < r < 1 so that

f(r) = 0. Then for τ = Re τ + r Im τ there is a purely imaginary root. This violates

the hyperbolicity of L̃ establishing (4.28). This proves (iii) completing the proof of

the lemma.

We now finish the proof of Theorem 4.3 by proving (4.22). Lemma 4.7 implies

that the spaces of Cauchy data Ė±
eL

are independent of σ. Therefore if (4.22) is

violated, then also

Ã1Ė
−
eL
(τ, η, σ+) ∩ Ã1Ė

+
eL
(τ, η, σ+) �= {0}.

This contradicts part (iv) of Lemma 4.4 for the operator L̃ with absorption σ+.

The proof of Hersh’s condition is complete.

In these problems with only one nonzero absorption coefficient σ1 and σ1 = 0

when x1 < 0 one can consider a transmission problem which is only split in x1 > 0.

The next result shows that this partially split problem satisfies Hersh’s condition

if and only if the fully split problem does.

Introduce the partially split problem (L,R,N ) where

L = L1(∂), R = L̃1 + B̃+, with σ+ > 0,

N :=



(V,W ) : V −

∑

j

Wj ∈ kerA1



,

(4.29)

with B̃+ given by (4.20) and the split variable on the right is W̃ = (W1, . . . ,Wd).
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Corollary 4.1. Suppose that σj = 0 for j ≥ 2, and σ+
1 > 0. Then the partially

split Bérenger transmission problem (L1, L̃1 + B̃+,N ) defined by (4.29) satisfies

Hersh’s condition if and only if the fully split problem does.

Proof. Denote by (V, W̃ ) = (V,W1, . . . ,Wd) the variables for the partially

split problem and (Ũ , W̃ ) = ((U1, . . . , Ud), (W1, . . . ,Wd)) the split variables.

If Û(τ, x1, η), Ŵ (τ, x1, η) is an exponentially decaying solution of the split

Laplace–Fourier transformed homogeneous transmission problem, then (V̂ , Ŵ ) =

(
∑

j Ûj, Ŵ ) is an exponentially decaying solution of the partially split homogeneous

transmission problem.

Conversely, if V̂ (τ, x1, η), Ŵ (τ, x1, η) is a solution of the homogeneous partially

split problem, the computation leading to (4.26) shows that

Û1 := −τ−1A1∂1V̂ , Ûj := −τ−1iηjAj V̂ , j ≥ 2,

is an exponentially decaying solution of the fully split homogeneous transmission

problem.

Therefore, if either problem has decaying solutions for η real and Re τ arbitrarily

large, then so does the other.

4.1.4. Perfection for Bérenger’s PML with piecewise constant σ1

Theorem 4.4. With the hypotheses of Theorem 4.3, the Bérenger transmission

problem is perfectly matched. The Bérenger transmission problem that is only split

on the right is also perfectly matched.

Proof. Verify condition (ii) of Theorem 4.2. For K ∈ Ė+
eL
(τ, η, σ+) consider the

unique decomposition guaranteed by the Hersh’s condition,

(K, 0) = (W−,W+) + (F−, F+), (4.30)

where

(W−,W+) = ((W−
1 , . . . ,W

−
d ), (W+

1 , . . . ,W
+
d )) ∈ N ,

(F−, F+) ∈ Ė−
eL
(τ, η, σ−)× Ė+

eL
(τ, η, σ+).

Perfection is equivalent to F− = 0.

By inspection, one such decomposition (4.30) is given by

(K, 0) = (K,K) + (0,−K),

where we use the fact from Lemma 4.7 that

Ė+
eL
(τ, η, σ−) = Ė+

eL
(τ, η, σ+).

As this decomposition satisfies F− = 0, the proof of the first assertion is complete.

For the partially split case, K ∈ Ė+
L (τ, η) has a unique decomposition from the

Hersh’s condition,

(K, 0) = (W−,W+) + (F−, F+),
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with

(W−,W+) = (W−, (W+
1 , . . . ,W

+
d )) ∈ N , (F−, F+) ∈ Ė−

L (τ, η)× Ė+
eL
(τ, η, σ+).

Define

W+
j :=

ηj
τ
AjK.

Part (i) of Lemma 4.7 implies that W+ ∈ Ė+
eL
(τ, η, σ+). In addition,

∑
j W

+
j = K

so (K,W+) ∈ N .

By inspection

(K, 0) = (K,W+) + (0,−W+)

is the unique Hersh decomposition. Since F− vanishes for this one, the proof is

complete.

4.1.5. Analytic continuation for Maxwell like systems and

Bérenger’s plane waves

In this section we investigate Bérenger’s method for operators, including the

Maxwell system, whose characteristic polynomial is τp(τ2−|ξ|2)q. For ease of expo-
sition we treat the case d = 2 and the explicit operator,

L = ∂t +

(
1 0

0 −1

)
∂1 +

(
0 1

1 0

)
∂2. (4.31)

Analogous results are valid for the Maxwell system with only slightly more compli-

cated formulas.

For Re τ > 0 and η ∈ R there is exactly one root of detL1(τ, ρ, iη) = 0 with

Re ρ > 0 given by

ρ =
√
τ2 + η2, Re ρ > 0. (4.32)

The corresponding eigenspace Ė+
L (τ, η) from (4.17) is spanned by Φ(τ, η) =

(−iη, τ +ρ). If L̃1 is the Bérenger operator doubled in the x1 direction, one has the

same roots and Ė+
eL1

is spanned by (ρA1Φ, iηA2Φ).

Proposition 4.2. (i) For each η, ρ(τ, η), Ė−
L (τ, η), and Ė+

L (τ, η) are holomorphic

in Re τ > 0 with continuous extension to Re τ ≥ 0.

(ii) If σ1 > 0, then for Re τ > 0 and η ∈ R the equation det L̃(τ, ν, iη) = 0 has

exactly one root ν with positive real part. It is given by ν = (τ + σ1)ρ/τ .

(iii) For σ1 ≥ 0, the relation (4.12) with L̃1 on the left and L̃ on the right is satisfied

on {Re τ ≥ 0, ρ �= 0}.
(iv) The mapping H(τ, η) is for each η holomorphic in Re τ > 0 with continuous

extension to {Re τ ≥ 0, ρ �= 0}.
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Proof. (i) For Re τ > 0 there are two roots ±ρ with ρ from (4.32). One has strictly

positive real part and the other strictly negative. Each is holomorphic in Re τ > 0.

Holomorphy for Φ(τ, η) follows from its expression in terms of ρ. As Φ is a basis

for Ė+
L (τ, η) holomorphy of the latter follows.

So long as the eigenvalues ±ρ remain apart as Re τ → 0 they and their

eigenspaces will be holomorphic. The delicate case is when τ2 + η2 → 0. The

limiting points are (±iη, η).
If η = 0, then ρ = τ and the eigenspace is (0, 1). Both are continuous up to the

boundary.

When η �= 0 one has ρ → 0 so ρ is continuous up to the boundary. Then Φ is

continuous up to the boundary and nonvanishing from its expression in terms of ρ.

Therefore Ė+
L is continuous up to the boundary.

(ii) It suffices to remark that this is an eigenvalue and then to show that the real

part is positive. For the latter, compute

∂

∂σ

(
τ + σ

τ

√
τ2 + η2

)
=

√
τ2 + η2

τ
=
√
1 + η2/τ2.

For Re τ > 0 this has positive real part so the real part of the eigenvalue is increas-

ing as a function of σ so is positive for all σ ≥ 0.

(iii) It suffices to show that (4.11) is valid for such s, η. Suppose (v, w) =

(v1, v2, w1, w2) ∈ Ė−
L̃1

× Ė+

L̃
. We must show that v1 + v2 �= w1 + w2. Since

(w1, w2) ∈ Ė+

L̃
it follows that w1 + w2 ∈ Ė+

L . Similarly v1 + v2 ∈ Ė−
L1
. Thus it

suffices to show that Ė−
L1

and Ė+
L are uniformly transverse as Re τ → 0. It suffices

to show that (iη, τ+ρ) and (iη, τ−ρ) are uniformly independent. This follows from

ρ �= 0.

(iv) The holomorphy of H follows from (i). The continuous extension follows from

(i) and (iii).

Since the method is perfectly matched, H = 0 for Re τ > 0. By continuity the

map vanishes for purely imaginary τ �= 0. This shows that for {Re τ ≥ 0}\0, the
function equal to

eiτt+ρ(τ,η)x1+iηx2Φ̃ for x1 < 0, and eiτt+ρ(τ,η)x1+iηx2e−σρx1/τ Φ̃ for x1 > 0,

satisfies the Bérenger transmission problem. For Re τ > 0 these solutions decay

(respectively grow) exponentially as x1 → ∞ (respectively x1 → −∞). Though

such solutions serve to verify perfection they do not look very physical in isolation.

On the other hand, when τ is purely imaginary and not equal to zero, the

solution is a bounded plane wave in x1 < 0 and is a plane wave modulated by an

exponentially decaying factor in x1 > 0. These are the solutions which Bérenger

constructed to show that the method was perfectly matched.

In the language of the analytic objects constructed in the preceding lemma,

Bérenger’s plane wave solutions show that H(is, η) = 0 when s is real-valued with
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s2 > η2. For η fixed, the function τ �→ H(τ, η) is holomorphic in the right half

plane continuous up to the imaginary axis punctured at ±i|η|, and vanishes on the

boundary interval τ = is ∈ iR with s2 > η2. By Schwarz reflection and analytic

continuation, this implies that H vanishes in the right half plane.

In summary, the computation of Bérenger is actually sufficient to prove perfec-

tion for Maxwell’s system given the structures provided in this paper.

Remark 4.6. The perfection argument based on plane waves is not valid in full

generality where the objects like Ė and H are analytic in Re τ > τ0 with τ0 > 0.

This is the case, for example, whenever the absorbing layer is amplifying.

4.2. Fourier–Laplace analysis with variable σ1(x1)

Consider the case of only one nonzero σ1(x1). If L̃ is hyperbolic for one constant

value σ1 �= 0 the scaling (t, x) �→ (at, ax) shows that L̃ is hyperbolic for σ1/a.

Therefore L̃ is hyperbolic for all constant values σ1.

The results of Sec. 4.1 will be extended to the case σj = 0 for j ≥ 2 and variable

coefficient σ1(x1). The Fourier–Laplace transform Û(τ, x1, η) of the Bérenger split

operator satisfies

L̃(τ, d/dx1, η)Û = F̂ , −∞ < x1 <∞,

with variable coefficient σ1(x1).

