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In the wake of a preceding article [31] introducing the Schrödinger–Virasoro group, we
study its affine action on a space of (1 + 1)-dimensional Schrödinger operators with
time- and space-dependent potential V periodic in time. We focus on the subspace
corresponding to potentials that are at most quadratic in the space coordinate, which is
in some sense the natural quantization of the space of Hill (Sturm–Liouville) operators on
the one-dimensional torus. The orbits in this subspace have finite codimension, and their
classification by studying the stabilizers can be obtained by extending Kirillov’s results
on the orbits of the space of Hill operators under the Virasoro group. We then explain
the connection to the theory of Ermakov–Lewis invariants for time-dependent harmonic
oscillators. These exact adiabatic invariants behave covariantly under the action of the
Schrödinger–Virasoro group, which allows a natural classification of the orbits in terms
of a monodromy operator on L2(R) which is closely related to the monodromy matrix
for the corresponding Hill operator.
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0. Introduction

The Schrödinger–Virasoro Lie algebra sv was originally introduced in Henkel [18] as

a natural infinite-dimensional extension of the Schrödinger algebra. Recall that the

latter is defined as the algebra of projective Lie symmetries of the free Schrödinger

equation in (1+1) dimensions

(−2i∂t − ∂2r )ψ(t, r) = 0. (0.1)
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These act on Eq. (0.1) as the following first-order operators

Ln = −tn+1∂t −
1

2
(n+ 1)tnr∂r +

i

4
(n+ 1)ntn−1r2 − (n+ 1)λtn,

Ym = −tm+ 1
2 ∂r + i

(
m+

1

2

)
tm− 1

2 r,

Mp = itp,

(0.2)

with λ = 1/4 and n = 0,±1, m = ± 1
2 , p = 0. The zeroth-order terms in (0.2)

correspond at the level of the group to the multiplication of the wave function by

a phase. To be explicit, the six-dimensional Schrödinger group S acts on ψ by the

following transformations

(L−1, L0, L1) : ψ(t, r) → ψ′(t′, r′) = (ct+ d)−1/2e−
1
2 icr

2/(ct+d)ψ(t, r), (0.3)

where t′ = at+b
ct+d , r

′ = r
ct+d with ad− bc = 1;

(Y± 1
2
) : ψ(t, r) → ψ(t, r′) = e−i((vt+r0)(r−v/2)ψ(t, r), (0.4)

where r′ = r − vt− r0;

(M0) : ψ(t, r) → e−iγψ(t, r). (0.5)

Altogether these transformations make up a group S, called Schrödinger group,

which is isomorphic to a semi-direct product of SL(2,R) (corresponding to time-

reparametrizations (0.3)) by a Heisenberg group H1 (corresponding to the Galilei

transformations (0.4), (0.5)). Note that the last transformation (0.5) (multiplication

by a constant phase) is generated by the commutators of the Galilei transformations

(0.4) — these do not commute because of the added phase terms, which produce a

central extension.

Now sv � 〈Ln, Ym,Mp |n, p ∈ Z,m ∈ 1
2 +Z〉 made up of all linear combinations

of the generators corresponding to all possible integer or half-integer indices — is a

Lie algebra, as can be checked by direct computation. Similarly to the Lie algebra of

the Schrödinger group, it is a semi-direct product, sv � g0�h, where g0 = 〈Ln〉n∈Z
is the centerless Virasoro algebra and h = 〈Ym,Mp |m ∈ 1

2 +Z, p ∈ Z} is a two-step

nilpotent infinite-dimensional Lie algebra which extends the Heisenberg Lie alge-

bra. It may be exponentiated into a group (the Schrödinger–Virasoro group) that

we denote by SV. The paper [31], by Roger and the author, studies this Lie alge-

bra for its own sake from different points of view, including representation theory,

deformations, central extensions. There is a hope that this Lie algebra or related

ones may help classify strongly anisotropic critical systems and models pertaining

to out-of-equilibrium statistical physics, notably ageing phenomena, for which the

anisotropic dilation (t, r) → (λ2t, λr) (λ ∈ R) holds. A systematic investigation of

the consequences of a symmetry of the physical system under consideration under

the Schrödinger group or related groups has been conducted since the mid-90s (for

a short survey, see [20]).
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The starting point for this work is a little different. One of the possible moti-

vations for introducing this Lie algebra in the first place is that the group of Lie

symmetries of any Schrödinger operator −2i∂t−∂2r +V (t, r) may be represented as

a linear combination of the generators introduced in (0.2). In other words, for any

particular Schrödinger operator, the Lie algebra of symmetries is finite-dimensional,

but the symmetry algebras of all Schrödinger operators are contained in sv in the

above realization (see Sec. 2.5 below for a more precise statement). The proof lies

in some sense in a classical paper by Niederer (see [28]) — who never considered

the algebra generated by all possible symmetries.

Another related way to look at it is that sv acts on the space of Schrödinger

operators. More precisely, SV acts on the affine space of Schrödinger operators with

time- and space-dependent potential at most quadratic in the space coordinate. We

call it Saff
≤2 := {−2i∂t − ∂2r + V2(t)r

2 + V1(t)r + V0(t)}. It is assumed that V0, V1
and V2 are 2π-periodic in time; this hypothesis is natural when one sets t = eiθ

(θ ∈ R/2πZ) as a coordinate on the unit circle, so that the generator Ln acts as

−einθ∂θ + · · ·. This restricted space is in some sense minimal, which can be seen

from the fact that Saff
≤2 may be expressed in terms of three functions of time, just

like the elements of sv. The phase terms in (0.2) add by commutation with the free

Schrödinger equation terms of order 1, r and r2. One can show that the orbit of

any Schrödinger operator D ∈ Saff
≤2 has finite-codimension in this space. Hence this

space appears to be natural from a representation point of view.

In Sec. 2 below (see Sec. 2.4), we classify the orbits of SV in Saff
≤2. The clas-

sification is mainly an extension of Kirillov’s results on the classification of the

orbits of the space of Hill operators under the Virasoro group. These are operators

of the type ∂2t + u(t). It is well known (see for instance Guieu [13] or [14]) that

the group of orientation-preserving diffeomorphisms Diff+(R/2πZ) of the circle —

which exponentiates the centerless Virasoro algebra — acts on the affine space of

Hill operators. Now the remarkable fact (despite the apparent differences between

the two problems) is that the action of the Virasoro group Diff+(R/2πZ) ⊂ SV on

the quadratic part of the potential, V2(t)r
2, is equivalent to that of Diff+(R/2πZ)

on the Hill operator ∂2t + V2(t). The reason comes from the fact that the Hill oper-

ator is the corresponding classical problem in the semiclassical limit (see Sec. 3.2).

Hence part of the classification may be borrowed directly from the work of Kir-

illov (see [23]). Kirillov obtains his classification by studying the isotropy algebra

Lie(Stabu) := {X ∈ Lie(Diff+(R/2πZ)) |X · (∂2+u) = 0}. There is another equiv-
alent description in terms of the lifted monodromy, which can be explained briefly

as follows. If (ψ1, ψ2) is a basis of solutions of the ordinary differential equation

(∂2t + u(t))ψ(t) = 0, then (by Floquet’s theory)
(
ψ1(t0 + 2π)

ψ2(t0 + 2π)

)
=M ·

(
ψ1(t0)

ψ2(t0)

)
, (0.6)

whereM is some matrix (called monodromy matrix) with determinant 1 which does

not depend on the base point t0. IfM is elliptic, i.e. conjugate to a rotation, then the
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eigenvectors for M are multiplied by a phase eiθ. If M is hyperbolic, i.e. conjugate

to a Lorentz shift (e
λ

e−λ), then the eigenvectors are multiplied by a real factor

e±λ, hence the solutions of the Hill equation are unstable, going either to zero or

to infinity when t → ±∞. A nice way to see it (and made rigorous in Sec. 2) is to

imagine the vector (ψ1(t)
ψ2(t)

) as “rotating” in the plane (it may also change norm but

never vanishes). The curve described by this vector may be lifted to the Riemann

surface of the logarithm for instance (obtained from the cut plane C\R−), so that

it turns by an angle unambiguously defined in R. This gives the lifted monodromy.

The space Saff
≤2 has been considered independently by mathematicians and physi-

cists, with similar motivations but different methods (that turn out to be equiv-

alent in the end). The general idea was to solve the evolution problem associated

with D ∈ Saff
≤2, i.e. to show that the Cauchy problem Dψ = 0 with initial con-

dition ψ(0, r) = ψ0(r) has a unique solution and compute it explicitly. The usual

method in mathematical physics for such time-dependent problems is to consider

the adiabatic approximation: if one puts formally a small coefficient ε in front

of ∂t, the problem is equivalent by dilating the time coordinate to the equation

(−2i∂t−∂2r +V (εt, r))ψ = 0, so that V is a potential that is slowly varying in time.

Suppose that ∆ε(t) := −∂2r + V (εt, r) has a pure point spectrum {λn(t), n ∈ N}
for every t, where λn is C∞ in t, say, and let ψn(t) be a normalized eigenfunc-

tion of ∆ε(t) satisfying the gauge-fixing condition 〈ψn(t), ψ̇n(t)〉 = 0. Then there

exists a parallel transport operator W (s, t) carrying the eigenspace with eigenvalue

λn(s) to the eigenspace with eigenvalue λn(t), and a phase operator Φ(s, t), given

simply by the multiplication by a phase e
i
2

R
t λn(s) ds on each eigenspace, such that

the solution of the Schrödinger equation is given at first order in ε by the com-

position of W and Φ. One may see the solutions formally as flat sections for a

connection (called Berry connection) related in simple terms to the phase oper-

ator (see [4]). This scheme may be iterated, giving approximate solutions to the

Schrödinger equation that are correct to any order in ε (see for instance Joye [21]),

but it is rarely the case that one can give exact solutions. By considering the related

classical problem, Hagedorn (see [16]) constructs a set of raising and lowering oper-

ators (generalizing those associated to the usual harmonic oscillator) for general

Schrödinger operators in Saff
≤2, and uses them to solve the equation explicitly. The

same set of operators had been considered previously by two quantum physicists,

Lewis and Riesenfeld (see [26]), and obtained by looking for an exact invariant, i.e.

for a time-dependent operator I(t) (not including the time-derivative) such that
dI
dt = ∂I

∂t + i[I(t),
1
2 (∂

2
r −V (t, r))] = 0. They find for each operator D in Saff

≤2 a family

of invariants (sometimes called the Ermakov–Lewis invariants, see [29]) depending

on an arbitrary real solution ξ of a certain differential equation of order 3 (see

Proposition 3.1.4), constructed out of generalized raising and lowering operators

and spectrally equivalent to the standard harmonic oscillator − 1
2 (∂

2
r − r2). These

invariants have been used to solve quite a few physical problems, ranging from quan-

tum mechanics for charged particles to cosmology (see [11, 12, 29, 30] for instance).
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It turns out that very few Schrödinger operators have an exact invariant of the

type I(t) = f2(t, r)∂
2
r + f1(t, r)∂r + f0(t, r). These may be expressed, as shown by

Lewis and Leach (see [25]), in terms of three arbitrary functions of time (the exact

expression is complicated). Exact invariants allow in principle to solve explicitly

the original problem, at least if one knows how to diagonalize them (which is the

case here). Hence (provided one requires that an exact invariant exists), the space

Saff
≤2 is maximal.

There are three new features here:

— the action of the Schrödinger–Virasoro group on Saff
≤2 (which is essentially a

conjugate action, leaving all invariant quantities unchanged, for instance the

spectrum and the monodromy) makes it possible to reduce the study to five

families of operators, with qualitatively different properties (see Sec. 2.4). They

are mainly characterized by the monodromy of the associated Hill operator

∂2t + V2(t), but there also appear some non-generic orbits in cases when the

quadratic and linear parts of the potential are “resonant”. The non-periodic

case is much simpler, since (locally in time) all Schrödinger operators in Saff
≤2 are

formally equivalent (see Sec. 3 below). The coefficients of the Ermakov–Lewis

invariants are related in a very simple way to the invariants of the orbits;

— one is interested in Schrödinger operators with time-periodic potential. Hence

one may consider (as in the case of ordinary differential operators, see above)

the monodromy, which is a bounded operator acting on L2(R). The monodromy

operator is given explicitly and shown to be closely related to the classical

monodromy of the related Hill operator;

— the computation of the monodromy in the case when the associated Hill oper-

ator is hyperbolic (see above) requires the use of an Ermakov–Lewis invariant

associated to a purely imaginary function ξ, which is equivalent to the stan-

dard harmonic “repulsor” − 1
2 (∂

2
r + r2). The reason (explained more precisely

in Sec. 3 below) is that the usual Ermakov–Lewis invariants are defined only if

IV2(ξ) > 0, where the invariant quantity IV2(ξ) (quadratic in ξ) is associated to

the Hill operator ∂2t + V2(t) and its stabilizer ξ(t) in Lie(Diff+(R/2πZ)). The
stabilizer satisfies a linear differential equation of order 3 and has generically

only one periodic solution (up to a constant). If one does not require ξ to be

periodic, then Iu(ξ) may be chosen to be positive, which is perfectly suitable

for a local study (in time) but is of little practical use for the computation

of the monodromy. If, however, one requires that ξ be periodic, then Iu(ξ) is

negative in the hyperbolic case, unless one chooses ξ to be purely imaginary.

Hence one is naturally led to use the spectral decomposition of the harmonic

“repulsor” (which has an absolutely continuous spectrum equal to the whole

real line). Usually there is no adiabatic scheme, hence no phase operator, in

the case when eigenvalues are not separated by a gap. But in this very par-

ticular case, such a phase operator may be computed and is very analogous to

that obtained in the elliptic case, for which the spectrum is discrete. There also
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exists some non-generic cases (corresponding to a unipotent monodromy matrix

for the underlying Hill operator) for which IV2(ξ) = 0. The natural invariant

is then spectrally equivalent either to the bare Laplacian − 1
2∂

2
r or to the Airy

operator − 1
2 (∂

2
r − r).

One of the main results may be stated as follows (see Secs. 3.4–3.6): the mon-

odromy operator is unitarily equivalent to the unitary multiplication operator

f(k) → eikT−iπγf(k), where γ is some constant and k is the spectral parame-

ter of the model operator − 1
2 (∂

2
r +κr

2) (κ = ±1, 0) or − 1
2 (∂

2
r − r), and T =

∫ 2π

0
du
ξ(u)

(ξ real) or i
∫ 2π

0
du
ξ(u) (ξ imaginary). The above integrals must be understood in a

generalized sense if ξ has some zeros; a complex deformation of contour is needed

then. Comparing with the usual Berry phase e
i
2

R 2π
0
λk(s) ds, one sees that the eigen-

value λk(t) = −2k is a constant, but that the natural (possibly singular) time-scale

is τ :=
∫ t du

ξ(u) .

The set of all possible monodromy operators has been determined in [17] by

remarking that, for quadratic (time-dependent) Hamiltonians, the unitary propa-

gator is determined up to a time-dependent phase by the classical flow obtained by

letting � → 0. This makes it possible to deduce the quantum monodromy operator

up to a phase from the classical monodromy matrix. However, these results do not

allow to determine the phase, which we are able to do by giving a family of normal

forms for elements in Saff
≤2. A great part of the interest of the present work is the

explicit connection between the orbit data obtained by algebraic tools, and the evo-

lution operator obtained through the Ermakov–Lewis method out of the spectral

decomposition of the model operators − 1
2 (∂

2
r ± r2), − 1

2∂
2
r , − 1

2 (∂
2
r − r).

The paper is organized as follows.

Section 1 is preliminary and contains notations and results (contained in [31])

concerning the Schrödinger–Virasoro group and its action on Schrödinger operators.