The first line of the proof of Lemma 4.7 yields (4.26) with σ = σ1(x1). As in

the proof of that lemma one derives (4.27) now with σ = σ1(x1). The important

observation is that the x1 dependence of the coefficient appears only as a scalar

prefactor in (4.27). Such equations will be analyzed in the same way as the equations

in Lemma 4.2.

4.2.1. Well-posedness by Fourier–Laplace with variable σ1(x1)

Theorem 4.5. Suppose σj = 0 for j ≥ 2 and σ1(x1) ∈ L∞(R) is real-valued.

Suppose in addition that L is nondegenerate with respect to x1, and for one value

σ1 �= 0, L̃ is hyperbolic. Then there is a τ0 > 0 and m so that for all λ > τ0 and

F ∈ eλtL2(Rt : Hm(Rd
t,x′)) there is a unique solution Ũ ∈ eλtL2(Rd+1) to the

Bérenger split problem L̃Ũ = F . In addition, there is a constant C independent of

F, λ so that

‖e−λtŨ‖L2(R1+d) ≤ C‖e−λtF‖L2(Rt:Hm(Rd
t,x′ ))

. (4.33)

Remark 4.7. (1) The condition Ũ ∈ eλtL2 implies that Ũ tends to zero at t→ −∞
as does F .

(2) If F is supported in t ≥ t0 it follows from (4.33) on sending λ → ∞ that Ũ is

supported in t ≥ t0.
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Proof. The values of the Fourier–Laplace transform of W =
∑
Uj are computed

from the ordinary differential equation

A1
dŴ

dx1
+
τ + σ1(x1)

τ
L1(τ, 0, iη)Ŵ = F̂ . (4.34)

As in Lemmas 4.2 and 4.3, transform to the equivalent form,
(
I 0

0 0

)
dŴ

dx1
+
τ + σ1(x1)

τ

(
H11 H12

H21 H22

)
Ŵ = F̂ , H22 invertible.

Denote the decomposition as W = (WI ,WII) and similarly F . The invertibility of

H22 from Lemma 4.3 yields,

ŴII = H−1
22 (F̂II −H21ŴI). (4.35)

It suffices to find ŴI which is determined from,

dŴI

dx1
+
τ + σ1(x1)

τ
M(τ, η)ŴI = Ĝ, M(τ, η) := H11 −H12H

−1
22 H21,

Ĝ := F̂I +H−1
22 F̂II .

The hyperbolicity of L̃ implies that M has no purely imaginary eigenvalues.

Correspondingly there is the decomposition, into the spectral parts with positive

and negative imaginary parts,

WI =W+
I +W−

I , G = G+ +G−, M =M+ ⊕M−.

For σ constant, part (iii) of Lemma 4.7 (using the hyperbolicity of L̃) implies

that for Re τ sufficiently large (depending on σ), one has the spectral decomposition,

τ + σ

τ
M(τ, η) =

τ + σ

τ
M(τ, η)+ ⊕ τ + σ

τ
M(τ, η)−

corresponding to spectra with positive and negative real parts.

Lemma 4.8. If g(x1) satisfies dg(x1)/dx1 = σ1(x1). Then
(

d

dx1
+M

)(
eg(x1)M/τ ÛI

)
= eg(x1)M/τ

(
d

dx1
+
τ + σ1(x1)

τ
M

)
ÛI .

Proof of Lemma 4.8. Since (degM/τ ÛI)/dx1 = egM/τ (g′MÛI/τ + dÛI/dx1)

one has(
d

dx1
+M

)(
eg(x1)M/τ ÛI

)
= egM/τ

(
d

dx1
ÛI +

(
dg/dx1M

τ
+
τM

τ

)
ÛI

)
,

proving the desired identity.

Therefore

ŴI = e−g(x1)M/τ

(
d

dx1
+M

)−1(
eg(x1)M/τ Ĝ

)
.
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The unique L1 fundamental solution of ∂1 +M is equal to,

e−x1M
+

χ[0,∞[(x1) + e−x1M
−
χ]−∞,0](x1).

Therefore,

egM/τŴ+
I = (e−x1M

+

χ[0,∞[(x1)) ∗ (egM/τ Ĝ)+,

egM/τŴ−
I = (e−x1M

−
χ]−∞,0](x1)) ∗ (egM/τ Ĝ)−.

The kernel of the integral operator mapping Ĝ+ to Ŵ+
I is equal to,

exp

(
−(x1 − y1)

[
τ + (g(x1)− g(y1)/(x1 − y1)

τ
M(τ, η)+

])
χx1≥y1 . (4.36)

Lemma 4.9.

∃ τ0 = τ0(µ), ∀Re τ ≥ τ0, ∀ η ∈ Rd−1, ∀σ ∈ [−µ, µ],

spec
τ + σ

τ
M+(τ, η) ⊂ {Re z > 0}.

Proof of Lemma 4.9. Part (iii) of Lemma 4.7 allows one to choose τ1 so that for

σ = µ one has the desired conclusion for Re τ > τ1. Then for λ ∈ specM(τ, η)+

one has

Reλ > 0, Re

(
1 +

µ

τ

)
λ = Re

τ + µ

τ
> 0.

For 0 ≤ σ ≤ µ write σ = a+ bµ with non-negative a, b summing to 1. It follows

that Re(1+µ/τ)λ > 0. This proves that τ1 suffices to treat the non-negative values

0 ≤ σ ≤ µ.

Choosing τ2 for σ = −µ, that value suffices for −µ ≤ σ ≤ 0. Set τ0 equal to the

maximum of τ1 and τ2.

The Seidenberg–Tarski Theorem 2.3 shows that the absolute values of the real

parts of the eigenvalues of M(τ, η) are bounded below by C(|τ | + |η|)−N for some

N . And also that the spectral decomposition V �→ (V +, V −) and its inverse are

both bounded polynomially in |τ, η|. More generally for τ, η, µ, σ as above,

spec
τ + σ

τ
M+(τ, η) ⊂ {|Re z| > C(|τ | + |η|)−N}.

Taking µ := ‖f‖L∞ one finds that for all x1, y1, the matrix

τ + (g(x1)− g(y1)/(x1 − y1)

τ
M(τ, η)+ (4.37)

has spectrum in

{Re z > C(|τ |+ |η|)−N}, C > 0.
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The elements of the matrix (4.37) are bounded above polynomially in |τ, η|. There-
fore the kernel (4.36) is bounded above by

|τ, η|N exp(−c(x1 − y1)/|τ, η|N )χx1≥y1 , c > 0. (4.38)

This is proved using Schur’s theorem to reduce M± to upper triangular form

by orthogonal transformations of the spectral subspaces. Then solve the differ-

ential equation X ′ + M+X = 0 by back substitution to prove ‖ exp(ρM+)‖ ≤
C|τ, η|pe−cρ/|τ,η|N.

The operator with kernel (4.38) is convolution by an element of L1(R) whose L1

norm grows polynomially in |τ, η|. By Young’s theorem one concludes that the oper-

ator with kernel (4.36) has norm in Hom(L2(R)) which grows at most polynomially

in |τ, η|.
There is an entirely analogous estimate for the expression for the spectrum with

negative real part.

Therefore,

‖ŴI(τ, x1, η)‖L2(R) ≤ C1(1 + |τ | + |η|)N‖Ĝ(τ, x1, η)‖L2(R)

≤ C2(1 + |τ | + |η|)N‖F̂ (τ, x1, η)‖L2(R).

A similar estimate for ŴII follows from (4.35). Estimates for Ûj follow from the

second equation in (4.26). Plancherel’s theorem then implies (4.33), proving the

existence part of well-posedness.

Uniqueness is proved by a duality argument of Hölmgren type using existence

(backward in time) for the adjoint differential operator (details omitted).

4.2.2. Perfection for Bérenger’s PML with variable coefficient σ1(x1)

Lemma 4.10. Suppose that A,M satisfy the hypothesis of Lemma 4.2 with G and

M̃ ∈ HomG are from that lemma. Suppose in addition that f ∈ L∞
loc(R;C) and g

is the unique solution of

dg

dx1
= f, g(0) = 0, so g(x1) =

∫ x1

0

f(s)ds.

Then for γ ∈ G the unique solution of the equivalent initial value problems for the

G-valued function U,

A
dU

dx1
+ f(x1)MU = 0, equivalently,

dU

dx1
+ f(x1)M̃U = 0, U(0) = γ,

is

U(x1) = e−g(x1)fMγ.

Proof. Compute using the differential equation,

d

dx1
[eg(x1)fMU ] = eg(x1)fM

[(
dg

dx1

)
M̃ +

dU

dx1

]
= eg(x1)fM [fM̃ − fM̃ ] = 0.

The lemma follows.
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The next result shows that when the Bérenger split problem with absorption

σ(x1) defines a stable time evolution, then the problem is perfectly matched. Either

the split problem is ill posed, or it is well-posed and perfect.

Theorem 4.6. Suppose that σ1(x) ∈ L∞(R) has support in [0, ρ] for some ρ > 0,

that σj = 0 for j �= 1, and that the operator L̃ with these absorptions is nondegen-

erate with respect to x1 and defines a weakly well-posed time evolution. Then, the

L̃ evolution is perfectly matched in the sense that for F ∈ C∞
0 ({t > 0} ∩ {x1 < 0})

the solutions Ũ and Ũ ′ with and without absorptions respectively,

L̃1Ũ = F, Ũ |t≤0 = 0 and L̃Ũ ′ = F, Ũ ′|t≤0 = 0

satisfy

Ũ |x1<0 = Ũ ′|x1<0.

Proof. Denote by Û and Û ′ the Fourier–Laplace transforms. The functions are

characterized by

L̃1(τ, d/dx1, η)Û = F̂ and L̃(τ, d/dx1, η)Û
′ = F̂ ,

both required to decay exponentially as |x1| → ∞. The strategy is to construct a

solution of the problem defining Û ′ from the solution Û .

The equations for Ŵ =
∑

j Ûj and Ŵ ′ =
∑

j Û
′
j in x1 ≥ 0 have the form

A1
dŴ

dx1
+MŴ = 0, A1

dŴ ′

dx1
+
τ + σ1(x1)

τ
MŴ ′ = 0.

Lemma 4.10 applies with f(x) := (τ + σ(x1))/τ .

Define g as in that lemma. Set V̂ = Ŵ in x1 ≤ 0. For x1 ≥ 0 define

V̂ := e−g(x1)fMŴ (τ, 0, η).

The resulting function satisfies the differential equation required of Ŵ ′. In addi-

tion since e−g(x1)M is independent of x1 for x1 ≥ ρ, V̂ decays as rapidly as Ŵ .

Therefore V̂ satisfies the conditions uniquely determining Ŵ ′. Therefore V̂ = Ŵ ′,
and Ŵ ′|x1<0 = Ŵ |x1<0. Use (4.26) to recover Û , Û ′ from Ŵ , Ŵ ′ shows that

Û ′|x1<0 = Û |x1<0, proving perfection.

Example 4.2. (1) If L1(0, ∂x) is elliptic then Corollary 3.2 shows that the evolution

of L̃ is strongly well-posed. This includes the case of anisotropic wave equations for

which the layer is amplifying showing that perfection is not at all inconsistent with

amplification.

(2) For the Maxwell equations and σ1(x1) ∈ W 2,∞(R) well-posedness is proved in

the remark following Theorem 3.3 and we deduce perfection.
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5. Plane Waves, Geometric Optics, and Amplifying Layers

This section includes a series of ideas all related to plane waves and short wave-

length asymptotic solutions of WKB type. We first recall the derivation of such

solutions from exact plane wave solutions by Fourier synthesis. Then we review the

construction of short wavelength asymptotic expansions. These are then applied to

examine the proposed absorption by the σj . In many common cases the supposedly

absorbing layers lead to asymptotic solutions which grow in the layer. Related phe-

nomena are studied by Hu, and Becache, Fauqueux, Joly [14, 5]. For the Maxwell

equations for which the PML were designed, the layers are not amplifying. At the

end of Sec. 5.3, situations where the amplification does not occur are identified.

5.1. Geometric optics by Fourier synthesis

When the coefficient σ vanishes identically, both L and L̃ are homogeneous con-

stant coefficient systems. When (τ , ξ) is a smooth point of the characteristic variety,

denote by τ = τ(ξ) the smooth parametrization, and ΠL(τ, ξ) and ΠeL(τ, ξ) the asso-

ciated spectral projections for ξ ≈ ξ, see (2.8). The function τ(ξ) is homogeneous

of degree 1, while the projectors are homogeneous of degree 0. The next argument

works equally well for L and L̃.

For G(ξ) ∈ C∞
0 (Rd) construct exact solutions for 0 < ε� 1,

Uε(t, x) :=

∫
ei(ξ·x+τ(ξ)t)ΠL(τ, ξ)G(ξ − ξ/ε) dξ.

Make the change of variable

ξ − ξ/ε := ζ, ξ = (ξ + εζ)/ε,

and extract the rapidly oscillating term ei(ξ·x+τt)/ε to find,

Uε(t, x) := ei(ξ·x+τt)/ε

∫
ei((τ(ξ+εζ)−τ(ξ))t/ε+ζx)ΠL(τ(ξ + εζ), ξ + εζ)G(ζ)dζ

:= ei(ξ·x+τt)/εa(ε, t, x). (5.1)

Expanding in ε and keeping just the leading term yields the principal term in the

geometric optics approximation

Uε ≈ ei(ξ·x+τt)/ε

∫
ei(x·ζ−v(ξ)·ζt)ΠL(τ , ξ)G(ζ)dζ, v(ξ) := −∂ξτ(ξ).

One has

Uε ≈ ei(ξx+τt)/εa0(x− v(ξ)t), a0(x) :=

∫
eix·ζΠL(τ , ξ)G(ζ)dζ.
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A complete Taylor expansion yields the corrected approximations which satisfy

the equation with an error O(εN ) for all N . We write O(ε∞) for short. This yields

infinitely accurate solutions,

Uε(t, x) := ei(ξx+τt)/εa(t, x, ε), a(t, x, ε) ∼ a0(x− vt) + εa1(t, x) + · · · . (5.2)

If 0 is a semisimple eigenvalue of L(τ, ξ), and Φ0 ∈ KerL(τ, ξ)\{0} of dimen-

sion 1, then the leading amplitude a0 in the case of (1.1) (respectively (1.5)) is of

the form

α(t, x)Φ0,

(
respectivelyα(t, x)

(
ξ1
τ
A1Φ0, . . . ,

ξd
τ
AdΦ0

))

with scalar-valued amplitude α satisfying,

(∂t + v · ∂x)α = 0.

This shows that α is constant on the rays which are lines with velocity equal to the

group velocity v(ξ) := −∂ξτ(ξ).
For g ∈ C∞

0 \0 the solutions do not have compact spatial support. This weakness

is easily overcome. Choose χ ∈ C∞
0 (Rd) with χ = 1 on a neighborhood of the

origin. For g ∈ S(Rd), define exact solutions by cutting off the integrand outside

the domains of definition of τ(ξ) and ΠL(τ(ξ), ξ),

uε(t, x) :=

∫
ei(ξx+τ(ξ)t)ΠL(τ(ξ), ξ) g(ξ − ξ/ε)χ(

√
ε(ξ − ξ/ε))dξ. (5.3)

The analysis above applies with the only change being the initial values. In the

preceding case, these values were equal to the transform of ΠL(τ(ξ), ξ)g(ξ − ξ/ε)

and in the present case they are infinitely close to that quantity,

uε(0, x) =

∫
eix·ξΠL(τ(ξ), ξ) g(ξ − ξ/ε)dξ +O(ε∞).

This yields infinitely accurate approximate solutions (2.5) which have support in

the tube of rays with feet in the support of
∫
eix·ξΠL(τ(ξ), ξ) g(ξ)dξ.

5.2. Geometric optics with variable coefficients

The Fourier transform method of the preceding sections is limited to problems with

constant coefficients. In this section the WKB method which works for variable

coefficients is introduced. It will also serve for the analysis of reflected waves.

Let L be the general operator in (2.1). Fix (τ, ξ) ∈ CharL and seek asymptotic

solutions

Uε ∼ eiS/ε
+∞∑

j=0

εjaj(t, x), with the phase S(t, x, ξ) = tτ + xξ. (5.4)

More precisely we construct smooth functions aj(t, x) with supp aj ∩ ([0, T ]× Rd)

compact so that if

a(t, x, ε) ∼
∞∑

j=0

εj aj(t, x),
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in the sense of Taylor series at ε = 0, and supp a ∩ ([0, T ]× Rd×]0, ε]) is compact,

then

Uε := eiS/εa(t, x, ε)

satisfies for all s,N ,

‖LUε‖Hs([0,T ]×Rd) = O(εN ).

In this case we say that (5.4) is an infinitely accurate approximate solution. The

next result recalls some facts about such solutions.

Theorem 5.1. Suppose Problem (2.1) is hyperbolic, (τ, ξ) ∈ Char(L) satisfies the

smooth variety hypothesis, and 0 is a semisimple eigenvalue of L(τ, ξ).

(i) If the coefficients aj satisfy the recursion relation

a0(t, x) ∈ KerL1(τ, ξ), (5.5a)

∀ j ≥ 0, iL1(τ, ξ)aj+1(t, x) + L(∂t, ∂x)aj(t, x) = 0, (5.5b)

then (5.4) is an infinitely accurate approximate solution of (2.1).

(ii) If gj = ΠL(τ, ξ)gj ∈ C∞
0 (Rd

x) are supported in a fixed compact K, then

there is one and only one family of aj satisfying (5.5) together with the ini-

tial conditions, ΠL(τ, ξ)aj(0, ·) = gj and the polarization ΠL(τ, ξ)a0 = a0.

They have support in the tube of rays with feet in K and speed of propagation

v(ξ) = −∂ξτ(ξ).
(iii) The principal term a0 is a solution of the transport equation

∂ta0 + v(ξ) · ∂xa0 +ΠL(τ, ξ)B(x)ΠL(τ, ξ)a0 = 0. (5.6)

Proof. For simplicity note ΠL := ΠL(τ, ξ) when no ambiguity is to be feared.

Equations (5.5) are obtained by injecting Uε in (2.1), to find an expression

∼ eiS/ε
∑

j≥0 ε
jwj(t, x). In order that the wj vanish it is necessary and sufficient

that Eqs. (5.5) are satisfied.

Next examine the leading order terms to find the relations determining a0.

Projecting the case j = 0 of (5.5) onto KerL1 yields,

ΠL

(
∂t +

d∑

l=1

Al∂l + B(x)
)
a0 = 0.

This yields a first-order system satisfied by a0 = ΠLa0,

∂ta0 +

d∑

l=1

ΠLAlΠL∂la0 +ΠLB(x)ΠLa0 = 0. (5.7)
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The leading order part of this equation is a scalar transport operator. To see this

differentiate L1(τ(ξ), ξ)ΠL(τ(ξ), ξ) = 0 with respect to ξl to find
(
Al +

∂τ(ξ)

∂ξl
Id

)
ΠL(τ(ξ), ξ) + L1(τ(ξ), ξ)

∂

∂ξl
(ΠL(τ(ξ), ξ)) = 0.

Multiplying on the left by ΠL(τ(ξ), ξ) eliminates the second term yielding,

ΠLAlΠL +
∂τ(ξ)

∂ξl
ΠL = 0.

Injecting this in (5.7) yields (5.6).

In order to compute the coefficients recursively, multiply (5.5b) on the left by

the partial inverse QL(τ, ξ), using the identity in (2.7), to obtain for j ≥ 1,

(I −ΠL)aj = iQLL(∂t, ∂x)aj−1. (5.8)

Projecting (5.5b) on the kernel yields,

ΠLL(∂t, ∂x)aj = 0.

Writing aj as

aj = ΠLaj + (I −ΠL)aj , yields ΠLL(∂t, ∂x)ΠLaj = −ΠLL(∂t, ∂x)(I −ΠL)aj .

This is again a transport equation, but with a right-hand side,

∂tΠLaj + v · ∂xΠLaj +ΠLBΠLaj = −ΠLL(∂t, ∂x)(I −ΠL)aj . (5.9)

(5.8) and (5.9) permit to calculate the coefficients recursively, knowing the initial

values.

Next apply the above algorithm to the PML operator L̃. Fix (τ, ξ) ∈ CharL

and seek asymptotic solutions

Ũε ∼ eiS/ε
+∞∑

j=0

εj ãj(t, x), with the phase S(t, x) = tτ + x · ξ. (5.10)

Corollary 5.1. Suppose Problem (1.1) is strongly well-posed, (τ, ξ) ∈ CharL sat-

isfies the smooth variety hypothesis, and 0 is a semisimple eigenvalue of L(τ, ξ).