Section 2 is dedicated to the classification of the orbits and of the isotropy

subgroups GD := {g ∈ SV | g.D = D}, D ∈ Saff
≤2 (see Sec. 2.4). It contains long but

necessary preliminaries on the action of the Virasoro group on Hill operators. The

connection to the results of Niederer is made in the last paragraph.

We solve the monodromy problem for the Schrödinger operators of the form

−2i∂t − ∂2r + V2(t)r
2 + γ (γ constant) in Sec. 3. We study first the corresponding

classical problem given by the associated Hill operator, ẍ+V2(t)x = 0 (an ordinary

differential equation). The solution of the quantum problem is then easily deduced

from that of the classical problem. In either case, the monodromy is obtained by

relating the Ermakov–Lewis invariants to the orbit data.

Finally, we show in Sec. 4 how to parametrize a general Schrödinger operator

−2i∂t−∂2r+V2(t)r2+V1(t)r+V0(t) ∈ Saff
≤2 by means of a three-dimensional invariant

(ξ(t), δ1(t), δ2(t)) (see Definition 4.2). The parametrization is one-to-one or “almost”

one-to-one depending on the orbit class of the potential V2 (SV-orbits in Saff
≤2

have generically codimension 2, whereas adjoint orbits corresponding to the invari-

ant have generically codimension 2 or 3). The action of the Schrödinger–Virasoro
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group on Saff
≤2, once written in terms of the invariant, becomes much simpler,

and is easily shown to be Hamiltonian for a natural symplectic structure. A gen-

eralized Ermakov–Lewis invariant may also be written in terms of this three-

dimensional invariant. We then solve the monodromy cases for the “resonant” cases

left from Sec. 3.

Notation. The notation Vect(S1) := {ξ(t)∂t | ξ ∈ C∞(R/2πZ)} will be used for

the Lie algebra of C∞-vector fields on the torus R/2πZ. The infinite-dimensional

group Diff+(R/2πZ) of orientation-preserving diffeomorphisms of the torus R/2πZ
(also called centerless Virasoro group) has a Lie structure, and its Lie algebra is

Vect(S1) (see [14] for details).

Let us gather here (for the convenience of the reader) a few notations scat-

tered in the text. Time and space coordinates are usually (at least starting from

Sec. 2) denoted by θ and x (see explanations before Lemma 1.6 for the pas-

sage to Laurent coordinates (t, r)). Stabilizers in Vect(S1) of the Hill operator

∂2θ + V2(θ) are usually denoted by ξ (which is either real or purely imaginary).

If ξ is purely imaginary, then one sets ξ := iη. As for (operator) invariants of the

Schrödinger operators (see Sec. 4), we write them as 1
2 [a(θ)x

2−b(θ)∂2x−ic(θ)(x∂x+
∂xx) + d(θ)(−i∂x) + e(θ)x + f(θ)]. The correspondence between the vector invari-

ant (ξ, δ1, δ2) and the operator (generalized Ermakov–Lewis) invariant is given in

Theorem 4.4.

1. The Schrödinger–Virasoro Group and Its Action

on Schrödinger Operators

We recall in this preliminary section the properties of the Schrödinger group proved

in [31] that will be needed throughout the paper.

Definition 1.1. (see [31], Definition 1.2) We denote by sv(κ), κ = 0 or 1
2 , the Lie

algebra with generators Ln, Ym,Mn (n ∈ Z,m ∈ κ+Z) and the following relations

(where n, p ∈ Z,m,m′ ∈ κ+ Z):

[Ln, Lp] = (n− p)Ln+p,

[Ln, Ym] =

(
n

2
−m

)
Yn+m, [Ln,Mp] = −pMn+p;

[Ym, Ym′ ] = (m−m′)Mm+m′ ,

[Ym,Mp] = 0, [Mn,Mp] = 0.

If f (resp. g, h) is a Laurent series, f =
∑

n∈Z fnt
n+1, resp. g =

∑
n∈κ+Z gnt

n+ 1
2 ,

h =
∑
n∈Z hnt

n, then we shall write

Lf =
∑

fnLn, Yg =
∑

gnYn, Mh =
∑

hnMn. (1.1)

Note the shift in the indices in the Laurent series which disappears in the Fourier

coordinates, see remarks preceding Lemma 1.6 below.
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It is often unimportant (or a matter of taste) in this paper whether the shift

index κ is 0 or 1
2 (see remarks after Theorem 2.4.2 though). In this section (unless

otherwise stated) sv stands indifferently for sv(0) or sv(1/2). In the following sec-

tions, we shall abbreviate sv(0) to sv for convenience.

Definition 1.2. (see [31], Definition 1.3) Denote by dπλ the representation of sv

as differential operators of order one on R2 with coordinates t, r defined by

dπλ(Ln) = −tn+1∂t −
1

2
(n+ 1)tnr∂r +

1

4
i(n+ 1)ntn−1r2 − (n+ 1)λtn,

dπλ(Ym) = −tm+ 1
2 ∂r + i

(
m+

1

2

)
tm− 1

2 r,

dπλ(Mp) = itp.

(1.2)

Proposition 1.3. (see [31], Theorem 1.1) (1) The Lie algebra sv can be expo-

nentiated to a Lie group denoted by SV. It is isomorphic to a semi-direct product

SV = G0 � H, where G0 � Diff+(R/2πZ) is the group of orientation-preserving

diffeomorphisms of the torus R/2πZ, and H � C∞(R/2πZ) × C∞(R/2πZ) (as a

vector space) is the product of two copies of the space of infinitely differentiable

functions on the circle, with its group structure modified as follows :

(α2, β2) · (α1, β1) =

(
α1 + α2, β1 + β2 +

1

2
(α′

1α2 − α1α
′
2)

)
. (1.3)

The semi-direct product is given by:

(1; (α, β)) · (φ; 0) = (φ; (α, β)) (1.4)

and

(φ; 0) · (1; (α, β)) = (φ; ((φ′)1/2(α ◦ φ), β ◦ φ)). (1.5)

(2) The infinitesimal representation dπλ of sv can be exponentiated to the following

representation of the group SV on C∞ functions of two variables,

(a)

(πλ(φ; 0)f)(t
′, r′) = (φ′(t))−λe

1
4 i

φ′′(t)
φ′(t) r

2

f(t, r)

if φ ∈ Diff+(R/2πZ) induces the coordinate change (t, r) → (t′, r′) =

(φ(t), r
√
φ′(t));

(b)

(πλ(1; (α, β))f)(t
′, r′) = e−i(α

′(t)r− 1
2α(t)α

′(t)+β(t))f(t, r)

if (α, β) ∈ C∞(R/2πZ) × C∞(R/2πZ) induces the coordinate change (t, r) →
(t, r′) = (t, r − α(t)).
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Definition 1.4. (see [31], Definition 2.1) Let S lin be the vector space of second

order operators on R2 defined by

D ∈ S lin ⇔ D = h(−2i∂t − ∂2r ) + V (t, r), h, V ∈ C∞(R2)

and Saff ⊂ S lin the affine subspace of “Schrödinger operators” given by the hyper-

plane h = 1.

In other words, an element of Saff is the sum of the free Schrödinger operator

−2i∂t − ∂2r and of a potential V .

Proposition 1.5. (see [31], Propositions 2.5 and 2.6) Let σ1/4:SV → Hom(S lin,

S lin) the representation of the group of SV on the space of Schrödinger operators

defined by the left-and-right action

σ1/4(g) : D → π5/4(g)Dπ1/4(g)
−1, g ∈ SV, D ∈ S lin.

Then σ1/4 restricts to an affine action on the affine subspace Saff which is given by

the following formulas:

σ1/4(φ; 0) · (−2i∂t − ∂2r + V (t, r))

= −2i∂t − ∂2r + φ′(t)V (φ(t), r
√
φ′(t)) +

1

2
r2Θ(φ)(t), (1.6)

σ1/4(1; (a, b)) · (−2i∂t − ∂2r + V (t, r))

= −2i∂t − ∂2r + V (t, r − a(t))− 2ra′′(t)− (2b′(t)− a(t)a′′(t)), (1.7)

where Θ : φ→ φ′′′

φ′ − 3
2 (
φ′′

φ′ )
2 is the Schwarzian derivative.

One may also consider a generalized left-and-right action σλ(g) :D → πλ+1(g)D

πλ(g)
−1, but then the subspace Saff

2 (see Definition 2.1.2) is not preserved by

σλ|Diff+(R/2πZ) anymore, which ruins all subsequent computations. Actually 1/4

corresponds to the “scaling dimension” of the Schrödingerian field in one dimen-

sion (see [32]).

We shall occasionally use the time-reparametrization

φ : R/2πZ → S1 � U(1), θ → t = eiθ (1.8)

from the torus to the unit circle. It allows to switch from the Fourier coordinate θ

to the Laurent coordinate t. In particular,

Ltn+1 = π1/4(φ; 0)Leinθ π1/4(φ; 0)
−1,

Y
tn+1

2
= π1/4(φ; 0)Yeinθ π1/4(φ; 0)

−1, (1.9)

Mtn = π1/4(φ; 0)Meinθ π1/4(φ; 0)
−1.

If n is an integer, Y
tn+1

2
should be understood to be acting on the twofold covering

of the complex plane where the square-root is defined; conversely, if n is a half-

integer, then Yeinθ acts on 4π-periodic functions. In other words, the “natural”

choice for sv should be sv(12 ), resp. sv(0) in the Laurent, resp. Fourier coordinates.
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Applying formally the formulas of Proposition 1.3, one gets

(π1/4(φ; 0)
−1f)(θ, x) = (ie−iθ)1/4e−

1
4 ix

2

f(eiθ,±xei( θ
2+

π
4 )) (1.10)

(with some ambiguity in the sign) which is an 8π-periodic function. Applying now

(still formally) Proposition 1.5 yields the following result, which can be checked by

direct computation.

Lemma 1.6. Let f(t, r) be a solution of the Schrödinger equation

(−2i∂t − ∂2r + V (t, r))f(t, r) = 0.

Then

f̃ : (θ, x) → e−iθ/4e−
1
4 ix

2

f(eiθ, xei(θ/2+π/4)) (1.11)

is a solution of the transformed Schrödinger equation
[
−2i∂θ − ∂2x +

1

4
x2 + ieiθV (eiθ, xei(θ/2+π/4))

]
f̃(θ, x) = 0. (1.12)

In the following sections, we shall (except when explicitly mentioned) always

work with the Lie algebra sv(0) in the Fourier coordinates θ, x (i.e. the Lie algebra

generated by the Lf ,Yg and Mh with 2π-periodic functions f, g, h), and write sv

instead of sv(0) for simplicity.

2. Classification of the Schrödinger Operators in Saff
≤2

From now on, we shall concentrate on the affine subspace of Schrödinger operator

with potentials which are at most quadratic in the space coordinate. As mentioned

in the Introduction, this subspace is invariant under the action of SV. The purpose

of this section is to classify the orbits.

2.1. Statement of the problem and connection with the

classification of Hill operators

Let us first define two natural subspaces of Saff .

Definition 2.1.1. (Schrödinger operators with at most quadratic potential) (see

[31], Proposition 2.6) Let Saff
≤2 = {−2i∂θ − ∂2x + V2(θ)x

2 + V1(θ)x + V0(θ)} ⊂ Saff

be the affine space of Schrödinger operators with a potential which is 2π-periodic

in time and at most quadratic in the coordinate x.

Definition 2.1.2. (Schrödinger operators with quadratic potential) Let Saff
2 =

{−2i∂θ − ∂2x + V2(θ)x
2} ⊂ Saff

≤2 be the affine space of Schrödinger operators in Saff
≤2

with time-periodic potential proportional to x2.

We do not assume V2 to be positive. Hence what we really consider are harmonic

“oscillators-repulsors”, corresponding to the quantization of a classical oscillator-

repulsor with time-dependent Hamiltonian 1
2 (p

2 + V2(θ)x
2 + V1(θ)x + V0(θ)).
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If V1 ≡ 0, then the classical equation of motion d2x
dθ2 = −V2(θ)x − 1

2V1(θ) has 0

as an attractive (resp. repulsive) fixed point depending on the sign of V2. If V2 is

not of constant sign, things can be complicated; it is not clear a priori whether

solutions are stable or unstable. We shall come back to this problem (which turns

out to be more or less equivalent to the a priori harder quantum problem, at least

as far as monodromy in concerned) in Sec. 3.2.

The first subspace Saff
≤2 is preserved by the action of SV (see Proposition 1.5)

and is in some sense minimal (the SV-orbit of the free Schrödinger equation, or of

the standard harmonic oscillator −2i∂θ−∂2x+a2x2, contains “almost” all potentials

which are at most quadratic in x). As we shall prove below, the orbits in Saff
≤2 have

finite codimension.

Let us write down for the convenience of the reader the restriction of the action

of σ1/4 to Saff
≤2: let D = −2i∂θ − ∂2x + V2(θ)x

2 + V1(θ)x + V0(θ), then

σ1/4(φ; 0)(D) = −2i∂θ − ∂2x +

(
φ′2 · V2 ◦ φ+

1

2
Θ(φ)

)
x2

+(φ′3/2 · V1 ◦ φ)x + φ′ · V0 ◦ φ, (2.1)

recall Θ(φ) = φ′′′

φ′ − 3
2 (
φ′′

φ′ )
2 is the Schwarzian derivative, and

σ1/4(1; (a, b))(D) = −2i∂θ − ∂2x + V2x
2 + (V1 − 2aV2 − 2a′′)x

+(V0 − aV1 + a2V2 − 2b′ + aa′′), (2.2)

while the infinitesimal action is given by

dσ1/4(Lf )(D) = −
(
1

2
f ′′′ + 2f ′V2 + fV ′

2

)
x2

−
(
fV ′

1 +
3

2
f ′V1

)
x− (fV ′

0 + f ′V0), (2.3)

dσ1/4(Yg +Mh)(D) = −2(g′′ + gV2)x− (2h′ + gV1). (2.4)

These four formulas are fundamental for most computations below, and we shall

constantly refer to them.

Similarly, Saff
2 is preserved by the σ1/4-action of Diff+(R/2πZ) (see Proposition

1.5). It turns out that the orbit theory for this space is equivalent to that of the

Hill operators under the Virasoro group. Let us first give some notations and recall

basic facts concerning Hill operators.

Definition 2.1.3. A Hill operator is a Sturm–Liouville operator on the one-

dimensional torus, i.e. a second-order operator of the form ∂2θ + u(θ) where

u(θ) ∈ C∞(R/2πZ) is a 2π-periodic function.

The action of the group of time-reparametrizations on a Hill operator may be

constructed as follows. Starting “naively” from the simple action of diffeomorphisms
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on functions,

ψ → ψ ◦ φ, φ ∈ Diff+(R/2πZ),

one sees that (∂2+u)(ψ) = 0 is equivalent to the transformed equation (∂2+p(θ)∂+

q(θ))(ψ ◦φ) = 0 if one sets p = −φ′′

φ′ and q = φ′2 ·u◦φ. Then one uses the following:

Definition 2.1.4. (Wilczinsky’s semi-canonical form) (see Magnus–Winkler, [27],

3.1, or Guieu, [13], Proposition 2.1.1) If ψ is a solution of the second-order equation

(∂2 + p(θ)∂ + q(θ))ψ = 0, then ψ̃ := λ(θ)ψ is a solution of the Hill equation

(∂2 + u(θ))ψ̃ = 0 provided

λ(θ) = exp

(
1

2

∫ θ

θ0

p(s) ds

)
(2.5)

for some θ0 and

u = −1

2
p′ − 1

4
p2 + q. (2.6)

One obtains in this case λ = (φ′)−1/2, and the transformed operator reads: ∂2+

(φ′)2 ·u◦φ+ 1
2Θ(φ), where Θ is the Schwarzian derivative. The presence of this last

term shows that this transformation defines a projective action of Diff+(R/2πZ).
Summarizing, one obtains:

Proposition 2.1.5. (see Guieu, [13] or Guieu–Roger, [14]) The transformation

∂2 + u→ φ∗(∂
2 + u) := ∂2 + (φ′)2 · u ◦ φ+

1

2
Θ(φ)

defines an action of Diff+(R/2πZ) on the space of Hill operators, which is equivalent

to the affine coadjoint action on vir∗1
2
(i.e. with central charge c = 1

2 ). A solution of

the transformed equation may be obtained from a solution ψ of the initial equation

(∂2 + u)ψ = 0 by setting φ∗ψ = (φ′)−
1
2ψ ◦ φ. In other words, the solutions of the

Hill equations behave as (− 1
2 )-densities.

The important remark is now the following:

Lemma 2.1.6. The above action of Diff+(R/2πZ) on the space of Hill operators

is equivalent to the σ1/4-action of Diff+(R/2πZ) on the space Saff
2 .

Namely, Proposition 1.5 above (see also (2.1)) shows that

σ1/4(φ)(−2i∂θ − ∂2x + V2(θ)x
2) = −2i∂θ − ∂2x + Ṽ2(θ)x

2, (2.7)

where the potential Ṽ2 is the image of V2 (viewed as the potential of a Hill operator

in the coordinate θ) by the diffeomorphism φ, i.e. φ∗(∂2θ+V2(θ)) = ∂2θ+ Ṽ2(θ). Once

again, this should not come as a surprise since the Hill equation is the semiclassical

limit of the Schrödinger operator (see Sec. 3.2).

So we shall need to recall briefly the classification of the orbits of Hill operators

under the Virasoro group. There are mainly three a priori different classifications,
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which of course turn out in the end to be equivalent: the first one is by the lifted

monodromy of the solutions (see for instance Khesin and Wendt, [22]); the second

one consists in looking for normal forms for the solutions, either an exponential form

for non-vanishing solutions or a standard form for a dynamical system associated

with the repartition of the zeros (see the article by Lazutkin and Pankratova, [24]);

the third one, due to Kirillov (see [23]) proceeds in a more indirect way by looking

at the isotropy groups. We shall need the first and the last classification for our

purposes. They are the subject of the two upcoming subsections (see also [2] for a

related review and application to the global Liouville equation).

2.2. Classification of Hill operators by the lifted monodromy

Let us now turn to the classification of the orbits under the Virasoro group of the

space of Hill operators.

Consider a pair (ψ1, ψ2) of linearly independent solutions of the Hill equation

(∂2 + u)ψ = 0. It is a classical result (a particular case of Floquet’s theory for

Schrödinger equations with (space)-periodic potential) that
(
ψ1(θ + 2π)

ψ2(θ + 2π)

)
=M(u) ·

(
ψ1(θ)

ψ2(θ)

)
(2.8)

for a certain matrix M(u) ∈ SL(2,R) (independent of θ), called the monodromy

matrix. Starting from a different basis ( ψ̃1

ψ̃2
), one obtains a conjugate matrix M̃(u).

The above action of the Virasoro group on the Hill equation leaves the monodromy

matrix unchanged, as can be seen from the transformed solutions φ∗ψ1, φ∗ψ2. Hence

the conjugacy class of the monodromy matrix is an invariant of the Hill operator

under the action of the diffeomorphism group.

Floquet’s theory, together with the orbit theory for SL(2,R), imply that ∂2 + u

is stable (meaning that all solutions are bounded) if |TrM | < 2 or equivalently, ifM

is elliptic, i.e. conjugate to a rotation matrix; unstable (meaning that all solutions

are unbounded) if |TrM | > 2 or equivalently, if M is hyperbolic, i.e. conjugate to a

Lorentz shift (e
λ

e−λ), λ > 0. If |TrM | = 2, then M can be shown to be conjugate

either to ±Id or to the unipotent matrix ±(1 2π
0 1 ); in the latter case, ∂2 + u is

semi-stable, with stable and unstable solutions. Two linearly independent 2π- or

4π-periodic solutions exist when M = ±Id; only one in the unipotent case; and

none in in the remaining cases.

An important result due to Lazutkin–Pankratova (see [24]) states that all stable

Hill operators are conjugate by a suitable time-reparametrization to a Hill operator

with constant potential ∂2 + α, α > 0. They also distinguish between oscillating

and non-oscillating equations (oscillating equations have solutions with infinitely

many zeros, while non-oscillating equations have solutions with at most one zero),

but we shall not need to go further into this. Let us just remark that (as they also

show) non-oscillating operators are also conjugate to a Hill operator with constant

potential ∂2 + α, with α ≤ 0 this time. Hence operators of type II, resp. III of
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Kirillov’s classification (see Definition 2.3.4 below) are exactly the unstable, resp.

semi-stable oscillating operators.

A complete classification of the orbits under the action of Diff+(R/2π/Z) may

be obtained by considering the lifted monodromy. Set (ψ1(θ)
ψ2(θ)

) = M(u)(θ)(ψ1(0)
ψ2(0)

).

The path θ → M(u)(θ) ∈ SL(2,R) may be lifted uniquely to a path θ →
M̃(u)(θ) ∈ S̃L(2,R) such that M(u)(0) = Id, where S̃L(2,R) is the universal

covering of SL(2,R). This procedure defines a unique lifted monodromy matrix

M̃(u) := M̃(u)(2π) modulo conjugacy.

The following arguments (see [22]) show briefly why this invariant suffices to

characterize the orbit of u under diffeomorphisms. Set (ψ1(θ)
ψ2(θ)

) =
√
ξ(θ)(cosω(θ)sinω(θ)).

The Wronskian

W := ψ1ψ
′
2 − ψ′

1ψ2

(a constant of motion) is equal to ω′(θ)ξ(θ), hence ω′ =W/ξ is of constant sign, say

> 0 (by choosingW > 0). By the action of Diff(R/2πZ), one can arrange that ω′ is
constant, while ω(0) and ω(2π) remain related by the homographic action ofM(u),

viz. cotω(2π) = [a cotω(0) + b]/[c cotω(0) + d ] if M(u) = (a b
c d) ∈ SL(2,R). The

lifting of the monodromy produces a supplementary invariant: the winding number

n := �(ω(2π) − ω(0))/2π = �W2π
∫ 2π

0
dθ
ξ(θ) (�· = entire part), namely, the integer

number of complete rotations made by the angle ω.

This change of function is particularly relevant in the elliptic case. Choose a

basis (ψ1

ψ2
) such thatM = (cosλ − sinλ

sinλ cosλ ). Then ±λ = ω(2π)−ω(0) =W
∫ 2π

0
dθ
ξ(θ) [2π].

If M = (e
λ

e−λ) is hyperbolic instead, set rather

ψ2
1(θ) =

1

2
|ξ(θ)|e2ω(θ), ψ2

2(θ) =
1

2
|ξ(θ)|e−2ω(θ) (2.9)

with ξ(θ) = 2(ψ1ψ2)(θ), so that ±λ = ω(2π)−ω(0) [2iπ]. Then one finds ω′ = −W
ξ ,

hence ω = −W
∫

dθ
ξ(θ) . The functions 1

ξ and ω are not well-defined if ψ1 or ψ2

has some zeros. Supposing u is analytic, the functions ψ1, ψ2 may be extended

analytically to some strip Ω = {|Im θ| < ε}. Choose some contour Γ ⊂ Ω avoiding

the zeros of ψ1 and ψ2 such that (assuming ξ(0) �= 0, otherwise use a translation)

Γ(0) = 0 and Γ(2π) = 2π. The idea is to keep Γ real away from some symmetric

neighborhood Uε of the zeros, and to complete the path with half-circles centered

on the real axis of radius ε around each zero, taken indifferently in the upper- or

lower-half plane (compare with Sec. 3.2 below where more care is needed). Suppose

ψ1(θ0) = 0 for instance, so ψ′
1(θ0) = a �= 0 and ψ2(θ0) = −W

a . Then

−W

∫

Γ∩[θ0−ε,θ0+ε]

dθ

ξ(θ)
= −W

∫ θ0+ε

θ0−ε

dθ

θ − θ0 ± i0

θ − θ0
ξ(θ)

= −W p.v.

∫ θ0+ε

θ0−ε

dθ

ξ(θ)
± i

π

2
(2.10)
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(depending on the position of the half-circle with respect to the real axis) since
1

θ−θ0±i0 = p.v. 1
θ−θ0 ∓iπδθ0 (see for instance [8]) and the residues of 1

ξ(θ) at the zeros

of ξ are ± 1
2W . It is clear from the above definitions that ξ has only simple zeros,

in even number. Hence −W
∫
Γ

dθ
ξ(θ) ≡ −W p.v.

∫ 2π

0
dθ
ξ(θ) ≡ λ[iπ]. By exponentiating,

one obtains a monodromy matrix in PSL(2,R) = SL(2,R)/{±1}.
Finally, if M is unipotent, M = ±( 1 a

0 1 ) in some basis (ψ1

ψ2
), set ψ1(θ) = ωψ2(θ)

and ξ = ψ2
2 , so that ω(2π) = ω(0)+a. Then ω′ = −W

ξ , so ω is once again defined as

−W
∫

dθ
ξ(θ) if ξ does not have any zero. In the contrary case, one uses a deformation

of contour as in the hyperbolic case, to obtain

−W
∫

Γ∩[θ0−ε,θ0+ε]

dθ

ξ(θ)
= −W

∫ θ0+ε

θ0−ε

dθ

(θ − θ0 ± i0)2
(θ − θ0)

2

ψ2
2(θ)

. (2.11)

Since 1
(θ−θ0±i0)2 = p.v. 1

(θ−θ0)2 ± iπδ′θ0 and (θ−θ0)2
ψ2

2(θ)
= 1 + O((θ − θ0)

2), we have

ψ′′
2 (θ0) = −V2(θ0)ψ2(θ0) = 0, the Dirac term does not make any contribution at all

this time, hence

a = ω(2π)− ω(0) = −W
∫

Γ

dθ

ξ(θ)
, (2.12)

where Γ : [0, 2π] → C is an arbitrary contour as defined above.

Summarizing:

Proposition 2.2.1. (see [22] for (ii)) (i) The lifted monodromy of the operator

∂2 + u is characterized by the (correctly normalized ) quantity
∫ 2π

0
dθ
ξ(θ) or

∫
Γ

dθ
ξ(θ) ,

where ξ ∈ Stabu.

(ii) The orbits under the diffeomorphism group of the space of Hill operators are

characterized by the conjugacy class of their lifted monodromy. More precisely, the

lifted monodromy defines a bijection from the set of orbits onto the space of conju-

gacy classes of (S̃L(2,R)\{±1})/{±1} (an element M ∈ S̃L(2,R) has to be identi-

fied with its opposite −M).

2.3. Kirillov’s classification of Hill operators by

isotropy subgroups

Another classification, also useful for our purposes (and more explicit in some sense),

is due to Kirillov. Introduce first

Definition 2.3.1. Let Stabu, u ∈ C∞(R/2πZ) be the isotropy subgroup (or stabi-

lizer) of ∂2 + u in Diff+(R/2πZ), namely,

Stabu := {φ ∈ Diff+(R/2πZ) |φ∗(∂2 + u) = ∂2 + u}. (2.13)

Proposition 2.3.2. (definition of the first integral I) (see [13]) (1) Let ξ ∈
C∞(R/2πZ): then ξ ∈ Lie(Stabu) if and only if ξ satisfies

1

2
ξ′′′ + 2uξ′ + u′ξ = 0. (2.14)
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(2) Let Iu(ξ) := ξξ′′ − 1
2ξ

′2 + 2uξ2. Then Iu(ξ) is a constant of motion if ξ ∈
Lie(Stabu).

(3) Consider φ ∈ Diff+(R/2πZ) and the transformed potential ũ such that φ∗(∂2 +
u) = ∂2 + ũ. Then

Iũ(φ
′−1 · ξ ◦ φ) = Iu(ξ). (2.15)

(4) Consider the Hill equation (∂2 + u)ψ(θ) = 0. If (ψ1, ψ2) is a basis of solutions

of this equation, then ξ := a11ψ
2
1 + 2a12ψ1ψ2 + a22ψ

2
2 (a11, a12, a22 ∈ R) satisfies

the equation

1

2
ξ′′′ + 2uξ′ + u′ξ = 0. (2.16)

In other words, ξ ∈ Stabu is in the isotropy subgroup of the Hill operator ∂2 + u.

Conversely, any solution of (2.16) can be obtained in this way.

(5) (Same notations) consider in particular ξ = ψ2
1 + ψ2

2. Then Iu(ξ) = W 2 if

W is the Wronskian of (ψ1, ψ2), namely, W = ψ1ψ
′
2 − ψ′

1ψ2 (constant of the

motion).

Note (see (3)) that
(
φ′−1 · ξ ◦ φ

)
∂ is the conjugate of the vector ξ∂ ∈ V ect(S1)

by the diffeomorphism φ. Hence one may say that the first integral I is invariant

under the (adjoint-and-coadjoint) action of Diff+(R/2πZ).
Consider now the (adjoint) orbit of ξ under Diff+(R/2πZ). Clearly,

∫ 2π

0
dθ
ξ(θ) (if

well-defined, i.e. if ξ has no zero) does not depend on the choice of the point on the

orbit since
∫ 2π

0
dθ

φ′−1(θ)ξ◦φ(θ) =
∫ 2π

0
du
ξ(u) . It is easy to see from Proposition 2.3.2(2)

that ξ either never vanishes (case I), or has an even number of simple zeros (case

II), or has a finite number of double zeros (case III). Cases II, III correspond to a

hyperbolic, resp. unipotent monodromy matrix (see discussion in Sec. 2.2). In case

II, Iu(ξ) = − 1
2ξ

′(t0)2 < 0 if t0 is any zero. The principal value integral p.v.
∫ 2π

0
dt
ξ(t)

is well-defined. In case III, Iu(ξ) = 0 and the regularized integral
∫
Γ

dθ
ξ(θ) (see above)

is well-defined and independent of the choice of the contour Γ. Note that Kirillov

uses instead the following regularization, limε→0

∫
[0,2π]\Uε

dt
ξ(t) − C

ε (where Uε is a

symmetric ε-neighborhood of the zeros) with C chosen so that the limit is finite.

The two regularizations are different. Both are perfectly satisfactory to define an

invariant of the orbits, but computations show that the Berry phase is proportional

to
∫

dθ
ξ(θ) .

Now the integral
∫ 2π

0
dθ
ξ(θ) (cases I) and its variants for cases II, III are invariant

under the diffeomorphism group. The discussion in Sec. 2.2 shows that they char-

acterize the lifted monodromy of ∂2 + u. The invariant Iu(ξ) is also needed to fix

u uniquely in case I (see Proposition 2.3.2(2)) since ξ stabilizes all operators of the

type ∂2 + u+ C
ξ2 (C ∈ R). It turns out that

∫ 2π

0
, or its variants, and Iu(ξ) (in cases

II and III), together with a discrete invariant n ∈ N, suffice to distinguish between

the different adjoint orbits of stabilizers (note that general adjoint orbits may be
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much more complicated, see [14]). One has the following:

Proposition 2.3.3. (Classification of the coadjoint invariants and of the orbits)

(see Kirillov [23]) (1) Case I: ξ is conjugate by a diffeomorphism φ to a (nonzero)

constant a∂θ, a �= 0. Hence φ′−1 · ξ ◦ φ ∈ Lie(Stab∂2+α) for a certain constant α.

The stabilizer Stab∂2+α is:

(a) (non-generic case) either isomorphic to S̃L
(n)

(2,R) (the n-fold covering of

SL(2,R)), with Lie(Stab∂2+α) = R∂θ ⊕ R cosnθ∂θ ⊕ R sinnθ∂θ if α = n2

4 for

some n ∈ N∗; then the monodromy in PSL(2,R) = SL(2,R)/{±1} is trivial,

while the lifted monodromy matrix is the central element in S̃L(2,R)/{±1} cor-

responding to a rotation of an angle πn;

(b) or (generic case) one-dimensional, equal to the rotation group Rot ⊂
Diff+(R/2πZ) generated by the constant field ∂ in the remaining cases.