(i) If the coefficients ãj satisfy the recursion relation

ã0(t, x) ∈ Ker L̃1(τ, ξ), (5.11a)

∀ j ≥ 0, (I −ΠeL)ãj(t, x) = iQeLL̃(∂t, ∂x)ãj−1(t, x), (5.11b)

∂tΠeLãj + v · ∂xΠeLãj + β(x)ΠeLãj = −ΠeLL̃(∂t, ∂x)(I −ΠeL)ãj , (5.11c)

then (5.10) is an infinitely accurate approximate solution of (1.5).
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(ii) If g̃j(x) = ΠeLg̃j ∈ C∞
0 (Rd) are supported in a fixed compact K, then there

is one and only one family of ãj satisfying (5.11) together with the initial

conditions, ΠL(τ, ξ)ãj(0, x) = g̃j and the polarization ΠL(τ, ξ)ã0 = ã0. They

have support in the tube of rays with feet in K and speed of propagation v =

−∂ξτ(ξ).
(iii) The principal term ã0 is a solution of the transport equation

∂tã0 + v · ∂xã0 + β(x)ã0 = 0, with β(x) =

d∑

l=1

σl(xl)ξl
τ(ξ)

∂τ(ξ)

∂ξl
. (5.12)

Proof. We need only identify the constant term in (5.6). Use the form of the

projector given in Proposition 2.1, to obtain

ΠeLB(x)ΠeL = β(x)ΠeL.

5.3. Amplifying layers

The coefficient σ1(x1) ≥ 0 is introduced with the idea that waves will be damped

in the layer. In this section, we show that sometimes the anticipated decay is not

achieved, and waves may be amplified. This was observed in [5]. The authors ana-

lyzed the phenomenon for σ constant in the layer. They showed that in an infinite

layer solutions can in certain cases grow infinitely large. We present a related anal-

ysis using WKB solutions which has three advantages:

(1) The analysis is valid for variable coefficients σ1(x1) which corresponds to com-

mon practice.

(2) The growth is seen immediately and not expressed in terms of large time asymp-

totics.

(3) The analysis in [5] was in part restricted to d = 2 and eigenvectors of multi-

plicity one. We remove these restrictions.

It is because of (2) that we choose not to follow the authors of [5] in calling this

phenomenon instability.

Theorem 5.2. Suppose (τ, ξ) ∈ Char(L) satisfies the smooth variety hypothesis

and β(x) is as in (5.12). Suppose in addition that there is an interval on a ray

Γ := {(0, x) + t(1,−∂ξτ(ξ)), 0 ≤ t ≤ t0}, so that

∫ t0

0

β(x − t∂ξτ(ξ))dt < 0.

Then the corresponding WKB solution grows in the layer.

Proof. The solution of the transport equation (5.12) evaluated on Γ is

ã0(t0, x) = exp

(
−
∫ t0

0

β(x − s∂ξτ(ξ))ds

)
ã0(0, x+ t0∂ξτ(ξ)).



June 6, 2011 11:53 WSPC/S1793-7442 251-CM S1793744211000291

218 L. Halpern, S. Petit-Bergez & J. Rauch

The exponential is strictly greater than 1, so

|ã0(t0, x+ t0∂ξτ(ξ))| > |a0(0, x)|.

Example 5.1. (No amplification for Maxwell/D’Alembert) If the dispersion rela-

tion is τ2 = |ξ|2 and σ ≥ 0, then there is no amplification since

β =

d∑

j=1

σj(xj)
ξ2j

‖ξ‖2 ≥ 0.

Example 5.2. (Amplification is common) For the dispersion relation τ2 = q(ξ)

where q is a positive definite quadratic form so that the ξ axes are not major and

minor axes of the ellipse q = 1, there are always τ > 0, ξ so that x1 layers with

σ1 > 0 are amplifying ([5]). There are two lines on {τ = q(ξ)1/2} where ∂q/∂ξ1 = 0.

The half cone on which ∂q/∂ξ1 < 0 corresponds to rays on which x1 is increasing so

they enter a layer x1 > 0. The half cone {∂q/∂ξ1 < 0} is divided into two sectors by

the plane ξ1 = 0. The sector on which ξ1 > 0 (respectively ξ1 < 0) corresponds to

growing (respectively decaying) solutions (see Fig. 1, left). This example shows that

amplification is very common. Consequently for the dispersion relation τ2 = q(ξ) it

is wise to align coordinates along the major and minor axes of the ellipse to avoid

amplification. However, if (τ2 − q1)(τ
2 − q2) divides the characteristic polynomial

and the axes of q1 and q2 are distinct from each other, then no linear change of

coordinates can avoid amplification in the layer.

A second example from [10] is the linearized compressible Euler equation with

nonzero background velocity (c, 0), c > 0 for which amplified wave numbers at a

right-hand boundary are indicated in bold in Fig. 1, right.

Summary. There is no amplification when the characteristic polynomial is a prod-

uct of factors τ and τ2− q where q is a positive definite quadratic form with axes of

inertia parallel to the coordinate axes. This includes the cases of Maxwell’s equa-

tions in vacuum, for which the method was developed by Bérenger, the linearized

Euler equations about the stationary state, and the linear isotrope elasticity equa-

tions. For these the quadratic forms q are multiples of |ξ|2.

Fig. 1. Amplified outgoing wave numbers in bold.
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Example 5.3. (Methods related to Bérenger, continued) For the model developed

in Sec. 3.6 for the Maxwell equations, one can compute

β = 2
ξ22 + ξ23
ξ21

3∑

j=1

σj(xj)ξ
2
j > 0.

Thus, this model has exactly the same good properties as Bérenger’s, and is strongly

well-posed. For Maxwell equations, it is therefore an attractive alternative. The

advantage is twofold. The system with the auxiliary variable P is very compact.

And it is strongly well-posed, even for discontinuous σ.

On the surface this result sounds almost too good to be true. However the

Bérenger system in the case of Maxwell’s equations has almost exactly the same

structure. The energy method proof when σ′′
j ∈ L∞ shows that there is a large

vector V consisting of the components of U together with differential operators

Pα(D) applied to U and a strongly well-posed equation for V. This means that if

one were to introduce the additional variables in V one obtains a system with some

of the desirable properties of SPML (strong PML). However, the SPML reduction

is much more compact, and, has a good energy estimate even when σ is discontin-

uous. The extension of this strategy to other equations is not straightforward. For

elastodynamic models, see [28].

6. Harmoniously Matched Layers

This section introduces a new absorbing layer method. It is based on the following

strategy. Start with an operator L = L1(∂) on the left and consider a smart layer

on the right

R(t, x, ∂) = L1(∂) + C(t, x), C = σ(x1)(π+(A1) + νπ−(A1)), suppσ ⊂ [0,∞[,

(6.1)

generalizing (1.2). This method is embedded in a family of absorbing layers

parametrized by µ ≥ 0,

Rµ := L1 + µC. (6.2)

The method is nonreflective when µ = 0 and is both reflective and dissipative for

µ > 0. When σ is discontinuous, the leading order reflection coefficient for wave

packets of amplitude 1 oscillating as ei(τt+xξ)/ε is of the form εµr(τ, ξ). The leading

order reflections can be removed by an extrapolation method using two values of µ.

This simultaneously removes the leading reflections at all angles of incidence. We

call the resulting method the harmoniously matched layer.

6.1. Reflection is linear in µ by scaling

In this section the linearity in µ of leading order reflections by the layer with Rµ

from (6.2) is demonstrated by a scaling argument when σ(x1) = 1x1>0. In the
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next section the reflection is computed exactly for Maxwell’s equations yielding

additional information.

If (L1 + C)U = 0, then

U(t, x) := U(µt, µx), satisfies RµU = 0.

Suppose that U has an incoming wave of wavelength ε and reflected waves U�

with amplitudes ρ�ε. Then U has an incoming wave with wavelength ε := ε/µ. The

reflected waves have amplitudes

ρ�ε = ρ�µ
ε

µ
= ρ�µε.

Denote by ρ
�
the reflection coefficient of Rµ. The leading amplitude of the reflected

� wave is then ρ
�
ε. The preceding identity shows that ρ

�
= ρ�µ showing that the

reflection coefficients are linear in µ.b

6.2. Reflection for Maxwell with smart layers

In this section L may denote one of two distinct operators. One option is the

Maxwell operator L1 from (3.2) for the C3-valued field E+iB. The lower order term

is B := µC from the smart layer (6.1). Alternatively L may denote the Bérenger

operator L̃ with lower order term B = µC with

C =




σ(x1)IN 0 · · · 0

... 0
. . .

...

0 · · · 0 0


, suppσ ⊂ [0,∞[.

In both cases the absorption term is linear in µ. We compute the dependence of

the reflection coefficient on µ.

Lemma 4.6 shows that the Cauchy problem is equivalent to homogeneous prob-

lems in each half-space with a transmission condition on Γ := {x1 = 0},

[A1U ]Γ = 0. (6.3)

In order to cover both cases the operator, coefficients, and unknown are indicated

with round letters.

bThis argument can be made rigorous under the following conditions. The incoming wave is a wave
packet with oscillatory part ei(τt+xξ)/ε with (τ, ξ) ∈ CharL. Denote (τ, ξ′) the part determining
the oscillations in x1 = 0. Consider the roots ξ1 of each of the equations, detL1(τ, ξ1, ξ′) = 0.
The nonreal roots are called elliptic. They lead to waves which have the structure of a boundary
layer of thickness ∼ ε. The real roots are called hyperbolic. The favorable situation is when all the
hyperbolic roots are at smooth points of the characteristic variety and the group velocities are
transverse to the boundary. In that case one can construct infinitely accurate asymptotic solu-
tions of the transmission problem consisting of incoming, reflected, and transmitted wave packets
corresponding to the hyperbolic roots, and, a finite number of boundary layers corresponding to
elliptic roots. As this is a long story, we content ourselves with the Maxwell computation of the
next subsection.
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We study the reflection of high frequency waves in x1 ≤ 0 which approach the

boundary x1 = 0. The input is an incident wave with phase SI(t, x) := τt + ξ·x,
where τ �= 0 and τ(ξ) = ±|ξ|. The phase is chosen so that the group velocity

v = −ξ/τ satisfies v1 > 0. Denote x′ := (x2, x3), ξ
′ = (ξ2, ξ3). Theorem 5.1 applies

to the incident wave with B ≡ 0. In x1 ≤ 0, the incident wave is

Uε := eiS
I(t,x)/εaI(t, x, ε), aI(t, x, ε) ∼

∞∑

j=0

εjaIj (t, x), L1(∂t, ∂x)Uε = O(ε∞).