The invariants are given by Iu(ξ) = 2αa2,
∫ 2π

0
dθ
ξ(θ) =

2π
a . The monodromy can

be in any conjugacy class of PSL(2,R) except ±Id.

(2) Case II: ξ is conjugate to the field a sinnθ(1 + α sinnθ)∂θ, n = 1, 2, . . . , 0 ≤
α < 1, which stabilizes ∂2 + un,α, where

un,α(θ) :=
n2

4

[
1 + 6α sinnθ + 4α2 sin2 nθ

(1 + α sinnθ)2

]
. (2.17)

The monodromy matrix is hyperbolic. The invariants take the values Iu(ξ) =

−2a2n2 < 0, p.v.
∫ 2π

0
dθ
ξ(θ) =

2πα
a
√
1−α2

.

(3) Case III: ξ is conjugate to ξ±,n,α := ±(1 + sinnθ)(1 + α sinnθ)∂, 0 ≤ α < 1,

corresponding to a potential vn,α,

vn,α(θ) =
n2

4

[
(α− 1)2 + 2α(3− α) sinnθ + 4α2 sin2 nθ

(1 + α sinnθ)2

]
. (2.18)

The monodromy matrix is unipotent. The invariant Iu(ξ) vanishes, while
∫
Γ

dθ
ξ+(θ) =

−2π
(1−α)

√
1−α2

. The discrete invariant n suffices to characterize the orbit of ∂2 + u.

In cases II and III (provided α > 0), the stabilizer is one-dimensional, generated

by ξ∂θ.

In the generic cases (case I, α �= n2/4, n = 0, 1, . . . or case II ) the monodromy

matrix is elliptic, resp. hyperbolic, if and only if Iu(ξ) > 0, resp. Iu(ξ) < 0. In cases

I (α = 0) and III (with unipotent monodromy), Iu(ξ) = 0.

There is a mistake in Lemma 3 of [23] (the potential un,α given there is incor-

rect). The potential vn,α was missing, together with the value of
∫
Γ

dθ
ξ±(θ) . Both are

obtained by straightforward computations.

This classification is also natural when one thinks of the behavior of the solu-

tions (see Lazutkin–Pankratova [24] and Sec. 2.2). In particular, case II (resp. III)

correspond to operators with unstable (resp. semi-stable), oscillating solutions,

while case I corresponds to operators with stable, oscillating solutions (α > 0),
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resp. unstable, non-oscillating solutions (α < 0), resp. semi-stable, non-oscillating

solutions (α = 0).

Note that in the case I generic, the three-dimensional isotropy subalgebra con-

tains fields ξ of types I, II (α = 0) and III (α = 0), hence the following nomenclature:

Definition 2.3.4. If ∂2 + u has a stabilizer ξ of types I, or of types II, III with

α = 0, then ∂2+u may be turned into a Hill operator with constant potential, and

we shall say that the operator ∂2 + u (or the potential u) is of type I. If ∂2 + u has

a stabilizer of type II, resp. III with α �= 0, then we shall say that ∂2 + u and u are

of type II, resp. type III.

Similarly, we shall say that the Schrödinger operator −2i∂θ − ∂2x + V2(θ)x
2 +

V1(θ)x + V0(θ) is of type I (resp. II, III) if the Hill operator ∂2θ + V2(θ) is of the

corresponding type.

Note that the cases I generic (α �= n2

4 , n = 0, 1, . . .) and II are generic (i.e. dense

in Saff
≤2).

Now the eigenvalues of the monodromy matrix (and also the lifted monodromy)

can easily be obtained once one knows the values of the invariants
∫ 2π

0
dθ
ξ(θ) and

Iu(ξ). The following lemma gives the link between the two classifications:

Lemma 2.3.5. Suppose D = ∂2 + u is of type I (with α �= 0) or II (i.e. its

monodromy is either elliptic or hyperbolic). If D is of type I non-generic, conjugate

to ∂2 + n2/4 for some n ≥ 1, choose ξ to be conjugate to some nonzero multiple of

∂θ. Now (in all cases) normalize ξ by requiring that Iu(ξ) = 2, so that ξ is real in

the elliptic case and purely imaginary in the hyperbolic case. Then the eigenvalues

of the monodromy matrix are given by exp±i
∫ 2π

0
dθ
ξ(θ) or exp±i p.v.

∫ 2π

0
dθ
ξ(θ) .

Proof. Coming back to the discussion in Sec. 2.2, one checks easily (with the

normalization chosen there) that Iu(ξ) = 2W 2 in the elliptic case, and Iu(ξ) =

−2W 2 in the hyperbolic case. Choose a basis of solutions (ψ1, ψ2) such that W = 1

and multiply ξ by i in the hyperbolic case. Then (in both cases) the eigenvalues of

the monodromy matrix (±iλ in the elliptic case, and ±λ in the hyperbolic case)

are given by exp±i
∫ 2π

0
dθ
ξ(θ) or the exponential of the corresponding principal value

integral.

2.4. Classification of the SV-orbits in Saff
≤2

This problem can be solved by extending the above results, which may be inter-

preted as the decomposition of Saff
2 into Diff+(R/2πZ)-orbits. Let us first compute

the stabilizers of some operators that will be shown later to be representatives of

all the orbits. We choose to present the results in the Fourier coordinates (θ, x).

The orbits of type I, resp. III split into orbits of type (i), (i)bis, resp. (iii), (iii)bis

due to the presence of the linear term V1(θ)x in the potential.
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The computations depend on the formulas of Proposition 1.5, see formulas (2.1)–

(2.4) for more convenience.

Definition 2.4.1. If D ∈ Saff
≤2, we denote by GD the stabilizer of D in the

Schrödinger–Virasoro group SV, i.e. GD = {g ∈ SV |σ1/4(g) ·D = D}.
Recall the notation Stabu, u ∈ C∞(R/2πZ) is used for the stabilizer in

Diff+(R/2πZ) of the corresponding Hill operator.

Note that M1 = M0 (whose exponential amounts to the multiplication of the

wave functions ψ by a constant phase) acts trivially on any operator D, hence

M1 ∈ GD always. The rotation group θ → θ + θ0 generated by dσ1/4(L1) =

dσ1/4(L0) = −∂θ will be denoted by Rot.

In the following classification, we shall call harmonic oscillators (resp. harmonic

repulsors) operators with elliptic, resp. hyperbolic monodromy.

(i) Time-independent harmonic oscillators or repulsors

Set Dα,γ := −2i∂θ − ∂2x + αx2 + γ (α, γ ∈ R). It is clear that L−1 = ∂θ leaves

Dα,γ invariant in all cases. Suppose first for simplicity that γ = 0. Then GD =

(G0)D �HD (see Proposition 1.3 for notations) is a semi-direct product, so one

retrieves Kirillov’s results (see Proposition 2.3.3, case I) for (G0)D; to be specific,

Lie((G0)Dn2/4,0
) = R∂θ⊕RLsinnθ⊕RLcosnθ if n ∈ N∗, and Lie((G0)Dα,0) = R∂θ

otherwise.

Now (1; (a, b)) ∈ HDα,0 if and only if b′ = 0 and a′′ = −αa. The latter

equation has a nontrivial solution if and only if α = 0 (in which case Lie(HD) =

RY1 ⊕ RM1) or α = n2/4, n ≥ 1 with n even, in which case Lie(HD) =

RYcosnθ/2 ⊕ RYsin nθ/2 ⊕ M1. Then exp 1
nL1 ⊂ S̃L

(n)
(2,R) is the rotation of

angle 2π, while exp 1
nadL1|[Lie(HD),Lie(HD)] is a rotation of angle π.

The isotropy groups GD are the same in the case γ �= 0, except for a different

embedding involving sometimes complicated components in the nilpotent part

of SV which do not change the commutation relations (so that GD is no more

a semi-direct product (G0)D �HD).

Altogether, one has proved:

Theorem 2.4.2. (1) If α = n2/4, where n ≥ 2 is an even integer, then

GDn2/4,γ
� S̃L

(n)
(2,R) � H1 is isomorphic to an n-covering of the Schrödinger

group; the semi-direct action of S̃L
(n)

(2,R) quotients out into an action of the

two-fold covering S̃L
(2)

(2,R). The Lie algebra of the group S̃L
(n)

(2,R) acts as

R∂θ ⊕ R(Lsinnθ + M− 1
2γ sinnθ) ⊕ R(Lcosnθ + M− 1

2γ cosnθ). After transformation

to the Laurent coordinates (t, r) (and supposing γ = 0), GDn2/4,0
is the connected

Lie group with Lie algebra 〈L0, L±n〉� 〈Y±n/2,M0〉 ⊂ sv(0).

(2) If α = n2/4, where n ≥ 1 is odd, then GDn2/4,0
� S̃L

(n)
(2,R)× expRM1.

(3) If α = 0, then GD0,γ = Rot × exp(RY1 ⊕ RM1) � (R/2πZ) × R × (R/2πZ)
is the commutative group of constant translations-phases. After transformation
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to the Laurent coordinates (t, r), it is the connected Lie group with Lie algebra

〈L0, Y0,M0〉 ⊂ sv(0).

(4) In the generic case α �= n2/4, n = 0, 1, . . . one has simply GD = Rot ×
expRM1 � (R/2πZ)2.

It is natural in view of these results to consider the twofold covering H̃(2) of H

obtained by considering 4π-periodic fields. Then the stabilizer in S̃V
(2)

:= G0�H̃(2)

of Dn2/4,0 (n ≥ 1 odd) is isomorphic to S̃L
(n)

(2,R)�H1 as in the case of an even

index n. This time Lie(H1) = 〈Y±n/2,M0〉 ⊂ sv(12 ).

The best-known case is α = 1/4 (n = 1), γ = 0. In the Laurent coordinates

(t, r), D1/4,0 writes −2i∂t − ∂2r , namely, it is the free Schrödinger equation. Then

SL(2,R) �H1 acts on D1/4,0 in the usual way (see formulas (0.2)) in the Laurent

coordinates.

(i)bis Special time-independent harmonic oscillators with added resonant oscillat-

ing drift

Consider

D = −2i∂θ − ∂2x + n2x2 + C cos(nθ − σ/2) · x+ γ

(C, σ, γ ∈ R, C �= 0, n ≥ 1 integer). Then computations show that GD �
R× R× R/2πZ is three-dimensional, generated by

L1−cos(2nθ−σ) + Y C
8n sin 3(nθ−σ/2)

−M C2

32n2 ( cos 4n(θ−σ/2)
4 + cos(2nθ−σ)

2 + γ
2 cos(2nθ−σ)), (2.19)

YC sin(nθ−σ/2) +MC2

8n cos(2nθ−σ) (2.20)

and M1. One checks (by direct computation) that the value of the associ-

ated invariant In2(1 − cos(2nθ − σ)) is 0.

(ii) Time-dependent Ince harmonic repulsors of type II

Consider

Dn,α,γ = −2i∂θ − ∂2x + un,α(θ)x
2 + γ, n = 1, 2, . . . , α ∈ (0, 1) (2.21)

where

un,α(θ) =
n2

4

[
1 + 6α sinnθ + 4α2 sin2 nθ

(1 + α sinnθ)2

]
. (2.22)

Then (see preceding subsection) Lξ − γ
2Mξ ∈ Lie(GD) (ξ �= 0) if and only

if ξ is proportional to ξn,α, with ξn,α = sinnθ(1 + α sinnθ)∂θ. Now

dσ1/4(Yf1 +Mf2) ·D = 0

if and only if f ′
2 = 0 and f ′′

1 + un,αf1 = 0. The latter equation is

known under the name of Ince’s equation (see Magnus and Winkler, [27]).
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The change of variable and function θ → δ(θ) = π
4 − n θ2 , f1(θ) → y(δ) =

(1+α cos 2δ)b/4αf1(δ(θ)) with b = −2α[1+ iα√
1−α2

] turns the above equation

into the standard form

(1 + a cos 2δ)y′′ + b sin 2δy′ + (c+ d cos 2δ)y = 0

with a = α, c = 1 − α2

1−α2 , d = α[3 + α2

1−α2 ∓ 2iα√
1−α2

]. Conditions for

the coexistence of two independent periodic solutions of Ince’s equation

have been studied in detail. In our case, there is no periodic solution since

∂2 + un,α is unstable (see discussion in Sec. 2.2). Hence

GD = exp
(
R
(
Lξn,α − γ

2
Mξn,α

)
⊕ RM1

)
� R× (R/2πZ). (2.23)

(iii) Non-resonant time-dependent Schrödinger operators of type III

Consider

Dn,α,γ = 2i∂θ − ∂2x + vn,α(θ)x
2 + γ

(n = 1, 2, . . . , α ∈ (0, 1)). See Eq. (2.18). Similarly to case (ii), Lξ − γ
2Mξ ∈

Lie(GD) (ξ �= 0) if and only if ξ is proportional to ξ±,n,α, where ξ±,n,α =

±(1 + sinnθ)(1 + α sinnθ)∂θ. Then dσ1/4(Yf1 +Mf2) · D = 0 if and only

if f ′
2 = 0 and f ′′

1 + vn,αf1 = 0. This is once again Ince’s equation, with

parameters a = α, b = −2α, c = 1 − 2α, d = 3α. One verifies immediately

that y(δ) = cos δ is the unique (up to a constant) periodic solution of this

semi-stable Hill equation, corresponding to f1(θ) := (1+α sinnθ)1/2 cos(π4 −
n θ2 ). Note that ξ+,n,α = f2

1 (so that f1 is, up to a sign, the unique C∞

square-root of ξ+,n,α). Hence

GD = exp
(
R
(
Lξ±,n,α − γ

2
Mξ±,n,α

)
⊕ RYf1 ⊕ RM1

)

� R× R× (R/2πZ). (2.24)

(iii)bis Schrödinger operators of type III with added resonant drift

Consider

D = −2i∂θ − ∂2x + vn,α(θ)x
2 + C(1 + α sinnθ)1/2 cos

(
π

4
− n

θ

2

)
x+ γ

(C �= 0) with vn,α as in case (iii). Set ξ(θ) = (1 + sinnθ)(1 + α sinnθ) and

f(θ) = (1 + α sinnθ)1/2 cos(π/4− nθ/2). Recall ξ = f2.

Suppose Lξ + Yf1 +Mf2 stabilizes D. Then (see (2.3))

2(f ′′
1 + vn,αf1) = C

(
ξf ′ +

3

2
ξ′f

)
= 4Cf2f ′ (2.25)

and

f ′
2 = −1

2
(γξ′ + Cf1f). (2.26)
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The kernel of the operator ∂2 + vn,α is one-dimensional, generated by f .

Hence the above Eq. (2.25) has a solution if and only if
∫ 2π

0 (ξf ′+ 3
2ξ

′f)f dθ =
0, which is true since (ξf ′ + 3

2ξ
′f)f = (f4)′. Now Eq. (2.26) has a solution

if and only if f1 is chosen to be the unique solution orthogonal to the kernel

of ∂2 + vn,α, namely, if
∫ 2π

0 f1f dθ = 0.

Now

dσ1/4(Yg1 +Mg2) ·D = −2(g′′1 + vn,αg1)x− fg1 − 2g′2 (2.27)

vanishes if and only if g1 = f (up to a multiplicative constant) and
∫ 2π

0
g1f dθ = 0.

The two conditions are clearly incompatible.

Altogether one has proved thatGD = exp(R(L(1+sinnθ)(1+α sin nθ)+Yf1+Mf2)⊕
RM1) � R × R/2πZ (with f1, f2 solving Eqs. (2.25) and (2.26)) is commutative

two-dimensional.

Explicit but cumbersome formulas for f1, f2 are easy to derive from the proof

of Lemma 4.10 below. We shall not need them.