(6.4)

Suppose that the amplitudes aIj are supported in a tube, T , of rays with compact

temporal crossections T ∩ {t = 0} ⊂⊂ {x1 < 0}.
We construct a transmitted wave with the same phase, and a reflected wave

with phase SR(t, x) := τt+ ξRx, with ξR := (−ξ1, ξ′). We first show that there are

uniquely determined reflected and transmitted waves. Then we compute exactly

the leading terms in their asymptotic expansions.

The reflected wave Vε is also supported in x1 ≤ 0. The group velocity for the

reflected wave is equal to vR := (−v1, v′), and in x1 ≤ 0,

Vε = eiS
R(t,x)/εaR(t, x, ε), aR(t, x, ε) ∼

∞∑

j=0

εjaRj (t, x), L1(∂t, ∂x)Vε = O(ε∞).

(6.5)

The transmitted wave is supported in x1 ≥ 0,

Wε := eiS
I (t,x)/εaT (t, x, ε), aT (t, x, ε) ∼

∞∑

j=0

εjaTj (t, x), L(∂t, ∂x)Wε = O(ε∞).

(6.6)

Theorem 6.1. (i) Given the incoming amplitudes aIj there are uniquely determined

amplitudes aTj and aRj so that for any choice of the aI,R,T (t, x, ε) ∼∑ εjaI,R,T (t, x),

the Uε,Vε and Wε are infinitely accurate solutions of the differential equations and

the transmission condition is also satisfied to infinite order,

∀(t, x′) ∈ R× R2, A1(Uε + Vε)(t, 0−, x
′) = A1(Wε)(t, 0+, x

′) +O(ε∞). (6.7)

(ii) In the case of Bérenger’s PML, the coefficients ãRj vanish identically for j ≥ 0.

(iii) For the smart layer (6.1), (6.2) with σ = 1x1>0, the coefficient aR0 vanishes

identically. The reflection coefficient of the layer is equal to

R(τ, ξ) = iµ(1 + ν)
ξ21 − τ2

8τξ21
= i

µ(1 + ν)

8τ

v21 − 1

v21
.

That is, if aI0(t, 0−, x
′) = α(t, x′)Φ(τ, ξ) ∈ KerL(τ, ξ), then

aR(t, 0−, x
′) = εR(τ, ξ)α(t, x′)Φ(τ, ξR) +O(ε2).
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Furthermore, the amplitudes aT,R are such that on the interface Γ, we have for all

(i, j) ∈ N2, i = 0 and j ≤ 1, or i ≥ 1 and j ≥ 0,c

∂j1a
T
i − ∂j1a

I
i ∈ µ(Ci+j−1[µ]⊗ C3), ∂j1a

R
i ∈ µ(Ci+j−1[µ]⊗ C3). (6.8)

(iv) The smart layer with σ(x1) satisfying σ(0) = · · · = σ(k−1)(0) = 0, σ(k)(0) �= 0

is nonreflecting at order k for any angle of incidence, i.e. if aI0(t, 0−, x
′) =

α(t, x′)Φ(τ, ξ), there exists Rk(τ, ξ) such that

aR(t, 0−, x
′) = εkσ(k)(0)Rk(τ, ξ)α(t, x

′)Φ(τ, ξR) +O(εk+1).

Furthermore the amplitudes aT,R are linear functions of µ on the interface Γ. That

is denoting cRi (µ) = aRi |Γ and cTi (µ) = aTi |Γ − aIi |Γ, we have for all i ≥ k in N,

cR,T
i (µ) ∈ µ(Ci−1[µ]⊗ C3).

Remark 6.1. (1) There exist choices of aI,R,T so that Uε, Vε, and Wε is an exact

solution. Since the transmission problem is well posed, there is a uniquely deter-

mined corrector cε smooth and infinitely small on both sides so that adding cε

yields an exact solution. Adding cε to the left corresponds to adding the infinitely

small term cε eiS
I/ε to aI with a similar remark on the right.

(2) Part (iv) of the theorem with k = 0 generalizes part (iii) to discontinuous and

variable σ(x1).

(3) The basis elements, ΦR for aR1 and ΦI for aI0 are homogeneous of degree 2 in

τ, ξ. Doubling τ, ξ and also ε leaves the incoming and reflected waves unchanged.

Therefore εR(τ, ξ) must be equal to 2εR(2τ, 2ξ). This explains why R is homoge-

neous of degree −1.

(4) The reflection coefficient vanishes when ξ′ = 0. Since it is an even function of

ξ, ∇ξR = 0 too.

Proof. The incoming solution is given.

(i) Seek the leading amplitudes aT0 and aR0 . We will show that aR0 = 0 so it is actually

aR1 that is the leading amplitude of the reflected wave. A jump discontinuity in a

lower order coefficient does not lead to reflection at leading order. Denote

LT := ∂t +A2∂2 +A3∂3; L1 := LT +A1∂1; L := L1 + µC.

T := ∂t + v2∂2 + v3∂3 is the tangential transport operator. By Theorem 5.1, the

amplitudes are polarized, i.e. aI,R,T
0 = ΠLa

I,R,T
0 , and aT0 (respectively aR0 ) satisfies

a forward transport equation in x1 ≥ 0 (respectively backward in x1 ≤ 0) with zero

cCj [µ] denotes the space of polynomials of degree less than or equal to j with complex coefficients.
Cj [µ]⊗ C3 is the corresponding space of polynomials with coefficients in C3.
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initial values in time,

(v1∂1 + T )aI0 = 0, x1 ∈ R,
(−v1∂1 + T )aR0 = 0, x1 ∈ R−,

(v1∂1 + T + µΠLCΠL)aT0 = 0, x1 ∈ R+.

(6.9)

Therefore, to determine aT0 and aR0 everywhere, it suffices to know aT0 (t, 0+, x
′)

and aR0 (t, 0−, x
′). These values are determined from the transmission condition

(6.3):

A1(a
I
0(t, 0−, x

′) + aR0 (t, 0−, x
′)) = A1a

T
0 (t, 0+, x

′). (6.10)

The matrix A1 is singular. It is easy to see that (KerL(τ, ξ) ⊕ KerL(τ, ξR)) ∩
KerA1 = 0. Therefore, A1KerL(τ, ξ) and A1KerL(τ, ξR) are complementary sub-

spaces and generate RangeA1. This proves that

aR0 (t, 0−, x
′) = 0, aT0 (t, 0+, x

′)− aI0(t, 0−, x
′) = 0. (6.11)

By the transport equation, we conclude that

aR0 ≡ 0, for x1 < 0. (6.12)

The reflected zeroth-order term vanishes identically when x ∈ R3
−. We also deduce

from the transport equation (6.9) that

v1(∂1a
T
0 − ∂1a

I
0) + µΠLCΠLa

T
0 = 0 on Γ. (6.13)

Next determine inductively the correctors. For simplicity, throughout the proof

we note ΠL := ΠL(τ, ξ) and ΠR
L := ΠL(τ, ξ

R). Write the recursion relation (5.5) for

j ≥ 1 for the incident, reflected and transmitted waves. Split the amplitudes as

aI,Tj (t, x) = ΠLa
I,T
j (t, x) + (I −ΠL) a

I,T
j (t, x),

aRj (t, x) = ΠR
La

R
j (t, x) + (I −ΠR

L) a
R
j (t, x).

(I−ΠL) aTj (t, x) and (I−ΠR
L) a

R
j (t, x) are determined directly by (5.8). To determine

the projection on the kernel, split the transmission condition (6.3) and insert (5.8)

on the interface to get,

A1(ΠLa
I
j (t, 0, x

′)−ΠLa
T
j (t, 0+, x

′) + ΠR
La

R
j (t, 0−, x

′))

= −A1((I −ΠL) a
I
j (t, 0, x

′)− (I −ΠL) a
T
j (t, 0+, x

′) + (I −ΠR
L) a

R
j (t, 0−, x

′)).

(6.14)

As for the terms of order 0, this determines ΠLaTj (t, 0+, x
′) and ΠR

La
R
j (t, 0−, x

′).
By (5.9), the projections are solution of a transport equation, therefore uniquely

determined by initial data and the values on the boundary. Borel’s theorem allows

one to construct

aI(t, x, ε), aT (t, x, ε) and aR(t, x, ε),



June 6, 2011 11:53 WSPC/S1793-7442 251-CM S1793744211000291

224 L. Halpern, S. Petit-Bergez & J. Rauch

so that the transmission condition is exactly satisfied. With this choice, the approx-

imate solution satisfies the transmission problem with infinitely small residual.

(ii) Theorem 4.4 implies that the exact solution in x1 ≤ 0 is equal to Uε + O(ε∞).

The error of the approximation is O(ε∞) so the exact solution is equal to Uε+Vε+

O(ε∞). Therefore Vε = (Uε + Vε)− Uε = O(ε∞) which is the desired conclusion.

(iii) For the smart layer (6.1), (6.2) with σ = 1x1>0, compute the first-order term

by (5.11) with j = 1. First deduce from (5.8) that

(I −ΠL) a
I
1(t, x) = iQLL1(∂t, ∂x)a

I
0(t, x), x1 ∈ R,

(I −ΠR
L) a

R
1 (t, x) = 0, x1 ∈ R−,

(I −ΠL) a
T
1 (t, x) = iQL(L1(∂t, ∂x) + µC)aT0 (t, x), x1 ∈ R+.