There remains to prove that we have classified all the orbits in Saff
≤2.

Theorem 2.4.3. Any Schrödinger operator D in Saff
≤2 belongs to the orbit of one

of the above operators.

Proof. Let D ∈ Saff
≤2. Suppose first that V2 is of type I. Then one may assume (by

a time-reparametrization) that V2 = α is a constant. The operator D belongs to

the orbit of Dα,γ (case (i)) for some γ if and only if V1 = 2(a′′ + αa). If α �= n2 (or

n2/4 if one considers the S̃V
(2)

-orbits) then this equation has a unique solution for

every V1. If α = n2, then a Fourier series V1 =
∑
k cke

ikθ is in the image of ∂2θ + α

if and only if c±n = 0. This analysis accounts for the two cases (i) and (i)bis.

Suppose now V2 is of type II. By a time-reparametrization one may choose

V2 = un,α. The operator D belongs to the orbit of Dn,α,γ (see case (ii)) for some γ,

provided V1 = 2(a′′ + un,αa). Since ∂
2 + un,α (acting on C∞(R/2πZ)) has a trivial

kernel, it has a bounded inverse and the unique solution of the above equation is

C∞. Hence D belongs to the orbit of Dn,α,γ .

Finally, suppose V2 is of type III. One is led to solve the equation V1 =

2(a′′ + vn,αa). Recall V1(θ) = (1 + α sinnθ)1/2 cos(π4 − n θ2 ) solves the equa-

tion f ′′
1 + vn,αf1 = 0. Hence V1 = 2(a′′ + vn,αa) has a solution if and only if∫ 2π

0
V1(θ)(1 + α sinnθ)1/2 cos(π4 − n θ2 ) dθ = 0, which accounts for cases (iii) and

(iii)bis.

Note that Schrödinger operators of type III are generically of type (iii)bis,

and Schrödinger operators of type I with α = n2, n = 1, 2, . . . are generically

of type (i)bis.

Corollary 2.4.4. For generic orbits (type (i) with α �= n2

4 , n ≥ 0, or type (ii)),

the isotropy group is two-dimensional, given by expR(Lξ + Yδ1 +Mδ2) ⊕ RM1 �
R× R/2πZ or R/2πZ× R/2πZ for some triple (ξ, δ1, δ2) with ξ �= 0.
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Let us finish with a remark. Consider a potential V2(θ)x
2 + V1(θ)x + V0(θ) of

type (i), (ii) or (iii). As we shall see in the next section, the monodromy of the

corresponding Schrödinger operator depends only on the (conjugacy class of the)

invariant ξ and the value of the constant γ (which acts as a simple energy shift).

Computing the invariant ξ is a difficult task in general, but suppose it can be

achieved. How does one determine the constant γ? We give an answer for generic

elliptic or hyperbolic potentials of type (i).

Lemma 2.4.5. Let D = −2i∂θ − ∂2x + V2(θ)x
2 + V1(θ)x + V0(θ) be of type (i),

elliptic or hyperbolic, generic, so that D is conjugate to a unique operator Dα,γ =

−2i∂θ − ∂2x + αx2 + γ (α ∈ R, α �= n2

4 , n = 0, 1, . . .). Then γ may be retrieved

from

γ =
1

2π

∫ 2π

0

(
V0 −

1

4
V1W1

)
(θ) dθ, (2.28)

where W1 is the unique solution of the equation (∂2 + V2)W1 = V1.

Proof. Start from the model operator Dα,γ , with stabilizer ξ = 1, and apply

successively σ1/4(φ; (0, 0)) and σ1/4(1; (g, h)). Then one obtains the operator

D := −2i∂θ − ∂2x + V2(θ)x
2 − 2

(
(∂2 + V2)g

)
x+ (γφ̇+ g(∂2 + V2)g − 2ḣ)

(see formulas (2.1) and (2.2)). Now
∫ 2π

0
φ̇(θ) dθ = 2π since φ ∈ Diff+(R/2πZ). Hence

the result.

2.5. Connection to Niederer’s results

We are referring to a classical paper by Niederer (see [28]) concerning the maximal

groups of Lie symmetries of Schrödinger equations with arbitrary potentials. One

may rephrase his main result as follows (though the Schrödinger–Virasoro had not

been introduced at that time). Niederer shows that any transformation

ψ(t, r) → ψ̃(t, r) = exp ifg(g
−1(t, r))ψ(g−1(t, r)),

(where g : (t, r) → (t′, r′) is an arbitrary coordinate transformation and fg an

arbitrary “companion function” corresponding to a projective action) carrying the

space of solutions of the Schrödinger equation

(−2i∂t − ∂2r + V (t, r))ψ(t, r) = 0 (2.29)

into itself in necessarily of the form σ1/4(g) for some g ∈ SV. This is, by the way,

an elegant way of introducing the SV group in the first place. Then Niederer gives

a necessary and sufficient condition for g ∈ σ1/4(SV ) to leave (2.29) invariant,

and produces some physically interesting examples. Let us analyze some of these

examples from our point of view. It should be understood that Niederer’s examples
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are given in the Laurent coordinates (t, r) and hence should be transformed by

using Lemma 1.6 to compare with our results.

(i) V = 0 (free Schrödinger equation): this case corresponds, after the transfor-

mation at the end of Sec. 1 to the potential V (θ, x) = 1
4x

2, with invariance

under the full Schrödinger group (see case (i) in Sec. 2.4, with α = 1/4 and

γ = 0).

(ii) V = −gr (free fall) corresponds to V (θ, x) = 1
4x

2 − gei(θ/2+3π/4)x (a

4π-periodic potential), which belongs to the same orbit as case (i) (free

Schrödinger equation in the Laurent coordinates).

(iii) V = 1
2ω

2r2 (harmonic oscillator) may be obtained from the free Schrödinger

equation by the time reparametrization t(u) = tanωu for which the Schwarzian

derivative is a constant, Θ(t) = 2ω2 (see formulas in Proposition 1.5).

(iv) V = k/r2 (inverse-square potential), corresponding to the operator −2i∂θ −
∂2x + x2

4 + kx−2 (harmonic oscillator with added inverse-square potential) in

the Fourier coordinate. The operator is not in Saff
≤2, but the (time-independent)

inverse-square potential is interesting in that this is the only potential left

invariant by all transformations V (t, r) → φ′(t)V (φ(t), r
√
φ′(t)) (see formulas

in Proposition 1.5). So this equation is invariant by the kernel of the Schwarzian

derivative, i.e. by the homographic transformations.

3. Monodromy of Time-Dependent Schrödinger Operators of

Non-Resonant Types and Ermakov–Lewis Invariants

We “solve” in this section all Schrödinger operators in Saff
≤2 of class (i), (ii) or (iii)

by using the Ermakov–Lewis invariants, to be introduced below. Since any such

operator is conjugate to an operator of the type −2i∂θ − ∂2x + V2(θ)x
2 + γ (γ

constant), and γ corresponds to a simple energy shift, we shall implicitly assume

that the potential is simply quadratic (V1 = V0 = 0).

Lemma 3.1.2 and Proposition 3.1.4 yield explicitly an evolution operator

U(θ, θ0), i.e. a unitary operator on L2(R) which gives the evolution of the solu-

tions of the Schrödinger equation from time θ0 to time θ. This operator gives the

unique solution to the Cauchy problem and allows to compute the (exact) Berry

phase. The arguments in Lemmas 3.1.1, 3.1.2 and Proposition 3.1.4 are reproduced

from the paper of Lewis and Riesenfeld ([26]). Unfortunately this method gives the

monodromy only in the elliptic case (i.e. for operators of class (i) with α > 0). So

we generalize their invariants to the hyperbolic and unipotent case; the invariant

we must choose in order to be able to compute the monodromy is not a harmonic

oscillator any more, but an operator with absolutely continuous spectrum. Never-

theless, it turns out that there does exist a phase operator, given in terms of the

(possibly regularized) integral
∫ 2π

0
dθ
ξ(θ) for a certain stabilizer ξ of the quadratic

part of the potential. The key point in order to get the whole picture is to make

the bridge between Kirillov’s results and the Ermakov–Lewis invariants.
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3.1. Ermakov–Lewis invariants and

Schrödinger–Virasoro invariance

Let H = 1
2 (−∂2x+V2(θ)x2) be the (quantum) Hamiltonian corresponding to a time-

dependent harmonic oscillator. The evolution of the wave function ψ(θ, x) is given

by: i∂θψ(θ, x) = Hψ(θ, x), or Dψ = 0 where D = −2i∂θ + 2H = −2i∂θ − ∂2x +

V2(θ)x
2.

The Ermakov–Lewis dynamical invariants were invented in order to find the

solutions of the above equation. The idea is simple. Suppose I(θ, x) is a time-

dependent hermitian operator of the form
∑N

j=0 Ij(θ, x)∂
j
x which is an invariant

of the motion, i.e. d
dtI = ∂tI + 1

i [I,H ] = 0. Suppose also that, for every fixed

value of θ, I(θ, x) (defined on an appropriately defined dense subspace of L2(R, dx),
for instance on the space of test functions) is essentially self-adjoint and has a

purely point spectrum. For simplicity, we shall assume that all multiplicities are

one, and that one may choose normalized eigenvectors which depend regularly on θ,

namely,

I(θ, x)hn(θ, x) = λn(θ)hn(θ, x) (3.1)

and
∫
R |hn(θ, x)|2 dx = 1. The fact that I is an invariant of the motion implies by

definition that Iψ is a solution of the Schrödinger equation if ψ is. The following

lemma shows how to solve the Schrödinger equation by means of the invariant I:

Lemma 3.1.1. (see [26]) (1) The eigenvalues λn(θ) are constants, i.e. they do not

depend on time.

(2) If n �= m, then 〈hm(θ), (i∂θ −H)hn(θ)〉 = 0.

Proof. (i) Applying the invariance property ∂I
∂θ + 1

i [I(θ), H(θ)] = 0 to the eigen-

vector hn(θ) yields

∂I

∂θ
hn(θ) +

1

i
(I(θ) − λn(θ))H(θ)hn(θ) = 0.

Taking the scalar product with hm(θ) gives a first equation,

〈hm(θ),
∂I

∂θ
hn(θ)〉+

1

i
(λm(θ) − λn(θ))〈hm(θ), H(θ)hn(θ)〉 = 0. (3.2)

The eigenvalue equation I(θ)hn(θ) = λn(θ)hn(θ) gives after time differentiation

a second equation, namely

∂I

∂θ
hn(θ) + (I(θ)− λn(θ))ḣn(θ) = λ̇n(θ)hn(θ). (3.3)

Combining Eqs. (3.2) and (3.3) for n = m yields λ̇n(θ) = 0.

(ii) Combining this time Eqs. (3.2) and (3.3) for n �= m yields the desired

equality.
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The above lemma shows that one may choose eigenvectors hn(θ) that satisfy

the Schrödinger equation by multiplying them by an appropriate time-dependent

phase, which is the content of the following lemma.

Lemma 3.1.2. Let, for each n, αn(θ) be a solution of the equation

dαn
dθ

= 〈hn(θ), (i∂θ −H)hn(θ)〉. (3.4)

Then the gauge-transformed eigenvectors for the invariant I

h̃n(θ) = eiαn(θ)hn(θ) (3.5)

are solutions of the Schrödinger equation.

In other words, the general solution of the Schrödinger equation is:

ψ(θ) :=
∑

n

cne
iαn(θ)hn(θ), (3.6)

where cn are constant (time-independent) coefficients.

Let us specialize to the case when H is a time-dependent harmonic oscillator as

above, i.e. H = 1
2 (−∂2x+V2(θ)x2). A natural idea is to assume the following Ansatz

I(θ) =
1

2
[−b(θ)∂2x + a(θ)x2 − ic(θ)(x∂x + ∂xx)].

This problem has a unique family of nontrivial solutions:

Definition 3.1.3. (Pinney–Milne equation) The nonlinear equation

ζ̈ + f(θ)ζ − K

ζ3
= 0 (3.7)

(K > 0) is called a Pinney–Milne equation. If K = 1, then we shall say that (3.7)

is a normalized Pinney–Milne equation.

Of course, every Pinney–Milne equation can easily be normalized by multiplying

the function by the constant factor K1/4.

The following proposition summarizes results due to Lewis and Riesenfeld

(see [26]).

Proposition 3.1.4. (Ermakov–Lewis invariants for time-dependent harmonic

oscillators) (1) The second-order operator EL(ζ2)

EL(ζ2)(θ) = 1

2

[
x2

ζ2
+ (iζ(θ)∂x + ζ̇(θ)x)2

]
(3.8)

is an invariant of the time-dependent harmonic oscillator −2i∂θ − ∂2x + V2(θ)x
2

provided ζ is a solution of the following normalized Pinney–Milne equation:

ζ̈ + V2(θ)ζ −
1

ζ3
= 0. (3.9)
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Setting ξ = ζ2, one may also write equivalently

EL(ξ)(θ) = 1

2ξ

[
x2 +

(
iξ∂x +

1

2
ξ̇x

)2
]

=
1

2ξ

[
−ξ2∂2x +

(
1 +

ξ̇2

4

)
x2 +

i

2
ξξ̇(x∂x + ∂xx)

]
. (3.10)

(2) Set

a(θ) :=
1√
2

[
x

ζ(θ)
− (ζ(θ)∂x + iζ̇(θ)x)

]

and

a∗(θ) =
1√
2

[
x

ζ(θ)
+ (ζ(θ)∂x + iζ̇(θ)x)

]

(formal adjoint of the operator a(θ)). Then

EL(ξ)(θ) = a∗(θ)a(θ) +
1

2
. (3.11)

In other words, for every fixed value of θ, the operators a(θ), a∗(θ) play the roles of

an annihilation, resp. creation operator for the (time-dependent) harmonic oscilla-

tor EL(ξ).
(3) The normalized ground state of the operator a(θ) is

h0(θ) =
1

2
√
π

1√
ξ(θ)

exp

((
−1

2

1

ξ(θ)
+
i

2
(ξ̇/ξ)(θ)

)
x2
)
. (3.12)

(4) The solutions of Eq. (3.4) giving the phase evolution of the solutions of the

Schrödinger equation are given by

αn(θ) = −
(
n+

1

2

)∫ θ dθ′

ξ(θ′)
(3.13)

provided one chooses the time-evolution of the eigenstates hn by setting

〈hn, ∂θhn〉 =
i

2

(
n+

1

2

)
(ζζ̈ − ζ̇2). (3.14)

The above choice for the time-evolution of the eigenstates appears natural if

one requires the standard lowering and raising relations a(θ)hn(θ) = n1/2hn−1(θ),

a∗(θ)hn(θ) = (n+ 1)1/2hn+1(θ). Then computations show that

〈hn, ∂θhn〉 = 〈h0, ∂θh0〉+ i
n

2
(ζζ̈ − ζ̇2). (3.15)

Hence there only remains to choose the time-evolution of the ground–state h0. This

particular choice leads to the (n+ 1
2 )-factor typical of the spectrum of the harmonic

oscillator. Note that the hn(θ) do not satisfy the gauge-fixing condition typical of

the adiabatic approximation (see Joye [21] for instance). But this phase choice

leads to a nice interpretation of the phases αn (up to a constant) as a canonical
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coordinate conjugate to the classical invariant ELcl (see Lemma 3.2.2 below) for

the corresponding classical problem, in the generalized symplectic formalism for

which time is a coordinate, so that the problem becomes autonomous (see Lewis–

Riesenfeld [26]; see also Sec. 4 for the symplectic formalism). Also, as mentioned

in the Introduction, the natural time-scale (both for the classical and the quantum

problem) is τ(θ) :=
∫ θ du

ξ(u) .