(6.15)

Replace in (6.15) the x1 derivatives using (6.9),

(I −ΠL) a
I
1(t, x) = iQL(LT +A1∂1)a

I
0(t, x) = iQL

(
LT − 1

v1
A1T

)
aI0(t, x),

(I −ΠL)a
T
1 (t, x) = iQL(LT +A1∂1 + µC)aT0 (t, x)

= iQL

(
LT − 1

v1
A1T + µ

(
− 1

v1
A1ΠLCΠL + C

))
aT0 (t, x),

to obtain, with C1 := C − 1
v1
A1ΠLCΠL,

(I −ΠL)a
T
1 (t, 0+, x

′)− (I −ΠL)a
I
1(t, 0, x

′) = iµQLC1a
I
0(t, 0, x

′). (6.16)

Using (I −ΠL)a
R
1 = 0 in the transmission condition yields,

A1(Π
R
La

R
1 +ΠLa

I
1 −ΠLa

T
1 ) = iµA1QLC1a

I
0. (6.17)

The eigenvalues of A1 are 0 and ±1, with associated orthonormal set of eigen-

vectors Φ0 = e1 and Φ± = (0, 1,±i)/
√
2. The projection operators on the positive

and negative eigenspaces are π±(A1) = Φ±Φ∗
±, and C = Φ+Φ

∗
+ + νΦ−Φ∗

−. The
kernel of L(τ, ξ) is one-dimensional, it is spanned by

Φ(τ, ξ) = ξ − τ2

ξ1
e1 + i

τ

ξ1
ξ ∧ e1 =

(
ξ1 −

τ2

ξ1
, i
τ

ξ1
ξ3 + ξ2,−i

τ

ξ1
ξ2 + ξ3

)
, (6.18)

and the projection on KerL(τ, ξ) is ΠL = ΦΦ∗

Φ∗Φ . Compute

ΠLCΠL =
ΦΦ∗

Φ∗Φ
(Φ+Φ

∗
+ + νΦ−Φ

∗
−)

ΦΦ∗

Φ∗Φ

=
1

(Φ∗Φ)2
Φ(Φ∗Φ+)(Φ

∗
+Φ)Φ

∗ + νΦ(Φ∗Φ+)(Φ
∗
+Φ)Φ

∗

=
|Φ∗Φ+|2 + ν|Φ∗Φ−|2

Φ∗Φ
ΠL.
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Define

γ :=
|Φ∗Φ+|2 + ν|Φ∗Φ−|2

Φ∗Φ
, so, ΠLCΠL = γΠL. (6.19)

Since aI0 is polarized,

C1a
I
0 =

(
C − γ

v1
A1ΠL

)
aI0 =

(
C − γ

v1
A1

)
aI0 := C̃1a

I
0.

To compute the right-hand side of (6.17), use

C =




0 0 0

0
ν + 1

2
i
ν − 1

2

0 −iν − 1

2

ν + 1

2



, γ =

(τ − ξ1)
2 + ν(τ + ξ1)

2

4τ2

=
1

4
((1 + v1)

2 + ν(1− v1)
2),

to find

C̃1 =
ν + 1

2




0 0 0

0 1 i
v21 + 1

2v1

0 −i v
2
1 + 1

2v1
1



.

Write aI0 = αI
0Φ and compute

C̃1Φ = (1 + ν)
ξ21 − τ2

4τξ21
Ψ, Ψ =




0

ξ2τ − iξ1ξ3

ξ3τ + iξ2ξ3


,

to find a new version of (6.17),

A1(Π
R
La

R
1 +ΠLa

I
1 −ΠLa

T
1 ) = iµ(1 + ν)

ξ21 − τ2

4τξ21
αI
0 A1QLΨ. (6.20)

Next compute QLΨ. First compute a basis of eigenvectors for L(τ, ξ). Φ2 is such

that L(τ, ξ)Φ2 = τΦ2,Φ3 is such that L(τ, ξ)Φ3 = 2τΦ3. Choose

Φ2 = ξ, Φ3 = Φ(−τ, ξ).

Note that

Ψ = τξ − ξ1(τe1 + iξ ∧ e1)

and

Φ = ξ − τ

ξ1
(τe1 − iξ ∧ e1), Φ3 = ξ − τ

ξ1
(τe1 + iξ ∧ e1),
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which gives

(τe1 + iξ ∧ e1) =
ξ1
τ
(ξ − Φ3)

and

Ψ = τξ − ξ21
τ
(ξ − Φ2) =

τ2 − ξ21
τ

ξ +
ξ21
τ
Φ3.

Since QL is the left inverse of L, we have QLξ =
1
τ ξ, and QLΦ3 = 1

2τΦ3, which

gives

QLΨ =
τ2 − ξ21
τ2

ξ +
ξ21
2τ2

Φ3.

Write the coefficients on Γ as

ΠLa
I,T
1 = αI,T

1 Φ, ΠR
La

R
1 = αR

1 Φ
R

and inject into the transmission condition to obtain

αR
1 A1Φ + (αI

1 − αT
1 )A1Φ

R = iµ(1 + ν)
ξ21 − τ2

4τξ21
αI
0A1

(
τ2 − ξ21
τ2

ξ +
ξ21
2τ2

Φ3

)
.

Since the kernel of A1 is e1, A1 in the preceding identity may be replaced by the

projection on (e2, e3). The projection of Φ is ϕ = ξ′ − i τ
ξ1
ξ ∧ e1, and note that Φ3

and Φ(τ, ξR) have the same projection, which is ϕ3 = ξ′ + i τ
ξ1
ξ ∧ e1. Write

αR
1 ϕ3 + (αI

1 − αT
1 )ϕ = iµ(1 + ν)

ξ21 − τ2

4τξ21
αI
0

(
τ2 − ξ21
τ2

ξ′ +
ξ21
2τ2

ϕ3

)

= iµ(1 + ν)
ξ21 − τ2

4τξ21
αI
0

(
τ2 − ξ21
2τ2

(ϕ+ ϕ3) +
ξ21
2τ2

ϕ3

)

= iµ(1 + ν)
ξ21 − τ2

4τξ21
αI
0

(
τ2 − ξ21
2τ2

ϕ+
1

2
ϕ3

)
.

The solutions are parametrized by αI
0,

αR
1 = iµ(1 + ν)

ξ21 − τ2

8τξ21
αI
0, αI

1 − αT
1 = −iµ(1 + ν)

(ξ21 − τ2)2

8τ3ξ21
αI
0.

Now use the results in (i) and prove (6.8) by induction on i. Equation (6.12)

asserts that aR0 = 0 for x1 < 0. Equations (6.9) and (6.10), imply that at x1 = 0,

aI,T0 = ΠLa
I,T
0 , and

v1(∂1a
T
0 − ∂1a

I
0) + T (aT0 − aI0) + µγ(aT0 − aI0) + µγaI0 = 0, x1 ≥ 0.

Differentiation in x1 several times yields ∂ j
1a

T
0 − ∂ j

1a
I
0 ∈ µCj−1[µ]⊗ C3, giving the

results for i = 0 and j ≥ 1.
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Assuming the inductive hypothesis is true for i we prove it for i+1. Write (5.11)

in the form

(I −ΠR
L)a

R
i+1(t, x) = iQR

L(LT (∂t, ∂x′) +A1∂1)a
I
i (t, x),

(I −ΠL)a
I
i+1(t, x) = iQL(LT (∂t, ∂x′) +A1∂1)a

I
i (t, x),

(I −ΠL)a
T
i+1(t, x) = iQL(LT (∂t, ∂x′) +A1∂1 + µC)aTi (t, x).

By induction, ∂ j
1 (I − ΠR

L)a
R
i (t, x) ∈ µCi+j−1[σ] ⊗ C3 on the interface. Write for

x1 ≥ 0,

(I −ΠL)(a
T
i+1 − aIi+1)(t, x)

= iQL(LT +A1∂1 + µC)(aTi − aIi )(t, x) + iµQLCa
I
i (t, x). (6.21)

The inductive hypothesis shows that on Γ, ∂ j
1 (LT+A1∂1+µC)(a

T
i −aIi ) ∈ µCi+j [µ]⊗

C3 and ∂ j
1 (µCa

I
i ) ∈ µC0[σ]⊗C3. The result follows for (I −ΠL)(a

T
i+1 − aIi+1), and

for (I−ΠR
L)a

R
i+1 in the same way. The transmission condition extends the assertion

to the other parts ΠL(a
T
i+1 − aIi+1) and ΠR

La
R
i+1.

(iv) Here σ vanishes to order k at x1 = 0. (6.11) and (6.12) are still valid, and the

transport equation (6.9) implies on the interface Γ that

∂ j
1ΠLa

T
0 − ∂ j

1ΠLa
I
0 = 0, j = 0, . . . , k,

∂k+1
1 ΠLa

T
0 − ∂k+1

1 ΠLa
I
0 = −µσ(k)(0)

γ

v1
ΠLa

I
0.

(6.22)

From (6.21) for i = 0, (6.15) and (6.22), derive

aR1 ≡ ΠLa
R
1 everywhere,

∂ j
1 (I −ΠL) a

T
1 − ∂ j

1 (I −ΠL) a
I
1 = 0, j = 0, . . . , k − 1, on Γ,

∂k1 (I −ΠL) a
T
1 − ∂k1 (I −ΠL) a

I
1 = iµσ(k)(0)QLC1ΠLa

I
0 on Γ.

(6.23)

Using the transmission conditions to obtain on the interface Γ,

ΠR
La

R
1 = 0, ΠLa

I
1 = ΠLa

T
1 .

Insert into the transport equations (5.9) to find aR1 = 0 in R−, and

∂ j
1ΠLa

T
1 − ∂ j

1ΠLa
I
1 = 0, j = 0, . . . , k − 1, on Γ,

∂k1ΠLa
T
1 − ∂k1ΠLa

I
1 = − 1

v1
ΠLA1(∂

k
1 (I −ΠL) a

T
1 − ∂k1 (I −ΠL) a

I
1)

= −i µ
v1
σ(k)(0)ΠLA1QLC1ΠLa

I
0 on Γ.

(6.24)

Recover

∂ j
1a

T
1 − ∂ j

1a
I
1 = 0, j = 0, . . . , k − 1, on Γ,

∂k1a
T
1 − ∂k1a

I
1 = iµσ(k)(0)

(
I − 1

v1
ΠLA1

)
ΠLA1QLC1ΠLa

I
0 on Γ.

(6.25)
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Now proceed iteratively, to see that, for i < k + 1,

aRi ≡ ΠLa
R
i ≡ 0 everywhere,

∂ j
1a

T
i − ∂j1a

I
1 = 0, j = 0, . . . , k − i, on Γ,

∂k−i+1
1 (I −ΠL) a

T
i − ∂k−i+1

1 (I −ΠL) a
I
i

= iQLA1(∂
k−i+2
1 aTi−1 − ∂k−i+2

1 aIi−1) on Γ,

∂k−i+1
1 ΠLa

T
i − ∂k−i+1

1 ΠLa
I
i

= − 1

v1
ΠLA1(∂

k−i+1
1 (I −ΠL) a

T
i − ∂k−i+1

1 (I −ΠL) a
I
i ).