The connection with the preceding sections is given by the following classical

lemma (see [27], Chap. 3), which is an easy corollary of Proposition 2.3.2:

Lemma 3.1.5. (1) Let ξ be a (non-necessarily periodic) solution of the equation

1

2
ξ′′′ + 2uξ′ + u′ξ = 0, (3.16)

so that ξ stabilizes ∂2+u. Then ζ :=
√
ξ is a solution of the Pinney–Milne equation

ζ′′ + u(θ)ζ − Iu(ξ)/2

ζ3
= 0, (3.17)

where Iu(ξ) := ξξ′′ − 1
2ξ

′2 + 2uξ2 is the constant defined in Proposition 2.3.2(2).

In particular, if ξ = ψ2
1 + ψ2

2 , where (ψ1, ψ2) is a basis of solutions of the Hill

equation (∂2 + u)ψ = 0 and ζ =
√
ξ, then

ζ′′ + u(θ)ζ − W 2

ζ3
= 0, (3.18)

where W := ψ1ψ
′
2 − ψ′

1ψ2 is the Wronskian of the two solutions.

(2) Consider ξ ∈ Stabu such that ζ =
√
ξ satisfies the Pinney–Milne equation

(3.18), and a time-reparametrization φ. Then ξ̃ := φ′−1 · ξ ◦ φ is a stabilizer of

∂2 + ũ := φ∗(∂2 + u) and ζ̃ :=

√
ξ̃ satisfies the transformed Pinney–Milne equation

ζ̃′′ + ũζ̃ − W 2

ζ̃3
= 0

for the same constant W .

The interesting point now is that one can choose the Ermakov–Lewis invariant

in such a way that the invariant associated to the image of the time-dependent

harmonic oscillator D by a time reparametrization (through the representation

σ1/4) is its image by a very natural transformation (essentially, by the correspond-

ing change of coordinates). This provides an elegant, natural explanation for the

complicated-looking phase appearing in the formulas for σ1/4.

Theorem 3.1.6. Let D := −2i∂θ − ∂2x + V2(θ)x
2 be a time-dependent harmonic

oscillator, ζ satisfy the Pinney equation ζ′′ +V2ζ − 1
ζ3 = 0, and EL(ζ2) = 1

2 [(
x
ζ )

2 +

(iζ∂x + ζ′x)2] be the associated Ermakov–Lewis invariant.

Let φ ∈ Diff+(R/2πZ) be a time-reparametrization and Ṽ2 be the image of V2
through φ, defined by σ1/4(φ) ·D = −2i∂θ − ∂2r + Ṽ2(θ)x

2.
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Then:

(1) ζ̃ := (φ′ ◦ φ−1)1/2 · ζ ◦ φ−1 satisfies the transformed Pinney equation ζ̃′′ +
Ṽ2ζ̃ − 1

ζ̃3
= 0.

(2) Consider the transformed Ermakov–Lewis invariant

ẼL(ζ̃2)(x) := 1

2



(
x̃

ζ̃

)2

+

(
iζ̃∂x̃ +

dζ̃

dθ̃
x̃

)2

 , (3.19)

where (θ̃, x̃) = (φ(θ), x
√
φ′(θ)) are the transformed coordinates.

Then

ẼL(ζ̃2) = π1/4(φ)EL(ζ2)π1/4(φ)−1. (3.20)

In particular, ẼL(ζ̃2) is an Ermakov–Lewis invariant for σ1/4(φ)D.

Proof. (1) follows from Lemma 3.1.5(2). This implies that ẼL(ζ̃2) is an Ermakov–

Lewis invariant for σ1/4(φ) ·D. Supposing one has proved that ẼL(ζ̃2) is the con-

jugate of EL(ζ2) by π1/4(φ), then it follows once again that ẼL(ζ̃2) is an invariant

for σ1/4(φ) ·D since

(σ1/4(φ) ·D)ẼL(ζ̃2)− ẼL(ζ̃2)(σ1/4(φ) ·D)

= φ′π1/4(φ)D · EL(ζ2) · π1/4(φ)−1 − π1/4(φ) · EL(ζ2) · φ′Dπ1/4(φ)−1

= 0

(the function of time φ′ commutes with the operator EL(ζ2)).
So all there remains to show is that ẼL(ζ̃2) is indeed conjugate to EL(ζ2). This

is actually true for both terms appearing inside parentheses in the expression for

the Ermakov–Lewis invariant (and trivial for the first one). Set E = iζ∂x+ ζ′x and

Ẽ = iζ̃∂x̃ +
dζ̃

dθ̃
x̃. Then a simple computation shows that

Ẽ = iζ∂x + xζ′ +
1

2
x
φ′′

φ′
ζ.

On the other hand,

(π1/4(φ)Eπ1/4(φ)−1)ψ(θ̃, x̃)

= (φ′(θ))−1/4e
1
4 i

φ′′(θ)
φ′(θ) x

2

Eπ1/4(φ)−1ψ(θ, x)

=
1

2
(φ′(θ))−1/4e

1
4 i

φ′′(θ)
φ′(θ) x

2

(iζ(θ)∂x

+ ζ′(θ)x)(φ′(θ)1/4e−
1
4 i

φ′′(θ)
φ′(θ) x

2

ψ(φ(θ), x
√
φ′(θ))). (3.21)

Hence π1/4(φ)Eπ1/4(φ)−1 = Ẽ .
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We now want to be able to write the general solution of the Schrödinger equa-

tion as

ψ(θ) =

∫

Σ

eiαk(θ)ckhk(θ)dσ(k)

(for some spectral measure σ on a set Σ, a discrete measure in the case studied by

Lewis and Riesenfeld) with periodic eigenstates hk and a phase αk with periodic

derivative, i.e. given by integrating a periodic function, so that

ψ(θ + 2π) =

∫
eiλkeiαk(θ)ckhk(θ)dσ(k),

where the λk := αk(θ + 2π)− αk(θ) are constants and measure the rotation of the

eigenstates hk after a time 2π. Then the monodromy operator is unitarily equivalent

to the multiplication operator f(k) → f(k)eiλk on L2(Σ, dσ).

Consider any Schrödinger operator with quadratic potential V2(θ)x
2 and an

associated nonzero vector field ξ ∈ Stab(V2) as before. (We postpone the discussion

of “resonant” operators (classes (i)bis and (iii)bis) to the next section.) It turns out

that the eigenstates hk and the measure σ can be taken as the (possibly generalized)

eigenfunctions and spectral measure of one of the three following “model” operators

H , depending on the sign of the invariant Iu(ξ):

(i) (Iu(ξ) > 0) : take for H the standard harmonic oscillator

H = −1

2
(∂2x − a2x2), a ∈ R;

this case corresponds to harmonic oscillators of type (i), i.e. Schrödinger operators

of type (i) conjugate to −2i∂θ − ∂2x + a2x2 with a2 > 0;

(ii) (Iu(ξ) < 0) : take for H the “standard harmonic repulsor”

H = −1

2
(∂2x + a2x2), a ∈ R;

this case corresponds to harmonic repulsors of type (i), i.e. operators of type (i)

conjugate to −2i∂θ − ∂2x − a2x2 (−a2 < 0), and operators of type (ii);

(iii) (Iu(ξ) = 0) : take for H the usual one-dimensional Laplacian,

H = −1

2
∂2x;

this case corresponds to operators of type (i) conjugate to the free Schrödinger

operator −2i∂θ − ∂2x, and operators of type (iii).

Note that this classification is equivalent to the classification of the (conjugacy

classes of) monodromy matrices for the associated Hill operators ∂2θ + V2(θ) into

elliptic, hyperbolic and unipotent elements.

The next section circumvents the spectral analysis technicalities by solving the

associated classical problem. The essentials for understanding the (operator-valued)

monodromy for the quantum problem are already contained in the study of the

(SL(2,R)-valued) monodromy of the ordinary differential equation ẍ = −V2(θ)x,
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so we found this short digression convenient for the reader. Then we study the

spectral decomposition of the above model operators. Finally, we solve the quantum

problem for a quadratic potential V2(θ)x
2 and compute the monodromy operator.

The general case D ∈ Saff
≤2 may be reduced to the quadratic case D ∈ Saff

2 after

applying some transformation in SV, except for the operators of types (i)bis and

(iii)bis which will be treated in the last section.

3.2. Solution of the associated classical problem

The associated classical problem (obtained for instance as the lowest-order term in

� in the usual semiclassical expansion) is a Hill equation.

Definition 3.2.1. (classical problem) Let H be the classical Hamiltonian

H =
1

2
(p2 + V2(θ)x

2).

The asociated motion in phase space reads ẋ = ∂pH = p, ṗ = −∂xH = −V2, which
is equivalent to the Hill equation (∂2θ + V2)x(θ) = 0.

Lemma 3.2.2. (1) Suppose V2 is of type I with α �= 0 or of type II, and choose

ξ ∈ StabV2 so that Iu(ξ) = 2 (ξ is real in the elliptic case and purely imaginary in

the hyperbolic case). Then

ELcl(ξ)(x) :=
1

2


x

2

ξ
+ ξ

(
ẋ− 1

2

ξ̇

ξ
x

)2

 (3.22)

is an invariant of the motion.

(2) Suppose V2 is of type I with α = 0 or of type III (so that the associated mon-

odromy is unipotent), and take any ξ ∈ StabV2, ξ �= 0. Then

ELcl(ξ)(x) :=
1

2


ξ

(
ẋ− 1

2

ξ̇

ξ
x

)2

 (3.23)

is an invariant of the motion.

Proof. Simple computation (ELcl may be obtained from the quantum Ermakov–

Lewis invariant by letting � go to zero).

Assuming V2 is elliptic, i.e. of type I with α > 0, one may choose ξ > 0.

Then the equation ELcl(ξ)(x) = C, C constant is equivalent to ( dzdτ )
2 + z2 = C

after the function- and time-change τ(θ) =
∫ θ dθ′

ξ(θ′) , x(θ) = ξ1/2(θ)z(τ(θ)), with

obvious solutions cos τ , sin τ . Hence a basis of solutions of the equation of motion is
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given by

x1(θ) = ξ1/2(θ) cos

∫ θ dθ′

ξ(θ′)
, x2(θ) = ξ1/2(θ) sin

∫ θ dθ′

ξ(θ′)
. (3.24)

Assume for instance that ξ̇(0) = 0, and choose
∫ θ dθ′

ξ(θ′) =
∫ θ
0

dθ′

ξ(θ′) . Then (x1

x2
)(2π) =

(cosT − sinT
sinT cosT ) · (x1

x2
)(0) with T =

∫ 2π

0
dθ′

ξ(θ′) . Hence the eigenvalues of the monodromy

matrix are given by ±iT .
In the hyperbolic case (type I with α < 0, or type II), ξ := iη is purely imaginary.

The above formulas (3.24) give solutions of the Hill equation on either side of any

zero of ξ (note that the normalization Iu(ξ) = 2 implies ξ(θ) ∼θ→θ0 ±2i(θ − θ0)

near any zero, so that (3.24) defines a continuous function, as should be), but

the easiest way to define the solutions x1, x2 globally is to use a deformation of

contour. One may always assume that ξ is analytic on some complex neighborhood

of R (it is conjugate by a time-reparametrization to some un,α which is entire, see

Proposition 2.2.3). Define a contour Γ from 0 to 2π which avoids the zeros of ξ

by going around them along half-circles of small radii centered on the real axis.

This time (see discussion in Sec. 2.2), the half-circles must be chosen alternatively

in the upper- and lower-half planes so that Re ξ(z) ≥ 0 on Γ. Then (x1

x2
)(2π) =

(cosT − sinT
sinT cosT ) · (x1

x2
)(0) as before, with T =

∫
Γ

dθ′

ξ(θ′) . Mind that T is purely imaginary

this time.

Finally, in the unipotent case (type I with α = 0, or type III), normalize ξ by

setting for instance ξ(0) = i, ξ̇(0) = 0, so that ξ is purely imaginary. The same

function- and time-change yields ( dzdτ )
2 = C, hence a natural basis of solutions is

given by x1(θ) = ξ1/2(θ), x2(θ) = ξ1/2(θ)
∫ θ
0

dθ′

ξ(θ′) . To get globally define solutions,

one avoids the double zeros of ξ by drawing half-circles in the upper half-plane.

Then the monodromy matrix is (1 T
0 1), with T =

∫
Γ
dθ′

ξ(θ′) =
∫
Γ

dθ′

x2
1(θ

′) .

3.3. Spectral decomposition of the model operators

We shall need below the spectral decomposition of the three model operators

− 1
2 (∂

2
x − a2x2), − 1

2 (∂
2
x + a2x2), − 1

2∂
2
x introduced above. They are essentially self-

adjoint on C∞
0 (R) by the classical Sears theorem (see [3], Theorem 1.1, Chap. 2

for instance), so the spectral theorem applies. The first operator has a pure point

spectrum, while the second and third have an absolutely continuous spectrum. Note

that − 1
2∂

2
x is non-negative, while the spectrum of − 1

2 (∂
2
x + a2x2) is the whole real

line, as the following lemma proves.

Lemma 3.3.1. (1) (elliptic case) The spectral decomposition of L2(R) for the oper-
ator − 1

2 (∂
2
x − a2x2) is given by

L2(R) = ⊕n≥0L
2
a(n+ 1

2 )
, (3.25)
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where L2
a(n+ 1

2 )
is one-dimensional, generated by the normalized Hermite func-

tions Ca1/4e−ax
2/2Hen(x

√
a) for some constant C (see [1] for the notations and

normalization).

(2) (hyperbolic case) Set, for λ ∈ R,

ψ±
λ (x) :=

(
2

a

)1/4

eλ/8ae−iax
2/2

[
1

Γ(34 + iλ
4a )

1F1

(
1

4

(
1 +

iλ

a

)
,
1

2
; iax2

)

± 2
√
a

Γ
(
1
4 + iλ

4a

)eiπ/4x ·1 F1

(
1

4

(
3 +

iλ

a

)
,
3

2
; iax2

)]
, (3.26)

where 1F1 is the usual confluent hypergeometric function. Then Hψ±
λ = λψ±

λ and

the (ψ±
λ , λ ∈ R) form a complete orthonormal system of generalized eigenfunctions

of the operator H = − 1
2 (∂

2
x + a2x2), so that any function f ∈ L2(R) decomposes

uniquely as

f(x) =

∫

R
ψ+
λ (x)g

+(λ) dλ+

∫

R
ψ−
λ (x)g

−(λ) dλ (3.27)

with g±(λ) =
∫
R f(x)ψ

±
λ (x) dx. In particular, the following Parseval identity holds,

∫

R
|f(x)|2 dx =

∫

R
|g+(λ)|2 dλ+

∫

R
|g−(λ)|2 dλ. (3.28)

(3) (unipotent case) Set, for λ > 0, ψ±
λ (x) = e±ix

√
2λ. Then Hψ±

λ = λψ±
λ and the

ψ±
λ , λ > 0, form a complete orthonormal system of generalized eigenfunctions of

the operator H = − 1
2∂

2
x, with the usual Parseval–Bessel identity.

Proof. (1) is classical and (3) is straightforward by Fourier inversion and the

usual Parseval–Bessel identity. Case (2) is less common, though it can certainly

be found somewhere in the literature. Let us explain briefly how to obtain its spec-

tral decomposition for a = 1. The easiest way is to remark that H = AΛA−1

where Λ = i
2 (x∂x + ∂xx) = i(x∂x + 1

2 ) and A is the image of the rotation matrix

(cos π/4 − sinπ/4
sinπ/4 cosπ/4 ) by the metaplectic representation. The operator A is unitary.