(6.26)

Denote by si the value of ∂
k−i+1
1 aTi −∂k−i+1

1 aIi on Γ. Equation (6.26) yields the

recursion relation

sj = i

(
I − 1

v1
ΠLA1

)
QLA1sj−1, s1 = iµσ(k)(0)

(
I − 1

v1
ΠLA1

)
QLC1ΠLa

I
0,

which can be solved as

sk+1 = iµσ(k)(0)MΠLa
I
0, with M :=

(
i

(
I − 1

v1
ΠLA1

)
QLA1

)k
QLC1.

The first nonzero reflected term is therefore aRk+1 = ΠR
La

R
k+1, and using the trans-

mission condition yields

A1(ΠLa
R
k+1 +ΠLa

I
k+1 −ΠLa

T
k+1 + sk+1) = 0.

The incoming amplitude on Γ is aI0 = α(t, x′)Φ, the leading reflection is aRk+1 =

αR
k+1Φ

R and the leading transmission is aTk+1 = αR
k+1Φ

T . Using again the nota-

tion Φ′ to denote the projection of a vector Φ on Vec(e2, e3), this linear system is

solved as

αR
k+1 = − Φ′ ∧ s′k+1

Φ′ ∧ (ΦR)′
, αT

k+1 − αI
k+1 =

(ΦR)′ ∧ s′k+1

Φ′ ∧ (ΦR)′
.

αR
k+1 = −iµσ(k)(0)α

Φ′ ∧ (MΦ)′

Φ′ ∧ (ΦR)′
, αT

k+1 − αI
k+1 = iµσ(k)(0)α

(ΦR)′ ∧ (MΦ)′

Φ′ ∧ (ΦR)′
.

The proof of the linearity follows the same path as in (iii).

6.3. Harmoniously matched layers

Based on Theorem 6.1 we construct an extrapolation method for symmetric hyper-

bolic operators with smart layers which eliminates the leading order reflection.

The resulting method has desirable stability properties and is nearly as good as

Bérenger’s algorithm for the Maxwell equations where his method is at its best.

We think that the new method provides a good alternative in situations where

Bérenger’s method is not so effective.
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Consider the computational domain x1 ≤ b1. The domain of interest is the

interval x1 ≤ a1 < b1. The absorbing layer is located in a1 ≤ x1 ≤ b1. The

differential operator in the computational domain is symmetric hyperbolic L with

smart layer

LU + σ1(x1)(π+(A1) + νπ−(A1))U = 0, σ1 ≥ 0, suppσ1 ⊂ {x1 ≥ a1}.

At the outer boundary x1 = b1 of the absorbing layer impose the simplest weakly

reflecting boundary condition

π−(A1)U = 0 when x1 = b1.

This is a well-posed problem provided that A1 has constant rank on x1 = b1.

When L = L1(∂) has constant coefficients, it generates a contraction group in

L2({x1 ≤ b1}).
The hamoniously matched layer algorithms compute a smart layer with coef-

ficient σ1 and also with coefficient 2σ1. In view of Theorem 6.1, subtracting the

second from twice the first, 2U(σ1)−U(2σ1), yields a field with one more vanishing

term in the reflected wave at the interface x1 = a1. This extrapolation removes the

leading reflection.

The harmonious matched layer algorithms in a rectangular domain R perform

the same extrapolation with absorptions in all directions. With

LU +

d∑

j=1

σj(xj)(π+(Aj) + νπ−(Aj))U = 0, σj ≥ 0, suppσj ⊂ {|xj | ≥ aj}

with

π∓(Aj)U = 0 when xj = ±bj .

This initial boundary value problem on a rectangle has weak solutions.d When

L = L1(∂), the L2(R) norm is nonincreasing in time. The extrapolation is

2U(σ1, . . . , σd)− U(2σ1, . . . , 2σd).

Open Problem. For discontinuous σj , the uniqueness of solutions to the initial

boundary value problem on the rectangular computational domain is not known

because of the discontinuity of the boundary space kerAj at the corner. Solutions

are typically discontinuous. Uniqueness of strong solutions and existence of weak

solutions is proved by the energy method. We do not know how to prove unique-

ness of solutions with regularity not exceeding that of solutions known to exist.

Similar problems plague virtually all methods on rectangular domains with absorb-

ing boundary conditions imposed on the computational domain with corners. The

present problem is one of the simplest of its kinds. The fact that algorithms designed

to compute solutions encounter no difficulties is reason for optimism.

dThis can be proved by penalization. Denote by Ω the rectangular computational domain. Add
Λ1Rd\Ω to L and solve on R1+d

t,x . The limit as Λ → ∞ provides a solution in L∞([0, T ] : L2(R)) [4].



June 6, 2011 11:53 WSPC/S1793-7442 251-CM S1793744211000291

230 L. Halpern, S. Petit-Bergez & J. Rauch

6.4. Numerical experiments

Simulations are performed for the 2D transverse electric Maxwell system in the

(x, y) coordinates,

∂tEx − ∂yHz = 0,

∂tEy + ∂xHz = 0,

∂tHz + ∂xEy − ∂yEx = 0,

(6.27)

in a rectangle, with boundary conditions n ∧ E = 0 on the west, north and south

boundaries. The layer will be imposed on the east boundary. Maxwell Bérenger is

given by

∂tEx − ∂yHz = 0,

∂tEy + ∂xHz + σ(x)Ey = 0,

∂tHzx + ∂xEy + σ(x)Hzx = 0,

∂tHzy − ∂yEx = 0,

Hz = Hzx +Hzy.

(6.28)

For the computation, these equations are used in the whole rectangle (see the

discussion in the Introduction), with σ = 0 outside the layer. The boundary

conditions are

Ey = Hz and Ex = 0 on the east, n ∧ E = 0 on the other boundaries.

(6.29)

Since Π+(A1) =
Ey+Hz

2 (0, 1, 1) and Π−(A1) =
Ey−Hz

2 (0, 1,−1), the smart

layers are:

∂tEx − ∂yHz = 0,

∂tEy + ∂xHz +
σ(x)

2
(Ey +Hz + ν(Ey −Hz)) = 0,

∂tHz − ∂yEx + ∂xEy +
σ(x)

2
(Ey +Hz − ν(Ey −Hz)) = 0.

(6.30)

The boundary conditions (6.29) are imposed.

The Yee scheme for Maxwell is

(Ex)
n
i+ 1

2 ,j
− (Ex)

n−1
i+ 1

2 ,j

∆t
−

(Hz)
n− 1

2

i+ 1
2 ,j+

1
2

− (Hz)
n− 1

2

i+ 1
2 ,j− 1

2

∆y
= 0,

(Ey)
n
i,j+ 1

2

− (Ey)
n−1
i,j+ 1

2

∆t
+

(Hz)
n− 1

2

i+ 1
2 ,j+

1
2

− (Hz)
n− 1

2

i− 1
2 ,j+

1
2

∆x
= 0,

(Hz)
n+ 1

2

i+ 1
2 ,j+

1
2

− (Hz)
n− 1

2

i+ 1
2 ,j+

1
2

∆t
+

(Ey)
n
i+1,j+ 1

2

− (Ey)
n
i,j+ 1

2

∆x

−
(Ex)

n
i+ 1

2 ,j+1
− (Ex)

n
i+ 1

2 ,j

∆y
= 0.

(6.31)
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The Yee scheme for Maxwell Bérenger using the notations σi = σ(xi) and σi+ 1
2
=

σ(xi+ 1
2
) is,

(Ex)
n
i+ 1

2 ,j
− (Ex)

n−1
i+ 1

2 ,j

∆t
−

(Hz)
n− 1

2

i+ 1
2 ,j+

1
2

− (Hz)
n− 1

2

i+ 1
2 ,j− 1

2

∆y
= 0,

(Ey)
n
i,j+ 1

2

− (Ey)
n−1
i,j+ 1

2

∆t
+

(Hz)
n− 1

2

i+ 1
2 ,j+

1
2

− (Hz)
n− 1

2

i− 1
2 ,j+

1
2

∆x

+ σi
(Ey)

n
i,j+ 1

2

+ (Ey)
n−1
i,j+ 1

2

2
= 0,

(Hzx)
n+ 1

2

i+ 1
2 ,j+

1
2

− (Hzx)
n− 1

2

i+ 1
2 ,j+

1
2

∆t
+

(Ey)
n
i+1,j+ 1

2

− (Ey)
n
i,j+ 1

2

∆x

+ σi+ 1
2

(Hzx)
n+ 1

2

i+ 1
2 ,j+

1
2

+ (Hzx)
n− 1

2

i+ 1
2 ,j+

1
2

2
= 0,

(Hzy)
n+ 1

2

i+ 1
2 ,j+

1
2

− (Hzy)
n− 1

2

i+ 1
2 ,j+

1
2

∆t
−

(Ex)
n
i+ 1

2 ,j+1
− (Ex)

n
i+ 1

2 ,j

∆y
= 0,

(Hz)
n+ 1

2

i+ 1
2 ,j+

1
2

= (Hzx)
n+ 1

2

i+ 1
2 ,j+

1
2

+ (Hzy)
n+ 1

2

i+ 1
2 ,j+

1
2

.

(6.32)

The Yee scheme for the smart layers is

(Ex)
n
i+ 1

2 ,j
− (Ex)

n−1
i+ 1

2 ,j

∆t
−

(Hz)
n− 1

2

i+ 1
2 ,j+

1
2

− (Hz)
n− 1

2

i+ 1
2 ,j− 1

2

∆y
= 0, (6.33a)

(Ey)
n
i,j+ 1

2

− (Ey)
n−1
i,j+ 1

2

∆t
+

(Hz)
n− 1

2

i+ 1
2 ,j+

1
2

− (Hz)
n− 1

2

i− 1
2 ,j+

1
2

∆x

+
(1 + ν)σi

2

(Ey)
n
i,j+ 1

2

+ (Ey)
n−1
i,j+ 1

2

2

+
(1 − ν)

2

σi+ 1
2
(Hz)

n− 1
2

i+ 1
2 ,j+

1
2

+ σi− 1
2
(Hz)

n− 1
2

i− 1
2 ,j+

1
2

2
= 0, (6.33b)

(Hz)
n+ 1

2

i+ 1
2 ,j+

1
2

− (Hz)
n− 1

2

i+ 1
2 ,j+

1
2

∆t
+

(Ey)
n
i+1,j+ 1

2

− (Ey)
n
i,j+ 1

2

∆x

−
(Ex)

n
i+ 1

2 ,j+1
− (Ex)

n
i+ 1

2 ,j

∆y
+

(1− ν)

2

σi+1(Ey)
n
i+1,j+ 1

2

+ σi(Ey)
n
i,j+ 1

2

2

+
(1 + ν)σi+ 1

2

2

(Hz)
n+ 1

2

i+ 1
2 ,j+

1
2

+ (Hz)
n− 1

2

i+ 1
2 ,j+

1
2

2
= 0. (6.33c)

The schemes are implemented using time windows to save memory.
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The harmoniously matched layers can be implemented in several ways that we

compare. The function σ(x) is as above.