Explicit formulas found for instance in [15] show that

(Af)(x) = i
√
2eiπ/4eiπx

2

∫ ∞

0

e−iπ(x
√
2−y)2f(y) dy. (3.29)

As for the operator Λ, it is conjugate to i(∂y+
1
2 ) after the obvious change of variable

x = ±ey, hence its spectral decomposition is given by Fourier inversion on either

half-lines, Λφ±λ = λφ±λ (λ ∈ R) with φ±λ (x) = x
− 1

2−iλ
± constituting an orthonor-

mal basis of generalized eigenfunctions. Finally, ψ±
λ := Aφ±λ may be obtained by
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applying the following formula (see [10])
∫ ∞

0

xν−1e−βx
2−γx dx = (2β)−ν/2Γ(ν)eγ

2/8βD−ν

(
γ√
2β

)

(Re β,Re ν > 0) where Dν is a parabolic cylinder function, also given by

Dν(z) = 2ν/2e−z
2/4

{ √
π

Γ(12 (1 − ν))
1F1

(
−ν
2
,
1

2
; z2/2

)

− z

√
2π

Γ(−ν/2) 1F1

(
1− ν

2
,
3

2
; z2/2

)}
(3.30)

(see [7], 8.2. (4), p. 117).

3.4. Monodromy of non-resonant harmonic oscillators

(elliptic case)

We assume here that D ∈ Saff
≤2 is of class (i) with α > 0. Then D is conjugate by a

transformation in SV to an operator of the type −2i∂θ−∂2x+a2x2+γ where a > 0

and γ is a constant. Choose ξ = 1
a so that

√
ξ satisfies a normalized Pinney–Milne

equation. Then Proposition 3.1.4 shows the following:

Theorem 3.4.1. The solution of the Schrödinger equation with arbitrary initial

state

ψ(0) :=
∑

n≥0

cnhn(0) (3.31)

is given by

ψ(θ) :=
∑

n≥0

cne
−i(n+ 1

2 )aθ−iγθ/2hn(θ). (3.32)

The monodromy operator is given by the “infinite-dimensional” monodromy matrix

MD := diag(eiλn , n ∈ N), with λn := −2π(n+ 1
2 )a− πγ.

3.5. Monodromy of harmonic repulsors (hyperbolic type)

One assumes now that D ∈ Saff
≤2 is either of class (i) with α < 0 or of class (ii).

Consider again the Ermakov–Lewis invariant

EL(ξ) = 1

2ξ

[
x2 +

(
iξ∂x +

1

2
ξ̇x

)2
]
, (3.33)

where one has assumed that ξ = iη is purely imaginary this time, and IV2(ξ) = 2.

Note that EL(iη) is anti-hermitian. Then

EL(iη)− ik

iη
= −1

2

[
∂2x − i

η̇

η
x∂x +

1− 1
4 η̇

2

η2
x2 − 1

2
i
η̇

η
+

2k

η

]
. (3.34)
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Suppose ψk �= 0 is an eigenvector of the Ermakov–Lewis operator, EL(iη)ψk =

ikψk. Then Proposition 2.1.4 implies that ψ̃k := exp− i
4
η̇
ηx

2 · ψk is a generalized

eigenfunction of the model harmonic repulsor, namely

−1

2

(
∂2x +

x2

η2

)
ψ̃k =

k

η
ψ̃k. (3.35)

Hence:

Lemma 3.5.1. (1) The equation (EL(iη) − ik)ψk = 0 (k ∈ R) has two linearly

independent solutions,

ψkeven(θ, x) =
√
2(2iη)1/4ek/4e

i
4

η̇
ηx

2

e−
i
2ηx

2 · 1

Γ(14 + ik2 )
1F1

(
1

4
(1 + 2ik),

1

2
;
ix2

η

)

and

ψkodd(θ, x) = 2
√
2(2iη)1/4ek/4e

i
4

η̇
ηx

2

e−
i
2ηx

2 1

Γ(34 + ik2 )
x ·1 F1

(
1

4
(3 + 2ik),

3

2
;
ix2

η

)
.

The functions ((ψkeven, ψ
k
odd), k ∈ R) constitute a complete orthonormal system

for the operator EL(iη).
(2) One has

Dψkeven(x) =

(
2k

η
− i

η̇

η

)
ψkeven(x)

and

Dψkodd(x) =

(
2k

η
− 2i

η̇

η

)
ψkodd(x).

Hence x → 1√
ξ
exp(k

∫ θ dθ′

ξ(θ′) )ψ
k
even(x) and x → 1

ξ exp(k
∫ θ dθ′

ξ(θ′) )ψ
k
odd(x) are solu-

tions of the Schrödinger equation.

Proof. (1) is a direct application of Lemma 3.3.1, while (2) follows from an easy

computation using the confluent hypergeometric differential equation

z
d2

dz2
1F1(a, c; z) + (c− z)

d

dz
1F1(a, c, ; z)− a 1F1(a, c; z) = 0.

The eigenfunctions ψkeven, ψ
k
odd depend analytically on ξ for ξ ∈ C\R−. If the

operator D is of type I (so that ξ has no zero), say with γ = 0, then the phase

exp(k
∫ θ dθ′

ξ(θ′)) gives the monodromy. If D is of type II, then one must resort to

a deformation of contour in order to avoid the singularities, as in the classical

case, see Sec. 3.2. Note that the deformation of contour may change drastically the

behavior of the functions ψkeven, ψ
k
odd for large x or large k (for instance, ψkeven and

ψkodd become exponentially increasing for large x). Hence, in order to be able to

follow the phase shift of the eigenfunctions ψkeven, ψ
k
odd along the contour Γ without

getting divergent integrals, it is better to assume to begin with that the “Fourier

transform” (with respect to the spectral decomposition of EL(ξ)) of the solution
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has compact support. In other words, the solution of the Schrödinger equation with

initial state

ψ(0, x) :=

∫

R
c̄+(k)ψ

k
even(0, x) dk +

∫

R
c̄−(k)ψ

k
odd(0, x) dk

for z ∈ Γ (complex time), where c+, c− are assumed to be compactly supported, is

given by

ψ(z, x) =

√
ξ(0)

ξ(z)

∫

R
c̄+(k)e

k
R z
0

dz′
ξ(z′)−iγθ/2ψkeven(z, x), dk

+
ξ(0)

ξ(z)

∫

R
c̄−(k)e

k
R

z
0

dz′
ξ(z′)−iγθ/2ψkodd(z, x) dk.

An immediate corollary is:

Theorem 3.5.2. Let ψ(0) ∈ L2(R), with decomposition

ψ(0, x) :=

∫

R
c̄+(k)ψ

k
even(0, x) dk +

∫

R
c̄−(k)ψ

k
odd(0, x) dk. (3.36)

Then the solution of any type (ii) Schrödinger equation with initial state ψ(0) is

given at time θ = 2π by

ψ(2π, x) =

∫

R
c̄+(k)e

kT−iπγψkeven(0, x) dk +
∫

R
c̄−(k)e

kT−iπγψkodd(0, x) dk, (3.37)

where T =
∫ 2π

0
du
ξ(u) or

∫
Γ

du
ξ(u) (depending on the class of V2), with Γ cho-

sen as in Sec. 3.2, is purely imaginary. The associated monodromy operator in

B(L2(R), L2(R)) is unitarily equivalent to the multiplication by the function k →
ekT−iπγ with modulus one.

3.6. Monodromy of non-resonant operators of unipotent type

Suppose now D ∈ Saff
≤2 is of class (i), α = 0 or (iii). Then

EL(ξ)(θ) := 1

2ξ

[(
iξ∂x +

1

2
ξ̇x

)2
]

(3.38)

(ξ ∈ StabV2) is an invariant of D (note the difference with respect to Proposition

3.1.4). Case (i), α = 0 is trivial, for it is conjugate to the free Schrödinger equation.

So assume D = −2i∂θ − ∂2x + V2x
2 is of class III. Take ξ = iη with η ≥ 0 as in

Sec. 3.2. Then (if k > 0)

EL(ξ)− ik

ξ
= −1

2

(
∂x −

i

2

η̇

η
x

)2

− k

η
. (3.39)

So

ψk,±(x) := exp
i

4

η̇

η
x2 · exp±i

√
2k

η
x (3.40)

constitute a complete orthonormal system for EL(iη) (the same statement holds

true for potentials of class (i), in which case η = 1 and the exponential prefactor is
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trivial). A short computation shows that

Dψk,± =

(
2k

η
− i

2

η̇

η

)
ψk,±.

Hence one has the following:

Theorem 3.6.1. Let ψ(0) ∈ L2(R), with decomposition

ψ(0, x) :=

∫

R+

c̄+(k)ψk,+(x) dk +

∫

R+

c̄−(k)ψk,−(x) dk. (3.41)

Then the solution of any type (i), α = 0 or type (iii) Schrödinger equation with

initial state ψ(0) is given at time θ = 2π by

ψ(2π, x) =

∫

R+

c̄+(k)e
kT−iπγψk,+(x) dk +

∫

R+

c̄−(k)e
kT−iπγψk,−(x) dk, (3.42)

where T =
∫ 2π

0
du
ξ(u) or

∫
Γ

du
ξ(u) , Γ chosen as in Sec. 3.2 (depending on the class of

V2) is purely imaginary. The associated monodromy operator in B(L2(R), L2(R)) is
unitarily equivalent to the unitary operator on L2(R+) given by the multiplication

by the function k → ekT−iπγ .

4. Symplectic Structures and General Solution of the

Schrödinger Equation

The general emphasis in this section is so to speak on the non-quadratic part of

the potential, namely, on V0 and V1 if D = −2i∂θ − ∂2x + V2(θ)x
2 + V1(θ)x +

V0(θ). It contains somewhat loosely related results: a definition of a three-

dimensional invariant (ξ, δ1, δ2); a generalization of the Ermakov–Lewis invariants

to general potentials; a symplectic structure on a space “containing” Saff
≤2 such

that the SV-action becomes naturally Hamiltonian; finally, the computation of the

monodromy for the “resonant” operators of type (i)bis, (iii)bis.

Definition 4.1. We shall say that D ∈ Saff
≤2 is of generic type if: D is of class (i),

D conjugate to Dα,γ = −2i∂θ − ∂2x + αx2 + γ with α �= n2/4, n = 0, 1, . . . ; or D is

of class (ii), D conjugate to Dn,α,γ = −2i∂θ − ∂2x + un,α(θ)x
2 + γ.

Denote by Saff
≤2,gen the set of operators of generic type; it is a disjoint union of

SV-orbits.

Note (see Corollary 2.4.4) that the isotropy group of an operator D of generic

type is generated by M1 and some Lξ + Yf1 +Mf2 with ξ �= 0.

Definition 4.2. Let D = −2i∂θ − ∂2x + V2(θ)x
2 + V1(θ)x + V0(θ) ∈ Saff

≤2,gen be of

generic type.

Define:

(i) ξ(D) to be the unique (up to a sign) periodic vector field such that ξ(D) ∈
StabV2 and IV2(ξ(D)) = 2 (ξ real in the elliptic case, purely imaginary in the

hyperbolic case);
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(ii) δ1(D) to be the unique periodic function such that

δ̈1(D) + V2δ1(D) = −1

2

(
V̇1ξ(D) +

3

2
V1ξ̇(D)

)
; (4.1)

(iii) δ2(D) to be the unique periodic function (up to a constant) such that

δ2(D) = −1

2

∫ θ

V1(θ
′)δ1(D)(θ′)dθ′ − 1

2
V0ξ(D). (4.2)

Observe that Lξ + Yδ1 +Mδ2 ∈ Lie(GD) is indeed unique (up to the addition

of a constant times M1) as follows from Corollary 2.4.4. The ambiguity in the

definition of δ2 may be solved by choosing for each SV-orbit an arbitrary base-point,

an invariant (ξ, δ1, δ2) for this base-point, and transforming (ξ, δ1, δ2) covariantly by

the adjoint action along the orbit. Some nonlocal formulas fixing δ2 more explicitly

can probably be found, at least for potentials of type (i) (see Lemma 2.4.5), but we

shall not need them.

Another problem comes from the fact that the map (V2, V1, V0) → (ξ, δ1, δ2)

is not one-to-one (nor onto). Suppose one has some triple of functions (ξ, δ1, δ2).

Under some conditions that we shall not write explicitly (depending on the class of

the potential), (ξ, δ1, δ2) is an invariant for some potential (V2, V1, V0); the quadratic

part V2 is given (by definition) by V2 = 1
2ξ2 (2 − ξξ̈ + 1

2 ξ̇
2). (Supposing ξ has only

a finite number of zeros, all of which are simple or double, one has some rather

straightforward conditions on the values of dξdθ and d3ξ
dθ3 at the zeros of ξ that ensure

that ξ ∈ StabV2 for some potential V2.) But V1 is not determined uniquely if ξ

does not vanish on the torus, since ξ−3/2 is in the kernel of the operator ξ∂ + 3
2 ξ̇

(see formula (4.1)). This can easily be explained by supposing (by conjugating by

some element g ∈ SV ) that D is the model operator D = −2i∂θ − ∂2x + αx2 + γ

(α generic). Then ξ is proportional to the constant vector field L1 which com-

mutes with Y1, hence the invariant (ξ, δ1, δ2) is left unchanged by space-translations,

whereas the operator D (and also the generalized Ermakov–Lewis invariant defined

in Theorem 4.4 below) is not. Hence the vector invariant (ξ, δ1, δ2) parametrizes

Schrödinger operators of type (i) “up to space-translations”. On the other hand,

the map (V2, V1, V0) → (ξ, δ1, δ2) is one-to-one for operators of type (ii) (up to a

sign for ξ).

It is not a priori self-evident that δ2 defined by Eq. (4.2) is a periodic function.

Considering the “inverse problem”, i.e. supposing that the invariant (ξ, δ1, δ2) is

given, and supposing ξ does not vanish on the torus, one must also check that

every choice for V1 gives a function δ2 which is periodic. This is the content of the

following lemma:

Lemma 4.3. One has:

d

dθ

(
ξ
d

dθ
(ξ−

1
2 δ1)

)
= −1

2

d

dθ
(ξ3/2V1)− ξ−3/2δ1. (4.3)

This formula implies:
∫ 2π

0 ξ−3/2δ1 = 0;
∫ 2π

0 V1δ1 = 0.
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Proof. Using the invariant equations ξξ̈ − 1
2 ξ̇

2 + 2V2ξ
2 = 2 and δ̈1 + V2δ1 =

− 1
2 (V̇1ξ +

3
2V1ξ̇), one obtains

d

dθ
(ξ1/2δ̇1) =

1

2

d

dθ
(ξ−

1
2 ξ̇δ1)−

1

2

d

dθ
(ξ3/2V1)− ξ−3/2δ1,

hence the first equation, which implies immediately:
∫ 2π

0 ξ−3/2(θ)δ1(θ) dθ = 0. Hence

(considering the inverse problem), if some potential V1 verifies
∫ 2π

0
V1(θ)δ1(θ) dθ = 0

(so that δ2 is well-defined), then this is also true for all possible potentials V1. Now,

integrating the first equation, one gets

ξ
d

dθ
(ξ−

1
2 δ1) +

1

2
ξ3/2V1 = −

∫ θ

ξ−3/2(θ′)δ1(θ
′) dθ′,

hence

ξ1/2V1 = −2

[
d

dθ
(ξ−

1
2 δ1) +

1

ξ

∫ θ

ξ−3/2(θ′)δ1(θ
′) dθ′

]
.

Hence
∫ θ

V1(θ
′)δ1(θ

′) dθ′ =
∫ θ

(ξ1/2V1)(θ
′)(ξ−

1
2 δ1)(θ

′) dθ′

= −



(
ξ−

1
2 (θ)δ1(θ)

)2

+

(∫ θ

ξ−3/2(θ′)δ1(θ
′) dθ′

)2

 (4.4)

and the integral over a period is zero.

The following covariance result is an extension of Theorem 3.1.6.

Theorem 4.4. Let D ∈ Saff
≤2,gen be of generic type, with associated invariant (ξ =

ξ(D), δ1 = δ1(D), δ2 = δ2(D)). Then

(1)

EL(D) :=
1

2

[
1

ξ

(
1 +

1

4
ξ̇2
)
x2 − ξ∂2x +

i

2
ξ̇(x∂x + ∂xx) + (−2δ1(−i∂x)

+ (V1ξ + 2δ̇1)x) + 2

(
δ2 +

1

2
V0ξ

)]
(4.5)

is an invariant for the Schrödinger operator D.

(2) Let (φ; (a, b)) ∈ SV and g : (θ, x) → (θ′, x′) = (φ(θ), x

√
φ̇(θ) − a(θ)) be the

associated coordinate change. Then

π1/4(φ; (a, b))EL(D)π1/4(φ; (a, b))
−1 = ẼL(D), (4.6)

where ẼL(D) is obtained by applying the transformation g to the coordinates, chang-

ing the potentials V0 and V1 by the σ1/4-action of SV, and transforming the invariant
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as follows:

ξ̃ = φ′ · ξ ◦ φ−1; (4.7)

δ̃1 = φ′1/2 · δ1 ◦ φ−1 +

(
ξ̃ȧ− 1

2
a
˙̃
ξ

)
; (4.8)

δ̃2 = δ2 ◦ φ−1 + (δ1ȧ− aδ̇1) + ξ̃ḃ + (ξ̃(ȧ2 − aä)− ˙̃ξaȧ− ¨̃ξa2). (4.9)

Furthermore, (ξ̃, δ̃1, δ̃2) is the invariant associated to σ1/4(D).

Proof. (1) Look for an invariant of the form

1

2

[
a(θ)x2 − b(θ)∂2x − ic(θ)(x∂x + ∂xx) + d(θ)(−i∂x) + e(θ)x + f(θ)

]
(4.10)

and solve in a, b, c, d, e, f . One obtains the following constraints:

ȧ = 2V2c, ḃ = −2c, ċ = −a+ V2b, (4.11)

whose general solution is in Proposition 3.1.4 above, namely, a = 1
ξ (1+

1
4 ξ̇

2), b = ξ,

c = − 1
2 ξ̇, and the set of following equations:

ḋ = V1b − e, ė = V1c+ V2d, ḟ =
1

2
dV1 (4.12)

which implies the compatibility condition

d̈+ V2d = V̇1ξ +
3

2
V1ξ̇.

(2) Since (assuming Iu(ξ) = 2 is fixed), there is a unique invariant for operators of

generic type, one necessarily has

Lξ̃ + Yδ̃1 +Mδ̃2
= Ad(φ; (a, b)) · (Lξ + Yδ1 +Mδ2) (4.13)

which gives the above formulas for (ξ̃, δ̃1, δ̃2).

There remains to check for Eq. (4.6). Consider first the covariance under a

time-reparametrization φ. It has already been proved for the quadratic part of the

Ermakov–Lewis operator, see Theorem 3.1.6. The linear part −2(−iδ1∂x + (V1ξ −
δ̇1)x) transforms covariantly under φ since (see proof of Theorem 3.1.6)

Ṽ1ξ̃ −
dδ̃1
dθ′

= φ′−
1
2

(
V1 · ξ − δ̇1 −

1

2

φ̈

φ̇
δ1

)
, −iδ̃1∂x′ = −iδ1∂x (4.14)

and
(
π1/4(φ)(−iδ1(θ)∂x + (V1ξ − δ̇1)x)π1/4(φ

−1)
)
ψ

=
1

2
φ̇−1/4e

i
4

φ̈

φ̇
x2

(−iδ1∂x + (V1ξ − δ̇1)x)φ̇
1/4e

− i
4

φ̈

φ̇
x2

ψ(φ(θ), x

√
φ̇(θ))

= (−iδ̃1∂x′ + (Ṽ1ξ̃ − δ̃1)x
′)ψ(θ′, x′). (4.15)
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As for the zero-order term − 1
2 (δ2 +

1
2V0ξ), it is obviously invariant under the con-

jugate action of π1/4(φ). Since Ṽ0ξ̃ = (V0ξ) ◦ φ−1, this implies also δ̃2 = δ2 ◦ φ−1.

Consider now the covariance under an infinitesimal nilpotent transformation

Yf1 +Mf2 . One has

[a∂x + iȧx+ b, EL(ξ, δ1, δ2)]

=
1

2

[
a∂x + iȧx,

1

ξ

(
1 +

1

4
ξ̇2
)
x2 − ξ∂2x + iξ̇x∂x − 2(δ1(−i∂x) + (V1ξ − δ̇1)x)

]

=
1

2

{(
2a

ξ

(
1 +

1

4
ξ̇2
)
+ ȧξ̇

)
x− (aξ̇ + 2ȧξ)(−i∂x)− 2a(V1ξ − δ̇1) + 2ȧδ1

}
,

(4.16)

to be compared with the infinitesimal change of EL under the transformation x→
x+εa, δ1 → δ1+ε(ξȧ− 1

2aξ̇), δ2 → δ2+ε((δ1ȧ−aδ̇1)+ξḃ), V1 → V1−2ε(ä+V2a). This

is a straightforward computation, which requires the use of the equation defining

ξ, namely, ξ̈ = 1
ξ (1 +

1
4 ξ̇

2)− 2V2ξ.

Using the parametrization of Saff
≤2,gen by the vector invariant (ξ, δ1, δ2), one can

easily define a natural symplectic structure on a linear space Ω and a Hamiltonian

action of SV on Ω reproducing the SV-action on Saff
≤2,gen.

Definition 4.5. Let Ω � C∞(R/2πZ,R4) be the linear manifold consisting of all

2π-periodic vector-valued C∞ functions X(τ) := (p, q, E, t)(τ), τ ∈ R/2πZ with

singular Poisson structure defined by

{p(τ), q(τ ′)} = δ(τ − τ ′), {E(τ), t(τ ′)} = δ(τ − τ ′). (4.17)

See for instance [14], Chap. X for some remarks on distribution-valued singu-

lar Poisson structures on infinite-dimensional spaces. The energy E is canonically

conjugate to t, which allows us to consider generalized canonical transformations

for which t is a coordinate. This usual trick for Hamiltonian systems with time-

dependent Hamiltonians can for instance be found in [9]. Hamiltonian vector fields

XH , for H = H(p, q, E, t), acts separately on each fiber τ = constant, namely,

(XHf)(τ) := {(∂pH∂q − ∂qH∂p + ∂EH∂p − ∂tH∂E)f}(τ). (4.18)

Definition 4.6. Let (ξ, δ1, δ2) be a triple of 2π-periodic functions. Define Φ :=

Φ(ξ, δ1, δ2) to be the following functional on Ω,

〈Φ,X〉 =
∮ {

ξ(t(τ))E(τ) +
1

2
ξ̇(t(τ))p(τ)q(τ) + δ1(t(τ))p(τ)

− δ̇1(t(τ))q(τ) + δ2(t(τ))

}
dτ. (4.19)
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Theorem 4.7. Represent Lf + Yg + Mh ∈ sv by the Hamiltonian vector field

XH(f,g,h) associated to

H(f, g, h) := −
(
f(t)E +

1

2
ḟ(t)pq +

1

4
f̈q2

)
− (g(t)p+ ġ(t)q) − h(t). (4.20)

Then the action of XH on the functional Φ(ξ, δ1, δ2) coincides with that given in

Theorem 4.4.

Proof. Observe that the map from sv to the Lie algebra of vector fields on Ω given

by Lf +Yg+Mh → XH(f,g,h) is a Lie algebra homomorphism. The vector field XH
is given explicitly by

XH(f,g,h) = −
[
1

2
ḟ(t)(q∂q − p∂p) + f(t)∂t −

1

2
f̈(t)q∂p

]
− [g(t)∂q − ġ(t)∂p]

+

[(
1

2
f̈(t)pq + ḟ(t)E +

1

4
f ′′′(t)q2

)
+ (ġp+ g̈q) + ḣ(t)

]
∂E .

(4.21)

The rest is a straightforward computation.

Let us conclude this section by computing the monodromy for “resonant” oper-

ators of types (i)bis and (iii)bis.

Consider any resonant operatorD. The associated classical monodromy is unipo-

tent. We choose ξ ∈ StabV2 to be purely imaginary, ξ := iη as before (see Sec. 3.2).

A generalized Ermarkov–Lewis invariant may then be defined as

EL(D) =
1

2ξ

[(
iξ∂x +

1

2
ξ̇x

)2
]
+
i

2
[d(−i∂x) + ex+ f ] , (4.22)

where d, e, f are defined as in Theorem 4.4 but with ξ replaced by η (see Eq. (4.10)

for notations). Hence

EL(D)− ik

ξ
= −1

2

[(
∂x −

i

2

η̇

η
x

)2

− d

η
(−i∂x)−

e

η
x− f

η

]
− k

η
. (4.23)

Suppose EL(D)ψk = ikψk and set

ψ̃k = exp

(
− i

4

η̇

η
x2 +

i

2

d

η
x

)
ψk. (4.24)

Then a simple calculation gives
[
∂2x −

(
1

2
d
η̇

η2
+
e

η

)
x+

−f + 2k

η
+

1

4

(
d

η

)2
]
ψ̃k = 0. (4.25)

If D is of type (i)bis, then d, e, f (easy to obtain from Theorem 4.4 and the

isotropy algebra given in Sec. 2) satisfy 1
2d

η̇
η2 + e

η = 0 identically, so the model

operator is (up to a constant) the Laplacian as for case (iii). Then the monodromy
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can be computed along the same lines as in Sec. 3.6, with a time-independent shift

in k due to the function −f + 1
4
d2

η = 3C2

128n2 .

Lemma 4.8. Let D = −2i∂θ− ∂2x+n2x2+C cosn(θ−σ/2)x+ γ be a Schrödinger

operator of type (i)bis. Set

ψk,±(θ, x) = e
i
4

η̇
ηx

2− i
2

d
η x · e±i

q
2k′
η x

, (4.26)

with d = − C
4n sin 3n(θ − σ/2), η = 1− cos(2nθ − σ), k′ = k + 3

(
C
16n

)2
. Then

Dψk,± =

(
2k′

η
+

1

4

(
d

η

)2

∓ dη−3/2
√
2k′ − i

2

η̇

η
+ γ

)
ψk,±. (4.27)

Proof. Tedious computations.

Apart from the time-periodic shift 1
4 (
d
η )

2 = ( C
16n )

2 sin2 3n(θ−σ/2)
sin4 n(θ−σ/2) (which is inte-

grable on the contour Γ) and the time-independent shift in k, one is left once again

with a phase proportional to k/η (note that the term in dη−3/2
√
2k′ is irrelevant

since
∫ 2π

0 (dη−3/2)(θ) dθ = 0 by Lemma 4.3; recall d = −2δ1 by Theorem 4.4).

Hence one obtains:

Theorem 4.9. Let ψ(0) ∈ L2(R), with decomposition

ψ(0, x) :=

∫

R+

c̄+(k)ψk,+(0, x) dk +

∫

R+

c̄−(k)ψk,−(0, x) dk. (4.28)

Then the solution of the type (i)bis Schrödinger equation

(−2i∂θ + ∂2x + n2x2 + C cos(nθ − σ/2) · x+ γ)ψ = 0 (4.29)

with initial state ψ(0) is given at time θ = 2π by

ψ(2π, x) =

∫

R+

c̄+(k)e
k′T−iπγ̃ψk,+(0, x) dk +

∫

R+

c̄−(k)e
k′T−iπγ̃ψk,−(0, x) dk,

(4.30)

where k′ = k + 3
(
C
16n

)2
, T =

∫ 2π

0
du
ξ(u) (T is purely imaginary) and

γ̃ = γ +
1

4

∫

Γ

(
d

η

)2

(θ)dθ.

The associated monodromy operator in B(L2(R), L2(R)) is unitarily equivalent to

the unitary operator on L2(R+) given by the multiplication by the function k →
ekT−iπγ̃ .

Suppose now D is of type (iii)bis. Then the x-coefficient in the transformed

Ermakov–Lewis operator (4.25) does not vanish, so one must take for “model oper-

ator” −∂2x+ x, whose eigenfunctions are related to the Airy function. The solution

of the monodromy problem will be given by a series of lemmas. In the sequel,
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η = (1 + sinnθ)(1 + α sinnθ) is the (real-valued and non-negative) invariant, and

η1/2 = (1+α sinnθ)1/2 cos(π4 −n θ2 )x is the smooth square-root of η chosen in Sec. 2.

Lemma 4.10. Let Ai be the entire function, solution of the Airy differential equa-

tion (−∂2x + x)Ai(x) = 0, defined on the real line as

Ai(x) =
1

π

∫ ∞

0

cos

(
t3

3
+ xt

)
dt. (4.31)

It is (up to a constant) the only solution of the Airy differential equation which do

not increase exponentially on R+. The functions fk(x) := Ai(x − k), k ∈ R define

(up to a coefficient) a complete orthonormal system of generalized eigenfunctions

of the self-adjoint closure of the Airy operator −∂2x + x with core C∞
0 (R) ⊂ L2(R).

Proof. It is easy by using a Fourier transform.

Lemma 4.11. The x-coefficient in the transformed Ermakov–Lewis invariant

(4.25) reads

1

2
d
η̇

η2
+
e

η
= −Cαη−3/2, (4.32)

where Cα = (1− α)(1 + α/2)
√
1− α2.

Proof. Computations similar to that of Lemma 4.3 (with the simple difference

that ξξ̈ − 1
2 ξ̇

2 + 2V2ξ
2 = 0 here) yield

d

dθ
(η−

1
2 d) = η − Cα

η
, (4.33)

where Cα is some constant which must be chosen in order that the right-hand side

be 2π-periodic. Note that the singularities in the above equation are only apparent;

one may avoid them altogether by using a contour Γ in the upper-half plane as in

Sec. 3.2. Since
∫ 2π

0
η = 2π(1 + α/2) and

∫
Γ

dθ′

η(θ′) = − 2π
(1−α)

√
1−α2

(see Proposition

2.2.3), this givesCα = (1−α)(1+α/2)
√
1− α2. Then a straightforward computation

yields formula (4.32).

Lemma 4.12. Set

ψk(θ, x) = exp

(
i

4

η̇

η
x2 − i

2

d

η
x

)
· η− 1

2Ai

×
(
xC1/3

α η−
1
2 − C−2/3

α

(
−f + 2k +

1

4

d2

η

))
. (4.34)

Then

Dψk(θ, x) =

(
2k

η
+

(
i

2

η̇

η
+

1

2

(
d

η

)2

− f

η

))
ψk(θ, x). (4.35)
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Proof. The ψk are obtained as in Sec. 3.5 (monodromy of hyperbolic operators)

by taking a complete orthonormal system of generalized eigenfunctions ψ̃k for the

transformed Ermakov–Lewis invariant (4.25) and going back to the functions ψk.

Then (4.35) is proved by a direct tedious computation.

One may now conclude:

Lemma 4.13. Let ψ(0) ∈ L2(R), with decomposition

ψ(0, x) :=

∫

R
c̄(k)ψk(0, x) dk. (4.36)

Then the solution of the type (iii)bis Schrödinger equation
(
−2i∂θ + ∂2x + vn,αx

2 + C(1 + α sinnθ)1/2 cos

(
π

4
− n

θ

2

)
· x+ γ

)
ψ = 0 (4.37)

with initial state ψ(0) is given at time θ = 2π by

ψ(2π, x) =

∫

R
c̄(k)ekT−iπγ̃ψk(0, x) dk, (4.38)

where T =
∫ 2π

0
du
ξ(u) (T is purely imaginary) and

γ̃ = γ +

∫

Γ

(
−f
η
+

1

2

(
d

η

)2
)
(θ) dθ.

The associated monodromy operator in B(L2(R), L2(R)) is unitarily equivalent to

the unitary operator on L2(R) given by the multiplication by the function k →
ekT−iπγ̃ .
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32. M. Henkel and J. Unterberger, Schrödinger invariance and space-time symmetries,
Nucl. Phys. B 660 (2003) 407.