HML Version 1. Global extrapolation. Compute the solution of (6.33) with

an absorption of σ, (E1, H1) and 2σ, (E2, H2) over the whole time window. Then

Ex,y = 2 ∗ E1
x,y − E2

x,y and Hz = 2 ∗H1
z −H2

z .

HML Version 2. Local extrapolation. Compute at each time step the solution

of (6.33) with an absorption of σ, (E1, H1) and 2σ, (E2, H2) over the whole time

interval. Then Ex,y = 2 ∗ E1
x,y − E2

x,y and Hz = 2 ∗ H1
z − H2

z . Save computation

by taking advantage of the fact that the computation of Ex does not involve the

absorption parameter. At each time step,

(1) Ex is computed by (6.33a),

(2) two values of Ey are computed by (6.33b): E1
y with an absorption parameter

equal to σ, E2
y with an absorption parameter equal to 2σ.

(3) two values of Hz are computed by (6.33c): H1
z with an absorption parameter

equal to σ, H2
z with an absorption parameter equal to 2σ.

Then Ey = 2 ∗ E1
y − E2

y and Hz = 2 ∗H1
z −H2

z .

HML Version 3. Split field local extrapolation. At each time step,

(1) Ex is computed by (6.33a),

(2) two values of Ey are computed by (6.33b): E1
y with an absorption parameter

equal to σ, E2
y with an absorption parameter equal to 2σ. Then Ey = 2∗E1

y−E2
y .

(3) two values of Hz are computed by (6.33c): H1
z with an absorption parameter

equal to σ, H2
z with an absorption parameter equal to 2σ. Then Hz = 2 ∗

H1
z −H2

z .

We perform a series of experiments to illustrate the transmission properties

of the layers. The coefficient ν is meant to achieve backward absorption and is

taken equal to zero. The domain of interest is (0, 6) × (0, 10), the coefficient σ(x)

is supported in 6 ≤ x ≤ 10. The time of computation is 4, the initial electric field

is zero. The initial transverse magnetic field,

H0
z = cos2

(
π
|x− xc|

r

)
cos

(
kπv · x− xc

r

)
χ|x−xc|≤r

is compactly supported in the ball B(xc, r), with xc = (5, 5) and r = 0.8.

The time of computation is fixed such that there is no reflection on the exterior

walls. The initial mesh is taken to be ∆x = ∆y = 0.1, ∆t = 0.0702, and then

divided by 2 twice.

In the first set of experiments, the absorption coefficient is constant in the layer,

equal to 2. The initial magnetic field hits the layer at incidence 0◦(v = (1, 0)) or

45◦(v = (1, 1)).
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Table 1. Comparison of the L∞ errors for high frequency, discontinuous absorption.

Normal incidence 45◦ incidence

Refinement 0 1 2 0 1 2

Bérenger 9.4e-02 3.9e-02 7.9e-03 1.3e-01 2.9e-02 5.6e-03
Smart 5.2e-02 1.3e-02 5.1e-04 6.2e-02 1.1e-02 5.3e-03

HML V1 3.4e-02 3.1e-03 2.1e-05 4.5e-02 1.2e-03 5.5e-04
HML V2 2.5e-02 6.0e-03 1.2e-03 7.4e-02 1.1e-02 1.7e-03
HML V3 2.1e-02 4.2e-03 5.1e-04 4.5e-02 5.3e-03 5.7e-04

Table 2. Comparison of the L∞ errors for low frequency, discontinuous absorption.

Normal incidence 45◦ incidence

Refinement 0 1 2 0 1 2

Bérenger 1.5e-02 7.1e-03 3.5e-03 1.3e-02 6.1e-03 3.0e-03
Smart 2.0e-02 2.0e-02 2.01e-02 4.3e-02 4.2e-02 4.2e-02

HML V1 1.7e-02 1.60e-02 1.6e-02 3.4e-02 3.3e-02 3.2e-02
HML V2 1.8e-02 1.1e-02 6.7e-03 3.1e-02 1.9e-02 1.1e-02
HML V3 4.3e-03 2.6e-03 1.4e-03 8.2e-03 4.8e-03 2.6e-03

Table 3. Comparison of the L∞ errors for high frequency, continuous absorption.

Normal incidence 45◦ incidence

Refinement 0 1 2 0 1 2

Bérenger 3.8e-05 1.9e-07 2.1e-09 2.0e-04 9.1e-07 1.6e-09
Smart 2.7e-05 2.2e-07 1.7e-07 1.7e-04 9.0e-07 3.1e-08

HML V1 5.5e-07 6.0e-08 5.6e-08 5.6e-06 1.2e-08 4.7e-09

HML V2 6.8e-07 6.5e-08 3.1e-08 2.6e-06 8.1e-09 2.8e-09
HML V3 5.8e-08 2.4e-09 1.1e-09 1.5e-06 9.5e-10 9.0e-11

In Table 1 we compare the performances on a high frequency wave (k = 10),

while in Table 2 we consider a low frequency wave (k = 1).

In Tables 3 and 4, we perform the same set of experiments, but the absorption

coefficient is now a third degree polynomial in the layer, equal to (x− 6)3/8.

The Bérenger layer performs well on every frequency and every angle of inci-

dence. Among the three versions for the HML, the third version is the best, which

should be analyzed thoroughly.

Next compare the method on a Gaussian initial value, supported in (0, 6) ×
(0, 10). Table 5 uses a constant absorption in the layer, while Table 6 uses the same

smooth absorption as before.

Table 4. Comparison of the L∞ errors for low frequency, continuous absorption.

Normal incidence 45◦ incidence

Refinement 0 1 2 0 1 2

Bérenger 6.2e-07 3.2e-08 7.8e-010 5.2e-07 2.9e-08 6.5e-010
Smart 5.3e-04 5.3e-04 5.2e-04 3.9e-04 3.8e-04 3.7e-04

HML V1 1.6e-04 1.6e-04 1.5e-04 8.6e-05 8.3e-05 8.2e-05
HML V2 4.1e-04 2.0e-04 9.6e-05 2.0e-04 9.8e-05 4.8e-05
HML V3 1.1e-05 5.4e-06 2.7e-06 5.9e-06 2.9e-06 1.4e-06
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Table 5. Comparison of the L∞ errors for a Gaus-

sian initial magnetic field, constant absorption.

Refinement 0 1 2

Bérenger 1.5e-02 6.7e-03 3.3e-03

Smart 3.4e-02 3.4e-02 3.3e-02

HML V1 3.0e-02 2.9e-02 2.8e-02

HML V2 3.6e-02 2.5e-02 1.6e-02

HML V3 1.0e-02 6.6e-03 3.9e-03

Table 6. Comparison of the L∞ errors for a Gaus-
sian initial magnetic field, continuous absorption.

Refinement 0 1 2

Bérenger 7.5e-07 2.0e-08 8.3e-10

Smart 4.3e-04 4.2e-04 4.1e-04

HML V1 1.3e-04 1.2e-04 1.2e-04

HML V2 3.0e-04 1.5e-04 7.3e-05

HML V3 8.8e-06 4.3e-06 2.1e-06

Finally, take unstructured random initial value, supported in the ball centered

at (5, 5) and of radius 1. In Table 7, the absorption coefficient is constant in the

layer, equal to 3.

In Table 8, the absorption coefficient is a function of x in the layer, equal to

(x− 6)3/8.

Summary. When comparing the reflection properties, the harmoniously matched

layer, version 3, is competitive with the Bérenger layer. For very regular data, the

Bérenger layers outperform everything. The performance of the HMLV3 gives hope

the method with its stronger well-posedness, more robust absorption, and small

Table 7. Comparison of the L∞ errors for a ran-

dom initial magnetic field, constant absorption.

Refinement 0 1 2

Bérenger 5.7e-02 4.9e-02 4.4e-02

Smart 6.7e-02 6.3e-02 5.4e-02

HML V1 5.1e-02 4.5e-02 4.0e-02

HML V2 6.4e-02 3.0e-02 1.9e-02

HML V3 3.2e-02 1.5e-02 6.7e-03

Table 8. Comparison of the L∞ errors for a ran-
dom initial magnetic field, continuous absorption.

Refinement 0 1 2

Bérenger 1.1e-04 5.0e-05 4.4e-06

Smart 7.2e-04 6.9e-04 6.4e-04

HML V1 2.1e-04 2.2e-04 2.0e-04

HML V2 5.0e-04 2.7e-04 1.2e-04

HML V3 1.5e-05 7.9e-06 3.7e-06
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reflection at all angles will be a good method where Bérenger has proven less good.

For example, for nonconstant coefficients and nonlinear problems. We have taken

pains to make the comparison where Bérenger is at its best. In 2D with a layer

in a single direction the HML has an extra cost. Since there are five quantities to

compute at each time step instead of four for Bérenger. This is no longer the case

in three dimensions, since both strategies have to split six unknowns.

Open problems. (1) Our analysis does not explain the much better behavior with

continuous absorption, nor the advantages of HMLV3. (2) A comparison with other

methods where only supplementary ordinary differential equations are added should

be made.
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5. E. Bécache, S. Fauqueux and P. Joly, Stability of perfectly matched layers, group
velocities and anisotropic waves, J. Comput. Phys. 188 (2003) 399–433.

6. M. D. Bronshtein, Smoothness of roots of polynomials depending on parameters, Sib.
Mat. Zh. 20 (1979) 493–501, in Russian [English transl., Siberian Math. J. 20 (1980)
347–352].

7. M. D. Bronshtein, The Cauchy problem for hyperbolic operators with characteristics
of variable multiplicity, Trudy Moskov. Mat. Obshch. 41 (1980) 83–99, in Russian
[English transl., Trans. Moscow. Math. Soc., No. 1 (1982) 87–103.

8. J. Chazarain and A. Piriou, Introduction à la Théorie des Équations aux Dérivées
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(EDP Sciences, 2009), pp. 156–170.
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Gevrey en x, Bull. Sci. Math. 107 (1983) 113–138.
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